1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/firmware/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 GlobalProperty pc_compat_3_1[] = { 113 { 114 .driver = "intel-iommu", 115 .property = "dma-drain", 116 .value = "off", 117 }, 118 }; 119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); 120 121 void gsi_handler(void *opaque, int n, int level) 122 { 123 GSIState *s = opaque; 124 125 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 126 if (n < ISA_NUM_IRQS) { 127 qemu_set_irq(s->i8259_irq[n], level); 128 } 129 qemu_set_irq(s->ioapic_irq[n], level); 130 } 131 132 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 133 unsigned size) 134 { 135 } 136 137 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 138 { 139 return 0xffffffffffffffffULL; 140 } 141 142 /* MSDOS compatibility mode FPU exception support */ 143 static qemu_irq ferr_irq; 144 145 void pc_register_ferr_irq(qemu_irq irq) 146 { 147 ferr_irq = irq; 148 } 149 150 /* XXX: add IGNNE support */ 151 void cpu_set_ferr(CPUX86State *s) 152 { 153 qemu_irq_raise(ferr_irq); 154 } 155 156 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 157 unsigned size) 158 { 159 qemu_irq_lower(ferr_irq); 160 } 161 162 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 163 { 164 return 0xffffffffffffffffULL; 165 } 166 167 /* TSC handling */ 168 uint64_t cpu_get_tsc(CPUX86State *env) 169 { 170 return cpu_get_ticks(); 171 } 172 173 /* IRQ handling */ 174 int cpu_get_pic_interrupt(CPUX86State *env) 175 { 176 X86CPU *cpu = x86_env_get_cpu(env); 177 int intno; 178 179 if (!kvm_irqchip_in_kernel()) { 180 intno = apic_get_interrupt(cpu->apic_state); 181 if (intno >= 0) { 182 return intno; 183 } 184 /* read the irq from the PIC */ 185 if (!apic_accept_pic_intr(cpu->apic_state)) { 186 return -1; 187 } 188 } 189 190 intno = pic_read_irq(isa_pic); 191 return intno; 192 } 193 194 static void pic_irq_request(void *opaque, int irq, int level) 195 { 196 CPUState *cs = first_cpu; 197 X86CPU *cpu = X86_CPU(cs); 198 199 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 200 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 201 CPU_FOREACH(cs) { 202 cpu = X86_CPU(cs); 203 if (apic_accept_pic_intr(cpu->apic_state)) { 204 apic_deliver_pic_intr(cpu->apic_state, level); 205 } 206 } 207 } else { 208 if (level) { 209 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 210 } else { 211 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 212 } 213 } 214 } 215 216 /* PC cmos mappings */ 217 218 #define REG_EQUIPMENT_BYTE 0x14 219 220 int cmos_get_fd_drive_type(FloppyDriveType fd0) 221 { 222 int val; 223 224 switch (fd0) { 225 case FLOPPY_DRIVE_TYPE_144: 226 /* 1.44 Mb 3"5 drive */ 227 val = 4; 228 break; 229 case FLOPPY_DRIVE_TYPE_288: 230 /* 2.88 Mb 3"5 drive */ 231 val = 5; 232 break; 233 case FLOPPY_DRIVE_TYPE_120: 234 /* 1.2 Mb 5"5 drive */ 235 val = 2; 236 break; 237 case FLOPPY_DRIVE_TYPE_NONE: 238 default: 239 val = 0; 240 break; 241 } 242 return val; 243 } 244 245 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 246 int16_t cylinders, int8_t heads, int8_t sectors) 247 { 248 rtc_set_memory(s, type_ofs, 47); 249 rtc_set_memory(s, info_ofs, cylinders); 250 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 251 rtc_set_memory(s, info_ofs + 2, heads); 252 rtc_set_memory(s, info_ofs + 3, 0xff); 253 rtc_set_memory(s, info_ofs + 4, 0xff); 254 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 255 rtc_set_memory(s, info_ofs + 6, cylinders); 256 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 257 rtc_set_memory(s, info_ofs + 8, sectors); 258 } 259 260 /* convert boot_device letter to something recognizable by the bios */ 261 static int boot_device2nibble(char boot_device) 262 { 263 switch(boot_device) { 264 case 'a': 265 case 'b': 266 return 0x01; /* floppy boot */ 267 case 'c': 268 return 0x02; /* hard drive boot */ 269 case 'd': 270 return 0x03; /* CD-ROM boot */ 271 case 'n': 272 return 0x04; /* Network boot */ 273 } 274 return 0; 275 } 276 277 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 278 { 279 #define PC_MAX_BOOT_DEVICES 3 280 int nbds, bds[3] = { 0, }; 281 int i; 282 283 nbds = strlen(boot_device); 284 if (nbds > PC_MAX_BOOT_DEVICES) { 285 error_setg(errp, "Too many boot devices for PC"); 286 return; 287 } 288 for (i = 0; i < nbds; i++) { 289 bds[i] = boot_device2nibble(boot_device[i]); 290 if (bds[i] == 0) { 291 error_setg(errp, "Invalid boot device for PC: '%c'", 292 boot_device[i]); 293 return; 294 } 295 } 296 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 297 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 298 } 299 300 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 301 { 302 set_boot_dev(opaque, boot_device, errp); 303 } 304 305 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 306 { 307 int val, nb, i; 308 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 309 FLOPPY_DRIVE_TYPE_NONE }; 310 311 /* floppy type */ 312 if (floppy) { 313 for (i = 0; i < 2; i++) { 314 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 315 } 316 } 317 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 318 cmos_get_fd_drive_type(fd_type[1]); 319 rtc_set_memory(rtc_state, 0x10, val); 320 321 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 322 nb = 0; 323 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 324 nb++; 325 } 326 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 327 nb++; 328 } 329 switch (nb) { 330 case 0: 331 break; 332 case 1: 333 val |= 0x01; /* 1 drive, ready for boot */ 334 break; 335 case 2: 336 val |= 0x41; /* 2 drives, ready for boot */ 337 break; 338 } 339 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 340 } 341 342 typedef struct pc_cmos_init_late_arg { 343 ISADevice *rtc_state; 344 BusState *idebus[2]; 345 } pc_cmos_init_late_arg; 346 347 typedef struct check_fdc_state { 348 ISADevice *floppy; 349 bool multiple; 350 } CheckFdcState; 351 352 static int check_fdc(Object *obj, void *opaque) 353 { 354 CheckFdcState *state = opaque; 355 Object *fdc; 356 uint32_t iobase; 357 Error *local_err = NULL; 358 359 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 360 if (!fdc) { 361 return 0; 362 } 363 364 iobase = object_property_get_uint(obj, "iobase", &local_err); 365 if (local_err || iobase != 0x3f0) { 366 error_free(local_err); 367 return 0; 368 } 369 370 if (state->floppy) { 371 state->multiple = true; 372 } else { 373 state->floppy = ISA_DEVICE(obj); 374 } 375 return 0; 376 } 377 378 static const char * const fdc_container_path[] = { 379 "/unattached", "/peripheral", "/peripheral-anon" 380 }; 381 382 /* 383 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 384 * and ACPI objects. 385 */ 386 ISADevice *pc_find_fdc0(void) 387 { 388 int i; 389 Object *container; 390 CheckFdcState state = { 0 }; 391 392 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 393 container = container_get(qdev_get_machine(), fdc_container_path[i]); 394 object_child_foreach(container, check_fdc, &state); 395 } 396 397 if (state.multiple) { 398 warn_report("multiple floppy disk controllers with " 399 "iobase=0x3f0 have been found"); 400 error_printf("the one being picked for CMOS setup might not reflect " 401 "your intent"); 402 } 403 404 return state.floppy; 405 } 406 407 static void pc_cmos_init_late(void *opaque) 408 { 409 pc_cmos_init_late_arg *arg = opaque; 410 ISADevice *s = arg->rtc_state; 411 int16_t cylinders; 412 int8_t heads, sectors; 413 int val; 414 int i, trans; 415 416 val = 0; 417 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 418 &cylinders, &heads, §ors) >= 0) { 419 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 420 val |= 0xf0; 421 } 422 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 423 &cylinders, &heads, §ors) >= 0) { 424 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 425 val |= 0x0f; 426 } 427 rtc_set_memory(s, 0x12, val); 428 429 val = 0; 430 for (i = 0; i < 4; i++) { 431 /* NOTE: ide_get_geometry() returns the physical 432 geometry. It is always such that: 1 <= sects <= 63, 1 433 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 434 geometry can be different if a translation is done. */ 435 if (arg->idebus[i / 2] && 436 ide_get_geometry(arg->idebus[i / 2], i % 2, 437 &cylinders, &heads, §ors) >= 0) { 438 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 439 assert((trans & ~3) == 0); 440 val |= trans << (i * 2); 441 } 442 } 443 rtc_set_memory(s, 0x39, val); 444 445 pc_cmos_init_floppy(s, pc_find_fdc0()); 446 447 qemu_unregister_reset(pc_cmos_init_late, opaque); 448 } 449 450 void pc_cmos_init(PCMachineState *pcms, 451 BusState *idebus0, BusState *idebus1, 452 ISADevice *s) 453 { 454 int val; 