xref: /openbmc/qemu/hw/i386/pc.c (revision ac1d8878)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/smbios/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/boards.h"
63 #include "hw/pci/pci_host.h"
64 #include "acpi-build.h"
65 #include "hw/mem/pc-dimm.h"
66 #include "qapi/visitor.h"
67 #include "qapi-visit.h"
68 #include "qom/cpu.h"
69 
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
72 
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...)                                       \
75     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
79 
80 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
81  * (128K) and other BIOS datastructures (less than 4K reported to be used at
82  * the moment, 32K should be enough for a while).  */
83 static unsigned acpi_data_size = 0x20000 + 0x8000;
84 void pc_set_legacy_acpi_data_size(void)
85 {
86     acpi_data_size = 0x10000;
87 }
88 
89 #define BIOS_CFG_IOPORT 0x510
90 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
91 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
92 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
93 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
94 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95 
96 #define E820_NR_ENTRIES		16
97 
98 struct e820_entry {
99     uint64_t address;
100     uint64_t length;
101     uint32_t type;
102 } QEMU_PACKED __attribute((__aligned__(4)));
103 
104 struct e820_table {
105     uint32_t count;
106     struct e820_entry entry[E820_NR_ENTRIES];
107 } QEMU_PACKED __attribute((__aligned__(4)));
108 
109 static struct e820_table e820_reserve;
110 static struct e820_entry *e820_table;
111 static unsigned e820_entries;
112 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113 
114 void gsi_handler(void *opaque, int n, int level)
115 {
116     GSIState *s = opaque;
117 
118     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
119     if (n < ISA_NUM_IRQS) {
120         qemu_set_irq(s->i8259_irq[n], level);
121     }
122     qemu_set_irq(s->ioapic_irq[n], level);
123 }
124 
125 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
126                            unsigned size)
127 {
128 }
129 
130 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
131 {
132     return 0xffffffffffffffffULL;
133 }
134 
135 /* MSDOS compatibility mode FPU exception support */
136 static qemu_irq ferr_irq;
137 
138 void pc_register_ferr_irq(qemu_irq irq)
139 {
140     ferr_irq = irq;
141 }
142 
143 /* XXX: add IGNNE support */
144 void cpu_set_ferr(CPUX86State *s)
145 {
146     qemu_irq_raise(ferr_irq);
147 }
148 
149 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
150                            unsigned size)
151 {
152     qemu_irq_lower(ferr_irq);
153 }
154 
155 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
156 {
157     return 0xffffffffffffffffULL;
158 }
159 
160 /* TSC handling */
161 uint64_t cpu_get_tsc(CPUX86State *env)
162 {
163     return cpu_get_ticks();
164 }
165 
166 /* IRQ handling */
167 int cpu_get_pic_interrupt(CPUX86State *env)
168 {
169     X86CPU *cpu = x86_env_get_cpu(env);
170     int intno;
171 
172     intno = apic_get_interrupt(cpu->apic_state);
173     if (intno >= 0) {
174         return intno;
175     }
176     /* read the irq from the PIC */
177     if (!apic_accept_pic_intr(cpu->apic_state)) {
178         return -1;
179     }
180 
181     intno = pic_read_irq(isa_pic);
182     return intno;
183 }
184 
185 static void pic_irq_request(void *opaque, int irq, int level)
186 {
187     CPUState *cs = first_cpu;
188     X86CPU *cpu = X86_CPU(cs);
189 
190     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191     if (cpu->apic_state) {
192         CPU_FOREACH(cs) {
193             cpu = X86_CPU(cs);
194             if (apic_accept_pic_intr(cpu->apic_state)) {
195                 apic_deliver_pic_intr(cpu->apic_state, level);
196             }
197         }
198     } else {
199         if (level) {
200             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201         } else {
202             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
203         }
204     }
205 }
206 
207 /* PC cmos mappings */
208 
209 #define REG_EQUIPMENT_BYTE          0x14
210 
211 static int cmos_get_fd_drive_type(FDriveType fd0)
212 {
213     int val;
214 
215     switch (fd0) {
216     case FDRIVE_DRV_144:
217         /* 1.44 Mb 3"5 drive */
218         val = 4;
219         break;
220     case FDRIVE_DRV_288:
221         /* 2.88 Mb 3"5 drive */
222         val = 5;
223         break;
224     case FDRIVE_DRV_120:
225         /* 1.2 Mb 5"5 drive */
226         val = 2;
227         break;
228     case FDRIVE_DRV_NONE:
229     default:
230         val = 0;
231         break;
232     }
233     return val;
234 }
235 
236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237                          int16_t cylinders, int8_t heads, int8_t sectors)
238 {
239     rtc_set_memory(s, type_ofs, 47);
240     rtc_set_memory(s, info_ofs, cylinders);
241     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242     rtc_set_memory(s, info_ofs + 2, heads);
243     rtc_set_memory(s, info_ofs + 3, 0xff);
244     rtc_set_memory(s, info_ofs + 4, 0xff);
245     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246     rtc_set_memory(s, info_ofs + 6, cylinders);
247     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248     rtc_set_memory(s, info_ofs + 8, sectors);
249 }
250 
251 /* convert boot_device letter to something recognizable by the bios */
252 static int boot_device2nibble(char boot_device)
253 {
254     switch(boot_device) {
255     case 'a':
256     case 'b':
257         return 0x01; /* floppy boot */
258     case 'c':
259         return 0x02; /* hard drive boot */
260     case 'd':
261         return 0x03; /* CD-ROM boot */
262     case 'n':
263         return 0x04; /* Network boot */
264     }
265     return 0;
266 }
267 
268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
269 {
270 #define PC_MAX_BOOT_DEVICES 3
271     int nbds, bds[3] = { 0, };
272     int i;
273 
274     nbds = strlen(boot_device);
275     if (nbds > PC_MAX_BOOT_DEVICES) {
276         error_setg(errp, "Too many boot devices for PC");
277         return;
278     }
279     for (i = 0; i < nbds; i++) {
280         bds[i] = boot_device2nibble(boot_device[i]);
281         if (bds[i] == 0) {
282             error_setg(errp, "Invalid boot device for PC: '%c'",
283                        boot_device[i]);
284             return;
285         }
286     }
287     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
289 }
290 
291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
292 {
293     set_boot_dev(opaque, boot_device, errp);
294 }
295 
296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
297 {
298     int val, nb, i;
299     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
300 
301     /* floppy type */
302     if (floppy) {
303         for (i = 0; i < 2; i++) {
304             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
305         }
306     }
307     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
308         cmos_get_fd_drive_type(fd_type[1]);
309     rtc_set_memory(rtc_state, 0x10, val);
310 
311     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
312     nb = 0;
313     if (fd_type[0] < FDRIVE_DRV_NONE) {
314         nb++;
315     }
316     if (fd_type[1] < FDRIVE_DRV_NONE) {
317         nb++;
318     }
319     switch (nb) {
320     case 0:
321         break;
322     case 1:
323         val |= 0x01; /* 1 drive, ready for boot */
324         break;
325     case 2:
326         val |= 0x41; /* 2 drives, ready for boot */
327         break;
328     }
329     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
330 }
331 
332 typedef struct pc_cmos_init_late_arg {
333     ISADevice *rtc_state;
334     BusState *idebus[2];
335 } pc_cmos_init_late_arg;
336 
337 typedef struct check_fdc_state {
338     ISADevice *floppy;
339     bool multiple;
340 } CheckFdcState;
341 
342 static int check_fdc(Object *obj, void *opaque)
343 {
344     CheckFdcState *state = opaque;
345     Object *fdc;
