xref: /openbmc/qemu/hw/i386/pc.c (revision b097ba37)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "hw/xen/start_info.h"
58 #include "ui/qemu-spice.h"
59 #include "exec/memory.h"
60 #include "exec/address-spaces.h"
61 #include "sysemu/arch_init.h"
62 #include "qemu/bitmap.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
65 #include "qemu/option.h"
66 #include "hw/acpi/acpi.h"
67 #include "hw/acpi/cpu_hotplug.h"
68 #include "hw/boards.h"
69 #include "acpi-build.h"
70 #include "hw/mem/pc-dimm.h"
71 #include "qapi/error.h"
72 #include "qapi/qapi-visit-common.h"
73 #include "qapi/visitor.h"
74 #include "qom/cpu.h"
75 #include "hw/nmi.h"
76 #include "hw/usb.h"
77 #include "hw/i386/intel_iommu.h"
78 #include "hw/net/ne2000-isa.h"
79 #include "standard-headers/asm-x86/bootparam.h"
80 
81 /* debug PC/ISA interrupts */
82 //#define DEBUG_IRQ
83 
84 #ifdef DEBUG_IRQ
85 #define DPRINTF(fmt, ...)                                       \
86     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
87 #else
88 #define DPRINTF(fmt, ...)
89 #endif
90 
91 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
92 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
93 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
94 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
95 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
96 
97 #define E820_NR_ENTRIES		16
98 
99 struct e820_entry {
100     uint64_t address;
101     uint64_t length;
102     uint32_t type;
103 } QEMU_PACKED __attribute((__aligned__(4)));
104 
105 struct e820_table {
106     uint32_t count;
107     struct e820_entry entry[E820_NR_ENTRIES];
108 } QEMU_PACKED __attribute((__aligned__(4)));
109 
110 static struct e820_table e820_reserve;
111 static struct e820_entry *e820_table;
112 static unsigned e820_entries;
113 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
114 
115 /* Physical Address of PVH entry point read from kernel ELF NOTE */
116 static size_t pvh_start_addr;
117 
118 GlobalProperty pc_compat_4_0[] = {};
119 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
120 
121 GlobalProperty pc_compat_3_1[] = {
122     { "intel-iommu", "dma-drain", "off" },
123     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
124     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
125     { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
126     { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
127     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
128     { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
129     { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
130     { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
131     { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
132     { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
133     { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
134     { "Skylake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
135     { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
136     { "Skylake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
137     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
138     { "Cascadelake-Server" "-" TYPE_X86_CPU,  "mpx", "on" },
139     { "Icelake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
140     { "Icelake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
141     { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
142     { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
143 };
144 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
145 
146 GlobalProperty pc_compat_3_0[] = {
147     { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
148     { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
149     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
150 };
151 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
152 
153 GlobalProperty pc_compat_2_12[] = {
154     { TYPE_X86_CPU, "legacy-cache", "on" },
155     { TYPE_X86_CPU, "topoext", "off" },
156     { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
157     { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
158 };
159 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
160 
161 GlobalProperty pc_compat_2_11[] = {
162     { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
163     { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
164 };
165 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
166 
167 GlobalProperty pc_compat_2_10[] = {
168     { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
169     { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
170     { "q35-pcihost", "x-pci-hole64-fix", "off" },
171 };
172 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
173 
174 GlobalProperty pc_compat_2_9[] = {
175     { "mch", "extended-tseg-mbytes", "0" },
176 };
177 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
178 
179 GlobalProperty pc_compat_2_8[] = {
180     { TYPE_X86_CPU, "tcg-cpuid", "off" },
181     { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
182     { "ICH9-LPC", "x-smi-broadcast", "off" },
183     { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
184     { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
185 };
186 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
187 
188 GlobalProperty pc_compat_2_7[] = {
189     { TYPE_X86_CPU, "l3-cache", "off" },
190     { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
191     { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
192     { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
193     { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
194     { "isa-pcspk", "migrate", "off" },
195 };
196 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
197 
198 GlobalProperty pc_compat_2_6[] = {
199     { TYPE_X86_CPU, "cpuid-0xb", "off" },
200     { "vmxnet3", "romfile", "" },
201     { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
202     { "apic-common", "legacy-instance-id", "on", }
203 };
204 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
205 
206 GlobalProperty pc_compat_2_5[] = {};
207 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
208 
209 GlobalProperty pc_compat_2_4[] = {
210     PC_CPU_MODEL_IDS("2.4.0")
211     { "Haswell-" TYPE_X86_CPU, "abm", "off" },
212     { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
213     { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
214     { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
215     { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
216     { TYPE_X86_CPU, "check", "off" },
217     { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
218     { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
219     { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
220     { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
221     { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
222     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
223     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
224     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
225 };
226 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
227 
228 GlobalProperty pc_compat_2_3[] = {
229     PC_CPU_MODEL_IDS("2.3.0")
230     { TYPE_X86_CPU, "arat", "off" },
231     { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
232     { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
233     { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
234     { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
235     { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
236     { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
237     { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
238     { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239     { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240     { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241     { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242     { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243     { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244     { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245     { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246     { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247     { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
248     { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
249     { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
250 };
251 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
252 
253 GlobalProperty pc_compat_2_2[] = {
254     PC_CPU_MODEL_IDS("2.2.0")
255     { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
256     { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
257     { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
258     { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
259     { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
260     { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
261     { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
262     { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
263     { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
264     { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
265     { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
266     { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
267     { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
268     { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
269     { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
270     { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
271     { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
272     { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
273 };
274 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
275 
276 GlobalProperty pc_compat_2_1[] = {
277     PC_CPU_MODEL_IDS("2.1.0")
278     { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
279     { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
280 };
281 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
282 
283 GlobalProperty pc_compat_2_0[] = {
284     PC_CPU_MODEL_IDS("2.0.0")
285     { "virtio-scsi-pci", "any_layout", "off" },
286     { "PIIX4_PM", "memory-hotplug-support", "off" },
287     { "apic", "version", "0x11" },
288     { "nec-usb-xhci", "superspeed-ports-first", "off" },
289     { "nec-usb-xhci", "force-pcie-endcap", "on" },
290     { "pci-serial", "prog_if", "0" },
291     { "pci-serial-2x", "prog_if", "0" },
292     { "pci-serial-4x", "prog_if", "0" },
293     { "virtio-net-pci", "guest_announce", "off" },
294     { "ICH9-LPC", "memory-hotplug-support", "off" },
295     { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
296     { "ioh3420", COMPAT_PROP_PCP, "off" },
297 };
298 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
299 
300 GlobalProperty pc_compat_1_7[] = {
301     PC_CPU_MODEL_IDS("1.7.0")
302     { TYPE_USB_DEVICE, "msos-desc", "no" },
303     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
304     { "hpet", HPET_INTCAP, "4" },
305 };
306 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
307 
308 GlobalProperty pc_compat_1_6[] = {
309     PC_CPU_MODEL_IDS("1.6.0")
310     { "e1000", "mitigation", "off" },
311     { "qemu64-" TYPE_X86_CPU, "model", "2" },
312     { "qemu32-" TYPE_X86_CPU, "model", "3" },
313     { "i440FX-pcihost", "short_root_bus", "1" },
314     { "q35-pcihost", "short_root_bus", "1" },
315 };
316 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
317 
318 GlobalProperty pc_compat_1_5[] = {
319     PC_CPU_MODEL_IDS("1.5.0")
320     { "Conroe-" TYPE_X86_CPU, "model", "2" },
321     { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
322     { "Penryn-" TYPE_X86_CPU, "model", "2" },
323     { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
324     { "Nehalem-" TYPE_X86_CPU, "model", "2" },
325     { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
326     { "virtio-net-pci", "any_layout", "off" },
327     { TYPE_X86_CPU, "pmu", "on" },
328     { "i440FX-pcihost", "short_root_bus", "0" },
329     { "q35-pcihost", "short_root_bus", "0" },
330 };
331 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
332 
333 GlobalProperty pc_compat_1_4[] = {
334     PC_CPU_MODEL_IDS("1.4.0")
335     { "scsi-hd", "discard_granularity", "0" },