455 static pc_cmos_init_late_arg arg; 456 457 /* various important CMOS locations needed by PC/Bochs bios */ 458 459 /* memory size */ 460 /* base memory (first MiB) */ 461 val = MIN(pcms->below_4g_mem_size / KiB, 640); 462 rtc_set_memory(s, 0x15, val); 463 rtc_set_memory(s, 0x16, val >> 8); 464 /* extended memory (next 64MiB) */ 465 if (pcms->below_4g_mem_size > 1 * MiB) { 466 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 467 } else { 468 val = 0; 469 } 470 if (val > 65535) 471 val = 65535; 472 rtc_set_memory(s, 0x17, val); 473 rtc_set_memory(s, 0x18, val >> 8); 474 rtc_set_memory(s, 0x30, val); 475 rtc_set_memory(s, 0x31, val >> 8); 476 /* memory between 16MiB and 4GiB */ 477 if (pcms->below_4g_mem_size > 16 * MiB) { 478 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 479 } else { 480 val = 0; 481 } 482 if (val > 65535) 483 val = 65535; 484 rtc_set_memory(s, 0x34, val); 485 rtc_set_memory(s, 0x35, val >> 8); 486 /* memory above 4GiB */ 487 val = pcms->above_4g_mem_size / 65536; 488 rtc_set_memory(s, 0x5b, val); 489 rtc_set_memory(s, 0x5c, val >> 8); 490 rtc_set_memory(s, 0x5d, val >> 16); 491 492 object_property_add_link(OBJECT(pcms), "rtc_state", 493 TYPE_ISA_DEVICE, 494 (Object **)&pcms->rtc, 495 object_property_allow_set_link, 496 OBJ_PROP_LINK_STRONG, &error_abort); 497 object_property_set_link(OBJECT(pcms), OBJECT(s), 498 "rtc_state", &error_abort); 499 500 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 501 502 val = 0; 503 val |= 0x02; /* FPU is there */ 504 val |= 0x04; /* PS/2 mouse installed */ 505 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 506 507 /* hard drives and FDC */ 508 arg.rtc_state = s; 509 arg.idebus[0] = idebus0; 510 arg.idebus[1] = idebus1; 511 qemu_register_reset(pc_cmos_init_late, &arg); 512 } 513 514 #define TYPE_PORT92 "port92" 515 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 516 517 /* port 92 stuff: could be split off */ 518 typedef struct Port92State { 519 ISADevice parent_obj; 520 521 MemoryRegion io; 522 uint8_t outport; 523 qemu_irq a20_out; 524 } Port92State; 525 526 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 527 unsigned size) 528 { 529 Port92State *s = opaque; 530 int oldval = s->outport; 531 532 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 533 s->outport = val; 534 qemu_set_irq(s->a20_out, (val >> 1) & 1); 535 if ((val & 1) && !(oldval & 1)) { 536 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 537 } 538 } 539 540 static uint64_t port92_read(void *opaque, hwaddr addr, 541 unsigned size) 542 { 543 Port92State *s = opaque; 544 uint32_t ret; 545 546 ret = s->outport; 547 DPRINTF("port92: read 0x%02x\n", ret); 548 return ret; 549 } 550 551 static void port92_init(ISADevice *dev, qemu_irq a20_out) 552 { 553 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 554 } 555 556 static const VMStateDescription vmstate_port92_isa = { 557 .name = "port92", 558 .version_id = 1, 559 .minimum_version_id = 1, 560 .fields = (VMStateField[]) { 561 VMSTATE_UINT8(outport, Port92State), 562 VMSTATE_END_OF_LIST() 563 } 564 }; 565 566 static void port92_reset(DeviceState *d) 567 { 568 Port92State *s = PORT92(d); 569 570 s->outport &= ~1; 571 } 572 573 static const MemoryRegionOps port92_ops = { 574 .read = port92_read, 575 .write = port92_write, 576 .impl = { 577 .min_access_size = 1, 578 .max_access_size = 1, 579 }, 580 .endianness = DEVICE_LITTLE_ENDIAN, 581 }; 582 583 static void port92_initfn(Object *obj) 584 { 585 Port92State *s = PORT92(obj); 586 587 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 588 589 s->outport = 0; 590 591 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 592 } 593 594 static void port92_realizefn(DeviceState *dev, Error **errp) 595 { 596 ISADevice *isadev = ISA_DEVICE(dev); 597 Port92State *s = PORT92(dev); 598 599 isa_register_ioport(isadev, &s->io, 0x92); 600 } 601 602 static void port92_class_initfn(ObjectClass *klass, void *data) 603 { 604 DeviceClass *dc = DEVICE_CLASS(klass); 605 606 dc->realize = port92_realizefn; 607 dc->reset = port92_reset; 608 dc->vmsd = &vmstate_port92_isa; 609 /* 610 * Reason: unlike ordinary ISA devices, this one needs additional 611 * wiring: its A20 output line needs to be wired up by 612 * port92_init(). 613 */ 614 dc->user_creatable = false; 615 } 616 617 static const TypeInfo port92_info = { 618 .name = TYPE_PORT92, 619 .parent = TYPE_ISA_DEVICE, 620 .instance_size = sizeof(Port92State), 621 .instance_init = port92_initfn, 622 .class_init = port92_class_initfn, 623 }; 624 625 static void port92_register_types(void) 626 { 627 type_register_static(&port92_info); 628 } 629 630 type_init(port92_register_types) 631 632 static void handle_a20_line_change(void *opaque, int irq, int level) 633 { 634 X86CPU *cpu = opaque; 635 636 /* XXX: send to all CPUs ? */ 637 /* XXX: add logic to handle multiple A20 line sources */ 638 x86_cpu_set_a20(cpu, level); 639 } 640 641 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 642 { 643 int index = le32_to_cpu(e820_reserve.count); 644 struct e820_entry *entry; 645 646 if (type != E820_RAM) { 647 /* old FW_CFG_E820_TABLE entry -- reservations only */ 648 if (index >= E820_NR_ENTRIES) { 649 return -EBUSY; 650 } 651 entry = &e820_reserve.entry[index++]; 652 653 entry->address = cpu_to_le64(address); 654 entry->length = cpu_to_le64(length); 655 entry->type = cpu_to_le32(type); 656 657 e820_reserve.count = cpu_to_le32(index); 658 } 659 660 /* new "etc/e820" file -- include ram too */ 661 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 662 e820_table[e820_entries].address = cpu_to_le64(address); 663 e820_table[e820_entries].length = cpu_to_le64(length); 664 e820_table[e820_entries].type = cpu_to_le32(type); 665 e820_entries++; 666 667 return e820_entries; 668 } 669 670 int e820_get_num_entries(void) 671 { 672 return e820_entries; 673 } 674 675 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 676 { 677 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 678 *address = le64_to_cpu(e820_table[idx].address); 679 *length = le64_to_cpu(e820_table[idx].length); 680 return true; 681 } 682 return false; 683 } 684 685 /* Enables contiguous-apic-ID mode, for compatibility */ 686 static bool compat_apic_id_mode; 687 688 void enable_compat_apic_id_mode(void) 689 { 690 compat_apic_id_mode = true; 691 } 692 693 /* Calculates initial APIC ID for a specific CPU index 694 * 695 * Currently we need to be able to calculate the APIC ID from the CPU index 696 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 697 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 698 * all CPUs up to max_cpus. 699 */ 700 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 701 { 702 uint32_t correct_id; 703 static bool warned; 704 705 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 706 if (compat_apic_id_mode) { 707 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 708 error_report("APIC IDs set in compatibility mode, " 709 "CPU topology won't match the configuration"); 710 warned = true; 711 } 712 return cpu_index; 713 } else { 714 return correct_id; 715 } 716 } 717 718 static void pc_build_smbios(PCMachineState *pcms) 719 { 720 uint8_t *smbios_tables, *smbios_anchor; 721 size_t smbios_tables_len, smbios_anchor_len; 722 struct smbios_phys_mem_area *mem_array; 723 unsigned i, array_count; 724 MachineState *ms = MACHINE(pcms); 725 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 726 727 /* tell smbios about cpuid version and features */ 728 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 729 730 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 731 if (smbios_tables) { 732 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 733 smbios_tables, smbios_tables_len); 734 } 735 736 /* build the array of physical mem area from e820 table */ 737 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 738 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 739 uint64_t addr, len; 740 741 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 742 mem_array[array_count].address = addr; 743 mem_array[array_count].length = len; 744 array_count++; 745 } 746 } 747 smbios_get_tables(mem_array, array_count, 748 &smbios_tables, &smbios_tables_len, 749 &smbios_anchor, &smbios_anchor_len); 750 g_free(mem_array); 751 752 if (smbios_anchor) { 753 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 754 smbios_tables, smbios_tables_len); 755 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 756 smbios_anchor, smbios_anchor_len); 757 } 758 } 759 760 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 761 { 762 FWCfgState *fw_cfg; 763 uint64_t *numa_fw_cfg; 764 int i; 765 const CPUArchIdList *cpus; 766 MachineClass *mc = MACHINE_GET_CLASS(pcms); 767 768 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 769 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 770 771 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 772 * 773 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 774 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 775 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 776 * for CPU hotplug also uses APIC ID and not "CPU index". 