346     uint32_t iobase;
347     Error *local_err = NULL;
348 
349     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
350     if (!fdc) {
351         return 0;
352     }
353 
354     iobase = object_property_get_int(obj, "iobase", &local_err);
355     if (local_err || iobase != 0x3f0) {
356         error_free(local_err);
357         return 0;
358     }
359 
360     if (state->floppy) {
361         state->multiple = true;
362     } else {
363         state->floppy = ISA_DEVICE(obj);
364     }
365     return 0;
366 }
367 
368 static const char * const fdc_container_path[] = {
369     "/unattached", "/peripheral", "/peripheral-anon"
370 };
371 
372 static void pc_cmos_init_late(void *opaque)
373 {
374     pc_cmos_init_late_arg *arg = opaque;
375     ISADevice *s = arg->rtc_state;
376     int16_t cylinders;
377     int8_t heads, sectors;
378     int val;
379     int i, trans;
380     Object *container;
381     CheckFdcState state = { 0 };
382 
383     val = 0;
384     if (ide_get_geometry(arg->idebus[0], 0,
385                          &cylinders, &heads, &sectors) >= 0) {
386         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
387         val |= 0xf0;
388     }
389     if (ide_get_geometry(arg->idebus[0], 1,
390                          &cylinders, &heads, &sectors) >= 0) {
391         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
392         val |= 0x0f;
393     }
394     rtc_set_memory(s, 0x12, val);
395 
396     val = 0;
397     for (i = 0; i < 4; i++) {
398         /* NOTE: ide_get_geometry() returns the physical
399            geometry.  It is always such that: 1 <= sects <= 63, 1
400            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
401            geometry can be different if a translation is done. */
402         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
403                              &cylinders, &heads, &sectors) >= 0) {
404             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
405             assert((trans & ~3) == 0);
406             val |= trans << (i * 2);
407         }
408     }
409     rtc_set_memory(s, 0x39, val);
410 
411     /*
412      * Locate the FDC at IO address 0x3f0, and configure the CMOS registers
413      * accordingly.
414      */
415     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
416         container = container_get(qdev_get_machine(), fdc_container_path[i]);
417         object_child_foreach(container, check_fdc, &state);
418     }
419 
420     if (state.multiple) {
421         error_report("warning: multiple floppy disk controllers with "
422                      "iobase=0x3f0 have been found;\n"
423                      "the one being picked for CMOS setup might not reflect "
424                      "your intent");
425     }
426     pc_cmos_init_floppy(s, state.floppy);
427 
428     qemu_unregister_reset(pc_cmos_init_late, opaque);
429 }
430 
431 void pc_cmos_init(PCMachineState *pcms,
432                   BusState *idebus0, BusState *idebus1,
433                   ISADevice *s)
434 {
435     int val;
436     static pc_cmos_init_late_arg arg;
437     Error *local_err = NULL;
438 
439     /* various important CMOS locations needed by PC/Bochs bios */
440 
441     /* memory size */
442     /* base memory (first MiB) */
443     val = MIN(pcms->below_4g_mem_size / 1024, 640);
444     rtc_set_memory(s, 0x15, val);
445     rtc_set_memory(s, 0x16, val >> 8);
446     /* extended memory (next 64MiB) */
447     if (pcms->below_4g_mem_size > 1024 * 1024) {
448         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
449     } else {
450         val = 0;
451     }
452     if (val > 65535)
453         val = 65535;
454     rtc_set_memory(s, 0x17, val);
455     rtc_set_memory(s, 0x18, val >> 8);
456     rtc_set_memory(s, 0x30, val);
457     rtc_set_memory(s, 0x31, val >> 8);
458     /* memory between 16MiB and 4GiB */
459     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
460         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
461     } else {
462         val = 0;
463     }
464     if (val > 65535)
465         val = 65535;
466     rtc_set_memory(s, 0x34, val);
467     rtc_set_memory(s, 0x35, val >> 8);
468     /* memory above 4GiB */
469     val = pcms->above_4g_mem_size / 65536;
470     rtc_set_memory(s, 0x5b, val);
471     rtc_set_memory(s, 0x5c, val >> 8);
472     rtc_set_memory(s, 0x5d, val >> 16);
473 
474     /* set the number of CPU */
475     rtc_set_memory(s, 0x5f, smp_cpus - 1);
476 
477     object_property_add_link(OBJECT(pcms), "rtc_state",
478                              TYPE_ISA_DEVICE,
479                              (Object **)&pcms->rtc,
480                              object_property_allow_set_link,
481                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
482     object_property_set_link(OBJECT(pcms), OBJECT(s),
483                              "rtc_state", &error_abort);
484 
485     set_boot_dev(s, MACHINE(pcms)->boot_order, &local_err);
486     if (local_err) {
487         error_report_err(local_err);
488         exit(1);
489     }
490 
491     val = 0;
492     val |= 0x02; /* FPU is there */
493     val |= 0x04; /* PS/2 mouse installed */
494     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
495 
496     /* hard drives and FDC */
497     arg.rtc_state = s;
498     arg.idebus[0] = idebus0;
499     arg.idebus[1] = idebus1;
500     qemu_register_reset(pc_cmos_init_late, &arg);
501 }
502 
503 #define TYPE_PORT92 "port92"
504 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
505 
506 /* port 92 stuff: could be split off */
507 typedef struct Port92State {
508     ISADevice parent_obj;
509 
510     MemoryRegion io;
511     uint8_t outport;
512     qemu_irq *a20_out;
513 } Port92State;
514 
515 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
516                          unsigned size)
517 {
518     Port92State *s = opaque;
519     int oldval = s->outport;
520 
521     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
522     s->outport = val;
523     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
524     if ((val & 1) && !(oldval & 1)) {
525         qemu_system_reset_request();
526     }
527 }
528 
529 static uint64_t port92_read(void *opaque, hwaddr addr,
530                             unsigned size)
531 {
532     Port92State *s = opaque;
533     uint32_t ret;
534 
535     ret = s->outport;
536     DPRINTF("port92: read 0x%02x\n", ret);
537     return ret;
538 }
539 
540 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
541 {
542     Port92State *s = PORT92(dev);
543 
544     s->a20_out = a20_out;
545 }
546 
547 static const VMStateDescription vmstate_port92_isa = {
548     .name = "port92",
549     .version_id = 1,
550     .minimum_version_id = 1,
551     .fields = (VMStateField[]) {
552         VMSTATE_UINT8(outport, Port92State),
553         VMSTATE_END_OF_LIST()
554     }
555 };
556 
557 static void port92_reset(DeviceState *d)
558 {
559     Port92State *s = PORT92(d);
560 
561     s->outport &= ~1;
562 }
563 
564 static const MemoryRegionOps port92_ops = {
565     .read = port92_read,
566     .write = port92_write,
567     .impl = {
568         .min_access_size = 1,
569         .max_access_size = 1,
570     },
571     .endianness = DEVICE_LITTLE_ENDIAN,
572 };
573 
574 static void port92_initfn(Object *obj)
575 {
576     Port92State *s = PORT92(obj);
577 
578     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
579 
580     s->outport = 0;
581 }
582 
583 static void port92_realizefn(DeviceState *dev, Error **errp)
584 {
585     ISADevice *isadev = ISA_DEVICE(dev);
586     Port92State *s = PORT92(dev);
587 
588     isa_register_ioport(isadev, &s->io, 0x92);
589 }
590 
591 static void port92_class_initfn(ObjectClass *klass, void *data)
592 {
593     DeviceClass *dc = DEVICE_CLASS(klass);
594 
595     dc->realize = port92_realizefn;
596     dc->reset = port92_reset;
597     dc->vmsd = &vmstate_port92_isa;
598     /*
599      * Reason: unlike ordinary ISA devices, this one needs additional
600      * wiring: its A20 output line needs to be wired up by
601      * port92_init().