336     { "scsi-cd", "discard_granularity", "0" },
337     { "scsi-disk", "discard_granularity", "0" },
338     { "ide-hd", "discard_granularity", "0" },
339     { "ide-cd", "discard_granularity", "0" },
340     { "ide-drive", "discard_granularity", "0" },
341     { "virtio-blk-pci", "discard_granularity", "0" },
342     /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
343     { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
344     { "virtio-net-pci", "ctrl_guest_offloads", "off" },
345     { "e1000", "romfile", "pxe-e1000.rom" },
346     { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
347     { "pcnet", "romfile", "pxe-pcnet.rom" },
348     { "rtl8139", "romfile", "pxe-rtl8139.rom" },
349     { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
350     { "486-" TYPE_X86_CPU, "model", "0" },
351     { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
352     { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
353 };
354 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
355 
356 void gsi_handler(void *opaque, int n, int level)
357 {
358     GSIState *s = opaque;
359 
360     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
361     if (n < ISA_NUM_IRQS) {
362         qemu_set_irq(s->i8259_irq[n], level);
363     }
364     qemu_set_irq(s->ioapic_irq[n], level);
365 }
366 
367 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
368                            unsigned size)
369 {
370 }
371 
372 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
373 {
374     return 0xffffffffffffffffULL;
375 }
376 
377 /* MSDOS compatibility mode FPU exception support */
378 static qemu_irq ferr_irq;
379 
380 void pc_register_ferr_irq(qemu_irq irq)
381 {
382     ferr_irq = irq;
383 }
384 
385 /* XXX: add IGNNE support */
386 void cpu_set_ferr(CPUX86State *s)
387 {
388     qemu_irq_raise(ferr_irq);
389 }
390 
391 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
392                            unsigned size)
393 {
394     qemu_irq_lower(ferr_irq);
395 }
396 
397 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
398 {
399     return 0xffffffffffffffffULL;
400 }
401 
402 /* TSC handling */
403 uint64_t cpu_get_tsc(CPUX86State *env)
404 {
405     return cpu_get_ticks();
406 }
407 
408 /* IRQ handling */
409 int cpu_get_pic_interrupt(CPUX86State *env)
410 {
411     X86CPU *cpu = x86_env_get_cpu(env);
412     int intno;
413 
414     if (!kvm_irqchip_in_kernel()) {
415         intno = apic_get_interrupt(cpu->apic_state);
416         if (intno >= 0) {
417             return intno;
418         }
419         /* read the irq from the PIC */
420         if (!apic_accept_pic_intr(cpu->apic_state)) {
421             return -1;
422         }
423     }
424 
425     intno = pic_read_irq(isa_pic);
426     return intno;
427 }
428 
429 static void pic_irq_request(void *opaque, int irq, int level)
430 {
431     CPUState *cs = first_cpu;
432     X86CPU *cpu = X86_CPU(cs);
433 
434     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
435     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
436         CPU_FOREACH(cs) {
437             cpu = X86_CPU(cs);
438             if (apic_accept_pic_intr(cpu->apic_state)) {
439                 apic_deliver_pic_intr(cpu->apic_state, level);
440             }
441         }
442     } else {
443         if (level) {
444             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
445         } else {
446             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
447         }
448     }
449 }
450 
451 /* PC cmos mappings */
452 
453 #define REG_EQUIPMENT_BYTE          0x14
454 
455 int cmos_get_fd_drive_type(FloppyDriveType fd0)
456 {
457     int val;
458 
459     switch (fd0) {
460     case FLOPPY_DRIVE_TYPE_144:
461         /* 1.44 Mb 3"5 drive */
462         val = 4;
463         break;
464     case FLOPPY_DRIVE_TYPE_288:
465         /* 2.88 Mb 3"5 drive */
466         val = 5;
467         break;
468     case FLOPPY_DRIVE_TYPE_120:
469         /* 1.2 Mb 5"5 drive */
470         val = 2;
471         break;
472     case FLOPPY_DRIVE_TYPE_NONE:
473     default:
474         val = 0;
475         break;
476     }
477     return val;
478 }
479 
480 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
481                          int16_t cylinders, int8_t heads, int8_t sectors)
482 {
483     rtc_set_memory(s, type_ofs, 47);
484     rtc_set_memory(s, info_ofs, cylinders);
485     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
486     rtc_set_memory(s, info_ofs + 2, heads);
487     rtc_set_memory(s, info_ofs + 3, 0xff);
488     rtc_set_memory(s, info_ofs + 4, 0xff);
489     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
490     rtc_set_memory(s, info_ofs + 6, cylinders);
491     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
492     rtc_set_memory(s, info_ofs + 8, sectors);
493 }
494 
495 /* convert boot_device letter to something recognizable by the bios */
496 static int boot_device2nibble(char boot_device)
497 {
498     switch(boot_device) {
499     case 'a':
500     case 'b':
501         return 0x01; /* floppy boot */
502     case 'c':
503         return 0x02; /* hard drive boot */
504     case 'd':
505         return 0x03; /* CD-ROM boot */
506     case 'n':
507         return 0x04; /* Network boot */
508     }
509     return 0;
510 }
511 
512 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
513 {
514 #define PC_MAX_BOOT_DEVICES 3
515     int nbds, bds[3] = { 0, };
516     int i;
517 
518     nbds = strlen(boot_device);
519     if (nbds > PC_MAX_BOOT_DEVICES) {
520         error_setg(errp, "Too many boot devices for PC");
521         return;
522     }
523     for (i = 0; i < nbds; i++) {
524         bds[i] = boot_device2nibble(boot_device[i]);
525         if (bds[i] == 0) {
526             error_setg(errp, "Invalid boot device for PC: '%c'",
527                        boot_device[i]);
528             return;
529         }
530     }
531     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
532     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
533 }
534 
535 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
536 {
537     set_boot_dev(opaque, boot_device, errp);
538 }
539 
540 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
541 {
542     int val, nb, i;
543     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
544                                    FLOPPY_DRIVE_TYPE_NONE };
545 
546     /* floppy type */
547     if (floppy) {
548         for (i = 0; i < 2; i++) {
549             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
550         }
551     }
552     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
553         cmos_get_fd_drive_type(fd_type[1]);
554     rtc_set_memory(rtc_state, 0x10, val);
555 
556     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
557     nb = 0;
558     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
559         nb++;
560     }
561     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
562         nb++;
563     }
564     switch (nb) {
565     case 0:
566         break;
567     case 1:
568         val |= 0x01; /* 1 drive, ready for boot */
569         break;
570     case 2:
571         val |= 0x41; /* 2 drives, ready for boot */
572         break;
573     }
574     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
575 }
576 
577 typedef struct pc_cmos_init_late_arg {
578     ISADevice *rtc_state;
579     BusState *idebus[2];
580 } pc_cmos_init_late_arg;
581 
582 typedef struct check_fdc_state {
583     ISADevice *floppy;
584     bool multiple;
585 } CheckFdcState;
586 
587 static int check_fdc(Object *obj, void *opaque)
588 {
589     CheckFdcState *state = opaque;
590     Object *fdc;
591     uint32_t iobase;
592     Error *local_err = NULL;
593 
594     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
595     if (!fdc) {
596         return 0;
597     }
598 
599     iobase = object_property_get_uint(obj, "iobase", &local_err);
600     if (local_err || iobase != 0x3f0) {
601         error_free(local_err);
602         return 0;
603     }
604 
605     if (state->floppy) {
606         state->multiple = true;
607     } else {
608         state->floppy = ISA_DEVICE(obj);
609     }
610     return 0;
611 }
612 
613 static const char * const fdc_container_path[] = {
614     "/unattached", "/peripheral", "/peripheral-anon"
615 };
616 
617 /*
618  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
619  * and ACPI objects.
620  */
621 ISADevice *pc_find_fdc0(void)
622 {
623     int i;
624     Object *container;
625     CheckFdcState state = { 0 };
626 
627     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
628         container = container_get(qdev_get_machine(), fdc_container_path[i]);
629         object_child_foreach(container, check_fdc, &state);
630     }
631 
632     if (state.multiple) {
633         warn_report("multiple floppy disk controllers with "
634                     "iobase=0x3f0 have been found");
635         error_printf("the one being picked for CMOS setup might not reflect "
636                      "your intent");
637     }
638 
639     return state.floppy;
640 }
641 
642 static void pc_cmos_init_late(void *opaque)
643 {
644     pc_cmos_init_late_arg *arg = opaque;
645     ISADevice *s = arg->rtc_state;
646     int16_t cylinders;
647     int8_t heads, sectors;
648     int val;
649     int i, trans;
650 
651     val = 0;
652     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
653                                            &cylinders, &heads, &sectors) >= 0) {
654         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
655         val |= 0xf0;
656     }
657     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
658                                            &cylinders, &heads, &sectors) >= 0) {
659         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
660         val |= 0x0f;
661     }
662     rtc_set_memory(s, 0x12, val);
663 
664     val = 0;
665     for (i = 0; i < 4; i++) {
666         /* NOTE: ide_get_geometry() returns the physical
667            geometry.  It is always such that: 1 <= sects <= 63, 1
668            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
669            geometry can be different if a translation is done. */
670         if (arg->idebus[i / 2] &&
671             ide_get_geometry(arg->idebus[i / 2], i % 2,
672                              &cylinders, &heads, &sectors) >= 0) {
673             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
674             assert((trans & ~3) == 0);
675             val |= trans << (i * 2);
676         }
677     }
678     rtc_set_memory(s, 0x39, val);
679 
680     pc_cmos_init_floppy(s, pc_find_fdc0());
681 
682     qemu_unregister_reset(pc_cmos_init_late, opaque);
683 }
684 
685 void pc_cmos_init(PCMachineState *pcms,
686                   BusState *idebus0, BusState *idebus1,
687                   ISADevice *s)
688 {
689     int val;
690     static pc_cmos_init_late_arg arg;
691 
692     /* various important CMOS locations needed by PC/Bochs bios */
693 
694     /* memory size */
695     /* base memory (first MiB) */
696     val = MIN(pcms->below_4g_mem_size / KiB, 640);
697     rtc_set_memory(s, 0x15, val);
698     rtc_set_memory(s, 0x16, val >> 8);
699     /* extended memory (next 64MiB) */
700     if (pcms->below_4g_mem_size > 1 * MiB) {
701         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
702     } else {
703         val = 0;
704     }
705     if (val > 65535)
706         val = 65535;
707     rtc_set_memory(s, 0x17, val);
708     rtc_set_memory(s, 0x18, val >> 8);
709     rtc_set_memory(s, 0x30, val);
710     rtc_set_memory(s, 0x31, val >> 8);
711     /* memory between 16MiB and 4GiB */
712     if (pcms->below_4g_mem_size > 16 * MiB) {
713         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
714     } else {
715         val = 0;
716     }
717     if (val > 65535)
718         val = 65535;
719     rtc_set_memory(s, 0x34, val);
720     rtc_set_memory(s, 0x35, val >> 8);
721     /* memory above 4GiB */
722     val = pcms->above_4g_mem_size / 65536;
723     rtc_set_memory(s, 0x5b, val);
724     rtc_set_memory(s, 0x5c, val >> 8);
725     rtc_set_memory(s, 0x5d, val >> 16);
726 
727     object_property_add_link(OBJECT(pcms), "rtc_state",