777 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 778 * but the "limit to the APIC ID values SeaBIOS may see". 779 * 780 * So for compatibility reasons with old BIOSes we are stuck with 781 * "etc/max-cpus" actually being apic_id_limit 782 */ 783 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 784 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 785 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 786 acpi_tables, acpi_tables_len); 787 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 788 789 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 790 &e820_reserve, sizeof(e820_reserve)); 791 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 792 sizeof(struct e820_entry) * e820_entries); 793 794 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 795 /* allocate memory for the NUMA channel: one (64bit) word for the number 796 * of nodes, one word for each VCPU->node and one word for each node to 797 * hold the amount of memory. 798 */ 799 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 800 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 801 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 802 for (i = 0; i < cpus->len; i++) { 803 unsigned int apic_id = cpus->cpus[i].arch_id; 804 assert(apic_id < pcms->apic_id_limit); 805 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 806 } 807 for (i = 0; i < nb_numa_nodes; i++) { 808 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 809 cpu_to_le64(numa_info[i].node_mem); 810 } 811 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 812 (1 + pcms->apic_id_limit + nb_numa_nodes) * 813 sizeof(*numa_fw_cfg)); 814 815 return fw_cfg; 816 } 817 818 static long get_file_size(FILE *f) 819 { 820 long where, size; 821 822 /* XXX: on Unix systems, using fstat() probably makes more sense */ 823 824 where = ftell(f); 825 fseek(f, 0, SEEK_END); 826 size = ftell(f); 827 fseek(f, where, SEEK_SET); 828 829 return size; 830 } 831 832 /* setup_data types */ 833 #define SETUP_NONE 0 834 #define SETUP_E820_EXT 1 835 #define SETUP_DTB 2 836 #define SETUP_PCI 3 837 #define SETUP_EFI 4 838 839 struct setup_data { 840 uint64_t next; 841 uint32_t type; 842 uint32_t len; 843 uint8_t data[0]; 844 } __attribute__((packed)); 845 846 static void load_linux(PCMachineState *pcms, 847 FWCfgState *fw_cfg) 848 { 849 uint16_t protocol; 850 int setup_size, kernel_size, cmdline_size; 851 int dtb_size, setup_data_offset; 852 uint32_t initrd_max; 853 uint8_t header[8192], *setup, *kernel; 854 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 855 FILE *f; 856 char *vmode; 857 MachineState *machine = MACHINE(pcms); 858 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 859 struct setup_data *setup_data; 860 const char *kernel_filename = machine->kernel_filename; 861 const char *initrd_filename = machine->initrd_filename; 862 const char *dtb_filename = machine->dtb; 863 const char *kernel_cmdline = machine->kernel_cmdline; 864 865 /* Align to 16 bytes as a paranoia measure */ 866 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 867 868 /* load the kernel header */ 869 f = fopen(kernel_filename, "rb"); 870 if (!f || !(kernel_size = get_file_size(f)) || 871 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 872 MIN(ARRAY_SIZE(header), kernel_size)) { 873 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 874 kernel_filename, strerror(errno)); 875 exit(1); 876 } 877 878 /* kernel protocol version */ 879 #if 0 880 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 881 #endif 882 if (ldl_p(header+0x202) == 0x53726448) { 883 protocol = lduw_p(header+0x206); 884 } else { 885 /* This looks like a multiboot kernel. If it is, let's stop 886 treating it like a Linux kernel. */ 887 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 888 kernel_cmdline, kernel_size, header)) { 889 return; 890 } 891 protocol = 0; 892 } 893 894 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 895 /* Low kernel */ 896 real_addr = 0x90000; 897 cmdline_addr = 0x9a000 - cmdline_size; 898 prot_addr = 0x10000; 899 } else if (protocol < 0x202) { 900 /* High but ancient kernel */ 901 real_addr = 0x90000; 902 cmdline_addr = 0x9a000 - cmdline_size; 903 prot_addr = 0x100000; 904 } else { 905 /* High and recent kernel */ 906 real_addr = 0x10000; 907 cmdline_addr = 0x20000; 908 prot_addr = 0x100000; 909 } 910 911 #if 0 912 fprintf(stderr, 913 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 914 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 915 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 916 real_addr, 917 cmdline_addr, 918 prot_addr); 919 #endif 920 921 /* highest address for loading the initrd */ 922 if (protocol >= 0x203) { 923 initrd_max = ldl_p(header+0x22c); 924 } else { 925 initrd_max = 0x37ffffff; 926 } 927 928 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 929 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 930 } 931 932 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 933 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 934 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 935 936 if (protocol >= 0x202) { 937 stl_p(header+0x228, cmdline_addr); 938 } else { 939 stw_p(header+0x20, 0xA33F); 940 stw_p(header+0x22, cmdline_addr-real_addr); 941 } 942 943 /* handle vga= parameter */ 944 vmode = strstr(kernel_cmdline, "vga="); 945 if (vmode) { 946 unsigned int video_mode; 947 /* skip "vga=" */ 948 vmode += 4; 949 if (!strncmp(vmode, "normal", 6)) { 950 video_mode = 0xffff; 951 } else if (!strncmp(vmode, "ext", 3)) { 952 video_mode = 0xfffe; 953 } else if (!strncmp(vmode, "ask", 3)) { 954 video_mode = 0xfffd; 955 } else { 956 video_mode = strtol(vmode, NULL, 0); 957 } 958 stw_p(header+0x1fa, video_mode); 959 } 960 961 /* loader type */ 962 /* High nybble = B reserved for QEMU; low nybble is revision number. 963 If this code is substantially changed, you may want to consider 964 incrementing the revision. */ 965 if (protocol >= 0x200) { 966 header[0x210] = 0xB0; 967 } 968 /* heap */ 969 if (protocol >= 0x201) { 970 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 971 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 972 } 973 974 /* load initrd */ 975 if (initrd_filename) { 976 gsize initrd_size; 977 gchar *initrd_data; 978 GError *gerr = NULL; 979 980 if (protocol < 0x200) { 981 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 982 exit(1); 983 } 984 985 if (!g_file_get_contents(initrd_filename, &initrd_data, 986 &initrd_size, &gerr)) { 987 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 988 initrd_filename, gerr->message); 989 exit(1); 990 } 991 if (initrd_size >= initrd_max) { 992 fprintf(stderr, "qemu: initrd is too large, cannot support." 993 "(max: %"PRIu32", need %"PRId64")\n", 994 initrd_max, (uint64_t)initrd_size); 995 exit(1); 996 } 997 998 initrd_addr = (initrd_max-initrd_size) & ~4095; 999 1000 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1001 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1002 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1003 1004 stl_p(header+0x218, initrd_addr); 1005 stl_p(header+0x21c, initrd_size); 1006 } 1007 1008 /* load kernel and setup */ 1009 setup_size = header[0x1f1]; 1010 if (setup_size == 0) { 1011 setup_size = 4; 1012 } 1013 setup_size = (setup_size+1)*512; 1014 if (setup_size > kernel_size) { 1015 fprintf(stderr, "qemu: invalid kernel header\n"); 1016 exit(1); 1017 } 1018 kernel_size -= setup_size; 1019 1020 setup = g_malloc(setup_size); 1021 kernel = g_malloc(kernel_size); 1022 fseek(f, 0, SEEK_SET); 1023 if (fread(setup, 1, setup_size, f) != setup_size) { 1024 fprintf(stderr, "fread() failed\n"); 1025 exit(1); 1026 } 1027 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1028 fprintf(stderr, "fread() failed\n"); 1029 exit(1); 1030 } 1031 fclose(f); 1032 1033 /* append dtb to kernel */ 1034 if (dtb_filename) { 1035 if (protocol < 0x209) { 1036 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1037 exit(1); 1038 } 1039 1040 dtb_size = get_image_size(dtb_filename); 1041 if (dtb_size <= 0) { 1042 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1043 dtb_filename, strerror(errno)); 1044 exit(1); 1045 } 1046 1047 