602      */
603     dc->cannot_instantiate_with_device_add_yet = true;
604 }
605 
606 static const TypeInfo port92_info = {
607     .name          = TYPE_PORT92,
608     .parent        = TYPE_ISA_DEVICE,
609     .instance_size = sizeof(Port92State),
610     .instance_init = port92_initfn,
611     .class_init    = port92_class_initfn,
612 };
613 
614 static void port92_register_types(void)
615 {
616     type_register_static(&port92_info);
617 }
618 
619 type_init(port92_register_types)
620 
621 static void handle_a20_line_change(void *opaque, int irq, int level)
622 {
623     X86CPU *cpu = opaque;
624 
625     /* XXX: send to all CPUs ? */
626     /* XXX: add logic to handle multiple A20 line sources */
627     x86_cpu_set_a20(cpu, level);
628 }
629 
630 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
631 {
632     int index = le32_to_cpu(e820_reserve.count);
633     struct e820_entry *entry;
634 
635     if (type != E820_RAM) {
636         /* old FW_CFG_E820_TABLE entry -- reservations only */
637         if (index >= E820_NR_ENTRIES) {
638             return -EBUSY;
639         }
640         entry = &e820_reserve.entry[index++];
641 
642         entry->address = cpu_to_le64(address);
643         entry->length = cpu_to_le64(length);
644         entry->type = cpu_to_le32(type);
645 
646         e820_reserve.count = cpu_to_le32(index);
647     }
648 
649     /* new "etc/e820" file -- include ram too */
650     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
651     e820_table[e820_entries].address = cpu_to_le64(address);
652     e820_table[e820_entries].length = cpu_to_le64(length);
653     e820_table[e820_entries].type = cpu_to_le32(type);
654     e820_entries++;
655 
656     return e820_entries;
657 }
658 
659 int e820_get_num_entries(void)
660 {
661     return e820_entries;
662 }
663 
664 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
665 {
666     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
667         *address = le64_to_cpu(e820_table[idx].address);
668         *length = le64_to_cpu(e820_table[idx].length);
669         return true;
670     }
671     return false;
672 }
673 
674 /* Enables contiguous-apic-ID mode, for compatibility */
675 static bool compat_apic_id_mode;
676 
677 void enable_compat_apic_id_mode(void)
678 {
679     compat_apic_id_mode = true;
680 }
681 
682 /* Calculates initial APIC ID for a specific CPU index
683  *
684  * Currently we need to be able to calculate the APIC ID from the CPU index
685  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
686  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
687  * all CPUs up to max_cpus.
688  */
689 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
690 {
691     uint32_t correct_id;
692     static bool warned;
693 
694     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
695     if (compat_apic_id_mode) {
696         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
697             error_report("APIC IDs set in compatibility mode, "
698                          "CPU topology won't match the configuration");
699             warned = true;
700         }
701         return cpu_index;
702     } else {
703         return correct_id;
704     }
705 }
706 
707 /* Calculates the limit to CPU APIC ID values
708  *
709  * This function returns the limit for the APIC ID value, so that all
710  * CPU APIC IDs are < pc_apic_id_limit().
711  *
712  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
713  */
714 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
715 {
716     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
717 }
718 
719 static void pc_build_smbios(FWCfgState *fw_cfg)
720 {
721     uint8_t *smbios_tables, *smbios_anchor;
722     size_t smbios_tables_len, smbios_anchor_len;
723     struct smbios_phys_mem_area *mem_array;
724     unsigned i, array_count;
725 
726     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
727     if (smbios_tables) {
728         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
729                          smbios_tables, smbios_tables_len);
730     }
731 
732     /* build the array of physical mem area from e820 table */
733     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
734     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
735         uint64_t addr, len;
736 
737         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
738             mem_array[array_count].address = addr;
739             mem_array[array_count].length = len;
740             array_count++;
741         }
742     }
743     smbios_get_tables(mem_array, array_count,
744                       &smbios_tables, &smbios_tables_len,
745                       &smbios_anchor, &smbios_anchor_len);
746     g_free(mem_array);
747 
748     if (smbios_anchor) {
749         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
750                         smbios_tables, smbios_tables_len);
751         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
752                         smbios_anchor, smbios_anchor_len);
753     }
754 }
755 
756 static FWCfgState *bochs_bios_init(AddressSpace *as)
757 {
758     FWCfgState *fw_cfg;
759     uint64_t *numa_fw_cfg;
760     int i, j;
761     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
762 
763     fw_cfg = fw_cfg_init_io_dma(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 4, as);
764 
765     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
766      *
767      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
768      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
769      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
770      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
771      * may see".
772      *
773      * So, this means we must not use max_cpus, here, but the maximum possible
774      * APIC ID value, plus one.
775      *
776      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
777      *     the APIC ID, not the "CPU index"
778      */
779     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
780     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
781     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
782                      acpi_tables, acpi_tables_len);
783     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
784 
785     pc_build_smbios(fw_cfg);
786 
787     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
788                      &e820_reserve, sizeof(e820_reserve));
789     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
790                     sizeof(struct e820_entry) * e820_entries);
791 
792     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
793     /* allocate memory for the NUMA channel: one (64bit) word for the number
794      * of nodes, one word for each VCPU->node and one word for each node to
795      * hold the amount of memory.
