xref: /openbmc/qemu/hw/i386/pc.c (revision 988fa103)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "hw/i386/fw_cfg.h"
34 #include "sysemu/cpus.h"
35 #include "hw/block/fdc.h"
36 #include "hw/ide.h"
37 #include "hw/pci/pci.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/nvram/fw_cfg.h"
40 #include "hw/timer/hpet.h"
41 #include "hw/firmware/smbios.h"
42 #include "hw/loader.h"
43 #include "elf.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/audio/pcspk.h"
50 #include "hw/pci/msi.h"
51 #include "hw/sysbus.h"
52 #include "sysemu/sysemu.h"
53 #include "sysemu/tcg.h"
54 #include "sysemu/numa.h"
55 #include "sysemu/kvm.h"
56 #include "sysemu/qtest.h"
57 #include "kvm_i386.h"
58 #include "hw/xen/xen.h"
59 #include "hw/xen/start_info.h"
60 #include "ui/qemu-spice.h"
61 #include "exec/memory.h"
62 #include "exec/address-spaces.h"
63 #include "sysemu/arch_init.h"
64 #include "qemu/bitmap.h"
65 #include "qemu/config-file.h"
66 #include "qemu/error-report.h"
67 #include "qemu/option.h"
68 #include "hw/acpi/acpi.h"
69 #include "hw/acpi/cpu_hotplug.h"
70 #include "hw/boards.h"
71 #include "acpi-build.h"
72 #include "hw/mem/pc-dimm.h"
73 #include "qapi/error.h"
74 #include "qapi/qapi-visit-common.h"
75 #include "qapi/visitor.h"
76 #include "qom/cpu.h"
77 #include "hw/nmi.h"
78 #include "hw/usb.h"
79 #include "hw/i386/intel_iommu.h"
80 #include "hw/net/ne2000-isa.h"
81 #include "standard-headers/asm-x86/bootparam.h"
82 #include "hw/virtio/virtio-pmem-pci.h"
83 #include "hw/mem/memory-device.h"
84 #include "sysemu/replay.h"
85 #include "qapi/qmp/qerror.h"
86 #include "config-devices.h"
87 
88 /* debug PC/ISA interrupts */
89 //#define DEBUG_IRQ
90 
91 #ifdef DEBUG_IRQ
92 #define DPRINTF(fmt, ...)                                       \
93     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
94 #else
95 #define DPRINTF(fmt, ...)
96 #endif
97 
98 #define E820_NR_ENTRIES		16
99 
100 struct e820_entry {
101     uint64_t address;
102     uint64_t length;
103     uint32_t type;
104 } QEMU_PACKED __attribute((__aligned__(4)));
105 
106 struct e820_table {
107     uint32_t count;
108     struct e820_entry entry[E820_NR_ENTRIES];
109 } QEMU_PACKED __attribute((__aligned__(4)));
110 
111 static struct e820_table e820_reserve;
112 static struct e820_entry *e820_table;
113 static unsigned e820_entries;
114 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
115 
116 /* Physical Address of PVH entry point read from kernel ELF NOTE */
117 static size_t pvh_start_addr;
118 
119 GlobalProperty pc_compat_4_0[] = {};
120 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
121 
122 GlobalProperty pc_compat_3_1[] = {
123     { "intel-iommu", "dma-drain", "off" },
124     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
125     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
126     { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
127     { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
128     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
129     { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
130     { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
131     { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
132     { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
133     { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
134     { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
135     { "Skylake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
136     { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
137     { "Skylake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
138     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
139     { "Cascadelake-Server" "-" TYPE_X86_CPU,  "mpx", "on" },
140     { "Icelake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
141     { "Icelake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
142     { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
143     { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
144 };
145 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
146 
147 GlobalProperty pc_compat_3_0[] = {
148     { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
149     { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
150     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
151 };
152 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
153 
154 GlobalProperty pc_compat_2_12[] = {
155     { TYPE_X86_CPU, "legacy-cache", "on" },
156     { TYPE_X86_CPU, "topoext", "off" },
157     { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
158     { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
159 };
160 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
161 
162 GlobalProperty pc_compat_2_11[] = {
163     { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
164     { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
165 };
166 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
167 
168 GlobalProperty pc_compat_2_10[] = {
169     { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
170     { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
171     { "q35-pcihost", "x-pci-hole64-fix", "off" },
172 };
173 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
174 
175 GlobalProperty pc_compat_2_9[] = {
176     { "mch", "extended-tseg-mbytes", "0" },
177 };
178 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
179 
180 GlobalProperty pc_compat_2_8[] = {
181     { TYPE_X86_CPU, "tcg-cpuid", "off" },
182     { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
183     { "ICH9-LPC", "x-smi-broadcast", "off" },
184     { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
185     { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
186 };
187 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
188 
189 GlobalProperty pc_compat_2_7[] = {
190     { TYPE_X86_CPU, "l3-cache", "off" },
191     { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
192     { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
193     { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
194     { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
195     { "isa-pcspk", "migrate", "off" },
196 };
197 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
198 
199 GlobalProperty pc_compat_2_6[] = {
200     { TYPE_X86_CPU, "cpuid-0xb", "off" },
201     { "vmxnet3", "romfile", "" },
202     { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
203     { "apic-common", "legacy-instance-id", "on", }
204 };
205 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
206 
207 GlobalProperty pc_compat_2_5[] = {};
208 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
209 
210 GlobalProperty pc_compat_2_4[] = {
211     PC_CPU_MODEL_IDS("2.4.0")
212     { "Haswell-" TYPE_X86_CPU, "abm", "off" },
213     { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
214     { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
215     { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
216     { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
217     { TYPE_X86_CPU, "check", "off" },