728                              TYPE_ISA_DEVICE,
729                              (Object **)&pcms->rtc,
730                              object_property_allow_set_link,
731                              OBJ_PROP_LINK_STRONG, &error_abort);
732     object_property_set_link(OBJECT(pcms), OBJECT(s),
733                              "rtc_state", &error_abort);
734 
735     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
736 
737     val = 0;
738     val |= 0x02; /* FPU is there */
739     val |= 0x04; /* PS/2 mouse installed */
740     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
741 
742     /* hard drives and FDC */
743     arg.rtc_state = s;
744     arg.idebus[0] = idebus0;
745     arg.idebus[1] = idebus1;
746     qemu_register_reset(pc_cmos_init_late, &arg);
747 }
748 
749 #define TYPE_PORT92 "port92"
750 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
751 
752 /* port 92 stuff: could be split off */
753 typedef struct Port92State {
754     ISADevice parent_obj;
755 
756     MemoryRegion io;
757     uint8_t outport;
758     qemu_irq a20_out;
759 } Port92State;
760 
761 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
762                          unsigned size)
763 {
764     Port92State *s = opaque;
765     int oldval = s->outport;
766 
767     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
768     s->outport = val;
769     qemu_set_irq(s->a20_out, (val >> 1) & 1);
770     if ((val & 1) && !(oldval & 1)) {
771         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
772     }
773 }
774 
775 static uint64_t port92_read(void *opaque, hwaddr addr,
776                             unsigned size)
777 {
778     Port92State *s = opaque;
779     uint32_t ret;
780 
781     ret = s->outport;
782     DPRINTF("port92: read 0x%02x\n", ret);
783     return ret;
784 }
785 
786 static void port92_init(ISADevice *dev, qemu_irq a20_out)
787 {
788     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
789 }
790 
791 static const VMStateDescription vmstate_port92_isa = {
792     .name = "port92",
793     .version_id = 1,
794     .minimum_version_id = 1,
795     .fields = (VMStateField[]) {
796         VMSTATE_UINT8(outport, Port92State),
797         VMSTATE_END_OF_LIST()
798     }
799 };
800 
801 static void port92_reset(DeviceState *d)
802 {
803     Port92State *s = PORT92(d);
804 
805     s->outport &= ~1;
806 }
807 
808 static const MemoryRegionOps port92_ops = {
809     .read = port92_read,
810     .write = port92_write,
811     .impl = {
812         .min_access_size = 1,
813         .max_access_size = 1,
814     },
815     .endianness = DEVICE_LITTLE_ENDIAN,
816 };
817 
818 static void port92_initfn(Object *obj)
819 {
820     Port92State *s = PORT92(obj);
821 
822     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
823 
824     s->outport = 0;
825 
826     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
827 }
828 
829 static void port92_realizefn(DeviceState *dev, Error **errp)
830 {
831     ISADevice *isadev = ISA_DEVICE(dev);
832     Port92State *s = PORT92(dev);
833 
834     isa_register_ioport(isadev, &s->io, 0x92);
835 }
836 
837 static void port92_class_initfn(ObjectClass *klass, void *data)
838 {
839     DeviceClass *dc = DEVICE_CLASS(klass);
840 
841     dc->realize = port92_realizefn;
842     dc->reset = port92_reset;
843     dc->vmsd = &vmstate_port92_isa;
844     /*
845      * Reason: unlike ordinary ISA devices, this one needs additional
846      * wiring: its A20 output line needs to be wired up by
847      * port92_init().
848      */
849     dc->user_creatable = false;
850 }
851 
852 static const TypeInfo port92_info = {
853     .name          = TYPE_PORT92,
854     .parent        = TYPE_ISA_DEVICE,
855     .instance_size = sizeof(Port92State),
856     .instance_init = port92_initfn,
857     .class_init    = port92_class_initfn,
858 };
859 
860 static void port92_register_types(void)
861 {
862     type_register_static(&port92_info);
863 }
864 
865 type_init(port92_register_types)
866 
867 static void handle_a20_line_change(void *opaque, int irq, int level)
868 {
869     X86CPU *cpu = opaque;
870 
871     /* XXX: send to all CPUs ? */
872     /* XXX: add logic to handle multiple A20 line sources */
873     x86_cpu_set_a20(cpu, level);
874 }
875 
876 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
877 {
878     int index = le32_to_cpu(e820_reserve.count);
879     struct e820_entry *entry;
880 
881     if (type != E820_RAM) {
882         /* old FW_CFG_E820_TABLE entry -- reservations only */
883         if (index >= E820_NR_ENTRIES) {
884             return -EBUSY;
885         }
886         entry = &e820_reserve.entry[index++];
887 
888         entry->address = cpu_to_le64(address);
889         entry->length = cpu_to_le64(length);
890         entry->type = cpu_to_le32(type);
891 
892         e820_reserve.count = cpu_to_le32(index);
893     }
894 
895     /* new "etc/e820" file -- include ram too */
896     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
897     e820_table[e820_entries].address = cpu_to_le64(address);
898     e820_table[e820_entries].length = cpu_to_le64(length);
899     e820_table[e820_entries].type = cpu_to_le32(type);
900     e820_entries++;
901 
902     return e820_entries;
903 }
904 
905 int e820_get_num_entries(void)
906 {
907     return e820_entries;
908 }
909 
910 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
911 {
912     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
913         *address = le64_to_cpu(e820_table[idx].address);
914         *length = le64_to_cpu(e820_table[idx].length);
915         return true;
916     }
917     return false;
918 }
919 
920 /* Enables contiguous-apic-ID mode, for compatibility */
921 static bool compat_apic_id_mode;
922 
923 void enable_compat_apic_id_mode(void)
924 {
925     compat_apic_id_mode = true;
926 }
927 
928 /* Calculates initial APIC ID for a specific CPU index
929  *
930  * Currently we need to be able to calculate the APIC ID from the CPU index
931  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
932  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
933  * all CPUs up to max_cpus.
934  */
935 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
936 {
937     uint32_t correct_id;
938     static bool warned;
939 
940     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
941     if (compat_apic_id_mode) {
942         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
943             error_report("APIC IDs set in compatibility mode, "
944                          "CPU topology won't match the configuration");
945             warned = true;
946         }
947         return cpu_index;
948     } else {
949         return correct_id;
950     }
951 }
952 
953 static void pc_build_smbios(PCMachineState *pcms)
954 {
955     uint8_t *smbios_tables, *smbios_anchor;
956     size_t smbios_tables_len, smbios_anchor_len;
957     struct smbios_phys_mem_area *mem_array;
958     unsigned i, array_count;
959     MachineState *ms = MACHINE(pcms);
960     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
961 
962     /* tell smbios about cpuid version and features */
963     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
964 
965     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
966     if (smbios_tables) {
967         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
968                          smbios_tables, smbios_tables_len);
969     }
970 
971     /* build the array of physical mem area from e820 table */
972     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
973     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
974         uint64_t addr, len;
975 
976         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
977             mem_array[array_count].address = addr;
978             mem_array[array_count].length = len;
979             array_count++;
980         }
981     }
982     smbios_get_tables(mem_array, array_count,
983                       &smbios_tables, &smbios_tables_len,
984                       &smbios_anchor, &smbios_anchor_len);
985     g_free(mem_array);
986 
987     if (smbios_anchor) {
988         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
989                         smbios_tables, smbios_tables_len);
990         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
991                         smbios_anchor, smbios_anchor_len);
992     }
993 }
994 
995 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
996 {
997     FWCfgState *fw_cfg;
998     uint64_t *numa_fw_cfg;
999     int i;
1000     const CPUArchIdList *cpus;
1001     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1002 
1003     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1004     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1005 
1006     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1007      *
1008      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1009      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1010      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1011      * for CPU hotplug also uses APIC ID and not "CPU index".
1012      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1013      * but the "limit to the APIC ID values SeaBIOS may see".
1014      *
1015      * So for compatibility reasons with old BIOSes we are stuck with
1016      * "etc/max-cpus" actually being apic_id_limit
1017      */
1018     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1019     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1020     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1021                      acpi_tables, acpi_tables_len);
1022     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1023 
1024     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1025                      &e820_reserve, sizeof(e820_reserve));
1026     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1027                     sizeof(struct e820_entry) * e820_entries);
1028 
1029     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1030     /* allocate memory for the NUMA channel: one (64bit) word for the number
1031      * of nodes, one word for each VCPU->node and one word for each node to
1032      * hold the amount of memory.
1033      */
1034     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1035     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1036     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1037     for (i = 0; i < cpus->len; i++) {
1038         unsigned int apic_id = cpus->cpus[i].arch_id;
1039         assert(apic_id < pcms->apic_id_limit);
1040         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1041     }
1042     for (i = 0; i < nb_numa_nodes; i++) {
1043         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1044             cpu_to_le64(numa_info[i].node_mem);
1045     }
1046     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1047                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
1048                      sizeof(*numa_fw_cfg));
1049 
1050     return fw_cfg;
1051 }
1052 
1053 static long get_file_size(FILE *f)
1054 {
1055     long where, size;
1056 
1057     /* XXX: on Unix systems, using fstat() probably makes more sense */
1058 
1059     where = ftell(f);
1060     fseek(f, 0, SEEK_END);
1061     size = ftell(f);
1062     fseek(f, where, SEEK_SET);
1063 
1064     return size;
1065 }
1066 
1067 struct setup_data {
1068     uint64_t next;
1069     uint32_t type;
1070     uint32_t len;
1071     uint8_t data[0];
1072 } __attribute__((packed));
1073 
1074 
1075 /*
1076  * The entry point into the kernel for PVH boot is different from
1077  * the native entry point.  The PVH entry is defined by the x86/HVM
1078  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1079  *
1080  * This function is passed to load_elf() when it is called from
1081  * load_elfboot() which then additionally checks for an ELF Note of
1082  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1083  * parse the PVH entry address from the ELF Note.
1084  *
1085  * Due to trickery in elf_opts.h, load_elf() is actually available as
1086  * load_elf32() or load_elf64() and this routine needs to be able
1087  * to deal with being called as 32 or 64 bit.