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1048 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1049 kernel = g_realloc(kernel, kernel_size); 1050 1051 stq_p(header+0x250, prot_addr + setup_data_offset); 1052 1053 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1054 setup_data->next = 0; 1055 setup_data->type = cpu_to_le32(SETUP_DTB); 1056 setup_data->len = cpu_to_le32(dtb_size); 1057 1058 load_image_size(dtb_filename, setup_data->data, dtb_size); 1059 } 1060 1061 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1062 1063 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1064 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1065 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1066 1067 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1068 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1069 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1070 1071 option_rom[nb_option_roms].bootindex = 0; 1072 option_rom[nb_option_roms].name = "linuxboot.bin"; 1073 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1074 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1075 } 1076 nb_option_roms++; 1077 } 1078 1079 #define NE2000_NB_MAX 6 1080 1081 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1082 0x280, 0x380 }; 1083 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1084 1085 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1086 { 1087 static int nb_ne2k = 0; 1088 1089 if (nb_ne2k == NE2000_NB_MAX) 1090 return; 1091 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1092 ne2000_irq[nb_ne2k], nd); 1093 nb_ne2k++; 1094 } 1095 1096 DeviceState *cpu_get_current_apic(void) 1097 { 1098 if (current_cpu) { 1099 X86CPU *cpu = X86_CPU(current_cpu); 1100 return cpu->apic_state; 1101 } else { 1102 return NULL; 1103 } 1104 } 1105 1106 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1107 { 1108 X86CPU *cpu = opaque; 1109 1110 if (level) { 1111 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1112 } 1113 } 1114 1115 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1116 { 1117 Object *cpu = NULL; 1118 Error *local_err = NULL; 1119 1120 cpu = object_new(typename); 1121 1122 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1123 object_property_set_bool(cpu, true, "realized", &local_err); 1124 1125 object_unref(cpu); 1126 error_propagate(errp, local_err); 1127 } 1128 1129 void pc_hot_add_cpu(const int64_t id, Error **errp) 1130 { 1131 MachineState *ms = MACHINE(qdev_get_machine()); 1132 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1133 Error *local_err = NULL; 1134 1135 if (id < 0) { 1136 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1137 return; 1138 } 1139 1140 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1141 error_setg(errp, "Unable to add CPU: %" PRIi64 1142 ", resulting APIC ID (%" PRIi64 ") is too large", 1143 id, apic_id); 1144 return; 1145 } 1146 1147 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1148 if (local_err) { 1149 error_propagate(errp, local_err); 1150 return; 1151 } 1152 } 1153 1154 void pc_cpus_init(PCMachineState *pcms) 1155 { 1156 int i; 1157 const CPUArchIdList *possible_cpus; 1158 MachineState *ms = MACHINE(pcms); 1159 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1160 1161 /* Calculates the limit to CPU APIC ID values 1162 * 1163 * Limit for the APIC ID value, so that all 1164 * CPU APIC IDs are < pcms->apic_id_limit. 1165 * 1166 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1167 */ 1168 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1169 possible_cpus = mc->possible_cpu_arch_ids(ms); 1170 for (i = 0; i < smp_cpus; i++) { 1171 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1172 &error_fatal); 1173 } 1174 } 1175 1176 static void pc_build_feature_control_file(PCMachineState *pcms) 1177 { 1178 MachineState *ms = MACHINE(pcms); 1179 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1180 CPUX86State *env = &cpu->env; 1181 uint32_t unused, ecx, edx; 1182 uint64_t feature_control_bits = 0; 1183 uint64_t *val; 1184 1185 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1186 if (ecx & CPUID_EXT_VMX) { 1187 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1188 } 1189 1190 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1191 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1192 (env->mcg_cap & MCG_LMCE_P)) { 1193 feature_control_bits |= FEATURE_CONTROL_LMCE; 1194 } 1195 1196 if (!feature_control_bits) { 1197 return; 1198 } 1199 1200 val = g_malloc(sizeof(*val)); 1201 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1202 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1203 } 1204 1205 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1206 { 1207 if (cpus_count > 0xff) { 1208 /* If the number of CPUs can't be represented in 8 bits, the 1209 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1210 * to make old BIOSes fail more predictably. 1211 */ 1212 rtc_set_memory(rtc, 0x5f, 0); 1213 } else { 1214 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1215 } 1216 } 1217 1218 static 1219 void pc_machine_done(Notifier *notifier, void *data) 1220 { 1221 PCMachineState *pcms = container_of(notifier, 1222 PCMachineState, machine_done); 1223 PCIBus *bus = pcms->bus; 1224 1225 /* set the number of CPUs */ 1226 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1227 1228 if (bus) { 1229 int extra_hosts = 0; 1230 1231 QLIST_FOREACH(bus, &bus->child, sibling) { 1232 /* look for expander root buses */ 1233 if (pci_bus_is_root(bus)) { 1234 extra_hosts++; 1235 } 1236 } 1237 if (extra_hosts && pcms->fw_cfg) { 1238 uint64_t *val = g_malloc(sizeof(*val)); 1239 *val = cpu_to_le64(extra_hosts); 1240 fw_cfg_add_file(pcms->fw_cfg, 1241 "etc/extra-pci-roots", val, sizeof(*val)); 1242 } 1243 } 1244 1245 acpi_setup(); 1246 if (pcms->fw_cfg) { 1247 pc_build_smbios(pcms); 1248 pc_build_feature_control_file(pcms); 1249 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1250 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1251 } 1252 1253 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1254 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1255 1256 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) || 1257 iommu->intr_eim != ON_OFF_AUTO_ON) { 1258 error_report("current -smp configuration requires " 1259 "Extended Interrupt Mode enabled. " 1260 "You can add an IOMMU using: " 1261 "-device intel-iommu,intremap=on,eim=on"); 1262 exit(EXIT_FAILURE); 1263 } 1264 } 1265 } 1266 1267 void pc_guest_info_init(PCMachineState *pcms) 1268 { 1269 int i; 1270 1271 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1272 pcms->numa_nodes = nb_numa_nodes; 1273 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1274 sizeof *pcms->node_mem); 1275 for (i = 0; i < nb_numa_nodes; i++) { 1276 pcms->node_mem[i] = numa_info[i].node_mem; 1277 } 1278 1279 pcms->machine_done.notify = pc_machine_done; 1280 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1281 } 1282 1283 /* setup pci memory address space mapping into system address space */ 1284 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1285 MemoryRegion *pci_address_space) 1286 { 1287 /* Set to lower priority than RAM */ 1288 memory_region_add_subregion_overlap(system_memory, 0x0, 1289 pci_address_space, -1); 1290 } 1291 1292 void pc_acpi_init(const char *default_dsdt) 1293 { 1294 char *filename; 1295 1296 if (acpi_tables != NULL) { 1297 /* manually set via -acpitable, leave it alone */ 1298 return; 1299 } 1300 1301 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1302 if (filename == NULL) { 1303 warn_report("failed to find %s", default_dsdt); 1304 } else { 1305 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1306 &error_abort); 1307 Error *err = NULL; 1308 1309 qemu_opt_set(opts, "file", filename, &error_abort); 1310 1311 acpi_table_add_builtin(opts, &err); 1312 if (err) { 1313 warn_reportf_err(err, "failed to load %s: ", filename); 1314 } 1315 g_free(filename); 1316 } 1317 } 1318 1319 void xen_load_linux(PCMachineState *pcms) 1320 { 1321 int i; 1322 FWCfgState *fw_cfg; 1323 1324 assert(MACHINE(pcms)->kernel_filename != NULL); 1325 1326 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1327 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1328 rom_set_fw(fw_cfg); 1329 1330 load_linux(pcms, fw_cfg); 1331 for (i = 0; i < nb_option_roms; i++) { 1332 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1333 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1334 !strcmp(option_rom[i].name, "multiboot.bin")); 1335 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1336 } 1337 pcms->fw_cfg = fw_cfg; 1338 } 1339 1340 void pc_memory_init(PCMachineState *pcms, 1341 MemoryRegion *system_memory, 1342 MemoryRegion *rom_memory, 1343 MemoryRegion **ram_memory) 1344 { 1345 int linux_boot, i; 1346 MemoryRegion *ram, *option_rom_mr; 1347 MemoryRegion *ram_below_4g, *ram_above_4g; 1348 FWCfgState *fw_cfg; 1349 MachineState *machine = MACHINE(pcms); 1350 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1351 1352 assert(machine->ram_size == pcms->below_4g_mem_size + 1353 pcms->above_4g_mem_size); 1354 1355 linux_boot = (machine->kernel_filename != NULL); 1356 1357 /* Allocate RAM. We allocate it as a single memory region and use 1358 * aliases to address portions of it, mostly for backwards compatibility 1359 * with older qemus that used qemu_ram_alloc(). 