218     { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
219     { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
220     { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
221     { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
222     { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
223     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
224     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
225     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
226 };
227 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
228 
229 GlobalProperty pc_compat_2_3[] = {
230     PC_CPU_MODEL_IDS("2.3.0")
231     { TYPE_X86_CPU, "arat", "off" },
232     { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
233     { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
234     { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
235     { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
236     { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
237     { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
238     { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
239     { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240     { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241     { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242     { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243     { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244     { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245     { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246     { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247     { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
248     { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
249     { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
250     { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
251 };
252 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
253 
254 GlobalProperty pc_compat_2_2[] = {
255     PC_CPU_MODEL_IDS("2.2.0")
256     { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
257     { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
258     { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
259     { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
260     { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
261     { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
262     { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
263     { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
264     { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
265     { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
266     { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
267     { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
268     { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
269     { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
270     { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
271     { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
272     { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
273     { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
274 };
275 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
276 
277 GlobalProperty pc_compat_2_1[] = {
278     PC_CPU_MODEL_IDS("2.1.0")
279     { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
280     { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
281 };
282 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
283 
284 GlobalProperty pc_compat_2_0[] = {
285     PC_CPU_MODEL_IDS("2.0.0")
286     { "virtio-scsi-pci", "any_layout", "off" },
287     { "PIIX4_PM", "memory-hotplug-support", "off" },
288     { "apic", "version", "0x11" },
289     { "nec-usb-xhci", "superspeed-ports-first", "off" },
290     { "nec-usb-xhci", "force-pcie-endcap", "on" },
291     { "pci-serial", "prog_if", "0" },
292     { "pci-serial-2x", "prog_if", "0" },
293     { "pci-serial-4x", "prog_if", "0" },
294     { "virtio-net-pci", "guest_announce", "off" },
295     { "ICH9-LPC", "memory-hotplug-support", "off" },
296     { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
297     { "ioh3420", COMPAT_PROP_PCP, "off" },
298 };
299 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
300 
301 GlobalProperty pc_compat_1_7[] = {
302     PC_CPU_MODEL_IDS("1.7.0")
303     { TYPE_USB_DEVICE, "msos-desc", "no" },
304     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
305     { "hpet", HPET_INTCAP, "4" },
306 };
307 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
308 
309 GlobalProperty pc_compat_1_6[] = {
310     PC_CPU_MODEL_IDS("1.6.0")
311     { "e1000", "mitigation", "off" },
312     { "qemu64-" TYPE_X86_CPU, "model", "2" },
313     { "qemu32-" TYPE_X86_CPU, "model", "3" },
314     { "i440FX-pcihost", "short_root_bus", "1" },
315     { "q35-pcihost", "short_root_bus", "1" },
316 };
317 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
318 
319 GlobalProperty pc_compat_1_5[] = {
320     PC_CPU_MODEL_IDS("1.5.0")
321     { "Conroe-" TYPE_X86_CPU, "model", "2" },
322     { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
323     { "Penryn-" TYPE_X86_CPU, "model", "2" },
324     { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
325     { "Nehalem-" TYPE_X86_CPU, "model", "2" },
326     { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
327     { "virtio-net-pci", "any_layout", "off" },
328     { TYPE_X86_CPU, "pmu", "on" },
329     { "i440FX-pcihost", "short_root_bus", "0" },
330     { "q35-pcihost", "short_root_bus", "0" },
331 };
332 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
333 
334 GlobalProperty pc_compat_1_4[] = {
335     PC_CPU_MODEL_IDS("1.4.0")
336     { "scsi-hd", "discard_granularity", "0" },
337     { "scsi-cd", "discard_granularity", "0" },
338     { "scsi-disk", "discard_granularity", "0" },
339     { "ide-hd", "discard_granularity", "0" },
340     { "ide-cd", "discard_granularity", "0" },
341     { "ide-drive", "discard_granularity", "0" },
342     { "virtio-blk-pci", "discard_granularity", "0" },
343     /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
344     { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
345     { "virtio-net-pci", "ctrl_guest_offloads", "off" },
346     { "e1000", "romfile", "pxe-e1000.rom" },
347     { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
348     { "pcnet", "romfile", "pxe-pcnet.rom" },
349     { "rtl8139", "romfile", "pxe-rtl8139.rom" },
350     { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
351     { "486-" TYPE_X86_CPU, "model", "0" },
352     { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
353     { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
354 };
355 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
356 
357 void gsi_handler(void *opaque, int n, int level)
358 {
359     GSIState *s = opaque;
360 
361     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
362     if (n < ISA_NUM_IRQS) {
363         qemu_set_irq(s->i8259_irq[n], level);
364     }
365     qemu_set_irq(s->ioapic_irq[n], level);
366 }
367 
368 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
