1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "hw/i386/pc.h" 27 #include "hw/char/serial.h" 28 #include "hw/i386/apic.h" 29 #include "hw/i386/topology.h" 30 #include "sysemu/cpus.h" 31 #include "hw/block/fdc.h" 32 #include "hw/ide.h" 33 #include "hw/pci/pci.h" 34 #include "hw/pci/pci_bus.h" 35 #include "hw/nvram/fw_cfg.h" 36 #include "hw/timer/hpet.h" 37 #include "hw/smbios/smbios.h" 38 #include "hw/loader.h" 39 #include "elf.h" 40 #include "multiboot.h" 41 #include "hw/timer/mc146818rtc.h" 42 #include "hw/timer/i8254.h" 43 #include "hw/audio/pcspk.h" 44 #include "hw/pci/msi.h" 45 #include "hw/sysbus.h" 46 #include "sysemu/sysemu.h" 47 #include "sysemu/numa.h" 48 #include "sysemu/kvm.h" 49 #include "sysemu/qtest.h" 50 #include "kvm_i386.h" 51 #include "hw/xen/xen.h" 52 #include "sysemu/block-backend.h" 53 #include "hw/block/block.h" 54 #include "ui/qemu-spice.h" 55 #include "exec/memory.h" 56 #include "exec/address-spaces.h" 57 #include "sysemu/arch_init.h" 58 #include "qemu/bitmap.h" 59 #include "qemu/config-file.h" 60 #include "qemu/error-report.h" 61 #include "hw/acpi/acpi.h" 62 #include "hw/acpi/cpu_hotplug.h" 63 #include "hw/boards.h" 64 #include "hw/pci/pci_host.h" 65 #include "acpi-build.h" 66 #include "hw/mem/pc-dimm.h" 67 #include "qapi/visitor.h" 68 #include "qapi-visit.h" 69 #include "qom/cpu.h" 70 #include "hw/nmi.h" 71 #include "hw/i386/intel_iommu.h" 72 #include "hw/net/ne2000-isa.h" 73 74 /* debug PC/ISA interrupts */ 75 //#define DEBUG_IRQ 76 77 #ifdef DEBUG_IRQ 78 #define DPRINTF(fmt, ...) \ 79 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 80 #else 81 #define DPRINTF(fmt, ...) 82 #endif 83 84 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 85 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 86 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 87 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 88 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 89 90 #define E820_NR_ENTRIES 16 91 92 struct e820_entry { 93 uint64_t address; 94 uint64_t length; 95 uint32_t type; 96 } QEMU_PACKED __attribute((__aligned__(4))); 97 98 struct e820_table { 99 uint32_t count; 100 struct e820_entry entry[E820_NR_ENTRIES]; 101 } QEMU_PACKED __attribute((__aligned__(4))); 102 103 static struct e820_table e820_reserve; 104 static struct e820_entry *e820_table; 105 static unsigned e820_entries; 106 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 107 108 void gsi_handler(void *opaque, int n, int level) 109 { 110 GSIState *s = opaque; 111 112 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 113 if (n < ISA_NUM_IRQS) { 114 qemu_set_irq(s->i8259_irq[n], level); 115 } 116 qemu_set_irq(s->ioapic_irq[n], level); 117 } 118 119 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 120 unsigned size) 121 { 122 } 123 124 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 125 { 126 return 0xffffffffffffffffULL; 127 } 128 129 /* MSDOS compatibility mode FPU exception support */ 130 static qemu_irq ferr_irq; 131 132 void pc_register_ferr_irq(qemu_irq irq) 133 { 134 ferr_irq = irq; 135 } 136 137 /* XXX: add IGNNE support */ 138 void cpu_set_ferr(CPUX86State *s) 139 { 140 qemu_irq_raise(ferr_irq); 141 } 142 143 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 144 unsigned size) 145 { 146 qemu_irq_lower(ferr_irq); 147 } 148 149 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 150 { 151 return 0xffffffffffffffffULL; 152 } 153 154 /* TSC handling */ 155 uint64_t cpu_get_tsc(CPUX86State *env) 156 { 157 return cpu_get_ticks(); 158 } 159 160 /* IRQ handling */ 161 int cpu_get_pic_interrupt(CPUX86State *env) 162 { 163 X86CPU *cpu = x86_env_get_cpu(env); 164 int intno; 165 166 if (!kvm_irqchip_in_kernel()) { 167 intno = apic_get_interrupt(cpu->apic_state); 168 if (intno >= 0) { 169 return intno; 170 } 171 /* read the irq from the PIC */ 172 if (!apic_accept_pic_intr(cpu->apic_state)) { 173 return -1; 174 } 175 } 176 177 intno = pic_read_irq(isa_pic); 178 return intno; 179 } 180 181 static void pic_irq_request(void *opaque, int irq, int level) 182 { 183 CPUState *cs = first_cpu; 184 X86CPU *cpu = X86_CPU(cs); 185 186 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 187 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 188 CPU_FOREACH(cs) { 189 cpu = X86_CPU(cs); 190 if (apic_accept_pic_intr(cpu->apic_state)) { 191 apic_deliver_pic_intr(cpu->apic_state, level); 192 } 193 } 194 } else { 195 if (level) { 196 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 197 } else { 198 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 199 } 200 } 201 } 202 203 /* PC cmos mappings */ 204 205 #define REG_EQUIPMENT_BYTE 0x14 206 207 int cmos_get_fd_drive_type(FloppyDriveType fd0) 208 { 209 int val; 210 211 switch (fd0) { 212 case FLOPPY_DRIVE_TYPE_144: 213 /* 1.44 Mb 3"5 drive */ 214 val = 4; 215 break; 216 case FLOPPY_DRIVE_TYPE_288: 217 /* 2.88 Mb 3"5 drive */ 218 val = 5; 219 break; 220 case FLOPPY_DRIVE_TYPE_120: 221 /* 1.2 Mb 5"5 drive */ 222 val = 2; 223 break; 224 case FLOPPY_DRIVE_TYPE_NONE: 225 default: 226 val = 0; 227 break; 228 } 229 return val; 230 } 231 232 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 233 int16_t cylinders, int8_t heads, int8_t sectors) 234 { 235 rtc_set_memory(s, type_ofs, 47); 236 rtc_set_memory(s, info_ofs, cylinders); 237 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 238 rtc_set_memory(s, info_ofs + 2, heads); 239 rtc_set_memory(s, info_ofs + 3, 0xff); 240 rtc_set_memory(s, info_ofs + 4, 0xff); 241 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 242 rtc_set_memory(s, info_ofs + 6, cylinders); 243 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 244 rtc_set_memory(s, info_ofs + 8, sectors); 245 } 246 247 /* convert boot_device letter to something recognizable by the bios */ 248 static int boot_device2nibble(char boot_device) 249 { 250 switch(boot_device) { 251 case 'a': 252 case 'b': 253 return 0x01; /* floppy boot */ 254 case 'c': 255 return 0x02; /* hard drive boot */ 256 case 'd': 257 return 0x03; /* CD-ROM boot */ 258 case 'n': 259 return 0x04; /* Network boot */ 260 } 261 return 0; 262 } 263 264 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 265 { 266 #define PC_MAX_BOOT_DEVICES 3 267 int nbds, bds[3] = { 0, }; 268 int i; 269 270 nbds = strlen(boot_device); 271 if (nbds > PC_MAX_BOOT_DEVICES) { 272 error_setg(errp, "Too many boot devices for PC"); 273 return; 274 } 275 for (i = 0; i < nbds; i++) { 276 bds[i] = boot_device2nibble(boot_device[i]); 277 if (bds[i] == 0) { 278 error_setg(errp, "Invalid boot device for PC: '%c'", 279 boot_device[i]); 280 return; 281 } 282 } 283 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 284 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 285 } 286 287 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 288 { 289 set_boot_dev(opaque, boot_device, errp); 290 } 291 292 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 293 { 294 int val, nb, i; 295 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 296 FLOPPY_DRIVE_TYPE_NONE }; 297 298 /* floppy type */ 299 if (floppy) { 300 for (i = 0; i < 2; i++) { 301 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 302 } 303 } 304 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 305 cmos_get_fd_drive_type(fd_type[1]); 306 rtc_set_memory(rtc_state, 0x10, val); 307 308 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 309 nb = 0; 310 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 311 nb++; 312 } 313 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 314 nb++; 315 } 316 switch (nb) { 317 case 0: 318 break; 319 case 1: 320 val |= 0x01; /* 1 drive, ready for boot */ 321 break; 322 case 2: 323 val |= 0x41; /* 2 drives, ready for boot */ 324 break; 325 } 326 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 327 } 328 329 typedef struct pc_cmos_init_late_arg { 330 ISADevice *rtc_state; 331 BusState *idebus[2]; 332 } pc_cmos_init_late_arg; 333 334 typedef struct check_fdc_state { 335 ISADevice *floppy; 336 bool multiple; 337 } CheckFdcState; 338 339 static int check_fdc(Object *obj, void *opaque) 340 { 341 CheckFdcState *state = opaque; 342 Object *fdc; 343 uint32_t iobase; 344 Error *local_err = NULL; 345 346 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 347 if (!fdc) { 348 return 0; 349 } 350 351 iobase = object_property_get_uint(obj, "iobase", &local_err); 352 if (local_err || iobase != 0x3f0) { 353 error_free(local_err); 354 return 0; 355 } 356 357 if (state->floppy) { 358 state->multiple = true; 359 } else { 360 state->floppy = ISA_DEVICE(obj); 361 } 362 return 0; 363 } 364 365 static const char * const fdc_container_path[] = { 366 "/unattached", "/peripheral", "/peripheral-anon" 367 }; 368 369 /* 370 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 371 * and ACPI objects. 