796      */
797     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
798     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
799     for (i = 0; i < max_cpus; i++) {
800         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
801         assert(apic_id < apic_id_limit);
802         for (j = 0; j < nb_numa_nodes; j++) {
803             if (test_bit(i, numa_info[j].node_cpu)) {
804                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
805                 break;
806             }
807         }
808     }
809     for (i = 0; i < nb_numa_nodes; i++) {
810         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
811     }
812     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
813                      (1 + apic_id_limit + nb_numa_nodes) *
814                      sizeof(*numa_fw_cfg));
815 
816     return fw_cfg;
817 }
818 
819 static long get_file_size(FILE *f)
820 {
821     long where, size;
822 
823     /* XXX: on Unix systems, using fstat() probably makes more sense */
824 
825     where = ftell(f);
826     fseek(f, 0, SEEK_END);
827     size = ftell(f);
828     fseek(f, where, SEEK_SET);
829 
830     return size;
831 }
832 
833 static void load_linux(PCMachineState *pcms,
834                        FWCfgState *fw_cfg)
835 {
836     uint16_t protocol;
837     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
838     uint32_t initrd_max;
839     uint8_t header[8192], *setup, *kernel, *initrd_data;
840     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
841     FILE *f;
842     char *vmode;
843     MachineState *machine = MACHINE(pcms);
844     const char *kernel_filename = machine->kernel_filename;
845     const char *initrd_filename = machine->initrd_filename;
846     const char *kernel_cmdline = machine->kernel_cmdline;
847 
848     /* Align to 16 bytes as a paranoia measure */
849     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
850 
851     /* load the kernel header */
852     f = fopen(kernel_filename, "rb");
853     if (!f || !(kernel_size = get_file_size(f)) ||
854         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
855         MIN(ARRAY_SIZE(header), kernel_size)) {
856         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
857                 kernel_filename, strerror(errno));
858         exit(1);
859     }
860 
861     /* kernel protocol version */
862 #if 0
863     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
864 #endif
865     if (ldl_p(header+0x202) == 0x53726448) {
866         protocol = lduw_p(header+0x206);
867     } else {
868         /* This looks like a multiboot kernel. If it is, let's stop
869            treating it like a Linux kernel. */
870         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
871                            kernel_cmdline, kernel_size, header)) {
872             return;
873         }
874         protocol = 0;
875     }
876 
877     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
878         /* Low kernel */
879         real_addr    = 0x90000;
880         cmdline_addr = 0x9a000 - cmdline_size;
881         prot_addr    = 0x10000;
882     } else if (protocol < 0x202) {
883         /* High but ancient kernel */
884         real_addr    = 0x90000;
885         cmdline_addr = 0x9a000 - cmdline_size;
886         prot_addr    = 0x100000;
887     } else {
888         /* High and recent kernel */
889         real_addr    = 0x10000;
890         cmdline_addr = 0x20000;
891         prot_addr    = 0x100000;
892     }
893 
894 #if 0
895     fprintf(stderr,
896             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
897             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
898             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
899             real_addr,
900             cmdline_addr,
901             prot_addr);
902 #endif
903 
904     /* highest address for loading the initrd */
905     if (protocol >= 0x203) {
906         initrd_max = ldl_p(header+0x22c);
907     } else {
908         initrd_max = 0x37ffffff;
909     }
910 
911     if (initrd_max >= pcms->below_4g_mem_size - acpi_data_size) {
912         initrd_max = pcms->below_4g_mem_size - acpi_data_size - 1;
913     }
914 
915     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
916     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
917     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
918 
919     if (protocol >= 0x202) {
920         stl_p(header+0x228, cmdline_addr);
921     } else {
922         stw_p(header+0x20, 0xA33F);
923         stw_p(header+0x22, cmdline_addr-real_addr);
924     }
925 
926     /* handle vga= parameter */
927     vmode = strstr(kernel_cmdline, "vga=");
928     if (vmode) {
929         unsigned int video_mode;
930         /* skip "vga=" */
931         vmode += 4;
932         if (!strncmp(vmode, "normal", 6)) {
933             video_mode = 0xffff;
934         } else if (!strncmp(vmode, "ext", 3)) {
935             video_mode = 0xfffe;
936         } else if (!strncmp(vmode, "ask", 3)) {
937             video_mode = 0xfffd;
938         } else {
939             video_mode = strtol(vmode, NULL, 0);
940         }
941         stw_p(header+0x1fa, video_mode);
942     }
943 
944     /* loader type */
945     /* High nybble = B reserved for QEMU; low nybble is revision number.
946        If this code is substantially changed, you may want to consider
947        incrementing the revision. */
948     if (protocol >= 0x200) {
949         header[0x210] = 0xB0;
950     }
951     /* heap */
952     if (protocol >= 0x201) {
953         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
954         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
955     }
956 
957     /* load initrd */
958     if (initrd_filename) {
959         if (protocol < 0x200) {
960             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
961             exit(1);
962         }
963 
964         initrd_size = get_image_size(initrd_filename);
965         if (initrd_size < 0) {
966             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
967                     initrd_filename, strerror(errno));
968             exit(1);
969         }
970 
971         initrd_addr = (initrd_max-initrd_size) & ~4095;
972 
973         initrd_data = g_malloc(initrd_size);
974         load_image(initrd_filename, initrd_data);
975 
976         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
977         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
978         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
979 
980         stl_p(header+0x218, initrd_addr);
981         stl_p(header+0x21c, initrd_size);
982     }
983 
984     /* load kernel and setup */
985     setup_size = header[0x1f1];
986     if (setup_size == 0) {
987         setup_size = 4;
988     }
989     setup_size = (setup_size+1)*512;
990     if (setup_size > kernel_size) {
991         fprintf(stderr, "qemu: invalid kernel header\n");
992         exit(1);
993     }
994     kernel_size -= setup_size;
995 
996     setup  = g_malloc(setup_size);
997     kernel = g_malloc(kernel_size);
998     fseek(f, 0, SEEK_SET);
999     if (fread(setup, 1, setup_size, f) != setup_size) {
1000         fprintf(stderr, "fread() failed\n");
1001         exit(1);
1002     }
1003     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1004         fprintf(stderr, "fread() failed\n");
1005         exit(1);
1006     }
1007     fclose(f);
1008     memcpy(setup, header, MIN(sizeof(header), setup_size));
1009 
1010     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1011     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1012     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1013 
1014     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1015     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1016     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1017 
1018     option_rom[nb_option_roms].name = "linuxboot.bin";
1019     option_rom[nb_option_roms].bootindex = 0;
1020     nb_option_roms++;
1021 }
1022 
1023 #define NE2000_NB_MAX 6
1024 
1025 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1026                                               0x280, 0x380 };
1027 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1028 
1029 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1030 {
1031     static int nb_ne2k = 0;
1032 
1033     if (nb_ne2k == NE2000_NB_MAX)
1034         return;
1035     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1036                     ne2000_irq[nb_ne2k], nd);
1037     nb_ne2k++;
1038 }
1039 
1040 DeviceState *cpu_get_current_apic(void)
1041 {
1042     if (current_cpu) {
1043         X86CPU *cpu = X86_CPU(current_cpu);
1044         return cpu->apic_state;
1045     } else {
1046         return NULL;
1047     }
1048 }
1049 
1050 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1051 {
1052     X86CPU *cpu = opaque;
1053 
1054     if (level) {