369                            unsigned size)
370 {
371 }
372 
373 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
374 {
375     return 0xffffffffffffffffULL;
376 }
377 
378 /* MSDOS compatibility mode FPU exception support */
379 static qemu_irq ferr_irq;
380 
381 void pc_register_ferr_irq(qemu_irq irq)
382 {
383     ferr_irq = irq;
384 }
385 
386 /* XXX: add IGNNE support */
387 void cpu_set_ferr(CPUX86State *s)
388 {
389     qemu_irq_raise(ferr_irq);
390 }
391 
392 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
393                            unsigned size)
394 {
395     qemu_irq_lower(ferr_irq);
396 }
397 
398 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
399 {
400     return 0xffffffffffffffffULL;
401 }
402 
403 /* TSC handling */
404 uint64_t cpu_get_tsc(CPUX86State *env)
405 {
406     return cpu_get_ticks();
407 }
408 
409 /* IRQ handling */
410 int cpu_get_pic_interrupt(CPUX86State *env)
411 {
412     X86CPU *cpu = env_archcpu(env);
413     int intno;
414 
415     if (!kvm_irqchip_in_kernel()) {
416         intno = apic_get_interrupt(cpu->apic_state);
417         if (intno >= 0) {
418             return intno;
419         }
420         /* read the irq from the PIC */
421         if (!apic_accept_pic_intr(cpu->apic_state)) {
422             return -1;
423         }
424     }
425 
426     intno = pic_read_irq(isa_pic);
427     return intno;
428 }
429 
430 static void pic_irq_request(void *opaque, int irq, int level)
431 {
432     CPUState *cs = first_cpu;
433     X86CPU *cpu = X86_CPU(cs);
434 
435     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
436     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
437         CPU_FOREACH(cs) {
438             cpu = X86_CPU(cs);
439             if (apic_accept_pic_intr(cpu->apic_state)) {
440                 apic_deliver_pic_intr(cpu->apic_state, level);
441             }
442         }
443     } else {
444         if (level) {
445             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
446         } else {
447             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
448         }
449     }
450 }
451 
452 /* PC cmos mappings */
453 
454 #define REG_EQUIPMENT_BYTE          0x14
455 
456 int cmos_get_fd_drive_type(FloppyDriveType fd0)
457 {
458     int val;
459 
460     switch (fd0) {
461     case FLOPPY_DRIVE_TYPE_144:
462         /* 1.44 Mb 3"5 drive */
463         val = 4;
464         break;
465     case FLOPPY_DRIVE_TYPE_288:
466         /* 2.88 Mb 3"5 drive */
467         val = 5;
468         break;
469     case FLOPPY_DRIVE_TYPE_120:
470         /* 1.2 Mb 5"5 drive */
471         val = 2;
472         break;
473     case FLOPPY_DRIVE_TYPE_NONE:
474     default:
475         val = 0;
476         break;
477     }
478     return val;
479 }
480 
481 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
482                          int16_t cylinders, int8_t heads, int8_t sectors)
483 {
484     rtc_set_memory(s, type_ofs, 47);
485     rtc_set_memory(s, info_ofs, cylinders);
486     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
487     rtc_set_memory(s, info_ofs + 2, heads);
488     rtc_set_memory(s, info_ofs + 3, 0xff);
489     rtc_set_memory(s, info_ofs + 4, 0xff);
490     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
491     rtc_set_memory(s, info_ofs + 6, cylinders);
492     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
493     rtc_set_memory(s, info_ofs + 8, sectors);
494 }
495 
496 /* convert boot_device letter to something recognizable by the bios */
497 static int boot_device2nibble(char boot_device)
498 {
499     switch(boot_device) {
500     case 'a':
501     case 'b':
502         return 0x01; /* floppy boot */
503     case 'c':
504         return 0x02; /* hard drive boot */
505     case 'd':
506         return 0x03; /* CD-ROM boot */
507     case 'n':
508         return 0x04; /* Network boot */
509     }
510     return 0;
511 }
512 
513 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
514 {
515 #define PC_MAX_BOOT_DEVICES 3
516     int nbds, bds[3] = { 0, };
517     int i;
518 
519     nbds = strlen(boot_device);
520     if (nbds > PC_MAX_BOOT_DEVICES) {
521         error_setg(errp, "Too many boot devices for PC");
522         return;
523     }
524     for (i = 0; i < nbds; i++) {
525         bds[i] = boot_device2nibble(boot_device[i]);
526         if (bds[i] == 0) {
527             error_setg(errp, "Invalid boot device for PC: '%c'",
528                        boot_device[i]);
529             return;
530         }
531     }
532     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
533     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
534 }
535 
536 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
537 {
538     set_boot_dev(opaque, boot_device, errp);
539 }
540 
541 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
542 {
543     int val, nb, i;
544     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
545                                    FLOPPY_DRIVE_TYPE_NONE };
546 
547     /* floppy type */
548     if (floppy) {
549         for (i = 0; i < 2; i++) {
550             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
551         }
552     }
553     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
554         cmos_get_fd_drive_type(fd_type[1]);
555     rtc_set_memory(rtc_state, 0x10, val);
556 
557     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
558     nb = 0;
559     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
560         nb++;
561     }
562     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
563         nb++;
564     }
565     switch (nb) {
566     case 0:
567         break;
568     case 1:
569         val |= 0x01; /* 1 drive, ready for boot */
570         break;
571     case 2:
572         val |= 0x41; /* 2 drives, ready for boot */
573         break;
574     }
575     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
576 }
577 
578 typedef struct pc_cmos_init_late_arg {
579     ISADevice *rtc_state;
580     BusState *idebus[2];
581 } pc_cmos_init_late_arg;
582 
583 typedef struct check_fdc_state {
584     ISADevice *floppy;
585     bool multiple;
586 } CheckFdcState;
587 
588 static int check_fdc(Object *obj, void *opaque)
589 {
590     CheckFdcState *state = opaque;
591     Object *fdc;
592     uint32_t iobase;
593     Error *local_err = NULL;
594 
595     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
596     if (!fdc) {
597         return 0;
598     }
599 
600     iobase = object_property_get_uint(obj, "iobase", &local_err);
601     if (local_err || iobase != 0x3f0) {
602         error_free(local_err);
603         return 0;
604     }
605 
606     if (state->floppy) {
607         state->multiple = true;
608     } else {
609         state->floppy = ISA_DEVICE(obj);
610     }
611     return 0;
612 }
613 
614 static const char * const fdc_container_path[] = {
615     "/unattached", "/peripheral", "/peripheral-anon"
616 };
617 
618 /*
619  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
620  * and ACPI objects.