372 */ 373 ISADevice *pc_find_fdc0(void) 374 { 375 int i; 376 Object *container; 377 CheckFdcState state = { 0 }; 378 379 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 380 container = container_get(qdev_get_machine(), fdc_container_path[i]); 381 object_child_foreach(container, check_fdc, &state); 382 } 383 384 if (state.multiple) { 385 warn_report("multiple floppy disk controllers with " 386 "iobase=0x3f0 have been found"); 387 error_printf("the one being picked for CMOS setup might not reflect " 388 "your intent"); 389 } 390 391 return state.floppy; 392 } 393 394 static void pc_cmos_init_late(void *opaque) 395 { 396 pc_cmos_init_late_arg *arg = opaque; 397 ISADevice *s = arg->rtc_state; 398 int16_t cylinders; 399 int8_t heads, sectors; 400 int val; 401 int i, trans; 402 403 val = 0; 404 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 405 &cylinders, &heads, §ors) >= 0) { 406 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 407 val |= 0xf0; 408 } 409 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 410 &cylinders, &heads, §ors) >= 0) { 411 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 412 val |= 0x0f; 413 } 414 rtc_set_memory(s, 0x12, val); 415 416 val = 0; 417 for (i = 0; i < 4; i++) { 418 /* NOTE: ide_get_geometry() returns the physical 419 geometry. It is always such that: 1 <= sects <= 63, 1 420 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 421 geometry can be different if a translation is done. */ 422 if (arg->idebus[i / 2] && 423 ide_get_geometry(arg->idebus[i / 2], i % 2, 424 &cylinders, &heads, §ors) >= 0) { 425 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 426 assert((trans & ~3) == 0); 427 val |= trans << (i * 2); 428 } 429 } 430 rtc_set_memory(s, 0x39, val); 431 432 pc_cmos_init_floppy(s, pc_find_fdc0()); 433 434 qemu_unregister_reset(pc_cmos_init_late, opaque); 435 } 436 437 void pc_cmos_init(PCMachineState *pcms, 438 BusState *idebus0, BusState *idebus1, 439 ISADevice *s) 440 { 441 int val; 442 static pc_cmos_init_late_arg arg; 443 444 /* various important CMOS locations needed by PC/Bochs bios */ 445 446 /* memory size */ 447 /* base memory (first MiB) */ 448 val = MIN(pcms->below_4g_mem_size / 1024, 640); 449 rtc_set_memory(s, 0x15, val); 450 rtc_set_memory(s, 0x16, val >> 8); 451 /* extended memory (next 64MiB) */ 452 if (pcms->below_4g_mem_size > 1024 * 1024) { 453 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024; 454 } else { 455 val = 0; 456 } 457 if (val > 65535) 458 val = 65535; 459 rtc_set_memory(s, 0x17, val); 460 rtc_set_memory(s, 0x18, val >> 8); 461 rtc_set_memory(s, 0x30, val); 462 rtc_set_memory(s, 0x31, val >> 8); 463 /* memory between 16MiB and 4GiB */ 464 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) { 465 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536; 466 } else { 467 val = 0; 468 } 469 if (val > 65535) 470 val = 65535; 471 rtc_set_memory(s, 0x34, val); 472 rtc_set_memory(s, 0x35, val >> 8); 473 /* memory above 4GiB */ 474 val = pcms->above_4g_mem_size / 65536; 475 rtc_set_memory(s, 0x5b, val); 476 rtc_set_memory(s, 0x5c, val >> 8); 477 rtc_set_memory(s, 0x5d, val >> 16); 478 479 object_property_add_link(OBJECT(pcms), "rtc_state", 480 TYPE_ISA_DEVICE, 481 (Object **)&pcms->rtc, 482 object_property_allow_set_link, 483 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); 484 object_property_set_link(OBJECT(pcms), OBJECT(s), 485 "rtc_state", &error_abort); 486 487 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 488 489 val = 0; 490 val |= 0x02; /* FPU is there */ 491 val |= 0x04; /* PS/2 mouse installed */ 492 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 493 494 /* hard drives and FDC */ 495 arg.rtc_state = s; 496 arg.idebus[0] = idebus0; 497 arg.idebus[1] = idebus1; 498 qemu_register_reset(pc_cmos_init_late, &arg); 499 } 500 501 #define TYPE_PORT92 "port92" 502 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 503 504 /* port 92 stuff: could be split off */ 505 typedef struct Port92State { 506 ISADevice parent_obj; 507 508 MemoryRegion io; 509 uint8_t outport; 510 qemu_irq a20_out; 511 } Port92State; 512 513 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 514 unsigned size) 515 { 516 Port92State *s = opaque; 517 int oldval = s->outport; 518 519 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 520 s->outport = val; 521 qemu_set_irq(s->a20_out, (val >> 1) & 1); 522 if ((val & 1) && !(oldval & 1)) { 523 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 524 } 525 } 526 527 static uint64_t port92_read(void *opaque, hwaddr addr, 528 unsigned size) 529 { 530 Port92State *s = opaque; 531 uint32_t ret; 532 533 ret = s->outport; 534 DPRINTF("port92: read 0x%02x\n", ret); 535 return ret; 536 } 537 538 static void port92_init(ISADevice *dev, qemu_irq a20_out) 539 { 540 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 541 } 542 543 static const VMStateDescription vmstate_port92_isa = { 544 .name = "port92", 545 .version_id = 1, 546 .minimum_version_id = 1, 547 .fields = (VMStateField[]) { 548 VMSTATE_UINT8(outport, Port92State), 549 VMSTATE_END_OF_LIST() 550 } 551 }; 552 553 static void port92_reset(DeviceState *d) 554 { 555 Port92State *s = PORT92(d); 556 557 s->outport &= ~1; 558 } 559 560 static const MemoryRegionOps port92_ops = { 561 .read = port92_read, 562 .write = port92_write, 563 .impl = { 564 .min_access_size = 1, 565 .max_access_size = 1, 566 }, 567 .endianness = DEVICE_LITTLE_ENDIAN, 568 }; 569 570 static void port92_initfn(Object *obj) 571 { 572 Port92State *s = PORT92(obj); 573 574 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 575 576 s->outport = 0; 577 578 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 579 } 580 581 static void port92_realizefn(DeviceState *dev, Error **errp) 582 { 583 ISADevice *isadev = ISA_DEVICE(dev); 584 Port92State *s = PORT92(dev); 585 586 isa_register_ioport(isadev, &s->io, 0x92); 587 } 588 589 static void port92_class_initfn(ObjectClass *klass, void *data) 590 { 591 DeviceClass *dc = DEVICE_CLASS(klass); 592 593 dc->realize = port92_realizefn; 594 dc->reset = port92_reset; 595 dc->vmsd = &vmstate_port92_isa; 596 /* 597 * Reason: unlike ordinary ISA devices, this one needs additional 598 * wiring: its A20 output line needs to be wired up by 599 * port92_init(). 600 */ 601 dc->user_creatable = false; 602 } 603 604 static const TypeInfo port92_info = { 605 .name = TYPE_PORT92, 606 .parent = TYPE_ISA_DEVICE, 607 .instance_size = sizeof(Port92State), 608 .instance_init = port92_initfn, 609 .class_init = port92_class_initfn, 610 }; 611 612 static void port92_register_types(void) 613 { 614 type_register_static(&port92_info); 615 } 616 617 type_init(port92_register_types) 618 619 static void handle_a20_line_change(void *opaque, int irq, int level) 620 { 621 X86CPU *cpu = opaque; 622 623 /* XXX: send to all CPUs ? */ 624 /* XXX: add logic to handle multiple A20 line sources */ 625 x86_cpu_set_a20(cpu, level); 626 } 627 628 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 629 { 630 int index = le32_to_cpu(e820_reserve.count); 631 struct e820_entry *entry; 632 633 if (type != E820_RAM) { 634 /* old FW_CFG_E820_TABLE entry -- reservations only */ 635 if (index >= E820_NR_ENTRIES) { 636 return -EBUSY; 637 } 638 entry = &e820_reserve.entry[index++]; 639 640 entry->address = cpu_to_le64(address); 641 entry->length = cpu_to_le64(length); 642 entry->type = cpu_to_le32(type); 643 644 e820_reserve.count = cpu_to_le32(index); 645 } 646 647 /* new "etc/e820" file -- include ram too */ 648 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 649 e820_table[e820_entries].address = cpu_to_le64(address); 650 e820_table[e820_entries].length = cpu_to_le64(length); 651 e820_table[e820_entries].type = cpu_to_le32(type); 652 e820_entries++; 653 654 return e820_entries; 655 } 656 657 int e820_get_num_entries(void) 658 { 659 return e820_entries; 660 } 661 662 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 663 { 664 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 665 *address = le64_to_cpu(e820_table[idx].address); 666 *length = le64_to_cpu(e820_table[idx].length); 667 return true; 668 } 669 return false; 670 } 671 672 /* Enables contiguous-apic-ID mode, for compatibility */ 673 static bool compat_apic_id_mode; 674 675 void enable_compat_apic_id_mode(void) 676 { 677 compat_apic_id_mode = true; 678 } 679 680 /* Calculates initial APIC ID for a specific CPU index 681 * 682 * Currently we need to be able to calculate the APIC ID from the CPU index 683 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 684 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 685 * all CPUs up to max_cpus. 686 */ 687 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 688 { 689 uint32_t correct_id; 690 static bool warned; 691 692 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 693 if (compat_apic_id_mode) { 694 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 695 error_report("APIC IDs set in compatibility mode, " 696 "CPU topology won't match the configuration"); 697 warned = true; 698 } 699 return cpu_index; 700 } else { 701 return correct_id; 702 } 703 } 704 705 static void pc_build_smbios(PCMachineState *pcms) 706 { 707 uint8_t *smbios_tables, *smbios_anchor; 708 size_t smbios_tables_len, smbios_anchor_len; 709 struct smbios_phys_mem_area *mem_array; 710 unsigned i, array_count; 711 MachineState *ms = MACHINE(pcms); 712 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 713 714 /* tell smbios about cpuid version and features */ 715 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 716 717 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 718 if (smbios_tables) { 719 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 720 smbios_tables, smbios_tables_len); 721 } 722 723 /* build the array of physical mem area from e820 table */ 724 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 725 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 726 uint64_t addr, len; 727 728 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 729 mem_array[array_count].address = addr; 730 mem_array[array_count].length = len; 731 array_count++; 732 } 733 } 734 smbios_get_tables(mem_array, array_count, 735 &smbios_tables, &smbios_tables_len, 736 &smbios_anchor, &smbios_anchor_len); 737 g_free(mem_array); 738 739 if (smbios_anchor) { 740 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 741 smbios_tables, smbios_tables_len); 742 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 743 smbios_anchor, smbios_anchor_len); 744 } 745 } 746 747 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 748 { 749 FWCfgState *fw_cfg; 750 uint64_t *numa_fw_cfg; 751 int i; 752 const CPUArchIdList *cpus; 753 MachineClass *mc = MACHINE_GET_CLASS(pcms); 754 755 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 756 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 757 758 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 759 * 760 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 761 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 762 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 763 * for CPU hotplug also uses APIC ID and not "CPU index". 764 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 765 * but the "limit to the APIC ID values SeaBIOS may see". 766 * 767 * So for compatibility reasons with old BIOSes we are stuck with 768 * "etc/max-cpus" actually being apic_id_limit 769 */ 770 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 771 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 772 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 773 acpi_tables, acpi_tables_len); 774 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 775 776 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 777 &e820_reserve, sizeof(e820_reserve)); 778 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 779 sizeof(struct e820_entry) * e820_entries); 780 781 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 782 /* allocate memory for the NUMA channel: one (64bit) word for the number 783 * of nodes, one word for each VCPU->node and one word for each node to 784 * hold the amount of memory. 785 */ 786 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 787 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 788 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 789 for (i = 0; i < cpus->len; i++) { 790 unsigned int apic_id = cpus->cpus[i].arch_id; 791 assert(apic_id < pcms->apic_id_limit); 792 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 793 } 794 for (i = 0; i < nb_numa_nodes; i++) { 795 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 796 cpu_to_le64(numa_info[i].node_mem); 797 } 798 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 799 (1 + pcms->apic_id_limit + nb_numa_nodes) * 800 sizeof(*numa_fw_cfg)); 801 802 return fw_cfg; 803 } 804 805 static long get_file_size(FILE *f) 806 { 807 long where, size; 808 809 /* XXX: on Unix systems, using fstat() probably makes more sense */ 810 811 where = ftell(f); 812 fseek(f, 0, SEEK_END); 813 size = ftell(f); 814 fseek(f, where, SEEK_SET); 815 816 return size; 817 } 818 819 /* setup_data types */ 820 #define SETUP_NONE 0 821 #define SETUP_E820_EXT 1 822 #define SETUP_DTB 2 823 #define SETUP_PCI 3 824 #define SETUP_EFI 4 825 826 struct setup_data { 827 uint64_t next; 828 uint32_t type; 829 uint32_t len; 830 uint8_t data[0]; 831 } __attribute__((packed)); 832 833 static void load_linux(PCMachineState *pcms, 834 FWCfgState *fw_cfg) 835 { 836 uint16_t protocol; 837 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 838 int dtb_size, setup_data_offset; 839 uint32_t initrd_max; 840 uint8_t header[8192], *setup, *kernel, *initrd_data; 841 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 842 FILE *f; 843 char *vmode; 844 MachineState *machine = MACHINE(pcms); 845 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 846 struct setup_data *setup_data; 847 const char *kernel_filename = machine->kernel_filename; 848 const char *initrd_filename = machine->initrd_filename; 849 const char *dtb_filename = machine->dtb; 850 const char *kernel_cmdline = machine->kernel_cmdline; 851 852 /* Align to 16 bytes as a paranoia measure */ 853 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 854 855 /* load the kernel header */ 856 f = fopen(kernel_filename, "rb"); 857 if (!f || !(kernel_size = get_file_size(f)) || 858 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 859 MIN(ARRAY_SIZE(header), kernel_size)) { 860 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 861 kernel_filename, strerror(errno)); 862 exit(1); 863 } 864 865 /* kernel protocol version */ 866 #if 0 867 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 868 #endif 869 if (ldl_p(header+0x202) == 0x53726448) { 870 protocol = lduw_p(header+0x206); 871 } else { 872 /* This looks like a multiboot kernel. If it is, let's stop 873 treating it like a Linux kernel. */ 874 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 875 kernel_cmdline, kernel_size, header)) { 876 return; 877 } 878 protocol = 0; 879 } 880 881 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 882 /* Low kernel */ 883 real_addr = 0x90000; 884 cmdline_addr = 0x9a000 - cmdline_size; 885 prot_addr = 0x10000; 886 } else if (protocol < 0x202) { 887 /* High but ancient kernel */ 888 real_addr = 0x90000; 889 cmdline_addr = 0x9a000 - cmdline_size; 890 prot_addr = 0x100000; 891 } else { 892 /* High and recent kernel */ 893 real_addr = 0x10000; 894 cmdline_addr = 0x20000; 895 prot_addr = 0x100000; 896 } 897 898 #if 0 899 fprintf(stderr, 900 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 901 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 902 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 903 real_addr, 904 cmdline_addr, 905 prot_addr); 906 #endif 907 908 /* highest address for loading the initrd */ 909 if (protocol >= 0x203) { 910 initrd_max = ldl_p(header+0x22c); 911 } else { 912 initrd_max = 0x37ffffff; 913 } 914 915 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 916 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 917 } 918 919 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 920 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 921 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 922 923 if (protocol >= 0x202) { 924 stl_p(header+0x228, cmdline_addr); 925 } else { 926 stw_p(header+0x20, 0xA33F); 927 stw_p(header+0x22, cmdline_addr-real_addr); 928 } 929 930 /* handle vga= parameter */ 931 vmode = strstr(kernel_cmdline, "vga="); 932 if (vmode) { 933 unsigned int video_mode; 934 /* skip "vga=" */ 935 vmode += 4; 936 if (!strncmp(vmode, "normal", 6)) { 937 video_mode = 0xffff; 938 } else if (!strncmp(vmode, "ext", 3)) { 939 video_mode = 0xfffe; 940 } else if (!strncmp(vmode, "ask", 3)) { 941 video_mode = 0xfffd; 942 } else { 943 video_mode = strtol(vmode, NULL, 0); 944 } 945 stw_p(header+0x1fa, video_mode); 946 } 947 948 /* loader type */ 949 /* High nybble = B reserved for QEMU; low nybble is revision number. 