1055         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1056     }
1057 }
1058 
1059 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1060                           Error **errp)
1061 {
1062     X86CPU *cpu = NULL;
1063     Error *local_err = NULL;
1064 
1065     cpu = cpu_x86_create(cpu_model, &local_err);
1066     if (local_err != NULL) {
1067         goto out;
1068     }
1069 
1070     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1071     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1072 
1073 out:
1074     if (local_err) {
1075         error_propagate(errp, local_err);
1076         object_unref(OBJECT(cpu));
1077         cpu = NULL;
1078     }
1079     return cpu;
1080 }
1081 
1082 void pc_hot_add_cpu(const int64_t id, Error **errp)
1083 {
1084     X86CPU *cpu;
1085     MachineState *machine = MACHINE(qdev_get_machine());
1086     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1087     Error *local_err = NULL;
1088 
1089     if (id < 0) {
1090         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1091         return;
1092     }
1093 
1094     if (cpu_exists(apic_id)) {
1095         error_setg(errp, "Unable to add CPU: %" PRIi64
1096                    ", it already exists", id);
1097         return;
1098     }
1099 
1100     if (id >= max_cpus) {
1101         error_setg(errp, "Unable to add CPU: %" PRIi64
1102                    ", max allowed: %d", id, max_cpus - 1);
1103         return;
1104     }
1105 
1106     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1107         error_setg(errp, "Unable to add CPU: %" PRIi64
1108                    ", resulting APIC ID (%" PRIi64 ") is too large",
1109                    id, apic_id);
1110         return;
1111     }
1112 
1113     cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1114     if (local_err) {
1115         error_propagate(errp, local_err);
1116         return;
1117     }
1118     object_unref(OBJECT(cpu));
1119 }
1120 
1121 void pc_cpus_init(PCMachineState *pcms)
1122 {
1123     int i;
1124     X86CPU *cpu = NULL;
1125     MachineState *machine = MACHINE(pcms);
1126     Error *error = NULL;
1127     unsigned long apic_id_limit;
1128 
1129     /* init CPUs */
1130     if (machine->cpu_model == NULL) {
1131 #ifdef TARGET_X86_64
1132         machine->cpu_model = "qemu64";
1133 #else
1134         machine->cpu_model = "qemu32";
1135 #endif
1136     }
1137 
1138     apic_id_limit = pc_apic_id_limit(max_cpus);
1139     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1140         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1141                      apic_id_limit - 1);
1142         exit(1);
1143     }
1144 
1145     for (i = 0; i < smp_cpus; i++) {
1146         cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1147                          &error);
1148         if (error) {
1149             error_report_err(error);
1150             exit(1);
1151         }
1152         object_unref(OBJECT(cpu));
1153     }
1154 
1155     /* tell smbios about cpuid version and features */
1156     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1157 }
1158 
1159 /* pci-info ROM file. Little endian format */
1160 typedef struct PcRomPciInfo {
1161     uint64_t w32_min;
1162     uint64_t w32_max;
1163     uint64_t w64_min;
1164     uint64_t w64_max;
1165 } PcRomPciInfo;
1166 
1167 typedef struct PcGuestInfoState {
1168     PcGuestInfo info;
1169     Notifier machine_done;
1170 } PcGuestInfoState;
1171 
1172 static
1173 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1174 {
1175     PcGuestInfoState *guest_info_state = container_of(notifier,
1176                                                       PcGuestInfoState,
1177                                                       machine_done);
1178     PCIBus *bus = find_i440fx();
1179 
1180     if (bus) {
1181         int extra_hosts = 0;
1182 
1183         QLIST_FOREACH(bus, &bus->child, sibling) {
1184             /* look for expander root buses */
1185             if (pci_bus_is_root(bus)) {
1186                 extra_hosts++;
1187             }
1188         }
1189         if (extra_hosts && guest_info_state->info.fw_cfg) {
1190             uint64_t *val = g_malloc(sizeof(*val));
1191             *val = cpu_to_le64(extra_hosts);
1192             fw_cfg_add_file(guest_info_state->info.fw_cfg,
1193                     "etc/extra-pci-roots", val, sizeof(*val));
1194         }
1195     }
1196 
1197     acpi_setup(&guest_info_state->info);
1198 }
1199 
1200 PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
1201 {
1202     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1203     PcGuestInfo *guest_info = &guest_info_state->info;
1204     int i, j;
1205 
1206     guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
1207     guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
1208     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1209     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1210     guest_info->numa_nodes = nb_numa_nodes;
1211     guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1212                                     sizeof *guest_info->node_mem);
1213     for (i = 0; i < nb_numa_nodes; i++) {
1214         guest_info->node_mem[i] = numa_info[i].node_mem;
1215     }
1216 
1217     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1218                                      sizeof *guest_info->node_cpu);
1219 
1220     for (i = 0; i < max_cpus; i++) {
1221         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1222         assert(apic_id < guest_info->apic_id_limit);
1223         for (j = 0; j < nb_numa_nodes; j++) {
1224             if (test_bit(i, numa_info[j].node_cpu)) {
1225                 guest_info->node_cpu[apic_id] = j;
1226                 break;
1227             }
1228         }
1229     }
1230 
1231     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1232     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1233     return guest_info;
1234 }
1235 
1236 /* setup pci memory address space mapping into system address space */
1237 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1238                             MemoryRegion *pci_address_space)
1239 {
1240     /* Set to lower priority than RAM */
1241     memory_region_add_subregion_overlap(system_memory, 0x0,
1242                                         pci_address_space, -1);
1243 }
1244 
1245 void pc_acpi_init(const char *default_dsdt)
1246 {
1247     char *filename;
1248 
1249     if (acpi_tables != NULL) {
1250         /* manually set via -acpitable, leave it alone */
1251         return;
1252     }
1253 
1254     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1255     if (filename == NULL) {
1256         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1257     } else {
1258         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1259                                           &error_abort);
1260         Error *err = NULL;
1261 
1262         qemu_opt_set(opts, "file", filename, &error_abort);
1263 
1264         acpi_table_add_builtin(opts, &err);
1265         if (err) {
1266             error_report("WARNING: failed to load %s: %s", filename,
1267                          error_get_pretty(err));
1268             error_free(err);
1269         }
1270         g_free(filename);
1271     }
1272 }
1273 
1274 FWCfgState *xen_load_linux(PCMachineState *pcms,
1275                            PcGuestInfo *guest_info)
1276 {
1277     int i;
1278     FWCfgState *fw_cfg;
1279 
1280     assert(MACHINE(pcms)->kernel_filename != NULL);
1281 
1282     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1283     rom_set_fw(fw_cfg);
1284 
1285     load_linux(pcms, fw_cfg);
1286     for (i = 0; i < nb_option_roms; i++) {
1287         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1288                !strcmp(option_rom[i].name, "multiboot.bin"));
1289         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1290     }
1291     guest_info->fw_cfg = fw_cfg;
1292     return fw_cfg;
1293 }
1294 
1295 FWCfgState *pc_memory_init(PCMachineState *pcms,
1296                            MemoryRegion *system_memory,
1297                            MemoryRegion *rom_memory,
1298                            MemoryRegion **ram_memory,
1299                            PcGuestInfo *guest_info)
1300 {
1301     int linux_boot, i;
1302     MemoryRegion *ram, *option_rom_mr;
1303     MemoryRegion *ram_below_4g, *ram_above_4g;
1304     FWCfgState *fw_cfg;
1305     MachineState *machine = MACHINE(pcms);
1306 
1307     assert(machine->ram_size == pcms->below_4g_mem_size +
1308                                 pcms->above_4g_mem_size);
1309 
1310     linux_boot = (machine->kernel_filename != NULL);
1311 
1312     /* Allocate RAM.  We allocate it as a single memory region and use
1313      * aliases to address portions of it, mostly for backwards compatibility
1314      * with older qemus that used qemu_ram_alloc().