1088  *
1089  * The address of the PVH entry point is saved to the 'pvh_start_addr'
1090  * global variable.  (although the entry point is 32-bit, the kernel
1091  * binary can be either 32-bit or 64-bit).
1092  */
1093 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1094 {
1095     size_t *elf_note_data_addr;
1096 
1097     /* Check if ELF Note header passed in is valid */
1098     if (arg1 == NULL) {
1099         return 0;
1100     }
1101 
1102     if (is64) {
1103         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1104         uint64_t nhdr_size64 = sizeof(struct elf64_note);
1105         uint64_t phdr_align = *(uint64_t *)arg2;
1106         uint64_t nhdr_namesz = nhdr64->n_namesz;
1107 
1108         elf_note_data_addr =
1109             ((void *)nhdr64) + nhdr_size64 +
1110             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1111     } else {
1112         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1113         uint32_t nhdr_size32 = sizeof(struct elf32_note);
1114         uint32_t phdr_align = *(uint32_t *)arg2;
1115         uint32_t nhdr_namesz = nhdr32->n_namesz;
1116 
1117         elf_note_data_addr =
1118             ((void *)nhdr32) + nhdr_size32 +
1119             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1120     }
1121 
1122     pvh_start_addr = *elf_note_data_addr;
1123 
1124     return pvh_start_addr;
1125 }
1126 
1127 static bool load_elfboot(const char *kernel_filename,
1128                    int kernel_file_size,
1129                    uint8_t *header,
1130                    size_t pvh_xen_start_addr,
1131                    FWCfgState *fw_cfg)
1132 {
1133     uint32_t flags = 0;
1134     uint32_t mh_load_addr = 0;
1135     uint32_t elf_kernel_size = 0;
1136     uint64_t elf_entry;
1137     uint64_t elf_low, elf_high;
1138     int kernel_size;
1139 
1140     if (ldl_p(header) != 0x464c457f) {
1141         return false; /* no elfboot */
1142     }
1143 
1144     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1145     flags = elf_is64 ?
1146         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1147 
1148     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1149         error_report("elfboot unsupported flags = %x", flags);
1150         exit(1);
1151     }
1152 
1153     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1154     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1155                            NULL, &elf_note_type, &elf_entry,
1156                            &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1157                            0, 0);
1158 
1159     if (kernel_size < 0) {
1160         error_report("Error while loading elf kernel");
1161         exit(1);
1162     }
1163     mh_load_addr = elf_low;
1164     elf_kernel_size = elf_high - elf_low;
1165 
1166     if (pvh_start_addr == 0) {
1167         error_report("Error loading uncompressed kernel without PVH ELF Note");
1168         exit(1);
1169     }
1170     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1171     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1172     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1173 
1174     return true;
1175 }
1176 
1177 static void load_linux(PCMachineState *pcms,
1178                        FWCfgState *fw_cfg)
1179 {
1180     uint16_t protocol;
1181     int setup_size, kernel_size, cmdline_size;
1182     int dtb_size, setup_data_offset;
1183     uint32_t initrd_max;
1184     uint8_t header[8192], *setup, *kernel;
1185     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1186     FILE *f;
1187     char *vmode;
1188     MachineState *machine = MACHINE(pcms);
1189     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1190     struct setup_data *setup_data;
1191     const char *kernel_filename = machine->kernel_filename;
1192     const char *initrd_filename = machine->initrd_filename;
1193     const char *dtb_filename = machine->dtb;
1194     const char *kernel_cmdline = machine->kernel_cmdline;
1195 
1196     /* Align to 16 bytes as a paranoia measure */
1197     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1198 
1199     /* load the kernel header */
1200     f = fopen(kernel_filename, "rb");
1201     if (!f || !(kernel_size = get_file_size(f)) ||
1202         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1203         MIN(ARRAY_SIZE(header), kernel_size)) {
1204         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1205                 kernel_filename, strerror(errno));
1206         exit(1);
1207     }
1208 
1209     /* kernel protocol version */
1210 #if 0
1211     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1212 #endif
1213     if (ldl_p(header+0x202) == 0x53726448) {
1214         protocol = lduw_p(header+0x206);
1215     } else {
1216         /*
1217          * This could be a multiboot kernel. If it is, let's stop treating it
1218          * like a Linux kernel.
1219          * Note: some multiboot images could be in the ELF format (the same of
1220          * PVH), so we try multiboot first since we check the multiboot magic
1221          * header before to load it.
1222          */
1223         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1224                            kernel_cmdline, kernel_size, header)) {
1225             return;
1226         }
1227         /*
1228          * Check if the file is an uncompressed kernel file (ELF) and load it,
1229          * saving the PVH entry point used by the x86/HVM direct boot ABI.
1230          * If load_elfboot() is successful, populate the fw_cfg info.
1231          */
1232         if (pcmc->pvh_enabled &&
1233             load_elfboot(kernel_filename, kernel_size,
1234                          header, pvh_start_addr, fw_cfg)) {
1235             fclose(f);
1236 
1237             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1238                 strlen(kernel_cmdline) + 1);
1239             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1240 
1241             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1242             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1243                              header, sizeof(header));
1244 
1245             /* load initrd */
1246             if (initrd_filename) {
1247                 gsize initrd_size;
1248                 gchar *initrd_data;
1249                 GError *gerr = NULL;
1250 
1251                 if (!g_file_get_contents(initrd_filename, &initrd_data,
1252                             &initrd_size, &gerr)) {
1253                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1254                             initrd_filename, gerr->message);
1255                     exit(1);
1256                 }
1257 
1258                 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1259                 if (initrd_size >= initrd_max) {
1260                     fprintf(stderr, "qemu: initrd is too large, cannot support."
1261                             "(max: %"PRIu32", need %"PRId64")\n",
1262                             initrd_max, (uint64_t)initrd_size);
1263                     exit(1);
1264                 }
1265 
1266                 initrd_addr = (initrd_max - initrd_size) & ~4095;
1267 
1268                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1269                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1270                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1271                                  initrd_size);
1272             }
1273 
1274             option_rom[nb_option_roms].bootindex = 0;
1275             option_rom[nb_option_roms].name = "pvh.bin";
1276             nb_option_roms++;
1277 
1278             return;
1279         }
1280         protocol = 0;
1281     }
1282 
1283     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1284         /* Low kernel */
1285         real_addr    = 0x90000;
1286         cmdline_addr = 0x9a000 - cmdline_size;
1287         prot_addr    = 0x10000;
1288     } else if (protocol < 0x202) {
1289         /* High but ancient kernel */
1290         real_addr    = 0x90000;
1291         cmdline_addr = 0x9a000 - cmdline_size;
1292         prot_addr    = 0x100000;
1293     } else {
1294         /* High and recent kernel */
1295         real_addr    = 0x10000;
1296         cmdline_addr = 0x20000;
1297         prot_addr    = 0x100000;
1298     }
1299 
1300 #if 0
1301     fprintf(stderr,
1302             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
1303             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
1304             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
1305             real_addr,
1306             cmdline_addr,
1307             prot_addr);
1308 #endif
1309 
1310     /* highest address for loading the initrd */
1311     if (protocol >= 0x20c &&
1312         lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1313         /*
1314          * Linux has supported initrd up to 4 GB for a very long time (2007,
1315          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1316          * though it only sets initrd_max to 2 GB to "work around bootloader
1317          * bugs". Luckily, QEMU firmware(which does something like bootloader)
1318          * has supported this.
1319          *
1320          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1321          * be loaded into any address.
1322          *
1323          * In addition, initrd_max is uint32_t simply because QEMU doesn't
1324          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1325          * field).
1326          *
1327          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1328          */
1329         initrd_max = UINT32_MAX;
1330     } else if (protocol >= 0x203) {
1331         initrd_max = ldl_p(header+0x22c);
1332     } else {
1333         initrd_max = 0x37ffffff;
1334     }
1335 
1336     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1337         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1338     }
1339 
1340     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1341     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1342     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1343 
1344     if (protocol >= 0x202) {
1345         stl_p(header+0x228, cmdline_addr);
1346     } else {
1347         stw_p(header+0x20, 0xA33F);
1348         stw_p(header+0x22, cmdline_addr-real_addr);
1349     }
1350 
1351     /* handle vga= parameter */
1352     vmode = strstr(kernel_cmdline, "vga=");
1353     if (vmode) {
1354         unsigned int video_mode;
1355         /* skip "vga=" */
1356         vmode += 4;
1357         if (!strncmp(vmode, "normal", 6)) {
1358             video_mode = 0xffff;
1359         } else if (!strncmp(vmode, "ext", 3)) {
1360             video_mode = 0xfffe;
1361         } else if (!strncmp(vmode, "ask", 3)) {
1362             video_mode = 0xfffd;
1363         } else {
1364             video_mode = strtol(vmode, NULL, 0);
1365         }
1366         stw_p(header+0x1fa, video_mode);
1367     }
1368 
1369     /* loader type */
1370     /* High nybble = B reserved for QEMU; low nybble is revision number.
1371        If this code is substantially changed, you may want to consider
1372        incrementing the revision. */
1373     if (protocol >= 0x200) {
1374         header[0x210] = 0xB0;
1375     }
1376     /* heap */
1377     if (protocol >= 0x201) {
1378         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
1379         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1380     }
1381 
1382     /* load initrd */
1383     if (initrd_filename) {
1384         gsize initrd_size;
1385         gchar *initrd_data;
1386         GError *gerr = NULL;
1387 
1388         if (protocol < 0x200) {
1389             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1390             exit(1);
1391         }
1392 
1393         if (!g_file_get_contents(initrd_filename, &initrd_data,
1394                                  &initrd_size, &gerr)) {
1395             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1396                     initrd_filename, gerr->message);
1397             exit(1);
1398         }
1399         if (initrd_size >= initrd_max) {
1400             fprintf(stderr, "qemu: initrd is too large, cannot support."