1360 */ 1361 ram = g_malloc(sizeof(*ram)); 1362 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1363 machine->ram_size); 1364 *ram_memory = ram; 1365 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1366 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1367 0, pcms->below_4g_mem_size); 1368 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1369 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1370 if (pcms->above_4g_mem_size > 0) { 1371 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1372 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1373 pcms->below_4g_mem_size, 1374 pcms->above_4g_mem_size); 1375 memory_region_add_subregion(system_memory, 0x100000000ULL, 1376 ram_above_4g); 1377 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1378 } 1379 1380 if (!pcmc->has_reserved_memory && 1381 (machine->ram_slots || 1382 (machine->maxram_size > machine->ram_size))) { 1383 MachineClass *mc = MACHINE_GET_CLASS(machine); 1384 1385 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1386 mc->name); 1387 exit(EXIT_FAILURE); 1388 } 1389 1390 /* always allocate the device memory information */ 1391 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1392 1393 /* initialize device memory address space */ 1394 if (pcmc->has_reserved_memory && 1395 (machine->ram_size < machine->maxram_size)) { 1396 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1397 1398 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1399 error_report("unsupported amount of memory slots: %"PRIu64, 1400 machine->ram_slots); 1401 exit(EXIT_FAILURE); 1402 } 1403 1404 if (QEMU_ALIGN_UP(machine->maxram_size, 1405 TARGET_PAGE_SIZE) != machine->maxram_size) { 1406 error_report("maximum memory size must by aligned to multiple of " 1407 "%d bytes", TARGET_PAGE_SIZE); 1408 exit(EXIT_FAILURE); 1409 } 1410 1411 machine->device_memory->base = 1412 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1413 1414 if (pcmc->enforce_aligned_dimm) { 1415 /* size device region assuming 1G page max alignment per slot */ 1416 device_mem_size += (1 * GiB) * machine->ram_slots; 1417 } 1418 1419 if ((machine->device_memory->base + device_mem_size) < 1420 device_mem_size) { 1421 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1422 machine->maxram_size); 1423 exit(EXIT_FAILURE); 1424 } 1425 1426 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1427 "device-memory", device_mem_size); 1428 memory_region_add_subregion(system_memory, machine->device_memory->base, 1429 &machine->device_memory->mr); 1430 } 1431 1432 /* Initialize PC system firmware */ 1433 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1434 1435 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1436 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1437 &error_fatal); 1438 if (pcmc->pci_enabled) { 1439 memory_region_set_readonly(option_rom_mr, true); 1440 } 1441 memory_region_add_subregion_overlap(rom_memory, 1442 PC_ROM_MIN_VGA, 1443 option_rom_mr, 1444 1); 1445 1446 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1447 1448 rom_set_fw(fw_cfg); 1449 1450 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1451 uint64_t *val = g_malloc(sizeof(*val)); 1452 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1453 uint64_t res_mem_end = machine->device_memory->base; 1454 1455 if (!pcmc->broken_reserved_end) { 1456 res_mem_end += memory_region_size(&machine->device_memory->mr); 1457 } 1458 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1459 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1460 } 1461 1462 if (linux_boot) { 1463 load_linux(pcms, fw_cfg); 1464 } 1465 1466 for (i = 0; i < nb_option_roms; i++) { 1467 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1468 } 1469 pcms->fw_cfg = fw_cfg; 1470 1471 /* Init default IOAPIC address space */ 1472 pcms->ioapic_as = &address_space_memory; 1473 } 1474 1475 /* 1476 * The 64bit pci hole starts after "above 4G RAM" and 1477 * potentially the space reserved for memory hotplug. 1478 */ 1479 uint64_t pc_pci_hole64_start(void) 1480 { 1481 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1482 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1483 MachineState *ms = MACHINE(pcms); 1484 uint64_t hole64_start = 0; 1485 1486 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1487 hole64_start = ms->device_memory->base; 1488 if (!pcmc->broken_reserved_end) { 1489 hole64_start += memory_region_size(&ms->device_memory->mr); 1490 } 1491 } else { 1492 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1493 } 1494 1495 return ROUND_UP(hole64_start, 1 * GiB); 1496 } 1497 1498 qemu_irq pc_allocate_cpu_irq(void) 1499 { 1500 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1501 } 1502 1503 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1504 { 1505 DeviceState *dev = NULL; 1506 1507 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1508 if (pci_bus) { 1509 PCIDevice *pcidev = pci_vga_init(pci_bus); 1510 dev = pcidev ? &pcidev->qdev : NULL; 1511 } else if (isa_bus) { 1512 ISADevice *isadev = isa_vga_init(isa_bus); 1513 dev = isadev ? DEVICE(isadev) : NULL; 1514 } 1515 rom_reset_order_override(); 1516 return dev; 1517 } 1518 1519 static const MemoryRegionOps ioport80_io_ops = { 1520 .write = ioport80_write, 1521 .read = ioport80_read, 1522 .endianness = DEVICE_NATIVE_ENDIAN, 1523 .impl = { 1524 .min_access_size = 1, 1525 .max_access_size = 1, 1526 }, 1527 }; 1528 1529 static const MemoryRegionOps ioportF0_io_ops = { 1530 .write = ioportF0_write, 1531 .read = ioportF0_read, 1532 .endianness = DEVICE_NATIVE_ENDIAN, 1533 .impl = { 1534 .min_access_size = 1, 1535 .max_access_size = 1, 1536 }, 1537 }; 1538 1539 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1540 { 1541 int i; 1542 DriveInfo *fd[MAX_FD]; 1543 qemu_irq *a20_line; 1544 ISADevice *i8042, *port92, *vmmouse; 1545 1546 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1547 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1548 1549 for (i = 0; i < MAX_FD; i++) { 1550 fd[i] = drive_get(IF_FLOPPY, 0, i); 1551 create_fdctrl |= !!fd[i]; 1552 } 1553 if (create_fdctrl) { 1554 fdctrl_init_isa(isa_bus, fd); 1555 } 1556 1557 i8042 = isa_create_simple(isa_bus, "i8042"); 1558 if (!no_vmport) { 1559 vmport_init(isa_bus); 1560 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1561 } else { 1562 vmmouse = NULL; 1563 } 1564 if (vmmouse) { 1565 DeviceState *dev = DEVICE(vmmouse); 1566 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1567 qdev_init_nofail(dev); 1568 } 1569 port92 = isa_create_simple(isa_bus, "port92"); 1570 1571 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1572 i8042_setup_a20_line(i8042, a20_line[0]); 1573 port92_init(port92, a20_line[1]); 1574 g_free(a20_line); 1575 } 1576 1577 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1578 ISADevice **rtc_state, 1579 bool create_fdctrl, 1580 bool no_vmport, 1581 bool has_pit, 1582 uint32_t hpet_irqs) 1583 { 1584 int i; 1585 DeviceState *hpet = NULL; 1586 int pit_isa_irq = 0; 1587 qemu_irq pit_alt_irq = NULL; 1588 qemu_irq rtc_irq = NULL; 1589 ISADevice *pit = NULL; 1590 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1591 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1592 1593 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1594 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1595 1596 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1597 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1598 1599 /* 1600 * Check if an HPET shall be created. 1601 * 1602 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1603 * when the HPET wants to take over. Thus we have to disable the latter. 1604 */ 1605 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1606 /* In order to set property, here not using sysbus_try_create_simple */ 1607 hpet = qdev_try_create(NULL, TYPE_HPET); 1608 if (hpet) { 1609 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1610 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1611 * IRQ8 and IRQ2. 