1315      */
1316     ram = g_malloc(sizeof(*ram));
1317     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1318                                          machine->ram_size);
1319     *ram_memory = ram;
1320     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1321     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1322                              0, pcms->below_4g_mem_size);
1323     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1324     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1325     if (pcms->above_4g_mem_size > 0) {
1326         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1327         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1328                                  pcms->below_4g_mem_size,
1329                                  pcms->above_4g_mem_size);
1330         memory_region_add_subregion(system_memory, 0x100000000ULL,
1331                                     ram_above_4g);
1332         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1333     }
1334 
1335     if (!guest_info->has_reserved_memory &&
1336         (machine->ram_slots ||
1337          (machine->maxram_size > machine->ram_size))) {
1338         MachineClass *mc = MACHINE_GET_CLASS(machine);
1339 
1340         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1341                      mc->name);
1342         exit(EXIT_FAILURE);
1343     }
1344 
1345     /* initialize hotplug memory address space */
1346     if (guest_info->has_reserved_memory &&
1347         (machine->ram_size < machine->maxram_size)) {
1348         ram_addr_t hotplug_mem_size =
1349             machine->maxram_size - machine->ram_size;
1350 
1351         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1352             error_report("unsupported amount of memory slots: %"PRIu64,
1353                          machine->ram_slots);
1354             exit(EXIT_FAILURE);
1355         }
1356 
1357         if (QEMU_ALIGN_UP(machine->maxram_size,
1358                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1359             error_report("maximum memory size must by aligned to multiple of "
1360                          "%d bytes", TARGET_PAGE_SIZE);
1361             exit(EXIT_FAILURE);
1362         }
1363 
1364         pcms->hotplug_memory.base =
1365             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1366 
1367         if (pcms->enforce_aligned_dimm) {
1368             /* size hotplug region assuming 1G page max alignment per slot */
1369             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1370         }
1371 
1372         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1373             hotplug_mem_size) {
1374             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1375                          machine->maxram_size);
1376             exit(EXIT_FAILURE);
1377         }
1378 
1379         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1380                            "hotplug-memory", hotplug_mem_size);
1381         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1382                                     &pcms->hotplug_memory.mr);
1383     }
1384 
1385     /* Initialize PC system firmware */
1386     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1387 
1388     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1389     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1390                            &error_fatal);
1391     vmstate_register_ram_global(option_rom_mr);
1392     memory_region_add_subregion_overlap(rom_memory,
1393                                         PC_ROM_MIN_VGA,
1394                                         option_rom_mr,
1395                                         1);
1396 
1397     fw_cfg = bochs_bios_init(&address_space_memory);
1398 
1399     rom_set_fw(fw_cfg);
1400 
1401     if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1402         uint64_t *val = g_malloc(sizeof(*val));
1403         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1404         uint64_t res_mem_end = pcms->hotplug_memory.base;
1405 
1406         if (!pcmc->broken_reserved_end) {
1407             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1408         }
1409         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1410         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1411     }
1412 
1413     if (linux_boot) {
1414         load_linux(pcms, fw_cfg);
1415     }
1416 
1417     for (i = 0; i < nb_option_roms; i++) {
1418         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1419     }
1420     guest_info->fw_cfg = fw_cfg;
1421     return fw_cfg;
1422 }
1423 
1424 qemu_irq pc_allocate_cpu_irq(void)
1425 {
1426     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1427 }
1428 
1429 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1430 {
1431     DeviceState *dev = NULL;
1432 
1433     if (pci_bus) {
1434         PCIDevice *pcidev = pci_vga_init(pci_bus);
1435         dev = pcidev ? &pcidev->qdev : NULL;
1436     } else if (isa_bus) {
1437         ISADevice *isadev = isa_vga_init(isa_bus);
1438         dev = isadev ? DEVICE(isadev) : NULL;
1439     }
1440     return dev;
1441 }
1442 
1443 static const MemoryRegionOps ioport80_io_ops = {
1444     .write = ioport80_write,
1445     .read = ioport80_read,
1446     .endianness = DEVICE_NATIVE_ENDIAN,
1447     .impl = {
1448         .min_access_size = 1,
1449         .max_access_size = 1,
1450     },
1451 };
1452 
1453 static const MemoryRegionOps ioportF0_io_ops = {
1454     .write = ioportF0_write,
1455     .read = ioportF0_read,
1456     .endianness = DEVICE_NATIVE_ENDIAN,
1457     .impl = {
1458         .min_access_size = 1,
1459         .max_access_size = 1,
1460     },
1461 };
1462 
1463 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1464                           ISADevice **rtc_state,
1465                           bool create_fdctrl,
1466                           bool no_vmport,
1467                           uint32 hpet_irqs)
1468 {
1469     int i;
1470     DriveInfo *fd[MAX_FD];
1471     DeviceState *hpet = NULL;
1472     int pit_isa_irq = 0;
1473     qemu_irq pit_alt_irq = NULL;
1474     qemu_irq rtc_irq = NULL;
1475     qemu_irq *a20_line;
1476     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1477     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1478     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1479 
1480     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1481     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1482 
1483     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1484     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1485 
1486     /*
1487      * Check if an HPET shall be created.
1488      *
1489      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1490      * when the HPET wants to take over. Thus we have to disable the latter.
1491      */
1492     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1493         /* In order to set property, here not using sysbus_try_create_simple */
1494         hpet = qdev_try_create(NULL, TYPE_HPET);
1495         if (hpet) {
1496             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1497              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1498              * IRQ8 and IRQ2.