621  */
622 ISADevice *pc_find_fdc0(void)
623 {
624     int i;
625     Object *container;
626     CheckFdcState state = { 0 };
627 
628     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
629         container = container_get(qdev_get_machine(), fdc_container_path[i]);
630         object_child_foreach(container, check_fdc, &state);
631     }
632 
633     if (state.multiple) {
634         warn_report("multiple floppy disk controllers with "
635                     "iobase=0x3f0 have been found");
636         error_printf("the one being picked for CMOS setup might not reflect "
637                      "your intent");
638     }
639 
640     return state.floppy;
641 }
642 
643 static void pc_cmos_init_late(void *opaque)
644 {
645     pc_cmos_init_late_arg *arg = opaque;
646     ISADevice *s = arg->rtc_state;
647     int16_t cylinders;
648     int8_t heads, sectors;
649     int val;
650     int i, trans;
651 
652     val = 0;
653     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
654                                            &cylinders, &heads, &sectors) >= 0) {
655         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
656         val |= 0xf0;
657     }
658     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
659                                            &cylinders, &heads, &sectors) >= 0) {
660         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
661         val |= 0x0f;
662     }
663     rtc_set_memory(s, 0x12, val);
664 
665     val = 0;
666     for (i = 0; i < 4; i++) {
667         /* NOTE: ide_get_geometry() returns the physical
668            geometry.  It is always such that: 1 <= sects <= 63, 1
669            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
670            geometry can be different if a translation is done. */
671         if (arg->idebus[i / 2] &&
672             ide_get_geometry(arg->idebus[i / 2], i % 2,
673                              &cylinders, &heads, &sectors) >= 0) {
674             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
675             assert((trans & ~3) == 0);
676             val |= trans << (i * 2);
677         }
678     }
679     rtc_set_memory(s, 0x39, val);
680 
681     pc_cmos_init_floppy(s, pc_find_fdc0());
682 
683     qemu_unregister_reset(pc_cmos_init_late, opaque);
684 }
685 
686 void pc_cmos_init(PCMachineState *pcms,
687                   BusState *idebus0, BusState *idebus1,
688                   ISADevice *s)
689 {
690     int val;
691     static pc_cmos_init_late_arg arg;
692 
693     /* various important CMOS locations needed by PC/Bochs bios */
694 
695     /* memory size */
696     /* base memory (first MiB) */
697     val = MIN(pcms->below_4g_mem_size / KiB, 640);
698     rtc_set_memory(s, 0x15, val);
699     rtc_set_memory(s, 0x16, val >> 8);
700     /* extended memory (next 64MiB) */
701     if (pcms->below_4g_mem_size > 1 * MiB) {
702         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
703     } else {
704         val = 0;
705     }
706     if (val > 65535)
707         val = 65535;
708     rtc_set_memory(s, 0x17, val);
709     rtc_set_memory(s, 0x18, val >> 8);
710     rtc_set_memory(s, 0x30, val);
711     rtc_set_memory(s, 0x31, val >> 8);
712     /* memory between 16MiB and 4GiB */
713     if (pcms->below_4g_mem_size > 16 * MiB) {
714         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
715     } else {
716         val = 0;
717     }
718     if (val > 65535)
719         val = 65535;
720     rtc_set_memory(s, 0x34, val);
721     rtc_set_memory(s, 0x35, val >> 8);
722     /* memory above 4GiB */
723     val = pcms->above_4g_mem_size / 65536;
724     rtc_set_memory(s, 0x5b, val);
725     rtc_set_memory(s, 0x5c, val >> 8);
726     rtc_set_memory(s, 0x5d, val >> 16);
727 
728     object_property_add_link(OBJECT(pcms), "rtc_state",
729                              TYPE_ISA_DEVICE,
730                              (Object **)&pcms->rtc,
731                              object_property_allow_set_link,
732                              OBJ_PROP_LINK_STRONG, &error_abort);
733     object_property_set_link(OBJECT(pcms), OBJECT(s),
734                              "rtc_state", &error_abort);
735 
736     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
737 
738     val = 0;
739     val |= 0x02; /* FPU is there */
740     val |= 0x04; /* PS/2 mouse installed */
741     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
742 
743     /* hard drives and FDC */
744     arg.rtc_state = s;
745     arg.idebus[0] = idebus0;
746     arg.idebus[1] = idebus1;
747     qemu_register_reset(pc_cmos_init_late, &arg);
748 }
749 
750 #define TYPE_PORT92 "port92"
751 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
752 
753 /* port 92 stuff: could be split off */
754 typedef struct Port92State {
755     ISADevice parent_obj;
756 
757     MemoryRegion io;
758     uint8_t outport;
759     qemu_irq a20_out;
760 } Port92State;
761 
762 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
763                          unsigned size)
764 {
765     Port92State *s = opaque;
766     int oldval = s->outport;
767 
768     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
769     s->outport = val;
770     qemu_set_irq(s->a20_out, (val >> 1) & 1);
771     if ((val & 1) && !(oldval & 1)) {
772         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
773     }
774 }
775 
776 static uint64_t port92_read(void *opaque, hwaddr addr,
777                             unsigned size)
778 {
779     Port92State *s = opaque;
780     uint32_t ret;
781 
782     ret = s->outport;
783     DPRINTF("port92: read 0x%02x\n", ret);
784     return ret;
785 }
786 
787 static void port92_init(ISADevice *dev, qemu_irq a20_out)
788 {
789     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
790 }
791 
792 static const VMStateDescription vmstate_port92_isa = {
793     .name = "port92",
794     .version_id = 1,
795     .minimum_version_id = 1,
796     .fields = (VMStateField[]) {
797         VMSTATE_UINT8(outport, Port92State),
798         VMSTATE_END_OF_LIST()
799     }
800 };
801 
802 static void port92_reset(DeviceState *d)
803 {
804     Port92State *s = PORT92(d);
805 
806     s->outport &= ~1;
807 }
808 
809 static const MemoryRegionOps port92_ops = {
810     .read = port92_read,
811     .write = port92_write,
812     .impl = {
813         .min_access_size = 1,
814         .max_access_size = 1,
815     },
816     .endianness = DEVICE_LITTLE_ENDIAN,
817 };
818 
819 static void port92_initfn(Object *obj)