950 If this code is substantially changed, you may want to consider 951 incrementing the revision. */ 952 if (protocol >= 0x200) { 953 header[0x210] = 0xB0; 954 } 955 /* heap */ 956 if (protocol >= 0x201) { 957 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 958 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 959 } 960 961 /* load initrd */ 962 if (initrd_filename) { 963 if (protocol < 0x200) { 964 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 965 exit(1); 966 } 967 968 initrd_size = get_image_size(initrd_filename); 969 if (initrd_size < 0) { 970 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 971 initrd_filename, strerror(errno)); 972 exit(1); 973 } 974 975 initrd_addr = (initrd_max-initrd_size) & ~4095; 976 977 initrd_data = g_malloc(initrd_size); 978 load_image(initrd_filename, initrd_data); 979 980 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 981 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 982 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 983 984 stl_p(header+0x218, initrd_addr); 985 stl_p(header+0x21c, initrd_size); 986 } 987 988 /* load kernel and setup */ 989 setup_size = header[0x1f1]; 990 if (setup_size == 0) { 991 setup_size = 4; 992 } 993 setup_size = (setup_size+1)*512; 994 if (setup_size > kernel_size) { 995 fprintf(stderr, "qemu: invalid kernel header\n"); 996 exit(1); 997 } 998 kernel_size -= setup_size; 999 1000 setup = g_malloc(setup_size); 1001 kernel = g_malloc(kernel_size); 1002 fseek(f, 0, SEEK_SET); 1003 if (fread(setup, 1, setup_size, f) != setup_size) { 1004 fprintf(stderr, "fread() failed\n"); 1005 exit(1); 1006 } 1007 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1008 fprintf(stderr, "fread() failed\n"); 1009 exit(1); 1010 } 1011 fclose(f); 1012 1013 /* append dtb to kernel */ 1014 if (dtb_filename) { 1015 if (protocol < 0x209) { 1016 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1017 exit(1); 1018 } 1019 1020 dtb_size = get_image_size(dtb_filename); 1021 if (dtb_size <= 0) { 1022 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1023 dtb_filename, strerror(errno)); 1024 exit(1); 1025 } 1026 1027 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1028 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1029 kernel = g_realloc(kernel, kernel_size); 1030 1031 stq_p(header+0x250, prot_addr + setup_data_offset); 1032 1033 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1034 setup_data->next = 0; 1035 setup_data->type = cpu_to_le32(SETUP_DTB); 1036 setup_data->len = cpu_to_le32(dtb_size); 1037 1038 load_image_size(dtb_filename, setup_data->data, dtb_size); 1039 } 1040 1041 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1042 1043 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1044 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1045 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1046 1047 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1048 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1049 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1050 1051 option_rom[nb_option_roms].bootindex = 0; 1052 option_rom[nb_option_roms].name = "linuxboot.bin"; 1053 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1054 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1055 } 1056 nb_option_roms++; 1057 } 1058 1059 #define NE2000_NB_MAX 6 1060 1061 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1062 0x280, 0x380 }; 1063 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1064 1065 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1066 { 1067 static int nb_ne2k = 0; 1068 1069 if (nb_ne2k == NE2000_NB_MAX) 1070 return; 1071 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1072 ne2000_irq[nb_ne2k], nd); 1073 nb_ne2k++; 1074 } 1075 1076 DeviceState *cpu_get_current_apic(void) 1077 { 1078 if (current_cpu) { 1079 X86CPU *cpu = X86_CPU(current_cpu); 1080 return cpu->apic_state; 1081 } else { 1082 return NULL; 1083 } 1084 } 1085 1086 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1087 { 1088 X86CPU *cpu = opaque; 1089 1090 if (level) { 1091 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1092 } 1093 } 1094 1095 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1096 { 1097 Object *cpu = NULL; 1098 Error *local_err = NULL; 1099 1100 cpu = object_new(typename); 1101 1102 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1103 object_property_set_bool(cpu, true, "realized", &local_err); 1104 1105 object_unref(cpu); 1106 error_propagate(errp, local_err); 1107 } 1108 1109 void pc_hot_add_cpu(const int64_t id, Error **errp) 1110 { 1111 MachineState *ms = MACHINE(qdev_get_machine()); 1112 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1113 Error *local_err = NULL; 1114 1115 if (id < 0) { 1116 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1117 return; 1118 } 1119 1120 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1121 error_setg(errp, "Unable to add CPU: %" PRIi64 1122 ", resulting APIC ID (%" PRIi64 ") is too large", 1123 id, apic_id); 1124 return; 1125 } 1126 1127 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1128 if (local_err) { 1129 error_propagate(errp, local_err); 1130 return; 1131 } 1132 } 1133 1134 void pc_cpus_init(PCMachineState *pcms) 1135 { 1136 int i; 1137 const CPUArchIdList *possible_cpus; 1138 MachineState *ms = MACHINE(pcms); 1139 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1140 1141 /* Calculates the limit to CPU APIC ID values 1142 * 1143 * Limit for the APIC ID value, so that all 1144 * CPU APIC IDs are < pcms->apic_id_limit. 1145 * 1146 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1147 */ 1148 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1149 possible_cpus = mc->possible_cpu_arch_ids(ms); 1150 for (i = 0; i < smp_cpus; i++) { 1151 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1152 &error_fatal); 1153 } 1154 } 1155 1156 static void pc_build_feature_control_file(PCMachineState *pcms) 1157 { 1158 MachineState *ms = MACHINE(pcms); 1159 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1160 CPUX86State *env = &cpu->env; 1161 uint32_t unused, ecx, edx; 1162 uint64_t feature_control_bits = 0; 1163 uint64_t *val; 1164 1165 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1166 if (ecx & CPUID_EXT_VMX) { 1167 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1168 } 1169 1170 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1171 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1172 (env->mcg_cap & MCG_LMCE_P)) { 1173 feature_control_bits |= FEATURE_CONTROL_LMCE; 1174 } 1175 1176 if (!feature_control_bits) { 1177 return; 1178 } 1179 1180 val = g_malloc(sizeof(*val)); 1181 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1182 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1183 } 1184 1185 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1186 { 1187 if (cpus_count > 0xff) { 1188 /* If the number of CPUs can't be represented in 8 bits, the 1189 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1190 * to make old BIOSes fail more predictably. 1191 */ 1192 rtc_set_memory(rtc, 0x5f, 0); 1193 } else { 1194 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1195 } 1196 } 1197 1198 static 1199 void pc_machine_done(Notifier *notifier, void *data) 1200 { 1201 PCMachineState *pcms = container_of(notifier, 1202 PCMachineState, machine_done); 1203 PCIBus *bus = pcms->bus; 1204 1205 /* set the number of CPUs */ 1206 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1207 1208 if (bus) { 1209 int extra_hosts = 0; 1210 1211 QLIST_FOREACH(bus, &bus->child, sibling) { 1212 /* look for expander root buses */ 1213 if (pci_bus_is_root(bus)) { 1214 extra_hosts++; 1215 } 1216 } 1217 if (extra_hosts && pcms->fw_cfg) { 1218 uint64_t *val = g_malloc(sizeof(*val)); 1219 *val = cpu_to_le64(extra_hosts); 1220 fw_cfg_add_file(pcms->fw_cfg, 1221 "etc/extra-pci-roots", val, sizeof(*val)); 1222 } 1223 } 1224 1225 acpi_setup(); 1226 if (pcms->fw_cfg) { 1227 pc_build_smbios(pcms); 1228 pc_build_feature_control_file(pcms); 1229 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1230 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1231 } 1232 1233 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1234 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1235 1236 if (!iommu || !iommu->x86_iommu.intr_supported || 1237 iommu->intr_eim != ON_OFF_AUTO_ON) { 1238 error_report("current -smp configuration requires " 1239 "Extended Interrupt Mode enabled. " 1240 "You can add an IOMMU using: " 1241 "-device intel-iommu,intremap=on,eim=on"); 1242 exit(EXIT_FAILURE); 1243 } 1244 } 1245 } 1246 1247 void pc_guest_info_init(PCMachineState *pcms) 1248 { 1249 int i; 1250 1251 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1252 pcms->numa_nodes = nb_numa_nodes; 1253 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1254 sizeof *pcms->node_mem); 1255 for (i = 0; i < nb_numa_nodes; i++) { 1256 pcms->node_mem[i] = numa_info[i].node_mem; 1257 } 1258 1259 pcms->machine_done.notify = pc_machine_done; 1260 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1261 } 1262 1263 /* setup pci memory address space mapping into system address space */ 1264 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1265 MemoryRegion *pci_address_space) 1266 { 1267 /* Set to lower priority than RAM */ 1268 memory_region_add_subregion_overlap(system_memory, 0x0, 1269 pci_address_space, -1); 1270 } 1271 1272 void pc_acpi_init(const char *default_dsdt) 1273 { 1274 char *filename; 