1499              */
1500             uint8_t compat = object_property_get_int(OBJECT(hpet),
1501                     HPET_INTCAP, NULL);
1502             if (!compat) {
1503                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1504             }
1505             qdev_init_nofail(hpet);
1506             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1507 
1508             for (i = 0; i < GSI_NUM_PINS; i++) {
1509                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1510             }
1511             pit_isa_irq = -1;
1512             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1513             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1514         }
1515     }
1516     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1517 
1518     qemu_register_boot_set(pc_boot_set, *rtc_state);
1519 
1520     if (!xen_enabled()) {
1521         if (kvm_pit_in_kernel()) {
1522             pit = kvm_pit_init(isa_bus, 0x40);
1523         } else {
1524             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1525         }
1526         if (hpet) {
1527             /* connect PIT to output control line of the HPET */
1528             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1529         }
1530         pcspk_init(isa_bus, pit);
1531     }
1532 
1533     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1534     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1535 
1536     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1537     i8042 = isa_create_simple(isa_bus, "i8042");
1538     i8042_setup_a20_line(i8042, &a20_line[0]);
1539     if (!no_vmport) {
1540         vmport_init(isa_bus);
1541         vmmouse = isa_try_create(isa_bus, "vmmouse");
1542     } else {
1543         vmmouse = NULL;
1544     }
1545     if (vmmouse) {
1546         DeviceState *dev = DEVICE(vmmouse);
1547         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1548         qdev_init_nofail(dev);
1549     }
1550     port92 = isa_create_simple(isa_bus, "port92");
1551     port92_init(port92, &a20_line[1]);
1552 
1553     DMA_init(0);
1554 
1555     for(i = 0; i < MAX_FD; i++) {
1556         fd[i] = drive_get(IF_FLOPPY, 0, i);
1557         create_fdctrl |= !!fd[i];
1558     }
1559     if (create_fdctrl) {
1560         fdctrl_init_isa(isa_bus, fd);
1561     }
1562 }
1563 
1564 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1565 {
1566     int i;
1567 
1568     for (i = 0; i < nb_nics; i++) {
1569         NICInfo *nd = &nd_table[i];
1570 
1571         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1572             pc_init_ne2k_isa(isa_bus, nd);
1573         } else {
1574             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1575         }
1576     }
1577 }
1578 
1579 void pc_pci_device_init(PCIBus *pci_bus)
1580 {
1581     int max_bus;
1582     int bus;
1583 
1584     max_bus = drive_get_max_bus(IF_SCSI);
1585     for (bus = 0; bus <= max_bus; bus++) {
1586         pci_create_simple(pci_bus, -1, "lsi53c895a");
1587     }
1588 }
1589 
1590 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1591 {
1592     DeviceState *dev;
1593     SysBusDevice *d;
1594     unsigned int i;
1595 
1596     if (kvm_ioapic_in_kernel()) {
1597         dev = qdev_create(NULL, "kvm-ioapic");
1598     } else {
1599         dev = qdev_create(NULL, "ioapic");
1600     }
1601     if (parent_name) {
1602         object_property_add_child(object_resolve_path(parent_name, NULL),
1603                                   "ioapic", OBJECT(dev), NULL);
1604     }
1605     qdev_init_nofail(dev);
1606     d = SYS_BUS_DEVICE(dev);
1607     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1608 
1609     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1610         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1611     }
1612 }
1613 
1614 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1615                          DeviceState *dev, Error **errp)
1616 {
1617     HotplugHandlerClass *hhc;
1618     Error *local_err = NULL;
1619     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1620     PCDIMMDevice *dimm = PC_DIMM(dev);
1621     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1622     MemoryRegion *mr = ddc->get_memory_region(dimm);
1623     uint64_t align = TARGET_PAGE_SIZE;
1624 
1625     if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1626         align = memory_region_get_alignment(mr);
1627     }
1628 
1629     if (!pcms->acpi_dev) {
1630         error_setg(&local_err,
1631                    "memory hotplug is not enabled: missing acpi device");
1632         goto out;
1633     }
1634 
1635     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1636     if (local_err) {
1637         goto out;
1638     }
1639 
1640     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1641     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1642 out:
1643     error_propagate(errp, local_err);
1644 }
1645 
1646 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1647                                    DeviceState *dev, Error **errp)
1648 {
1649     HotplugHandlerClass *hhc;
1650     Error *local_err = NULL;
1651     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1652 
1653     if (!pcms->acpi_dev) {
1654         error_setg(&local_err,
1655                    "memory hotplug is not enabled: missing acpi device");
1656         goto out;
1657     }
1658 
1659     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1660     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1661 
1662 out:
1663     error_propagate(errp, local_err);
1664 }
1665 
1666 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1667                            DeviceState *dev, Error **errp)
1668 {
1669     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1670     PCDIMMDevice *dimm = PC_DIMM(dev);
1671     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1672     MemoryRegion *mr = ddc->get_memory_region(dimm);
1673     HotplugHandlerClass *hhc;
1674     Error *local_err = NULL;
1675 
1676     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1677     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1678 
1679     if (local_err) {
1680         goto out;
1681     }
1682 
1683     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1684     object_unparent(OBJECT(dev));
1685 
1686  out:
1687     error_propagate(errp, local_err);
1688 }
1689 
1690 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1691                         DeviceState *dev, Error **errp)
1692 {
1693     HotplugHandlerClass *hhc;
1694     Error *local_err = NULL;
1695     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1696 
1697     if (!dev->hotplugged) {
1698         goto out;
1699     }
1700 
1701     if (!pcms->acpi_dev) {
1702         error_setg(&local_err,
1703                    "cpu hotplug is not enabled: missing acpi device");
1704         goto out;
1705     }
1706 
1707     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1708     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1709     if (local_err) {
1710         goto out;
1711     }
1712 
1713     /* increment the number of CPUs */
1714     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1715 out:
1716     error_propagate(errp, local_err);
1717 }
1718 
1719 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1720                                       DeviceState *dev, Error **errp)
1721 {
1722     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1723         pc_dimm_plug(hotplug_dev, dev, errp);
1724     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1725         pc_cpu_plug(hotplug_dev, dev, errp);
1726     }
1727 }
1728 
1729 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1730                                                 DeviceState *dev, Error **errp)
1731 {
1732     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1733         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1734     } else {
1735         error_setg(errp, "acpi: device unplug request for not supported device"
1736                    " type: %s", object_get_typename(OBJECT(dev)));
1737     }
1738 }
1739 
1740 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1741                                         DeviceState *dev, Error **errp)
1742 {
1743     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1744         pc_dimm_unplug(hotplug_dev, dev, errp);
1745     } else {
1746         error_setg(errp, "acpi: device unplug for not supported device"
1747                    " type: %s", object_get_typename(OBJECT(dev)));
1748     }
1749 }
1750 
1751 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1752                                              DeviceState *dev)
1753 {
1754     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1755 
1756     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1757         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1758         return HOTPLUG_HANDLER(machine);
1759     }
1760 
1761     return pcmc->get_hotplug_handler ?