1401                     "(max: %"PRIu32", need %"PRId64")\n",
1402                     initrd_max, (uint64_t)initrd_size);
1403             exit(1);
1404         }
1405 
1406         initrd_addr = (initrd_max-initrd_size) & ~4095;
1407 
1408         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1409         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1410         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1411 
1412         stl_p(header+0x218, initrd_addr);
1413         stl_p(header+0x21c, initrd_size);
1414     }
1415 
1416     /* load kernel and setup */
1417     setup_size = header[0x1f1];
1418     if (setup_size == 0) {
1419         setup_size = 4;
1420     }
1421     setup_size = (setup_size+1)*512;
1422     if (setup_size > kernel_size) {
1423         fprintf(stderr, "qemu: invalid kernel header\n");
1424         exit(1);
1425     }
1426     kernel_size -= setup_size;
1427 
1428     setup  = g_malloc(setup_size);
1429     kernel = g_malloc(kernel_size);
1430     fseek(f, 0, SEEK_SET);
1431     if (fread(setup, 1, setup_size, f) != setup_size) {
1432         fprintf(stderr, "fread() failed\n");
1433         exit(1);
1434     }
1435     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1436         fprintf(stderr, "fread() failed\n");
1437         exit(1);
1438     }
1439     fclose(f);
1440 
1441     /* append dtb to kernel */
1442     if (dtb_filename) {
1443         if (protocol < 0x209) {
1444             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1445             exit(1);
1446         }
1447 
1448         dtb_size = get_image_size(dtb_filename);
1449         if (dtb_size <= 0) {
1450             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1451                     dtb_filename, strerror(errno));
1452             exit(1);
1453         }
1454 
1455         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1456         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1457         kernel = g_realloc(kernel, kernel_size);
1458 
1459         stq_p(header+0x250, prot_addr + setup_data_offset);
1460 
1461         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1462         setup_data->next = 0;
1463         setup_data->type = cpu_to_le32(SETUP_DTB);
1464         setup_data->len = cpu_to_le32(dtb_size);
1465 
1466         load_image_size(dtb_filename, setup_data->data, dtb_size);
1467     }
1468 
1469     memcpy(setup, header, MIN(sizeof(header), setup_size));
1470 
1471     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1472     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1473     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1474 
1475     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1476     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1477     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1478 
1479     option_rom[nb_option_roms].bootindex = 0;
1480     option_rom[nb_option_roms].name = "linuxboot.bin";
1481     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1482         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1483     }
1484     nb_option_roms++;
1485 }
1486 
1487 #define NE2000_NB_MAX 6
1488 
1489 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1490                                               0x280, 0x380 };
1491 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1492 
1493 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1494 {
1495     static int nb_ne2k = 0;
1496 
1497     if (nb_ne2k == NE2000_NB_MAX)
1498         return;
1499     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1500                     ne2000_irq[nb_ne2k], nd);
1501     nb_ne2k++;
1502 }
1503 
1504 DeviceState *cpu_get_current_apic(void)
1505 {
1506     if (current_cpu) {
1507         X86CPU *cpu = X86_CPU(current_cpu);
1508         return cpu->apic_state;
1509     } else {
1510         return NULL;
1511     }
1512 }
1513 
1514 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1515 {
1516     X86CPU *cpu = opaque;
1517 
1518     if (level) {
1519         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1520     }
1521 }
1522 
1523 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1524 {
1525     Object *cpu = NULL;
1526     Error *local_err = NULL;
1527 
1528     cpu = object_new(typename);
1529 
1530     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1531     object_property_set_bool(cpu, true, "realized", &local_err);
1532 
1533     object_unref(cpu);
1534     error_propagate(errp, local_err);
1535 }
1536 
1537 void pc_hot_add_cpu(const int64_t id, Error **errp)
1538 {
1539     MachineState *ms = MACHINE(qdev_get_machine());
1540     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1541     Error *local_err = NULL;
1542 
1543     if (id < 0) {
1544         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1545         return;
1546     }
1547 
1548     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1549         error_setg(errp, "Unable to add CPU: %" PRIi64
1550                    ", resulting APIC ID (%" PRIi64 ") is too large",
1551                    id, apic_id);
1552         return;
1553     }
1554 
1555     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1556     if (local_err) {
1557         error_propagate(errp, local_err);
1558         return;
1559     }
1560 }
1561 
1562 void pc_cpus_init(PCMachineState *pcms)
1563 {
1564     int i;
1565     const CPUArchIdList *possible_cpus;
1566     MachineState *ms = MACHINE(pcms);
1567     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1568 
1569     /* Calculates the limit to CPU APIC ID values
1570      *
1571      * Limit for the APIC ID value, so that all
1572      * CPU APIC IDs are < pcms->apic_id_limit.
1573      *
1574      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1575      */
1576     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1577     possible_cpus = mc->possible_cpu_arch_ids(ms);
1578     for (i = 0; i < smp_cpus; i++) {
1579         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1580                    &error_fatal);
1581     }
1582 }
1583 
1584 static void pc_build_feature_control_file(PCMachineState *pcms)
1585 {
1586     MachineState *ms = MACHINE(pcms);
1587     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1588     CPUX86State *env = &cpu->env;
1589     uint32_t unused, ecx, edx;
1590     uint64_t feature_control_bits = 0;
1591     uint64_t *val;
1592 
1593     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1594     if (ecx & CPUID_EXT_VMX) {
1595         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1596     }
1597 
1598     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1599         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1600         (env->mcg_cap & MCG_LMCE_P)) {
1601         feature_control_bits |= FEATURE_CONTROL_LMCE;
1602     }
1603 
1604     if (!feature_control_bits) {
1605         return;
1606     }
1607 
1608     val = g_malloc(sizeof(*val));
1609     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1610     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1611 }
1612 
1613 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1614 {
1615     if (cpus_count > 0xff) {
1616         /* If the number of CPUs can't be represented in 8 bits, the
1617          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1618          * to make old BIOSes fail more predictably.
1619          */
1620         rtc_set_memory(rtc, 0x5f, 0);
1621     } else {
1622         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1623     }
1624 }
1625 
1626 static
1627 void pc_machine_done(Notifier *notifier, void *data)
1628 {
1629     PCMachineState *pcms = container_of(notifier,
1630                                         PCMachineState, machine_done);
1631     PCIBus *bus = pcms->bus;
1632 
1633     /* set the number of CPUs */
1634     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1635 
1636     if (bus) {
1637         int extra_hosts = 0;
1638 
1639         QLIST_FOREACH(bus, &bus->child, sibling) {
1640             /* look for expander root buses */
1641             if (pci_bus_is_root(bus)) {
1642                 extra_hosts++;
1643             }
1644         }
1645         if (extra_hosts && pcms->fw_cfg) {
1646             uint64_t *val = g_malloc(sizeof(*val));
1647             *val = cpu_to_le64(extra_hosts);
1648             fw_cfg_add_file(pcms->fw_cfg,
1649                     "etc/extra-pci-roots", val, sizeof(*val));
1650         }
1651     }
1652 
1653     acpi_setup();
1654     if (pcms->fw_cfg) {
1655         pc_build_smbios(pcms);
1656         pc_build_feature_control_file(pcms);
1657         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1658         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1659     }
1660 
1661     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1662         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1663 
1664         if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1665             iommu->intr_eim != ON_OFF_AUTO_ON) {
1666             error_report("current -smp configuration requires "
1667                          "Extended Interrupt Mode enabled. "
1668                          "You can add an IOMMU using: "
1669                          "-device intel-iommu,intremap=on,eim=on");
1670             exit(EXIT_FAILURE);
1671         }
1672     }
1673 }
1674 
1675 void pc_guest_info_init(PCMachineState *pcms)
1676 {
1677     int i;
1678 
1679     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1680     pcms->numa_nodes = nb_numa_nodes;
1681     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1682                                     sizeof *pcms->node_mem);
1683     for (i = 0; i < nb_numa_nodes; i++) {
1684         pcms->node_mem[i] = numa_info[i].node_mem;
1685     }
1686 
1687     pcms->machine_done.notify = pc_machine_done;
1688     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1689 }
1690 
1691 /* setup pci memory address space mapping into system address space */
1692 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1693                             MemoryRegion *pci_address_space)
1694 {
1695     /* Set to lower priority than RAM */
1696     memory_region_add_subregion_overlap(system_memory, 0x0,
1697                                         pci_address_space, -1);
1698 }
1699 
1700 void xen_load_linux(PCMachineState *pcms)
1701 {
1702     int i;
1703     FWCfgState *fw_cfg;
1704 
1705     assert(MACHINE(pcms)->kernel_filename != NULL);
1706 
1707     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1708     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1709     rom_set_fw(fw_cfg);
1710 
1711     load_linux(pcms, fw_cfg);
1712     for (i = 0; i < nb_option_roms; i++) {
1713         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1714                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1715                !strcmp(option_rom[i].name, "pvh.bin") ||
1716                !strcmp(option_rom[i].name, "multiboot.bin"));
1717         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1718     }
1719     pcms->fw_cfg = fw_cfg;
1720 }
1721 
1722 void pc_memory_init(PCMachineState *pcms,
1723                     MemoryRegion *system_memory,
1724                     MemoryRegion *rom_memory,
1725                     MemoryRegion **ram_memory)
1726 {
1727     int linux_boot, i;
1728     MemoryRegion *ram, *option_rom_mr;
1729     MemoryRegion *ram_below_4g, *ram_above_4g;
1730     FWCfgState *fw_cfg;
1731     MachineState *machine = MACHINE(pcms);
1732     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1733 
1734     assert(machine->ram_size == pcms->below_4g_mem_size +
1735                                 pcms->above_4g_mem_size);
1736 
1737     linux_boot = (machine->kernel_filename != NULL);
1738 
1739     /* Allocate RAM.  We allocate it as a single memory region and use
1740      * aliases to address portions of it, mostly for backwards compatibility
1741      * with older qemus that used qemu_ram_alloc().