820 {
821     Port92State *s = PORT92(obj);
822 
823     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
824 
825     s->outport = 0;
826 
827     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
828 }
829 
830 static void port92_realizefn(DeviceState *dev, Error **errp)
831 {
832     ISADevice *isadev = ISA_DEVICE(dev);
833     Port92State *s = PORT92(dev);
834 
835     isa_register_ioport(isadev, &s->io, 0x92);
836 }
837 
838 static void port92_class_initfn(ObjectClass *klass, void *data)
839 {
840     DeviceClass *dc = DEVICE_CLASS(klass);
841 
842     dc->realize = port92_realizefn;
843     dc->reset = port92_reset;
844     dc->vmsd = &vmstate_port92_isa;
845     /*
846      * Reason: unlike ordinary ISA devices, this one needs additional
847      * wiring: its A20 output line needs to be wired up by
848      * port92_init().
849      */
850     dc->user_creatable = false;
851 }
852 
853 static const TypeInfo port92_info = {
854     .name          = TYPE_PORT92,
855     .parent        = TYPE_ISA_DEVICE,
856     .instance_size = sizeof(Port92State),
857     .instance_init = port92_initfn,
858     .class_init    = port92_class_initfn,
859 };
860 
861 static void port92_register_types(void)
862 {
863     type_register_static(&port92_info);
864 }
865 
866 type_init(port92_register_types)
867 
868 static void handle_a20_line_change(void *opaque, int irq, int level)
869 {
870     X86CPU *cpu = opaque;
871 
872     /* XXX: send to all CPUs ? */
873     /* XXX: add logic to handle multiple A20 line sources */
874     x86_cpu_set_a20(cpu, level);
875 }
876 
877 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
878 {
879     int index = le32_to_cpu(e820_reserve.count);
880     struct e820_entry *entry;
881 
882     if (type != E820_RAM) {
883         /* old FW_CFG_E820_TABLE entry -- reservations only */
884         if (index >= E820_NR_ENTRIES) {
885             return -EBUSY;
886         }
887         entry = &e820_reserve.entry[index++];
888 
889         entry->address = cpu_to_le64(address);
890         entry->length = cpu_to_le64(length);
891         entry->type = cpu_to_le32(type);
892 
893         e820_reserve.count = cpu_to_le32(index);
894     }
895 
896     /* new "etc/e820" file -- include ram too */
897     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
898     e820_table[e820_entries].address = cpu_to_le64(address);
899     e820_table[e820_entries].length = cpu_to_le64(length);
900     e820_table[e820_entries].type = cpu_to_le32(type);
901     e820_entries++;
902 
903     return e820_entries;
904 }
905 
906 int e820_get_num_entries(void)
907 {
908     return e820_entries;
909 }
910 
911 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
912 {
913     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
914         *address = le64_to_cpu(e820_table[idx].address);
915         *length = le64_to_cpu(e820_table[idx].length);
916         return true;
917     }
918     return false;
919 }
920 
921 /* Calculates initial APIC ID for a specific CPU index
922  *
923  * Currently we need to be able to calculate the APIC ID from the CPU index
924  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
925  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
926  * all CPUs up to max_cpus.
927  */
928 static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
929                                            unsigned int cpu_index)
930 {
931     MachineState *ms = MACHINE(pcms);
932     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
933     uint32_t correct_id;
934     static bool warned;
935 
936     correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores,
937                                          ms->smp.threads, cpu_index);
938     if (pcmc->compat_apic_id_mode) {
939         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
940             error_report("APIC IDs set in compatibility mode, "
941                          "CPU topology won't match the configuration");
942             warned = true;
943         }
944         return cpu_index;
945     } else {
946         return correct_id;
947     }
948 }
949 
950 static void pc_build_smbios(PCMachineState *pcms)
951 {
952     uint8_t *smbios_tables, *smbios_anchor;
953     size_t smbios_tables_len, smbios_anchor_len;
954     struct smbios_phys_mem_area *mem_array;
955     unsigned i, array_count;
956     MachineState *ms = MACHINE(pcms);
957     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
958 
959     /* tell smbios about cpuid version and features */
960     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
961 
962     smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
963     if (smbios_tables) {
964         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
965                          smbios_tables, smbios_tables_len);
966     }
967 
968     /* build the array of physical mem area from e820 table */
969     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
970     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
971         uint64_t addr, len;
972 
973         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
974             mem_array[array_count].address = addr;
975             mem_array[array_count].length = len;
976             array_count++;
977         }
978     }
979     smbios_get_tables(ms, mem_array, array_count,
980                       &smbios_tables, &smbios_tables_len,
981                       &smbios_anchor, &smbios_anchor_len);
982     g_free(mem_array);
983 
984     if (smbios_anchor) {
985         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
986                         smbios_tables, smbios_tables_len);
987         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
988                         smbios_anchor, smbios_anchor_len);
989     }
990 }
991 
992 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
993 {
994     FWCfgState *fw_cfg;
995     uint64_t *numa_fw_cfg;
996     int i;
997     const CPUArchIdList *cpus;
998     MachineClass *mc = MACHINE_GET_CLASS(pcms);
999 
1000     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1001     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1002 
1003     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1004      *
1005      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1006      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1007      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1008      * for CPU hotplug also uses APIC ID and not "CPU index".