1762         pcmc->get_hotplug_handler(machine, dev) : NULL;
1763 }
1764 
1765 static void
1766 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1767                                           const char *name, Error **errp)
1768 {
1769     PCMachineState *pcms = PC_MACHINE(obj);
1770     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1771 
1772     visit_type_int(v, &value, name, errp);
1773 }
1774 
1775 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1776                                          void *opaque, const char *name,
1777                                          Error **errp)
1778 {
1779     PCMachineState *pcms = PC_MACHINE(obj);
1780     uint64_t value = pcms->max_ram_below_4g;
1781 
1782     visit_type_size(v, &value, name, errp);
1783 }
1784 
1785 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1786                                          void *opaque, const char *name,
1787                                          Error **errp)
1788 {
1789     PCMachineState *pcms = PC_MACHINE(obj);
1790     Error *error = NULL;
1791     uint64_t value;
1792 
1793     visit_type_size(v, &value, name, &error);
1794     if (error) {
1795         error_propagate(errp, error);
1796         return;
1797     }
1798     if (value > (1ULL << 32)) {
1799         error_setg(&error,
1800                    "Machine option 'max-ram-below-4g=%"PRIu64
1801                    "' expects size less than or equal to 4G", value);
1802         error_propagate(errp, error);
1803         return;
1804     }
1805 
1806     if (value < (1ULL << 20)) {
1807         error_report("Warning: small max_ram_below_4g(%"PRIu64
1808                      ") less than 1M.  BIOS may not work..",
1809                      value);
1810     }
1811 
1812     pcms->max_ram_below_4g = value;
1813 }
1814 
1815 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1816                                   const char *name, Error **errp)
1817 {
1818     PCMachineState *pcms = PC_MACHINE(obj);
1819     OnOffAuto vmport = pcms->vmport;
1820 
1821     visit_type_OnOffAuto(v, &vmport, name, errp);
1822 }
1823 
1824 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1825                                   const char *name, Error **errp)
1826 {
1827     PCMachineState *pcms = PC_MACHINE(obj);
1828 
1829     visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1830 }
1831 
1832 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1833 {
1834     bool smm_available = false;
1835 
1836     if (pcms->smm == ON_OFF_AUTO_OFF) {
1837         return false;
1838     }
1839 
1840     if (tcg_enabled() || qtest_enabled()) {
1841         smm_available = true;
1842     } else if (kvm_enabled()) {
1843         smm_available = kvm_has_smm();
1844     }
1845 
1846     if (smm_available) {
1847         return true;
1848     }
1849 
1850     if (pcms->smm == ON_OFF_AUTO_ON) {
1851         error_report("System Management Mode not supported by this hypervisor.");
1852         exit(1);
1853     }
1854     return false;
1855 }
1856 
1857 static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1858                               const char *name, Error **errp)
1859 {
1860     PCMachineState *pcms = PC_MACHINE(obj);
1861     OnOffAuto smm = pcms->smm;
1862 
1863     visit_type_OnOffAuto(v, &smm, name, errp);
1864 }
1865 
1866 static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1867                                   const char *name, Error **errp)
1868 {
1869     PCMachineState *pcms = PC_MACHINE(obj);
1870 
1871     visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1872 }
1873 
1874 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1875 {
1876     PCMachineState *pcms = PC_MACHINE(obj);
1877 
1878     return pcms->enforce_aligned_dimm;
1879 }
1880 
1881 static void pc_machine_initfn(Object *obj)
1882 {
1883     PCMachineState *pcms = PC_MACHINE(obj);
1884 
1885     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1886                         pc_machine_get_hotplug_memory_region_size,
1887                         NULL, NULL, NULL, &error_abort);
1888 
1889     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1890     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1891                         pc_machine_get_max_ram_below_4g,
1892                         pc_machine_set_max_ram_below_4g,
1893                         NULL, NULL, &error_abort);
1894     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1895                                     "Maximum ram below the 4G boundary (32bit boundary)",
1896                                     &error_abort);
1897 
1898     pcms->smm = ON_OFF_AUTO_AUTO;
1899     object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1900                         pc_machine_get_smm,
1901                         pc_machine_set_smm,
1902                         NULL, NULL, &error_abort);
1903     object_property_set_description(obj, PC_MACHINE_SMM,
1904                                     "Enable SMM (pc & q35)",
1905                                     &error_abort);
1906 
1907     pcms->vmport = ON_OFF_AUTO_AUTO;
1908     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1909                         pc_machine_get_vmport,
1910                         pc_machine_set_vmport,
1911                         NULL, NULL, &error_abort);
1912     object_property_set_description(obj, PC_MACHINE_VMPORT,
1913                                     "Enable vmport (pc & q35)",
1914                                     &error_abort);
1915 
1916     pcms->enforce_aligned_dimm = true;
1917     object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1918                              pc_machine_get_aligned_dimm,
1919                              NULL, &error_abort);
1920 }
1921 
1922 static void pc_machine_reset(void)
1923 {
1924     CPUState *cs;
1925     X86CPU *cpu;
1926 
1927     qemu_devices_reset();
1928 
1929     /* Reset APIC after devices have been reset to cancel
1930      * any changes that qemu_devices_reset() might have done.
1931      */
1932     CPU_FOREACH(cs) {
1933         cpu = X86_CPU(cs);
1934 
1935         if (cpu->apic_state) {
1936             device_reset(cpu->apic_state);
1937         }
1938     }
1939 }
1940 
1941 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1942 {
1943     X86CPUTopoInfo topo;
1944     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1945                           &topo);
1946     return topo.pkg_id;
1947 }
1948 
1949 static void pc_machine_class_init(ObjectClass *oc, void *data)
1950 {
1951     MachineClass *mc = MACHINE_CLASS(oc);
1952     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1953     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1954 
1955     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1956     mc->get_hotplug_handler = pc_get_hotpug_handler;
1957     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1958     mc->default_boot_order = "cad";
1959     mc->hot_add_cpu = pc_hot_add_cpu;
1960     mc->max_cpus = 255;
1961     mc->reset = pc_machine_reset;
1962     hc->plug = pc_machine_device_plug_cb;
1963     hc->unplug_request = pc_machine_device_unplug_request_cb;
1964     hc->unplug = pc_machine_device_unplug_cb;
1965 }
1966 
1967 static const TypeInfo pc_machine_info = {
1968     .name = TYPE_PC_MACHINE,
1969     .parent = TYPE_MACHINE,
1970     .abstract = true,
1971     .instance_size = sizeof(PCMachineState),
1972     .instance_init = pc_machine_initfn,
1973     .class_size = sizeof(PCMachineClass),
1974     .class_init = pc_machine_class_init,
1975     .interfaces = (InterfaceInfo[]) {
1976          { TYPE_HOTPLUG_HANDLER },
1977          { }
1978     },
1979 };
1980 
1981 static void pc_machine_register_types(void)
1982 {
1983     type_register_static(&pc_machine_info);
1984 }
1985 
1986 type_init(pc_machine_register_types)
1987