1742      */
1743     ram = g_malloc(sizeof(*ram));
1744     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1745                                          machine->ram_size);
1746     *ram_memory = ram;
1747     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1748     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1749                              0, pcms->below_4g_mem_size);
1750     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1751     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1752     if (pcms->above_4g_mem_size > 0) {
1753         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1754         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1755                                  pcms->below_4g_mem_size,
1756                                  pcms->above_4g_mem_size);
1757         memory_region_add_subregion(system_memory, 0x100000000ULL,
1758                                     ram_above_4g);
1759         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1760     }
1761 
1762     if (!pcmc->has_reserved_memory &&
1763         (machine->ram_slots ||
1764          (machine->maxram_size > machine->ram_size))) {
1765         MachineClass *mc = MACHINE_GET_CLASS(machine);
1766 
1767         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1768                      mc->name);
1769         exit(EXIT_FAILURE);
1770     }
1771 
1772     /* always allocate the device memory information */
1773     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1774 
1775     /* initialize device memory address space */
1776     if (pcmc->has_reserved_memory &&
1777         (machine->ram_size < machine->maxram_size)) {
1778         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1779 
1780         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1781             error_report("unsupported amount of memory slots: %"PRIu64,
1782                          machine->ram_slots);
1783             exit(EXIT_FAILURE);
1784         }
1785 
1786         if (QEMU_ALIGN_UP(machine->maxram_size,
1787                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1788             error_report("maximum memory size must by aligned to multiple of "
1789                          "%d bytes", TARGET_PAGE_SIZE);
1790             exit(EXIT_FAILURE);
1791         }
1792 
1793         machine->device_memory->base =
1794             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1795 
1796         if (pcmc->enforce_aligned_dimm) {
1797             /* size device region assuming 1G page max alignment per slot */
1798             device_mem_size += (1 * GiB) * machine->ram_slots;
1799         }
1800 
1801         if ((machine->device_memory->base + device_mem_size) <
1802             device_mem_size) {
1803             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1804                          machine->maxram_size);
1805             exit(EXIT_FAILURE);
1806         }
1807 
1808         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1809                            "device-memory", device_mem_size);
1810         memory_region_add_subregion(system_memory, machine->device_memory->base,
1811                                     &machine->device_memory->mr);
1812     }
1813 
1814     /* Initialize PC system firmware */
1815     pc_system_firmware_init(pcms, rom_memory);
1816 
1817     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1818     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1819                            &error_fatal);
1820     if (pcmc->pci_enabled) {
1821         memory_region_set_readonly(option_rom_mr, true);
1822     }
1823     memory_region_add_subregion_overlap(rom_memory,
1824                                         PC_ROM_MIN_VGA,
1825                                         option_rom_mr,
1826                                         1);
1827 
1828     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1829 
1830     rom_set_fw(fw_cfg);
1831 
1832     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1833         uint64_t *val = g_malloc(sizeof(*val));
1834         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1835         uint64_t res_mem_end = machine->device_memory->base;
1836 
1837         if (!pcmc->broken_reserved_end) {
1838             res_mem_end += memory_region_size(&machine->device_memory->mr);
1839         }
1840         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1841         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1842     }
1843 
1844     if (linux_boot) {
1845         load_linux(pcms, fw_cfg);
1846     }
1847 
1848     for (i = 0; i < nb_option_roms; i++) {
1849         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1850     }
1851     pcms->fw_cfg = fw_cfg;
1852 
1853     /* Init default IOAPIC address space */
1854     pcms->ioapic_as = &address_space_memory;
1855 }
1856 
1857 /*
1858  * The 64bit pci hole starts after "above 4G RAM" and
1859  * potentially the space reserved for memory hotplug.
1860  */
1861 uint64_t pc_pci_hole64_start(void)
1862 {
1863     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1864     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1865     MachineState *ms = MACHINE(pcms);
1866     uint64_t hole64_start = 0;
1867 
1868     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1869         hole64_start = ms->device_memory->base;
1870         if (!pcmc->broken_reserved_end) {
1871             hole64_start += memory_region_size(&ms->device_memory->mr);
1872         }
1873     } else {
1874         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1875     }
1876 
1877     return ROUND_UP(hole64_start, 1 * GiB);
1878 }
1879 
1880 qemu_irq pc_allocate_cpu_irq(void)
1881 {
1882     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1883 }
1884 
1885 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1886 {
1887     DeviceState *dev = NULL;
1888 
1889     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1890     if (pci_bus) {
1891         PCIDevice *pcidev = pci_vga_init(pci_bus);
1892         dev = pcidev ? &pcidev->qdev : NULL;
1893     } else if (isa_bus) {
1894         ISADevice *isadev = isa_vga_init(isa_bus);
1895         dev = isadev ? DEVICE(isadev) : NULL;
1896     }
1897     rom_reset_order_override();
1898     return dev;
1899 }
1900 
1901 static const MemoryRegionOps ioport80_io_ops = {
1902     .write = ioport80_write,
1903     .read = ioport80_read,
1904     .endianness = DEVICE_NATIVE_ENDIAN,
1905     .impl = {
1906         .min_access_size = 1,
1907         .max_access_size = 1,
1908     },
1909 };
1910 
1911 static const MemoryRegionOps ioportF0_io_ops = {
1912     .write = ioportF0_write,
1913     .read = ioportF0_read,
1914     .endianness = DEVICE_NATIVE_ENDIAN,
1915     .impl = {
1916         .min_access_size = 1,
1917         .max_access_size = 1,
1918     },
1919 };
1920 
1921 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1922 {
1923     int i;
1924     DriveInfo *fd[MAX_FD];
1925     qemu_irq *a20_line;
1926     ISADevice *i8042, *port92, *vmmouse;
1927 
1928     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1929     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1930 
1931     for (i = 0; i < MAX_FD; i++) {
1932         fd[i] = drive_get(IF_FLOPPY, 0, i);
1933         create_fdctrl |= !!fd[i];
1934     }
1935     if (create_fdctrl) {
1936         fdctrl_init_isa(isa_bus, fd);
1937     }
1938 
1939     i8042 = isa_create_simple(isa_bus, "i8042");
1940     if (!no_vmport) {
1941         vmport_init(isa_bus);
1942         vmmouse = isa_try_create(isa_bus, "vmmouse");
1943     } else {
1944         vmmouse = NULL;
1945     }
1946     if (vmmouse) {
1947         DeviceState *dev = DEVICE(vmmouse);
1948         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1949         qdev_init_nofail(dev);
1950     }
1951     port92 = isa_create_simple(isa_bus, "port92");
1952 
1953     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1954     i8042_setup_a20_line(i8042, a20_line[0]);
1955     port92_init(port92, a20_line[1]);
1956     g_free(a20_line);
1957 }
1958 
1959 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1960                           ISADevice **rtc_state,
1961                           bool create_fdctrl,
1962                           bool no_vmport,
1963                           bool has_pit,
1964                           uint32_t hpet_irqs)
1965 {
1966     int i;
1967     DeviceState *hpet = NULL;
1968     int pit_isa_irq = 0;
1969     qemu_irq pit_alt_irq = NULL;
1970     qemu_irq rtc_irq = NULL;
1971     ISADevice *pit = NULL;
1972     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1973     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1974 
1975     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1976     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1977 
1978     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1979     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1980 
1981     /*
1982      * Check if an HPET shall be created.
1983      *
1984      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1985      * when the HPET wants to take over. Thus we have to disable the latter.
1986      */
1987     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1988         /* In order to set property, here not using sysbus_try_create_simple */
1989         hpet = qdev_try_create(NULL, TYPE_HPET);
1990         if (hpet) {
1991             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1992              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1993              * IRQ8 and IRQ2.
1994              */
1995             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1996                     HPET_INTCAP, NULL);
1997             if (!compat) {
1998                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1999             }
2000             qdev_init_nofail(hpet);
2001             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2002 
2003             for (i = 0; i < GSI_NUM_PINS; i++) {
2004                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2005             }
2006             pit_isa_irq = -1;
2007             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2008             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2009         }
2010     }
2011     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2012 
2013     qemu_register_boot_set(pc_boot_set, *rtc_state);
2014 
2015     if (!xen_enabled() && has_pit) {
2016         if (kvm_pit_in_kernel()) {
2017             pit = kvm_pit_init(isa_bus, 0x40);
2018         } else {
2019             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2020         }
2021         if (hpet) {
2022             /* connect PIT to output control line of the HPET */
2023             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2024         }
2025         pcspk_init(isa_bus, pit);
2026     }
2027 
2028     i8257_dma_init(isa_bus, 0);
2029 
2030     /* Super I/O */
2031     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2032 }
2033 
2034 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2035 {
2036     int i;
2037 
2038     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2039     for (i = 0; i < nb_nics; i++) {
2040         NICInfo *nd = &nd_table[i];
2041         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2042 
2043         if (g_str_equal(model, "ne2k_isa")) {
2044             pc_init_ne2k_isa(isa_bus, nd);
2045         } else {
2046             pci_nic_init_nofail(nd, pci_bus, model, NULL);
2047         }
2048     }
2049     rom_reset_order_override();
2050 }
2051 
2052 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2053 {
2054     DeviceState *dev;
2055     SysBusDevice *d;
2056     unsigned int i;
2057 
2058     if (kvm_ioapic_in_kernel()) {
2059         dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2060     } else {
2061         dev = qdev_create(NULL, TYPE_IOAPIC);
2062     }
2063     if (parent_name) {
2064         object_property_add_child(object_resolve_path(parent_name, NULL),
2065                                   "ioapic", OBJECT(dev), NULL);
2066     }
2067     qdev_init_nofail(dev);
2068     d = SYS_BUS_DEVICE(dev);
2069     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2070 
2071     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2072         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2073     }
2074 }
2075 
2076 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2077                                Error **errp)
2078 {
2079     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2080     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2081     const MachineState *ms = MACHINE(hotplug_dev);
2082     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2083     const uint64_t legacy_align = TARGET_PAGE_SIZE;
2084     Error *local_err = NULL;
2085 
2086     /*
2087      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2088      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2089      * addition to cover this case.