1275 1276 if (acpi_tables != NULL) { 1277 /* manually set via -acpitable, leave it alone */ 1278 return; 1279 } 1280 1281 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1282 if (filename == NULL) { 1283 warn_report("failed to find %s", default_dsdt); 1284 } else { 1285 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1286 &error_abort); 1287 Error *err = NULL; 1288 1289 qemu_opt_set(opts, "file", filename, &error_abort); 1290 1291 acpi_table_add_builtin(opts, &err); 1292 if (err) { 1293 warn_reportf_err(err, "failed to load %s: ", filename); 1294 } 1295 g_free(filename); 1296 } 1297 } 1298 1299 void xen_load_linux(PCMachineState *pcms) 1300 { 1301 int i; 1302 FWCfgState *fw_cfg; 1303 1304 assert(MACHINE(pcms)->kernel_filename != NULL); 1305 1306 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1307 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1308 rom_set_fw(fw_cfg); 1309 1310 load_linux(pcms, fw_cfg); 1311 for (i = 0; i < nb_option_roms; i++) { 1312 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1313 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1314 !strcmp(option_rom[i].name, "multiboot.bin")); 1315 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1316 } 1317 pcms->fw_cfg = fw_cfg; 1318 } 1319 1320 void pc_memory_init(PCMachineState *pcms, 1321 MemoryRegion *system_memory, 1322 MemoryRegion *rom_memory, 1323 MemoryRegion **ram_memory) 1324 { 1325 int linux_boot, i; 1326 MemoryRegion *ram, *option_rom_mr; 1327 MemoryRegion *ram_below_4g, *ram_above_4g; 1328 FWCfgState *fw_cfg; 1329 MachineState *machine = MACHINE(pcms); 1330 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1331 1332 assert(machine->ram_size == pcms->below_4g_mem_size + 1333 pcms->above_4g_mem_size); 1334 1335 linux_boot = (machine->kernel_filename != NULL); 1336 1337 /* Allocate RAM. We allocate it as a single memory region and use 1338 * aliases to address portions of it, mostly for backwards compatibility 1339 * with older qemus that used qemu_ram_alloc(). 1340 */ 1341 ram = g_malloc(sizeof(*ram)); 1342 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1343 machine->ram_size); 1344 *ram_memory = ram; 1345 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1346 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1347 0, pcms->below_4g_mem_size); 1348 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1349 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1350 if (pcms->above_4g_mem_size > 0) { 1351 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1352 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1353 pcms->below_4g_mem_size, 1354 pcms->above_4g_mem_size); 1355 memory_region_add_subregion(system_memory, 0x100000000ULL, 1356 ram_above_4g); 1357 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1358 } 1359 1360 if (!pcmc->has_reserved_memory && 1361 (machine->ram_slots || 1362 (machine->maxram_size > machine->ram_size))) { 1363 MachineClass *mc = MACHINE_GET_CLASS(machine); 1364 1365 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1366 mc->name); 1367 exit(EXIT_FAILURE); 1368 } 1369 1370 /* initialize hotplug memory address space */ 1371 if (pcmc->has_reserved_memory && 1372 (machine->ram_size < machine->maxram_size)) { 1373 ram_addr_t hotplug_mem_size = 1374 machine->maxram_size - machine->ram_size; 1375 1376 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1377 error_report("unsupported amount of memory slots: %"PRIu64, 1378 machine->ram_slots); 1379 exit(EXIT_FAILURE); 1380 } 1381 1382 if (QEMU_ALIGN_UP(machine->maxram_size, 1383 TARGET_PAGE_SIZE) != machine->maxram_size) { 1384 error_report("maximum memory size must by aligned to multiple of " 1385 "%d bytes", TARGET_PAGE_SIZE); 1386 exit(EXIT_FAILURE); 1387 } 1388 1389 pcms->hotplug_memory.base = 1390 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30); 1391 1392 if (pcmc->enforce_aligned_dimm) { 1393 /* size hotplug region assuming 1G page max alignment per slot */ 1394 hotplug_mem_size += (1ULL << 30) * machine->ram_slots; 1395 } 1396 1397 if ((pcms->hotplug_memory.base + hotplug_mem_size) < 1398 hotplug_mem_size) { 1399 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1400 machine->maxram_size); 1401 exit(EXIT_FAILURE); 1402 } 1403 1404 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms), 1405 "hotplug-memory", hotplug_mem_size); 1406 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base, 1407 &pcms->hotplug_memory.mr); 1408 } 1409 1410 /* Initialize PC system firmware */ 1411 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1412 1413 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1414 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1415 &error_fatal); 1416 if (pcmc->pci_enabled) { 1417 memory_region_set_readonly(option_rom_mr, true); 1418 } 1419 memory_region_add_subregion_overlap(rom_memory, 1420 PC_ROM_MIN_VGA, 1421 option_rom_mr, 1422 1); 1423 1424 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1425 1426 rom_set_fw(fw_cfg); 1427 1428 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1429 uint64_t *val = g_malloc(sizeof(*val)); 1430 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1431 uint64_t res_mem_end = pcms->hotplug_memory.base; 1432 1433 if (!pcmc->broken_reserved_end) { 1434 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr); 1435 } 1436 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30)); 1437 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1438 } 1439 1440 if (linux_boot) { 1441 load_linux(pcms, fw_cfg); 1442 } 1443 1444 for (i = 0; i < nb_option_roms; i++) { 1445 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1446 } 1447 pcms->fw_cfg = fw_cfg; 1448 1449 /* Init default IOAPIC address space */ 1450 pcms->ioapic_as = &address_space_memory; 1451 } 1452 1453 /* 1454 * The 64bit pci hole starts after "above 4G RAM" and 1455 * potentially the space reserved for memory hotplug. 1456 */ 1457 uint64_t pc_pci_hole64_start(void) 1458 { 1459 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1460 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1461 uint64_t hole64_start = 0; 1462 1463 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1464 hole64_start = pcms->hotplug_memory.base; 1465 if (!pcmc->broken_reserved_end) { 1466 hole64_start += memory_region_size(&pcms->hotplug_memory.mr); 1467 } 1468 } else { 1469 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1470 } 1471 1472 return ROUND_UP(hole64_start, 1ULL << 30); 1473 } 1474 1475 qemu_irq pc_allocate_cpu_irq(void) 1476 { 1477 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1478 } 1479 1480 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1481 { 1482 DeviceState *dev = NULL; 1483 1484 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1485 if (pci_bus) { 1486 PCIDevice *pcidev = pci_vga_init(pci_bus); 1487 dev = pcidev ? &pcidev->qdev : NULL; 1488 } else if (isa_bus) { 1489 ISADevice *isadev = isa_vga_init(isa_bus); 1490 dev = isadev ? DEVICE(isadev) : NULL; 1491 } 1492 rom_reset_order_override(); 1493 return dev; 1494 } 1495 1496 static const MemoryRegionOps ioport80_io_ops = { 1497 .write = ioport80_write, 1498 .read = ioport80_read, 1499 .endianness = DEVICE_NATIVE_ENDIAN, 1500 .impl = { 1501 .min_access_size = 1, 1502 .max_access_size = 1, 1503 }, 1504 }; 1505 1506 static const MemoryRegionOps ioportF0_io_ops = { 1507 .write = ioportF0_write, 1508 .read = ioportF0_read, 1509 .endianness = DEVICE_NATIVE_ENDIAN, 1510 .impl = { 1511 .min_access_size = 1, 1512 .max_access_size = 1, 1513 }, 1514 }; 1515 1516 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1517 ISADevice **rtc_state, 1518 bool create_fdctrl, 1519 bool no_vmport, 1520 bool has_pit, 1521 uint32_t hpet_irqs) 1522 { 1523 int i; 1524 DriveInfo *fd[MAX_FD]; 1525 DeviceState *hpet = NULL; 1526 int pit_isa_irq = 0; 1527 qemu_irq pit_alt_irq = NULL; 1528 qemu_irq rtc_irq = NULL; 1529 qemu_irq *a20_line; 1530 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1531 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1532 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1533 1534 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1535 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1536 1537 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1538 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1539 1540 /* 1541 * Check if an HPET shall be created. 1542 * 1543 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1544 * when the HPET wants to take over. Thus we have to disable the latter. 1545 */ 1546 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1547 /* In order to set property, here not using sysbus_try_create_simple */ 1548 hpet = qdev_try_create(NULL, TYPE_HPET); 1549 if (hpet) { 1550 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1551 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1552 * IRQ8 and IRQ2. 