1612 */ 1613 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1614 HPET_INTCAP, NULL); 1615 if (!compat) { 1616 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1617 } 1618 qdev_init_nofail(hpet); 1619 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1620 1621 for (i = 0; i < GSI_NUM_PINS; i++) { 1622 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1623 } 1624 pit_isa_irq = -1; 1625 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1626 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1627 } 1628 } 1629 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1630 1631 qemu_register_boot_set(pc_boot_set, *rtc_state); 1632 1633 if (!xen_enabled() && has_pit) { 1634 if (kvm_pit_in_kernel()) { 1635 pit = kvm_pit_init(isa_bus, 0x40); 1636 } else { 1637 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1638 } 1639 if (hpet) { 1640 /* connect PIT to output control line of the HPET */ 1641 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1642 } 1643 pcspk_init(isa_bus, pit); 1644 } 1645 1646 i8257_dma_init(isa_bus, 0); 1647 1648 /* Super I/O */ 1649 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1650 } 1651 1652 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1653 { 1654 int i; 1655 1656 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1657 for (i = 0; i < nb_nics; i++) { 1658 NICInfo *nd = &nd_table[i]; 1659 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1660 1661 if (g_str_equal(model, "ne2k_isa")) { 1662 pc_init_ne2k_isa(isa_bus, nd); 1663 } else { 1664 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1665 } 1666 } 1667 rom_reset_order_override(); 1668 } 1669 1670 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1671 { 1672 DeviceState *dev; 1673 SysBusDevice *d; 1674 unsigned int i; 1675 1676 if (kvm_ioapic_in_kernel()) { 1677 dev = qdev_create(NULL, "kvm-ioapic"); 1678 } else { 1679 dev = qdev_create(NULL, "ioapic"); 1680 } 1681 if (parent_name) { 1682 object_property_add_child(object_resolve_path(parent_name, NULL), 1683 "ioapic", OBJECT(dev), NULL); 1684 } 1685 qdev_init_nofail(dev); 1686 d = SYS_BUS_DEVICE(dev); 1687 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1688 1689 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1690 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1691 } 1692 } 1693 1694 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1695 Error **errp) 1696 { 1697 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1698 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1699 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1700 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1701 1702 /* 1703 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1704 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1705 * addition to cover this case. 1706 */ 1707 if (!pcms->acpi_dev || !acpi_enabled) { 1708 error_setg(errp, 1709 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1710 return; 1711 } 1712 1713 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1714 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1715 return; 1716 } 1717 1718 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), 1719 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1720 } 1721 1722 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1723 DeviceState *dev, Error **errp) 1724 { 1725 HotplugHandlerClass *hhc; 1726 Error *local_err = NULL; 1727 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1728 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1729 1730 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); 1731 if (local_err) { 1732 goto out; 1733 } 1734 1735 if (is_nvdimm) { 1736 nvdimm_plug(&pcms->acpi_nvdimm_state); 1737 } 1738 1739 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1740 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1741 out: 1742 error_propagate(errp, local_err); 1743 } 1744 1745 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1746 DeviceState *dev, Error **errp) 1747 { 1748 HotplugHandlerClass *hhc; 1749 Error *local_err = NULL; 1750 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1751 1752 /* 1753 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1754 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1755 * addition to cover this case. 1756 */ 1757 if (!pcms->acpi_dev || !acpi_enabled) { 1758 error_setg(&local_err, 1759 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1760 goto out; 1761 } 1762 1763 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1764 error_setg(&local_err, 1765 "nvdimm device hot unplug is not supported yet."); 1766 goto out; 1767 } 1768 1769 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1770 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1771 1772 out: 1773 error_propagate(errp, local_err); 1774 } 1775 1776 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1777 DeviceState *dev, Error **errp) 1778 { 1779 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1780 HotplugHandlerClass *hhc; 1781 Error *local_err = NULL; 1782 1783 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1784 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1785 1786 if (local_err) { 1787 goto out; 1788 } 1789 1790 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); 1791 object_unparent(OBJECT(dev)); 1792 1793 out: 1794 error_propagate(errp, local_err); 1795 } 1796 1797 static int pc_apic_cmp(const void *a, const void *b) 1798 { 1799 CPUArchId *apic_a = (CPUArchId *)a; 1800 CPUArchId *apic_b = (CPUArchId *)b; 1801 1802 return apic_a->arch_id - apic_b->arch_id; 1803 } 1804 1805 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1806 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1807 * entry corresponding to CPU's apic_id returns NULL. 1808 */ 1809 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1810 { 1811 CPUArchId apic_id, *found_cpu; 1812 1813 apic_id.arch_id = id; 1814 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1815 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1816 pc_apic_cmp); 1817 if (found_cpu && idx) { 1818 *idx = found_cpu - ms->possible_cpus->cpus; 1819 } 1820 return found_cpu; 1821 } 1822 1823 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1824 DeviceState *dev, Error **errp) 1825 { 1826 CPUArchId *found_cpu; 1827 HotplugHandlerClass *hhc; 1828 Error *local_err = NULL; 1829 X86CPU *cpu = X86_CPU(dev); 1830 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1831 1832 if (pcms->acpi_dev) { 1833 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1834 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1835 if (local_err) { 1836 goto out; 1837 } 1838 } 1839 1840 /* increment the number of CPUs */ 1841 pcms->boot_cpus++; 1842 if (pcms->rtc) { 1843 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1844 } 1845 if (pcms->fw_cfg) { 1846 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1847 } 1848 1849 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1850 found_cpu->cpu = OBJECT(dev); 1851 out: 1852 error_propagate(errp, local_err); 1853 } 1854 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1855 DeviceState *dev, Error **errp) 1856 { 1857 int idx = -1; 1858 HotplugHandlerClass *hhc; 1859 Error *local_err = NULL; 1860 X86CPU *cpu = X86_CPU(dev); 1861 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1862 1863 if (!pcms->acpi_dev) { 1864 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1865 goto out; 1866 } 1867 1868 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1869 assert(idx != -1); 1870 if (idx == 0) { 1871 error_setg(&local_err, "Boot CPU is unpluggable"); 1872 goto out; 1873 } 1874 1875 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1876 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1877 1878 if (local_err) { 1879 goto out; 1880 } 1881 1882 out: 1883 error_propagate(errp, local_err); 1884 1885 } 1886 1887 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1888 DeviceState *dev, Error **errp) 1889 { 1890 CPUArchId *found_cpu; 1891 HotplugHandlerClass *hhc; 1892 Error *local_err = NULL; 1893 X86CPU *cpu = X86_CPU(dev); 1894 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1895 1896 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1897 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1898 1899 if (local_err) { 1900 goto out; 1901 } 1902 1903 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1904 found_cpu->cpu = NULL; 1905 object_unparent(OBJECT(dev)); 1906 1907 /* decrement the number of CPUs */ 1908 pcms->boot_cpus--; 1909 /* Update the number of CPUs in CMOS */ 1910 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1911 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1912 out: 1913 error_propagate(errp, local_err); 