1009      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1010      * but the "limit to the APIC ID values SeaBIOS may see".
1011      *
1012      * So for compatibility reasons with old BIOSes we are stuck with
1013      * "etc/max-cpus" actually being apic_id_limit
1014      */
1015     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1016     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1017     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1018                      acpi_tables, acpi_tables_len);
1019     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1020 
1021     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1022                      &e820_reserve, sizeof(e820_reserve));
1023     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1024                     sizeof(struct e820_entry) * e820_entries);
1025 
1026     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1027     /* allocate memory for the NUMA channel: one (64bit) word for the number
1028      * of nodes, one word for each VCPU->node and one word for each node to
1029      * hold the amount of memory.
1030      */
1031     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1032     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1033     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1034     for (i = 0; i < cpus->len; i++) {
1035         unsigned int apic_id = cpus->cpus[i].arch_id;
1036         assert(apic_id < pcms->apic_id_limit);
1037         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1038     }
1039     for (i = 0; i < nb_numa_nodes; i++) {
1040         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1041             cpu_to_le64(numa_info[i].node_mem);
1042     }
1043     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1044                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
1045                      sizeof(*numa_fw_cfg));
1046 
1047     return fw_cfg;
1048 }
1049 
1050 static long get_file_size(FILE *f)
1051 {
1052     long where, size;
1053 
1054     /* XXX: on Unix systems, using fstat() probably makes more sense */
1055 
1056     where = ftell(f);
1057     fseek(f, 0, SEEK_END);
1058     size = ftell(f);
1059     fseek(f, where, SEEK_SET);
1060 
1061     return size;
1062 }
1063 
1064 struct setup_data {
1065     uint64_t next;
1066     uint32_t type;
1067     uint32_t len;
1068     uint8_t data[0];
1069 } __attribute__((packed));
1070 
1071 
1072 /*
1073  * The entry point into the kernel for PVH boot is different from
1074  * the native entry point.  The PVH entry is defined by the x86/HVM
1075  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1076  *
1077  * This function is passed to load_elf() when it is called from
1078  * load_elfboot() which then additionally checks for an ELF Note of
1079  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1080  * parse the PVH entry address from the ELF Note.
1081  *
1082  * Due to trickery in elf_opts.h, load_elf() is actually available as
1083  * load_elf32() or load_elf64() and this routine needs to be able
1084  * to deal with being called as 32 or 64 bit.
1085  *
1086  * The address of the PVH entry point is saved to the 'pvh_start_addr'
1087  * global variable.  (although the entry point is 32-bit, the kernel
1088  * binary can be either 32-bit or 64-bit).
1089  */
1090 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1091 {
1092     size_t *elf_note_data_addr;
1093 
1094     /* Check if ELF Note header passed in is valid */
1095     if (arg1 == NULL) {
1096         return 0;
1097     }
1098 
1099     if (is64) {
1100         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1101         uint64_t nhdr_size64 = sizeof(struct elf64_note);
1102         uint64_t phdr_align = *(uint64_t *)arg2;
1103         uint64_t nhdr_namesz = nhdr64->n_namesz;
1104 
1105         elf_note_data_addr =
1106             ((void *)nhdr64) + nhdr_size64 +
1107             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1108     } else {
1109         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1110         uint32_t nhdr_size32 = sizeof(struct elf32_note);
1111         uint32_t phdr_align = *(uint32_t *)arg2;
1112         uint32_t nhdr_namesz = nhdr32->n_namesz;
1113 
1114         elf_note_data_addr =
1115             ((void *)nhdr32) + nhdr_size32 +
1116             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1117     }
1118 
1119     pvh_start_addr = *elf_note_data_addr;
1120 
1121     return pvh_start_addr;
1122 }
1123 
1124 static bool load_elfboot(const char *kernel_filename,
1125                    int kernel_file_size,
1126                    uint8_t *header,
1127                    size_t pvh_xen_start_addr,
1128                    FWCfgState *fw_cfg)
1129 {
1130     uint32_t flags = 0;
1131     uint32_t mh_load_addr = 0;
1132     uint32_t elf_kernel_size = 0;
1133     uint64_t elf_entry;
1134     uint64_t elf_low, elf_high;
1135     int kernel_size;
1136 
1137     if (ldl_p(header) != 0x464c457f) {
1138         return false; /* no elfboot */
1139     }
1140 
1141     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1142     flags = elf_is64 ?