2090      */
2091     if (!pcms->acpi_dev || !acpi_enabled) {
2092         error_setg(errp,
2093                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2094         return;
2095     }
2096 
2097     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2098         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2099         return;
2100     }
2101 
2102     hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2103     if (local_err) {
2104         error_propagate(errp, local_err);
2105         return;
2106     }
2107 
2108     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2109                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2110 }
2111 
2112 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2113                            DeviceState *dev, Error **errp)
2114 {
2115     Error *local_err = NULL;
2116     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2117     MachineState *ms = MACHINE(hotplug_dev);
2118     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2119 
2120     pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2121     if (local_err) {
2122         goto out;
2123     }
2124 
2125     if (is_nvdimm) {
2126         nvdimm_plug(ms->nvdimms_state);
2127     }
2128 
2129     hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2130 out:
2131     error_propagate(errp, local_err);
2132 }
2133 
2134 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2135                                      DeviceState *dev, Error **errp)
2136 {
2137     Error *local_err = NULL;
2138     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2139 
2140     /*
2141      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2142      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2143      * addition to cover this case.
2144      */
2145     if (!pcms->acpi_dev || !acpi_enabled) {
2146         error_setg(&local_err,
2147                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2148         goto out;
2149     }
2150 
2151     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2152         error_setg(&local_err,
2153                    "nvdimm device hot unplug is not supported yet.");
2154         goto out;
2155     }
2156 
2157     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2158                                    &local_err);
2159 out:
2160     error_propagate(errp, local_err);
2161 }
2162 
2163 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2164                              DeviceState *dev, Error **errp)
2165 {
2166     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2167     Error *local_err = NULL;
2168 
2169     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2170     if (local_err) {
2171         goto out;
2172     }
2173 
2174     pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2175     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2176  out:
2177     error_propagate(errp, local_err);
2178 }
2179 
2180 static int pc_apic_cmp(const void *a, const void *b)
2181 {
2182    CPUArchId *apic_a = (CPUArchId *)a;
2183    CPUArchId *apic_b = (CPUArchId *)b;
2184 
2185    return apic_a->arch_id - apic_b->arch_id;
2186 }
2187 
2188 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2189  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2190  * entry corresponding to CPU's apic_id returns NULL.
2191  */
2192 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2193 {
2194     CPUArchId apic_id, *found_cpu;
2195 
2196     apic_id.arch_id = id;
2197     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2198         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2199         pc_apic_cmp);
2200     if (found_cpu && idx) {
2201         *idx = found_cpu - ms->possible_cpus->cpus;
2202     }
2203     return found_cpu;
2204 }
2205 
2206 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2207                         DeviceState *dev, Error **errp)
2208 {
2209     CPUArchId *found_cpu;
2210     Error *local_err = NULL;
2211     X86CPU *cpu = X86_CPU(dev);
2212     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2213 
2214     if (pcms->acpi_dev) {
2215         hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2216         if (local_err) {
2217             goto out;
2218         }
2219     }
2220 
2221     /* increment the number of CPUs */
2222     pcms->boot_cpus++;
2223     if (pcms->rtc) {
2224         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2225     }
2226     if (pcms->fw_cfg) {
2227         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2228     }
2229 
2230     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2231     found_cpu->cpu = OBJECT(dev);
2232 out:
2233     error_propagate(errp, local_err);
2234 }
2235 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2236                                      DeviceState *dev, Error **errp)
2237 {
2238     int idx = -1;
2239     Error *local_err = NULL;
2240     X86CPU *cpu = X86_CPU(dev);
2241     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2242 
2243     if (!pcms->acpi_dev) {
2244         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2245         goto out;
2246     }
2247 
2248     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2249     assert(idx != -1);
2250     if (idx == 0) {
2251         error_setg(&local_err, "Boot CPU is unpluggable");
2252         goto out;
2253     }
2254 
2255     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2256                                    &local_err);
2257     if (local_err) {
2258         goto out;
2259     }
2260 
2261  out:
2262     error_propagate(errp, local_err);
2263 
2264 }
2265 
2266 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2267                              DeviceState *dev, Error **errp)
2268 {
2269     CPUArchId *found_cpu;
2270     Error *local_err = NULL;
2271     X86CPU *cpu = X86_CPU(dev);
2272     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2273 
2274     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2275     if (local_err) {
2276         goto out;
2277     }
2278 
2279     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2280     found_cpu->cpu = NULL;
2281     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2282 
2283     /* decrement the number of CPUs */
2284     pcms->boot_cpus--;
2285     /* Update the number of CPUs in CMOS */
2286     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2287     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2288  out:
2289     error_propagate(errp, local_err);
2290 }
2291 
2292 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2293                             DeviceState *dev, Error **errp)
2294 {
2295     int idx;
2296     CPUState *cs;
2297     CPUArchId *cpu_slot;
2298     X86CPUTopoInfo topo;
2299     X86CPU *cpu = X86_CPU(dev);
2300     MachineState *ms = MACHINE(hotplug_dev);
2301     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2302 
2303     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2304         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2305                    ms->cpu_type);
2306         return;
2307     }
2308 
2309     /* if APIC ID is not set, set it based on socket/core/thread properties */
2310     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2311         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2312 
2313         if (cpu->socket_id < 0) {
2314             error_setg(errp, "CPU socket-id is not set");
2315             return;
2316         } else if (cpu->socket_id > max_socket) {
2317             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2318                        cpu->socket_id, max_socket);
2319             return;
2320         }
2321         if (cpu->core_id < 0) {
2322             error_setg(errp, "CPU core-id is not set");
2323             return;
2324         } else if (cpu->core_id > (smp_cores - 1)) {
2325             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2326                        cpu->core_id, smp_cores - 1);
2327             return;
2328         }
2329         if (cpu->thread_id < 0) {
2330             error_setg(errp, "CPU thread-id is not set");
2331             return;
2332         } else if (cpu->thread_id > (smp_threads - 1)) {
2333             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2334                        cpu->thread_id, smp_threads - 1);
2335             return;
2336         }
2337 
2338         topo.pkg_id = cpu->socket_id;
2339         topo.core_id = cpu->core_id;
2340         topo.smt_id = cpu->thread_id;
2341         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2342     }
2343 
2344     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2345     if (!cpu_slot) {
2346         MachineState *ms = MACHINE(pcms);
2347 
2348         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2349         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2350                   " APIC ID %" PRIu32 ", valid index range 0:%d",
2351                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2352                    ms->possible_cpus->len - 1);
2353         return;
2354     }
2355 
2356     if (cpu_slot->cpu) {
2357         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2358                    idx, cpu->apic_id);
2359         return;
2360     }
2361 
2362     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2363      * so that machine_query_hotpluggable_cpus would show correct values
2364      */
2365     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2366      * once -smp refactoring is complete and there will be CPU private
2367      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2368     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2369     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2370         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2371             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2372         return;
2373     }
2374     cpu->socket_id = topo.pkg_id;
2375 
2376     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2377         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2378             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2379         return;
2380     }
2381     cpu->core_id = topo.core_id;
2382 
2383     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2384         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2385             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2386         return;
2387     }
2388     cpu->thread_id = topo.smt_id;
2389 
2390     if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2391         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2392         return;
2393     }
2394 
2395     cs = CPU(cpu);
2396     cs->cpu_index = idx;
2397 
2398     numa_cpu_pre_plug(cpu_slot, dev, errp);
2399 }
2400 
2401 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2402                                           DeviceState *dev, Error **errp)
2403 {
2404     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2405         pc_memory_pre_plug(hotplug_dev, dev, errp);
2406     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2407         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2408     }
2409 }
2410 
2411 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2412                                       DeviceState *dev, Error **errp)
2413 {
2414     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2415         pc_memory_plug(hotplug_dev, dev, errp);
2416     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2417         pc_cpu_plug(hotplug_dev, dev, errp);
2418     }
2419 }
2420 
2421 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2422                                                 DeviceState *dev, Error **errp)
2423 {
2424     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2425         pc_memory_unplug_request(hotplug_dev, dev, errp);
2426     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2427         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2428     } else {
2429         error_setg(errp, "acpi: device unplug request for not supported device"
2430                    " type: %s", object_get_typename(OBJECT(dev)));
2431     }
2432 }
2433 
2434 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2435                                         DeviceState *dev, Error **errp)
2436 {
2437     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2438         pc_memory_unplug(hotplug_dev, dev, errp);
2439     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2440         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2441     } else {