1914 } 1915 1916 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1917 DeviceState *dev, Error **errp) 1918 { 1919 int idx; 1920 CPUState *cs; 1921 CPUArchId *cpu_slot; 1922 X86CPUTopoInfo topo; 1923 X86CPU *cpu = X86_CPU(dev); 1924 MachineState *ms = MACHINE(hotplug_dev); 1925 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1926 1927 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1928 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1929 ms->cpu_type); 1930 return; 1931 } 1932 1933 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1934 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1935 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1936 1937 if (cpu->socket_id < 0) { 1938 error_setg(errp, "CPU socket-id is not set"); 1939 return; 1940 } else if (cpu->socket_id > max_socket) { 1941 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1942 cpu->socket_id, max_socket); 1943 return; 1944 } 1945 if (cpu->core_id < 0) { 1946 error_setg(errp, "CPU core-id is not set"); 1947 return; 1948 } else if (cpu->core_id > (smp_cores - 1)) { 1949 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1950 cpu->core_id, smp_cores - 1); 1951 return; 1952 } 1953 if (cpu->thread_id < 0) { 1954 error_setg(errp, "CPU thread-id is not set"); 1955 return; 1956 } else if (cpu->thread_id > (smp_threads - 1)) { 1957 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1958 cpu->thread_id, smp_threads - 1); 1959 return; 1960 } 1961 1962 topo.pkg_id = cpu->socket_id; 1963 topo.core_id = cpu->core_id; 1964 topo.smt_id = cpu->thread_id; 1965 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1966 } 1967 1968 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1969 if (!cpu_slot) { 1970 MachineState *ms = MACHINE(pcms); 1971 1972 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1973 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1974 " APIC ID %" PRIu32 ", valid index range 0:%d", 1975 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1976 ms->possible_cpus->len - 1); 1977 return; 1978 } 1979 1980 if (cpu_slot->cpu) { 1981 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1982 idx, cpu->apic_id); 1983 return; 1984 } 1985 1986 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1987 * so that machine_query_hotpluggable_cpus would show correct values 1988 */ 1989 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1990 * once -smp refactoring is complete and there will be CPU private 1991 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1992 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1993 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1994 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1995 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1996 return; 1997 } 1998 cpu->socket_id = topo.pkg_id; 1999 2000 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 2001 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 2002 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 2003 return; 2004 } 2005 cpu->core_id = topo.core_id; 2006 2007 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2008 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2009 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2010 return; 2011 } 2012 cpu->thread_id = topo.smt_id; 2013 2014 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2015 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2016 return; 2017 } 2018 2019 cs = CPU(cpu); 2020 cs->cpu_index = idx; 2021 2022 numa_cpu_pre_plug(cpu_slot, dev, errp); 2023 } 2024 2025 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2026 DeviceState *dev, Error **errp) 2027 { 2028 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2029 pc_memory_pre_plug(hotplug_dev, dev, errp); 2030 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2031 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2032 } 2033 } 2034 2035 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2036 DeviceState *dev, Error **errp) 2037 { 2038 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2039 pc_memory_plug(hotplug_dev, dev, errp); 2040 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2041 pc_cpu_plug(hotplug_dev, dev, errp); 2042 } 2043 } 2044 2045 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2046 DeviceState *dev, Error **errp) 2047 { 2048 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2049 pc_memory_unplug_request(hotplug_dev, dev, errp); 2050 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2051 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2052 } else { 2053 error_setg(errp, "acpi: device unplug request for not supported device" 2054 " type: %s", object_get_typename(OBJECT(dev))); 2055 } 2056 } 2057 2058 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2059 DeviceState *dev, Error **errp) 2060 { 2061 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2062 pc_memory_unplug(hotplug_dev, dev, errp); 2063 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2064 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2065 } else { 2066 error_setg(errp, "acpi: device unplug for not supported device" 2067 " type: %s", object_get_typename(OBJECT(dev))); 2068 } 2069 } 2070 2071 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2072 DeviceState *dev) 2073 { 2074 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2075 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2076 return HOTPLUG_HANDLER(machine); 2077 } 2078 2079 return NULL; 2080 } 2081 2082 static void 2083 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2084 const char *name, void *opaque, 2085 Error **errp) 2086 { 2087 MachineState *ms = MACHINE(obj); 2088 int64_t value = memory_region_size(&ms->device_memory->mr); 2089 2090 visit_type_int(v, name, &value, errp); 2091 } 2092 2093 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2094 const char *name, void *opaque, 2095 Error **errp) 2096 { 2097 PCMachineState *pcms = PC_MACHINE(obj); 2098 uint64_t value = pcms->max_ram_below_4g; 2099 2100 visit_type_size(v, name, &value, errp); 2101 } 2102 2103 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2104 const char *name, void *opaque, 2105 Error **errp) 2106 { 2107 PCMachineState *pcms = PC_MACHINE(obj); 2108 Error *error = NULL; 2109 uint64_t value; 2110 2111 visit_type_size(v, name, &value, &error); 2112 if (error) { 2113 error_propagate(errp, error); 2114 return; 2115 } 2116 if (value > 4 * GiB) { 2117 error_setg(&error, 2118 "Machine option 'max-ram-below-4g=%"PRIu64 2119 "' expects size less than or equal to 4G", value); 2120 error_propagate(errp, error); 2121 return; 2122 } 2123 2124 if (value < 1 * MiB) { 2125 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2126 "BIOS may not work with less than 1MiB", value); 2127 } 2128 2129 pcms->max_ram_below_4g = value; 2130 } 2131 2132 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2133 void *opaque, Error **errp) 2134 { 2135 PCMachineState *pcms = PC_MACHINE(obj); 2136 OnOffAuto vmport = pcms->vmport; 2137 2138 visit_type_OnOffAuto(v, name, &vmport, errp); 2139 } 2140 2141 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2142 void *opaque, Error **errp) 2143 { 2144 PCMachineState *pcms = PC_MACHINE(obj); 2145 2146 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2147 } 2148 2149 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2150 { 2151 bool smm_available = false; 2152 2153 if (pcms->smm == ON_OFF_AUTO_OFF) { 2154 return false; 2155 } 2156 2157 if (tcg_enabled() || qtest_enabled()) { 2158 smm_available = true; 2159 } else if (kvm_enabled()) { 2160 smm_available = kvm_has_smm(); 2161 } 2162 2163 if (smm_available) { 2164 return true; 2165 } 2166 2167 if (pcms->smm == ON_OFF_AUTO_ON) { 2168 error_report("System Management Mode not supported by this hypervisor."); 2169 exit(1); 2170 } 2171 return false; 2172 } 2173 2174 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2175 void *opaque, Error **errp) 2176 { 2177 PCMachineState *pcms = PC_MACHINE(obj); 2178 OnOffAuto smm = pcms->smm; 2179 2180 visit_type_OnOffAuto(v, name, &smm, errp); 2181 } 2182 2183 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2184 void *opaque, Error **errp) 2185 { 2186 PCMachineState *pcms = PC_MACHINE(obj); 2187 2188 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2189 } 2190 2191 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2192 { 2193 PCMachineState *pcms = PC_MACHINE(obj); 2194 2195 return pcms->acpi_nvdimm_state.is_enabled; 2196 } 2197 2198 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2199 { 2200 PCMachineState *pcms = PC_MACHINE(obj); 2201 2202 pcms->acpi_nvdimm_state.is_enabled = value; 2203 } 2204 2205 