1143         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1144 
1145     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1146         error_report("elfboot unsupported flags = %x", flags);
1147         exit(1);
1148     }
1149 
1150     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1151     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1152                            NULL, &elf_note_type, &elf_entry,
1153                            &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1154                            0, 0);
1155 
1156     if (kernel_size < 0) {
1157         error_report("Error while loading elf kernel");
1158         exit(1);
1159     }
1160     mh_load_addr = elf_low;
1161     elf_kernel_size = elf_high - elf_low;
1162 
1163     if (pvh_start_addr == 0) {
1164         error_report("Error loading uncompressed kernel without PVH ELF Note");
1165         exit(1);
1166     }
1167     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1168     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1169     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1170 
1171     return true;
1172 }
1173 
1174 static void load_linux(PCMachineState *pcms,
1175                        FWCfgState *fw_cfg)
1176 {
1177     uint16_t protocol;
1178     int setup_size, kernel_size, cmdline_size;
1179     int dtb_size, setup_data_offset;
1180     uint32_t initrd_max;
1181     uint8_t header[8192], *setup, *kernel;
1182     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1183     FILE *f;
1184     char *vmode;
1185     MachineState *machine = MACHINE(pcms);
1186     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1187     struct setup_data *setup_data;
1188     const char *kernel_filename = machine->kernel_filename;
1189     const char *initrd_filename = machine->initrd_filename;
1190     const char *dtb_filename = machine->dtb;
1191     const char *kernel_cmdline = machine->kernel_cmdline;
1192 
1193     /* Align to 16 bytes as a paranoia measure */
1194     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1195 
1196     /* load the kernel header */
1197     f = fopen(kernel_filename, "rb");
1198     if (!f || !(kernel_size = get_file_size(f)) ||
1199         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1200         MIN(ARRAY_SIZE(header), kernel_size)) {
1201         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1202                 kernel_filename, strerror(errno));
1203         exit(1);
1204     }
1205 
1206     /* kernel protocol version */
1207 #if 0
1208     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1209 #endif
1210     if (ldl_p(header+0x202) == 0x53726448) {
1211         protocol = lduw_p(header+0x206);
1212     } else {
1213         /*
1214          * This could be a multiboot kernel. If it is, let's stop treating it
1215          * like a Linux kernel.
1216          * Note: some multiboot images could be in the ELF format (the same of
1217          * PVH), so we try multiboot first since we check the multiboot magic
1218          * header before to load it.
1219          */
1220         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1221                            kernel_cmdline, kernel_size, header)) {
1222             return;
1223         }
1224         /*
1225          * Check if the file is an uncompressed kernel file (ELF) and load it,
1226          * saving the PVH entry point used by the x86/HVM direct boot ABI.
1227          * If load_elfboot() is successful, populate the fw_cfg info.
1228          */
1229         if (pcmc->pvh_enabled &&
1230             load_elfboot(kernel_filename, kernel_size,
1231                          header, pvh_start_addr, fw_cfg)) {
1232             fclose(f);
1233 
1234             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1235                 strlen(kernel_cmdline) + 1);
1236             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1237 
1238             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1239             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1240                              header, sizeof(header));
1241 
1242             /* load initrd */
1243             if (initrd_filename) {
1244                 gsize initrd_size;
1245                 gchar *initrd_data;
1246                 GError *gerr = NULL;
1247 
1248                 if (!g_file_get_contents(initrd_filename, &initrd_data,
1249                             &initrd_size, &gerr)) {
1250                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1251                             initrd_filename, gerr->message);
1252                     exit(1);
1253                 }
1254 
1255                 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1256                 if (initrd_size >= initrd_max) {
1257                     fprintf(stderr, "qemu: initrd is too large, cannot support."
1258                             "(max: %"PRIu32", need %"PRId64")\n",
1259                             initrd_max, (uint64_t)initrd_size);
1260                     exit(1);
1261                 }
1262 
1263                 initrd_addr = (initrd_max - initrd_size) & ~4095;
1264 
1265                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1266                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1267                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1268                                  initrd_size);
1269             }
1270 
1271             option_rom[nb_option_roms].bootindex = 0;
1272             option_rom[nb_option_roms].name = "pvh.bin";
1273             nb_option_roms++;
1274 
1275             return;
1276         }
1277         protocol = 0;
1278     }
1279 
1280     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1281         /* Low kernel */
1282         real_addr    = 0x90000;
1283         cmdline_addr = 0x9a000 - cmdline_size;
1284         prot_addr    = 0x10000;
1285     } else if (protocol < 0x202) {
1286         /* High but ancient kernel */
1287         real_addr    = 0x90000;
1288         cmdline_addr = 0x9a000 - cmdline_size;
1289         prot_addr    = 0x100000;
1290     } else {
1291         /* High and recent kernel */
1292         real_addr    = 0x10000;
1293         cmdline_addr = 0x20000;
1294         prot_addr    = 0x100000;
1295     }
1296 
1297 #if 0
1298     fprintf(stderr,
1299             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
1300             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
1301             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
1302             real_addr,
1303             cmdline_addr,
1304             prot_addr);
1305 #endif
1306 
1307     /* highest address for loading the initrd */
1308     if (protocol >= 0x20c &&
1309         lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1310         /*
1311          * Linux has supported initrd up to 4 GB for a very long time (2007,
1312          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1313          * though it only sets initrd_max to 2 GB to "work around bootloader
1314          * bugs". Luckily, QEMU firmware(which does something like bootloader)
1315          * has supported this.
1316          *
1317          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1318          * be loaded into any address.
1319          *
1320          * In addition, initrd_max is uint32_t simply because QEMU doesn't
1321          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1322          * field).