1553 */ 1554 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1555 HPET_INTCAP, NULL); 1556 if (!compat) { 1557 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1558 } 1559 qdev_init_nofail(hpet); 1560 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1561 1562 for (i = 0; i < GSI_NUM_PINS; i++) { 1563 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1564 } 1565 pit_isa_irq = -1; 1566 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1567 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1568 } 1569 } 1570 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1571 1572 qemu_register_boot_set(pc_boot_set, *rtc_state); 1573 1574 if (!xen_enabled() && has_pit) { 1575 if (kvm_pit_in_kernel()) { 1576 pit = kvm_pit_init(isa_bus, 0x40); 1577 } else { 1578 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1579 } 1580 if (hpet) { 1581 /* connect PIT to output control line of the HPET */ 1582 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1583 } 1584 pcspk_init(isa_bus, pit); 1585 } 1586 1587 serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS); 1588 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1589 1590 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1591 i8042 = isa_create_simple(isa_bus, "i8042"); 1592 i8042_setup_a20_line(i8042, a20_line[0]); 1593 if (!no_vmport) { 1594 vmport_init(isa_bus); 1595 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1596 } else { 1597 vmmouse = NULL; 1598 } 1599 if (vmmouse) { 1600 DeviceState *dev = DEVICE(vmmouse); 1601 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1602 qdev_init_nofail(dev); 1603 } 1604 port92 = isa_create_simple(isa_bus, "port92"); 1605 port92_init(port92, a20_line[1]); 1606 g_free(a20_line); 1607 1608 DMA_init(isa_bus, 0); 1609 1610 for(i = 0; i < MAX_FD; i++) { 1611 fd[i] = drive_get(IF_FLOPPY, 0, i); 1612 create_fdctrl |= !!fd[i]; 1613 } 1614 if (create_fdctrl) { 1615 fdctrl_init_isa(isa_bus, fd); 1616 } 1617 } 1618 1619 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1620 { 1621 int i; 1622 1623 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1624 for (i = 0; i < nb_nics; i++) { 1625 NICInfo *nd = &nd_table[i]; 1626 1627 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1628 pc_init_ne2k_isa(isa_bus, nd); 1629 } else { 1630 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1631 } 1632 } 1633 rom_reset_order_override(); 1634 } 1635 1636 void pc_pci_device_init(PCIBus *pci_bus) 1637 { 1638 int max_bus; 1639 int bus; 1640 1641 /* Note: if=scsi is deprecated with PC machine types */ 1642 max_bus = drive_get_max_bus(IF_SCSI); 1643 for (bus = 0; bus <= max_bus; bus++) { 1644 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1645 /* 1646 * By not creating frontends here, we make 1647 * scsi_legacy_handle_cmdline() create them, and warn that 1648 * this usage is deprecated. 1649 */ 1650 } 1651 } 1652 1653 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1654 { 1655 DeviceState *dev; 1656 SysBusDevice *d; 1657 unsigned int i; 1658 1659 if (kvm_ioapic_in_kernel()) { 1660 dev = qdev_create(NULL, "kvm-ioapic"); 1661 } else { 1662 dev = qdev_create(NULL, "ioapic"); 1663 } 1664 if (parent_name) { 1665 object_property_add_child(object_resolve_path(parent_name, NULL), 1666 "ioapic", OBJECT(dev), NULL); 1667 } 1668 qdev_init_nofail(dev); 1669 d = SYS_BUS_DEVICE(dev); 1670 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1671 1672 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1673 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1674 } 1675 } 1676 1677 static void pc_dimm_plug(HotplugHandler *hotplug_dev, 1678 DeviceState *dev, Error **errp) 1679 { 1680 HotplugHandlerClass *hhc; 1681 Error *local_err = NULL; 1682 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1683 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1684 PCDIMMDevice *dimm = PC_DIMM(dev); 1685 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1686 MemoryRegion *mr; 1687 uint64_t align = TARGET_PAGE_SIZE; 1688 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1689 1690 mr = ddc->get_memory_region(dimm, &local_err); 1691 if (local_err) { 1692 goto out; 1693 } 1694 1695 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) { 1696 align = memory_region_get_alignment(mr); 1697 } 1698 1699 /* 1700 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1701 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1702 * addition to cover this case. 1703 */ 1704 if (!pcms->acpi_dev || !acpi_enabled) { 1705 error_setg(&local_err, 1706 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1707 goto out; 1708 } 1709 1710 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1711 error_setg(&local_err, 1712 "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1713 goto out; 1714 } 1715 1716 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err); 1717 if (local_err) { 1718 goto out; 1719 } 1720 1721 if (is_nvdimm) { 1722 nvdimm_plug(&pcms->acpi_nvdimm_state); 1723 } 1724 1725 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1726 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1727 out: 1728 error_propagate(errp, local_err); 1729 } 1730 1731 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev, 1732 DeviceState *dev, Error **errp) 1733 { 1734 HotplugHandlerClass *hhc; 1735 Error *local_err = NULL; 1736 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1737 1738 /* 1739 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1740 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1741 * addition to cover this case. 1742 */ 1743 if (!pcms->acpi_dev || !acpi_enabled) { 1744 error_setg(&local_err, 1745 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1746 goto out; 1747 } 1748 1749 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1750 error_setg(&local_err, 1751 "nvdimm device hot unplug is not supported yet."); 1752 goto out; 1753 } 1754 1755 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1756 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1757 1758 out: 1759 error_propagate(errp, local_err); 1760 } 1761 1762 static void pc_dimm_unplug(HotplugHandler *hotplug_dev, 1763 DeviceState *dev, Error **errp) 1764 { 1765 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1766 PCDIMMDevice *dimm = PC_DIMM(dev); 1767 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1768 MemoryRegion *mr; 1769 HotplugHandlerClass *hhc; 1770 Error *local_err = NULL; 1771 1772 mr = ddc->get_memory_region(dimm, &local_err); 1773 if (local_err) { 1774 goto out; 1775 } 1776 1777 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1778 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1779 1780 if (local_err) { 1781 goto out; 1782 } 1783 1784 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr); 1785 object_unparent(OBJECT(dev)); 1786 1787 out: 1788 error_propagate(errp, local_err); 1789 } 1790 1791 static int pc_apic_cmp(const void *a, const void *b) 1792 { 1793 CPUArchId *apic_a = (CPUArchId *)a; 1794 CPUArchId *apic_b = (CPUArchId *)b; 1795 1796 return apic_a->arch_id - apic_b->arch_id; 1797 } 1798 1799 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1800 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1801 * entry corresponding to CPU's apic_id returns NULL. 1802 */ 1803 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1804 { 1805 CPUArchId apic_id, *found_cpu; 1806 1807 apic_id.arch_id = id; 1808 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1809 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1810 pc_apic_cmp); 1811 if (found_cpu && idx) { 1812 *idx = found_cpu - ms->possible_cpus->cpus; 1813 } 1814 return found_cpu; 1815 } 1816 1817 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1818 DeviceState *dev, Error **errp) 1819 { 1820 CPUArchId *found_cpu; 1821 HotplugHandlerClass *hhc; 1822 Error *local_err = NULL; 1823 X86CPU *cpu = X86_CPU(dev); 1824 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1825 1826 if (pcms->acpi_dev) { 1827 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1828 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1829 if (local_err) { 1830 goto out; 1831 } 1832 } 1833 1834 /* increment the number of CPUs */ 1835 pcms->boot_cpus++; 1836 if (pcms->rtc) { 1837 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1838 } 1839 if (pcms->fw_cfg) { 1840 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1841 } 1842 1843 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1844 found_cpu->cpu = OBJECT(dev); 1845 out: 1846 error_propagate(errp, local_err); 1847 } 1848 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1849 DeviceState *dev, Error **errp) 1850 { 1851 int idx = -1; 1852 HotplugHandlerClass *hhc; 1853 Error *local_err = NULL; 1854 X86CPU *cpu = X86_CPU(dev); 1855 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1856 1857 if (!pcms->acpi_dev) { 1858 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1859 goto out; 1860 } 1861 1862 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1863 assert(idx != -1); 1864 if (idx == 0) { 1865 error_setg(&local_err, "Boot CPU is unpluggable"); 1866 goto out; 1867 } 1868 1869 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1870 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1871 1872 if (local_err) { 1873 goto out; 1874 } 1875 1876 out: 1877 error_propagate(errp, local_err); 1878 1879 } 1880 1881 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1882 DeviceState *dev, Error **errp) 1883 { 1884 CPUArchId *found_cpu; 1885 HotplugHandlerClass *hhc; 1886 Error *local_err = NULL; 1887 X86CPU *cpu = X86_CPU(dev); 1888 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1889 1890 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1891 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1892 1893 if (local_err) { 1894 goto out; 1895 } 1896 1897 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1898 found_cpu->cpu = NULL; 1899 object_unparent(OBJECT(dev)); 1900 1901 /* decrement the number of CPUs */ 1902 pcms->boot_cpus--; 1903 /* Update the number of CPUs in CMOS */ 1904 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1905 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1906 out: 1907 error_propagate(errp, local_err); 1908 } 1909 1910 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1911 DeviceState *dev, Error **errp) 1912 { 1913 int idx; 1914 CPUState *cs; 1915 CPUArchId *cpu_slot; 1916 X86CPUTopoInfo topo; 1917 X86CPU *cpu = X86_CPU(dev); 1918 MachineState *ms = MACHINE(hotplug_dev); 1919 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1920 1921 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1922 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1923 ms->cpu_type); 1924 return; 1925 } 1926 1927 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1928 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1929 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1930 1931 if (cpu->socket_id < 0) { 1932 error_setg(errp, "CPU socket-id is not set"); 1933 return; 1934 } else if (cpu->socket_id > max_socket) { 1935 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1936 cpu->socket_id, max_socket); 1937 return; 1938 } 1939 if (cpu->core_id < 0) { 1940 error_setg(errp, "CPU core-id is not set"); 1941 return; 1942 } else if (cpu->core_id > (smp_cores - 1)) { 1943 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1944 cpu->core_id, smp_cores - 1); 1945 return; 1946 } 1947 if (cpu->thread_id < 0) { 1948 error_setg(errp, "CPU thread-id is not set"); 1949 return; 1950 } else if (cpu->thread_id > (smp_threads - 1)) { 1951 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1952 cpu->thread_id, smp_threads - 1); 1953 return; 1954 } 1955 1956 topo.pkg_id = cpu->socket_id; 1957 topo.core_id = cpu->core_id; 1958 topo.smt_id = cpu->thread_id; 1959 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1960 } 1961 1962 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1963 if (!cpu_slot) { 1964 MachineState *ms = MACHINE(pcms); 1965 1966 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1967 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1968 " APIC ID %" PRIu32 ", valid index range 0:%d", 1969 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1970 ms->possible_cpus->len - 1); 1971 return; 1972 } 1973 1974 if (cpu_slot->cpu) { 1975 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1976 idx, cpu->apic_id); 1977 return; 1978 } 1979 1980 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1981 * so that machine_query_hotpluggable_cpus would show correct values 1982 */ 1983 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1984 * once -smp refactoring is complete and there will be CPU private 1985 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1986 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1987 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1988 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1989 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1990 return; 1991 } 1992 cpu->socket_id = topo.pkg_id; 1993 1994 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 1995 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 1996 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 1997 return; 1998 } 1999 cpu->core_id = topo.core_id; 2000 2001 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2002 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2003 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2004 return; 2005 } 2006 cpu->thread_id = topo.smt_id; 2007 2008 cs = CPU(cpu); 2009 cs->cpu_index = idx; 2010 2011 numa_cpu_pre_plug(cpu_slot, dev, errp); 2012 } 2013 2014 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2015 DeviceState *dev, Error **errp) 2016 { 2017 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2018 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2019 } 2020 } 2021 2022 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2023 DeviceState *dev, Error **errp) 2024 { 2025 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2026 pc_dimm_plug(hotplug_dev, dev, errp); 2027 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2028 pc_cpu_plug(hotplug_dev, dev, errp); 2029 } 2030 } 2031 2032 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2033 DeviceState *dev, Error **errp) 2034 { 2035 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2036 pc_dimm_unplug_request(hotplug_dev, dev, errp); 2037 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2038 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2039 } else { 2040 error_setg(errp, "acpi: device unplug request for not supported device" 2041 " type: %s", object_get_typename(OBJECT(dev))); 2042 } 2043 } 2044 2045 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2046 DeviceState *dev, Error **errp) 2047 { 2048 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2049 pc_dimm_unplug(hotplug_dev, dev, errp); 2050 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2051 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2052 } else { 2053 error_setg(errp, "acpi: device unplug for not supported device" 2054 " type: %s", object_get_typename(OBJECT(dev))); 2055 } 2056 } 2057 2058 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2059 DeviceState *dev) 2060 { 2061 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); 2062 2063 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2064 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2065 return HOTPLUG_HANDLER(machine); 2066 } 2067 2068 return pcmc->get_hotplug_handler ? 2069 pcmc->get_hotplug_handler(machine, dev) : NULL; 2070 } 2071 2072 static void 2073 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, 2074 const char *name, void *opaque, 2075 Error **errp) 2076 { 2077 PCMachineState *pcms = PC_MACHINE(obj); 2078 int64_t value = memory_region_size(&pcms->hotplug_memory.mr); 2079 2080 visit_type_int(v, name, &value, errp); 2081 } 2082 2083 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2084 const char *name, void *opaque, 2085 Error **errp) 2086 { 2087 PCMachineState *pcms = PC_MACHINE(obj); 2088 uint64_t value = pcms->max_ram_below_4g; 2089 2090 visit_type_size(v, name, &value, errp); 2091 } 2092 2093 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2094 const char *name, void *opaque, 2095 Error **errp) 2096 { 2097 PCMachineState *pcms = PC_MACHINE(obj); 2098 Error *error = NULL; 2099 uint64_t value; 2100 2101 visit_type_size(v, name, &value, &error); 2102 if (error) { 2103 error_propagate(errp, error); 2104 return; 2105 } 2106 if (value > (1ULL << 32)) { 2107 error_setg(&error, 2108 "Machine option 'max-ram-below-4g=%"PRIu64 2109 "' expects size less than or equal to 4G", value); 2110 error_propagate(errp, error); 2111 return; 2112 } 2113 2114 if (value < (1ULL << 20)) { 2115 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2116 "BIOS may not work with less than 1MiB", value); 2117 } 2118 2119 pcms->max_ram_below_4g = value; 2120 } 2121 2122 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2123 void *opaque, Error **errp) 2124 { 2125 PCMachineState *pcms = PC_MACHINE(obj); 2126 OnOffAuto vmport = pcms->vmport; 2127 2128 visit_type_OnOffAuto(v, name, &vmport, errp); 2129 } 2130 2131 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2132 void *opaque, Error **errp) 2133 { 2134 PCMachineState *pcms = PC_MACHINE(obj); 2135 2136 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2137 } 2138 2139 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2140 { 2141 bool smm_available = false; 2142 2143 if (pcms->smm == ON_OFF_AUTO_OFF) { 2144 return false; 2145 } 2146 2147 if (tcg_enabled() || qtest_enabled()) { 2148 smm_available = true; 2149 } else if (kvm_enabled()) { 2150 smm_available = kvm_has_smm(); 2151 } 2152 2153 if (smm_available) { 2154 return true; 2155 } 2156 2157 if (pcms->smm == ON_OFF_AUTO_ON) { 2158 error_report("System Management Mode not supported by this hypervisor."); 2159 exit(1); 2160 } 2161 return false; 2162 } 2163 2164 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2165 void *opaque, Error **errp) 2166 { 2167 PCMachineState *pcms = PC_MACHINE(obj); 2168 OnOffAuto smm = pcms->smm; 2169 2170 visit_type_OnOffAuto(v, name, &smm, errp); 2171 } 2172 2173 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2174 void *opaque, Error **errp) 2175 { 2176 PCMachineState *pcms = PC_MACHINE(obj); 2177 2178 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2179 } 2180 2181 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2182 { 2183 PCMachineState *pcms = PC_MACHINE(obj); 2184 2185 return pcms->acpi_nvdimm_state.is_enabled; 2186 } 2187 2188 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2189 { 2190 PCMachineState *pcms = PC_MACHINE(obj); 2191 2192 pcms->acpi_nvdimm_state.is_enabled = value; 2193 } 2194 2195 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2196 { 2197 PCMachineState *pcms = PC_MACHINE(obj); 2198 2199 return pcms->smbus; 2200 } 2201 2202 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2203 { 2204 PCMachineState *pcms = PC_MACHINE(obj); 2205 2206 pcms->smbus = value; 2207 } 2208 2209 static bool pc_machine_get_sata(Object *obj, Error **errp) 2210 { 2211 PCMachineState *pcms = PC_MACHINE(obj); 2212 2213 return pcms->sata; 2214 } 2215 2216 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2217 { 2218 PCMachineState *pcms = PC_MACHINE(obj); 2219 2220 pcms->sata = value; 2221 } 2222 2223 static bool pc_machine_get_pit(Object *obj, Error **errp) 2224 { 2225 PCMachineState *pcms = PC_MACHINE(obj); 2226 2227 return pcms->pit; 2228 } 2229 2230 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2231 { 2232 PCMachineState *pcms = PC_MACHINE(obj); 2233 2234 pcms->pit = value; 2235 } 2236 2237 static void pc_machine_initfn(Object *obj) 2238 { 2239 PCMachineState *pcms = PC_MACHINE(obj); 2240 2241 pcms->max_ram_below_4g = 0; /* use default */ 2242 pcms->smm = ON_OFF_AUTO_AUTO; 2243 pcms->vmport = ON_OFF_AUTO_AUTO; 2244 /* nvdimm is disabled on default. */ 2245 pcms->acpi_nvdimm_state.is_enabled = false; 2246 /* acpi build is enabled by default if machine supports it */ 2247 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2248 pcms->smbus = true; 2249 pcms->sata = true; 2250 pcms->pit = true; 2251 } 2252 2253 static void pc_machine_reset(void) 2254 { 2255 CPUState *cs; 2256 X86CPU *cpu; 2257 2258 qemu_devices_reset(); 2259 2260 /* Reset APIC after devices have been reset to cancel 2261 * any changes that qemu_devices_reset() might have done. 2262 */ 2263 CPU_FOREACH(cs) { 2264 cpu = X86_CPU(cs); 2265 2266 if (cpu->apic_state) { 2267 device_reset(cpu->apic_state); 2268 } 2269 } 2270 } 2271 2272 static CpuInstanceProperties 2273 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2274 { 2275 MachineClass *mc = MACHINE_GET_CLASS(ms); 2276 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2277 2278 assert(cpu_index < possible_cpus->len); 2279 return possible_cpus->cpus[cpu_index].props; 2280 } 2281 2282 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2283 { 2284 X86CPUTopoInfo topo; 2285 2286 assert(idx < ms->possible_cpus->len); 2287 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2288 smp_cores, smp_threads, &topo); 2289 return topo.pkg_id % nb_numa_nodes; 2290 } 2291 2292 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2293 { 2294 int i; 2295 2296 if (ms->possible_cpus) { 2297 /* 2298 * make sure that max_cpus hasn't changed since the first use, i.e. 2299 * -smp hasn't been parsed after it 2300 */ 2301 assert(ms->possible_cpus->len == max_cpus); 2302 return ms->possible_cpus; 2303 } 2304 2305 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2306 sizeof(CPUArchId) * max_cpus); 2307 ms->possible_cpus->len = max_cpus; 2308 for (i = 0; i < ms->possible_cpus->len; i++) { 2309 X86CPUTopoInfo topo; 2310 2311 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2312 ms->possible_cpus->cpus[i].vcpus_count = 1; 2313 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2314 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2315 smp_cores, smp_threads, &topo); 2316 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2317 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2318 ms->possible_cpus->cpus[i].props.has_core_id = true; 2319 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2320 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2321 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2322 } 2323 return ms->possible_cpus; 2324 } 2325 2326 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2327 { 2328 /* cpu index isn't used */ 2329 CPUState *cs; 2330 2331 CPU_FOREACH(cs) { 2332 X86CPU *cpu = X86_CPU(cs); 2333 2334 if (!cpu->apic_state) { 2335 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2336 } else { 2337 apic_deliver_nmi(cpu->apic_state); 2338 } 2339 } 2340 } 2341 2342 static void pc_machine_class_init(ObjectClass *oc, void *data) 2343 { 2344 MachineClass *mc = MACHINE_CLASS(oc); 2345 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2346 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2347 NMIClass *nc = NMI_CLASS(oc); 2348 2349 pcmc->get_hotplug_handler = mc->get_hotplug_handler; 2350 pcmc->pci_enabled = true; 2351 pcmc->has_acpi_build = true; 2352 pcmc->rsdp_in_ram = true; 2353 pcmc->smbios_defaults = true; 2354 pcmc->smbios_uuid_encoded = true; 2355 pcmc->gigabyte_align = true; 2356 pcmc->has_reserved_memory = true; 2357 pcmc->kvmclock_enabled = true; 2358 pcmc->enforce_aligned_dimm = true; 2359 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2360 * to be used at the moment, 32K should be enough for a while. */ 2361 pcmc->acpi_data_size = 0x20000 + 0x8000; 2362 pcmc->save_tsc_khz = true; 2363 pcmc->linuxboot_dma_enabled = true; 2364 mc->get_hotplug_handler = pc_get_hotpug_handler; 2365 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2366 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2367 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2368 mc->auto_enable_numa_with_memhp = true; 2369 mc->has_hotpluggable_cpus = true; 2370 mc->default_boot_order = "cad"; 2371 mc->hot_add_cpu = pc_hot_add_cpu; 2372 mc->block_default_type = IF_IDE; 2373 mc->max_cpus = 255; 2374 mc->reset = pc_machine_reset; 2375 hc->pre_plug = pc_machine_device_pre_plug_cb; 2376 hc->plug = pc_machine_device_plug_cb; 2377 hc->unplug_request = pc_machine_device_unplug_request_cb; 2378 hc->unplug = pc_machine_device_unplug_cb; 2379 nc->nmi_monitor_handler = x86_nmi; 2380 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2381 2382 object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int", 2383 pc_machine_get_hotplug_memory_region_size, NULL, 2384 NULL, NULL, &error_abort); 2385 2386 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2387 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2388 NULL, NULL, &error_abort); 2389 2390 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2391 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2392 2393 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2394 pc_machine_get_smm, pc_machine_set_smm, 2395 NULL, NULL, &error_abort); 2396 object_class_property_set_description(oc, PC_MACHINE_SMM, 2397 "Enable SMM (pc & q35)", &error_abort); 2398 2399 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2400 pc_machine_get_vmport, pc_machine_set_vmport, 2401 NULL, NULL, &error_abort); 2402 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2403 "Enable vmport (pc & q35)", &error_abort); 2404 2405 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2406 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2407 2408 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2409 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2410 2411 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2412 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2413 2414 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2415 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2416 } 2417 2418 static const TypeInfo pc_machine_info = { 2419 .name = TYPE_PC_MACHINE, 2420 .parent = TYPE_MACHINE, 2421 .abstract = true, 2422 .instance_size = sizeof(PCMachineState), 2423 .instance_init = pc_machine_initfn, 2424 .class_size = sizeof(PCMachineClass), 2425 .class_init = pc_machine_class_init, 2426 .interfaces = (InterfaceInfo[]) { 2427 { TYPE_HOTPLUG_HANDLER }, 2428 { TYPE_NMI }, 2429 { } 2430 }, 2431 }; 2432 2433 static void pc_machine_register_types(void) 2434 { 2435 type_register_static(&pc_machine_info); 2436 } 2437 2438 type_init(pc_machine_register_types) 2439