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2206 { 2207 PCMachineState *pcms = PC_MACHINE(obj); 2208 2209 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2210 } 2211 2212 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2213 Error **errp) 2214 { 2215 PCMachineState *pcms = PC_MACHINE(obj); 2216 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2217 2218 if (strcmp(value, "cpu") == 0) 2219 nvdimm_state->persistence = 3; 2220 else if (strcmp(value, "mem-ctrl") == 0) 2221 nvdimm_state->persistence = 2; 2222 else { 2223 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option", 2224 value); 2225 return; 2226 } 2227 2228 g_free(nvdimm_state->persistence_string); 2229 nvdimm_state->persistence_string = g_strdup(value); 2230 } 2231 2232 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2233 { 2234 PCMachineState *pcms = PC_MACHINE(obj); 2235 2236 return pcms->smbus_enabled; 2237 } 2238 2239 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2240 { 2241 PCMachineState *pcms = PC_MACHINE(obj); 2242 2243 pcms->smbus_enabled = value; 2244 } 2245 2246 static bool pc_machine_get_sata(Object *obj, Error **errp) 2247 { 2248 PCMachineState *pcms = PC_MACHINE(obj); 2249 2250 return pcms->sata_enabled; 2251 } 2252 2253 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2254 { 2255 PCMachineState *pcms = PC_MACHINE(obj); 2256 2257 pcms->sata_enabled = value; 2258 } 2259 2260 static bool pc_machine_get_pit(Object *obj, Error **errp) 2261 { 2262 PCMachineState *pcms = PC_MACHINE(obj); 2263 2264 return pcms->pit_enabled; 2265 } 2266 2267 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2268 { 2269 PCMachineState *pcms = PC_MACHINE(obj); 2270 2271 pcms->pit_enabled = value; 2272 } 2273 2274 static void pc_machine_initfn(Object *obj) 2275 { 2276 PCMachineState *pcms = PC_MACHINE(obj); 2277 2278 pcms->max_ram_below_4g = 0; /* use default */ 2279 pcms->smm = ON_OFF_AUTO_AUTO; 2280 pcms->vmport = ON_OFF_AUTO_AUTO; 2281 /* nvdimm is disabled on default. */ 2282 pcms->acpi_nvdimm_state.is_enabled = false; 2283 /* acpi build is enabled by default if machine supports it */ 2284 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2285 pcms->smbus_enabled = true; 2286 pcms->sata_enabled = true; 2287 pcms->pit_enabled = true; 2288 } 2289 2290 static void pc_machine_reset(void) 2291 { 2292 CPUState *cs; 2293 X86CPU *cpu; 2294 2295 qemu_devices_reset(); 2296 2297 /* Reset APIC after devices have been reset to cancel 2298 * any changes that qemu_devices_reset() might have done. 2299 */ 2300 CPU_FOREACH(cs) { 2301 cpu = X86_CPU(cs); 2302 2303 if (cpu->apic_state) { 2304 device_reset(cpu->apic_state); 2305 } 2306 } 2307 } 2308 2309 static CpuInstanceProperties 2310 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2311 { 2312 MachineClass *mc = MACHINE_GET_CLASS(ms); 2313 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2314 2315 assert(cpu_index < possible_cpus->len); 2316 return possible_cpus->cpus[cpu_index].props; 2317 } 2318 2319 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2320 { 2321 X86CPUTopoInfo topo; 2322 2323 assert(idx < ms->possible_cpus->len); 2324 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2325 smp_cores, smp_threads, &topo); 2326 return topo.pkg_id % nb_numa_nodes; 2327 } 2328 2329 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2330 { 2331 int i; 2332 2333 if (ms->possible_cpus) { 2334 /* 2335 * make sure that max_cpus hasn't changed since the first use, i.e. 2336 * -smp hasn't been parsed after it 2337 */ 2338 assert(ms->possible_cpus->len == max_cpus); 2339 return ms->possible_cpus; 2340 } 2341 2342 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2343 sizeof(CPUArchId) * max_cpus); 2344 ms->possible_cpus->len = max_cpus; 2345 for (i = 0; i < ms->possible_cpus->len; i++) { 2346 X86CPUTopoInfo topo; 2347 2348 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2349 ms->possible_cpus->cpus[i].vcpus_count = 1; 2350 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2351 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2352 smp_cores, smp_threads, &topo); 2353 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2354 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2355 ms->possible_cpus->cpus[i].props.has_core_id = true; 2356 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2357 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2358 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2359 } 2360 return ms->possible_cpus; 2361 } 2362 2363 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2364 { 2365 /* cpu index isn't used */ 2366 CPUState *cs; 2367 2368 CPU_FOREACH(cs) { 2369 X86CPU *cpu = X86_CPU(cs); 2370 2371 if (!cpu->apic_state) { 2372 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2373 } else { 2374 apic_deliver_nmi(cpu->apic_state); 2375 } 2376 } 2377 } 2378 2379 static void pc_machine_class_init(ObjectClass *oc, void *data) 2380 { 2381 MachineClass *mc = MACHINE_CLASS(oc); 2382 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2383 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2384 NMIClass *nc = NMI_CLASS(oc); 2385 2386 pcmc->pci_enabled = true; 2387 pcmc->has_acpi_build = true; 2388 pcmc->rsdp_in_ram = true; 2389 pcmc->smbios_defaults = true; 2390 pcmc->smbios_uuid_encoded = true; 2391 pcmc->gigabyte_align = true; 2392 pcmc->has_reserved_memory = true; 2393 pcmc->kvmclock_enabled = true; 2394 pcmc->enforce_aligned_dimm = true; 2395 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2396 * to be used at the moment, 32K should be enough for a while. */ 2397 pcmc->acpi_data_size = 0x20000 + 0x8000; 2398 pcmc->save_tsc_khz = true; 2399 pcmc->linuxboot_dma_enabled = true; 2400 assert(!mc->get_hotplug_handler); 2401 mc->get_hotplug_handler = pc_get_hotpug_handler; 2402 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2403 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2404 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2405 mc->auto_enable_numa_with_memhp = true; 2406 mc->has_hotpluggable_cpus = true; 2407 mc->default_boot_order = "cad"; 2408 mc->hot_add_cpu = pc_hot_add_cpu; 2409 mc->block_default_type = IF_IDE; 2410 mc->max_cpus = 255; 2411 mc->reset = pc_machine_reset; 2412 hc->pre_plug = pc_machine_device_pre_plug_cb; 2413 hc->plug = pc_machine_device_plug_cb; 2414 hc->unplug_request = pc_machine_device_unplug_request_cb; 2415 hc->unplug = pc_machine_device_unplug_cb; 2416 nc->nmi_monitor_handler = x86_nmi; 2417 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2418 2419 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2420 pc_machine_get_device_memory_region_size, NULL, 2421 NULL, NULL, &error_abort); 2422 2423 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2424 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2425 NULL, NULL, &error_abort); 2426 2427 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2428 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2429 2430 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2431 pc_machine_get_smm, pc_machine_set_smm, 2432 NULL, NULL, &error_abort); 2433 object_class_property_set_description(oc, PC_MACHINE_SMM, 2434 "Enable SMM (pc & q35)", &error_abort); 2435 2436 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2437 pc_machine_get_vmport, pc_machine_set_vmport, 2438 NULL, NULL, &error_abort); 2439 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2440 "Enable vmport (pc & q35)", &error_abort); 2441 2442 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2443 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2444 2445 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2446 pc_machine_get_nvdimm_persistence, 2447 pc_machine_set_nvdimm_persistence, &error_abort); 2448 2449 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2450 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2451 2452 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2453 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2454 2455 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2456 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2457 } 2458 2459 static const TypeInfo pc_machine_info = { 2460 .name = TYPE_PC_MACHINE, 2461 .parent = TYPE_MACHINE, 2462 .abstract = true, 2463 .instance_size = sizeof(PCMachineState), 2464 .instance_init = pc_machine_initfn, 2465 .class_size = sizeof(PCMachineClass), 2466 .class_init = pc_machine_class_init, 2467 .interfaces = (InterfaceInfo[]) { 2468 { TYPE_HOTPLUG_HANDLER }, 2469 { TYPE_NMI }, 2470 { } 2471 }, 2472 }; 2473 2474 static void pc_machine_register_types(void) 2475 { 2476 type_register_static(&pc_machine_info); 2477 } 2478 2479 type_init(pc_machine_register_types) 2480