2442         error_setg(errp, "acpi: device unplug for not supported device"
2443                    " type: %s", object_get_typename(OBJECT(dev)));
2444     }
2445 }
2446 
2447 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2448                                              DeviceState *dev)
2449 {
2450     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2451         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2452         return HOTPLUG_HANDLER(machine);
2453     }
2454 
2455     return NULL;
2456 }
2457 
2458 static void
2459 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2460                                          const char *name, void *opaque,
2461                                          Error **errp)
2462 {
2463     MachineState *ms = MACHINE(obj);
2464     int64_t value = memory_region_size(&ms->device_memory->mr);
2465 
2466     visit_type_int(v, name, &value, errp);
2467 }
2468 
2469 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2470                                             const char *name, void *opaque,
2471                                             Error **errp)
2472 {
2473     PCMachineState *pcms = PC_MACHINE(obj);
2474     uint64_t value = pcms->max_ram_below_4g;
2475 
2476     visit_type_size(v, name, &value, errp);
2477 }
2478 
2479 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2480                                             const char *name, void *opaque,
2481                                             Error **errp)
2482 {
2483     PCMachineState *pcms = PC_MACHINE(obj);
2484     Error *error = NULL;
2485     uint64_t value;
2486 
2487     visit_type_size(v, name, &value, &error);
2488     if (error) {
2489         error_propagate(errp, error);
2490         return;
2491     }
2492     if (value > 4 * GiB) {
2493         error_setg(&error,
2494                    "Machine option 'max-ram-below-4g=%"PRIu64
2495                    "' expects size less than or equal to 4G", value);
2496         error_propagate(errp, error);
2497         return;
2498     }
2499 
2500     if (value < 1 * MiB) {
2501         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2502                     "BIOS may not work with less than 1MiB", value);
2503     }
2504 
2505     pcms->max_ram_below_4g = value;
2506 }
2507 
2508 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2509                                   void *opaque, Error **errp)
2510 {
2511     PCMachineState *pcms = PC_MACHINE(obj);
2512     OnOffAuto vmport = pcms->vmport;
2513 
2514     visit_type_OnOffAuto(v, name, &vmport, errp);
2515 }
2516 
2517 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2518                                   void *opaque, Error **errp)
2519 {
2520     PCMachineState *pcms = PC_MACHINE(obj);
2521 
2522     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2523 }
2524 
2525 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2526 {
2527     bool smm_available = false;
2528 
2529     if (pcms->smm == ON_OFF_AUTO_OFF) {
2530         return false;
2531     }
2532 
2533     if (tcg_enabled() || qtest_enabled()) {
2534         smm_available = true;
2535     } else if (kvm_enabled()) {
2536         smm_available = kvm_has_smm();
2537     }
2538 
2539     if (smm_available) {
2540         return true;
2541     }
2542 
2543     if (pcms->smm == ON_OFF_AUTO_ON) {
2544         error_report("System Management Mode not supported by this hypervisor.");
2545         exit(1);
2546     }
2547     return false;
2548 }
2549 
2550 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2551                                void *opaque, Error **errp)
2552 {
2553     PCMachineState *pcms = PC_MACHINE(obj);
2554     OnOffAuto smm = pcms->smm;
2555 
2556     visit_type_OnOffAuto(v, name, &smm, errp);
2557 }
2558 
2559 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2560                                void *opaque, Error **errp)
2561 {
2562     PCMachineState *pcms = PC_MACHINE(obj);
2563 
2564     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2565 }
2566 
2567 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2568 {
2569     PCMachineState *pcms = PC_MACHINE(obj);
2570 
2571     return pcms->smbus_enabled;
2572 }
2573 
2574 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2575 {
2576     PCMachineState *pcms = PC_MACHINE(obj);
2577 
2578     pcms->smbus_enabled = value;
2579 }
2580 
2581 static bool pc_machine_get_sata(Object *obj, Error **errp)
2582 {
2583     PCMachineState *pcms = PC_MACHINE(obj);
2584 
2585     return pcms->sata_enabled;
2586 }
2587 
2588 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2589 {
2590     PCMachineState *pcms = PC_MACHINE(obj);
2591 
2592     pcms->sata_enabled = value;
2593 }
2594 
2595 static bool pc_machine_get_pit(Object *obj, Error **errp)
2596 {
2597     PCMachineState *pcms = PC_MACHINE(obj);
2598 
2599     return pcms->pit_enabled;
2600 }
2601 
2602 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2603 {
2604     PCMachineState *pcms = PC_MACHINE(obj);
2605 
2606     pcms->pit_enabled = value;
2607 }
2608 
2609 static void pc_machine_initfn(Object *obj)
2610 {
2611     PCMachineState *pcms = PC_MACHINE(obj);
2612 
2613     pcms->max_ram_below_4g = 0; /* use default */
2614     pcms->smm = ON_OFF_AUTO_AUTO;
2615     pcms->vmport = ON_OFF_AUTO_AUTO;
2616     /* acpi build is enabled by default if machine supports it */
2617     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2618     pcms->smbus_enabled = true;
2619     pcms->sata_enabled = true;
2620     pcms->pit_enabled = true;
2621 
2622     pc_system_flash_create(pcms);
2623 }
2624 
2625 static void pc_machine_reset(void)
2626 {
2627     CPUState *cs;
2628     X86CPU *cpu;
2629 
2630     qemu_devices_reset();
2631 
2632     /* Reset APIC after devices have been reset to cancel
2633      * any changes that qemu_devices_reset() might have done.
2634      */
2635     CPU_FOREACH(cs) {
2636         cpu = X86_CPU(cs);
2637 
2638         if (cpu->apic_state) {
2639             device_reset(cpu->apic_state);
2640         }
2641     }
2642 }
2643 
2644 static CpuInstanceProperties
2645 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2646 {
2647     MachineClass *mc = MACHINE_GET_CLASS(ms);
2648     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2649 
2650     assert(cpu_index < possible_cpus->len);
2651     return possible_cpus->cpus[cpu_index].props;
2652 }
2653 
2654 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2655 {
2656    X86CPUTopoInfo topo;
2657 
2658    assert(idx < ms->possible_cpus->len);
2659    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2660                             smp_cores, smp_threads, &topo);
2661    return topo.pkg_id % nb_numa_nodes;
2662 }
2663 
2664 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2665 {
2666     int i;
2667 
2668     if (ms->possible_cpus) {
2669         /*
2670          * make sure that max_cpus hasn't changed since the first use, i.e.
2671          * -smp hasn't been parsed after it
2672         */
2673         assert(ms->possible_cpus->len == max_cpus);
2674         return ms->possible_cpus;
2675     }
2676 
2677     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2678                                   sizeof(CPUArchId) * max_cpus);
2679     ms->possible_cpus->len = max_cpus;
2680     for (i = 0; i < ms->possible_cpus->len; i++) {
2681         X86CPUTopoInfo topo;
2682 
2683         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2684         ms->possible_cpus->cpus[i].vcpus_count = 1;
2685         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2686         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2687                                  smp_cores, smp_threads, &topo);
2688         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2689         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2690         ms->possible_cpus->cpus[i].props.has_core_id = true;
2691         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2692         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2693         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2694     }
2695     return ms->possible_cpus;
2696 }
2697 
2698 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2699 {
2700     /* cpu index isn't used */
2701     CPUState *cs;
2702 
2703     CPU_FOREACH(cs) {
2704         X86CPU *cpu = X86_CPU(cs);
2705 
2706         if (!cpu->apic_state) {
2707             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2708         } else {
2709             apic_deliver_nmi(cpu->apic_state);
2710         }
2711     }
2712 }
2713 
2714 static void pc_machine_class_init(ObjectClass *oc, void *data)
2715 {
2716     MachineClass *mc = MACHINE_CLASS(oc);
2717     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2718     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2719     NMIClass *nc = NMI_CLASS(oc);
2720 
2721     pcmc->pci_enabled = true;
2722     pcmc->has_acpi_build = true;
2723     pcmc->rsdp_in_ram = true;
2724     pcmc->smbios_defaults = true;
2725     pcmc->smbios_uuid_encoded = true;
2726     pcmc->gigabyte_align = true;
2727     pcmc->has_reserved_memory = true;
2728     pcmc->kvmclock_enabled = true;
2729     pcmc->enforce_aligned_dimm = true;
2730     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2731      * to be used at the moment, 32K should be enough for a while.  */
2732     pcmc->acpi_data_size = 0x20000 + 0x8000;
2733     pcmc->save_tsc_khz = true;
2734     pcmc->linuxboot_dma_enabled = true;
2735     pcmc->pvh_enabled = true;
2736     assert(!mc->get_hotplug_handler);
2737     mc->get_hotplug_handler = pc_get_hotplug_handler;
2738     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2739     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2740     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2741     mc->auto_enable_numa_with_memhp = true;
2742     mc->has_hotpluggable_cpus = true;
2743     mc->default_boot_order = "cad";
2744     mc->hot_add_cpu = pc_hot_add_cpu;
2745     mc->block_default_type = IF_IDE;
2746     mc->max_cpus = 255;
2747     mc->reset = pc_machine_reset;
2748     hc->pre_plug = pc_machine_device_pre_plug_cb;
2749     hc->plug = pc_machine_device_plug_cb;
2750     hc->unplug_request = pc_machine_device_unplug_request_cb;
2751     hc->unplug = pc_machine_device_unplug_cb;
2752     nc->nmi_monitor_handler = x86_nmi;
2753     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2754     mc->nvdimm_supported = true;
2755 
2756     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2757         pc_machine_get_device_memory_region_size, NULL,
2758         NULL, NULL, &error_abort);
2759 
2760     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2761         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2762         NULL, NULL, &error_abort);
2763 
2764     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2765         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2766 
2767     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2768         pc_machine_get_smm, pc_machine_set_smm,
2769         NULL, NULL, &error_abort);
2770     object_class_property_set_description(oc, PC_MACHINE_SMM,
2771         "Enable SMM (pc & q35)", &error_abort);
2772 
2773     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2774         pc_machine_get_vmport, pc_machine_set_vmport,
2775         NULL, NULL, &error_abort);
2776     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2777         "Enable vmport (pc & q35)", &error_abort);
2778 
2779     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2780         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2781 
2782     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2783         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2784 
2785     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2786         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2787 }
2788 
2789 static const TypeInfo pc_machine_info = {
2790     .name = TYPE_PC_MACHINE,
2791     .parent = TYPE_MACHINE,
2792     .abstract = true,
2793     .instance_size = sizeof(PCMachineState),
2794     .instance_init = pc_machine_initfn,
2795     .class_size = sizeof(PCMachineClass),
2796     .class_init = pc_machine_class_init,
2797     .interfaces = (InterfaceInfo[]) {
2798          { TYPE_HOTPLUG_HANDLER },
2799          { TYPE_NMI },
2800          { }
2801     },
2802 };
2803 
2804 static void pc_machine_register_types(void)
2805 {
2806     type_register_static(&pc_machine_info);
2807 }
2808 
2809 type_init(pc_machine_register_types)
2810