1323          *
1324          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1325          */
1326         initrd_max = UINT32_MAX;
1327     } else if (protocol >= 0x203) {
1328         initrd_max = ldl_p(header+0x22c);
1329     } else {
1330         initrd_max = 0x37ffffff;
1331     }
1332 
1333     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1334         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1335     }
1336 
1337     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1338     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1339     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1340 
1341     if (protocol >= 0x202) {
1342         stl_p(header+0x228, cmdline_addr);
1343     } else {
1344         stw_p(header+0x20, 0xA33F);
1345         stw_p(header+0x22, cmdline_addr-real_addr);
1346     }
1347 
1348     /* handle vga= parameter */
1349     vmode = strstr(kernel_cmdline, "vga=");
1350     if (vmode) {
1351         unsigned int video_mode;
1352         /* skip "vga=" */
1353         vmode += 4;
1354         if (!strncmp(vmode, "normal", 6)) {
1355             video_mode = 0xffff;
1356         } else if (!strncmp(vmode, "ext", 3)) {
1357             video_mode = 0xfffe;
1358         } else if (!strncmp(vmode, "ask", 3)) {
1359             video_mode = 0xfffd;
1360         } else {
1361             video_mode = strtol(vmode, NULL, 0);
1362         }
1363         stw_p(header+0x1fa, video_mode);
1364     }
1365 
1366     /* loader type */
1367     /* High nybble = B reserved for QEMU; low nybble is revision number.
1368        If this code is substantially changed, you may want to consider
1369        incrementing the revision. */
1370     if (protocol >= 0x200) {
1371         header[0x210] = 0xB0;
1372     }
1373     /* heap */
1374     if (protocol >= 0x201) {
1375         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
1376         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1377     }
1378 
1379     /* load initrd */
1380     if (initrd_filename) {
1381         gsize initrd_size;
1382         gchar *initrd_data;
1383         GError *gerr = NULL;
1384 
1385         if (protocol < 0x200) {
1386             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1387             exit(1);
1388         }
1389 
1390         if (!g_file_get_contents(initrd_filename, &initrd_data,
1391                                  &initrd_size, &gerr)) {
1392             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1393                     initrd_filename, gerr->message);
1394             exit(1);
1395         }
1396         if (initrd_size >= initrd_max) {
1397             fprintf(stderr, "qemu: initrd is too large, cannot support."
1398                     "(max: %"PRIu32", need %"PRId64")\n",
1399                     initrd_max, (uint64_t)initrd_size);
1400             exit(1);
1401         }
1402 
1403         initrd_addr = (initrd_max-initrd_size) & ~4095;
1404 
1405         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1406         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1407         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1408 
1409         stl_p(header+0x218, initrd_addr);
1410         stl_p(header+0x21c, initrd_size);
1411     }
1412 
1413     /* load kernel and setup */
1414     setup_size = header[0x1f1];
1415     if (setup_size == 0) {
1416         setup_size = 4;
1417     }
1418     setup_size = (setup_size+1)*512;
1419     if (setup_size > kernel_size) {
1420         fprintf(stderr, "qemu: invalid kernel header\n");
1421         exit(1);
1422     }
1423     kernel_size -= setup_size;
1424 
1425     setup  = g_malloc(setup_size);
1426     kernel = g_malloc(kernel_size);
1427     fseek(f, 0, SEEK_SET);
1428     if (fread(setup, 1, setup_size, f) != setup_size) {
1429         fprintf(stderr, "fread() failed\n");
1430         exit(1);
1431     }
1432     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1433         fprintf(stderr, "fread() failed\n");
1434         exit(1);
1435     }
1436     fclose(f);
1437 
1438     /* append dtb to kernel */
1439     if (dtb_filename) {
1440         if (protocol < 0x209) {
1441             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1442             exit(1);
1443         }
1444 
1445         dtb_size = get_image_size(dtb_filename);
1446         if (dtb_size <= 0) {
1447             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1448                     dtb_filename, strerror(errno));
1449             exit(1);
1450         }
1451 
1452         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1453         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1454         kernel = g_realloc(kernel, kernel_size);
1455 
1456         stq_p(header+0x250, prot_addr + setup_data_offset);
1457 
1458         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1459         setup_data->next = 0;
1460         setup_data->type = cpu_to_le32(SETUP_DTB);
1461         setup_data->len = cpu_to_le32(dtb_size);
1462 
1463         load_image_size(dtb_filename, setup_data->data, dtb_size);
1464     }
1465 
1466     memcpy(setup, header, MIN(sizeof(header), setup_size));
1467 
1468     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1469     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1470     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1471 
1472     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1473     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1474     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1475 
1476     option_rom[nb_option_roms].bootindex = 0;
1477     option_rom[nb_option_roms].name = "linuxboot.bin";
1478     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1479         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1480     }
1481     nb_option_roms++;
1482 }
1483 
1484 #define NE2000_NB_MAX 6
1485 
1486 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1487                                               0x280, 0x380 };
1488 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1489 
1490 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1491 {
1492     static int nb_ne2k = 0;
1493 
1494     if (nb_ne2k == NE2000_NB_MAX)
1495         return;
1496     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1497                     ne2000_irq[nb_ne2k], nd);
1498     nb_ne2k++;
1499 }
1500 
1501 DeviceState *cpu_get_current_apic(void)
1502 {
1503     if (current_cpu) {
1504         X86CPU *cpu = X86_CPU(current_cpu);
1505         return cpu->apic_state;
1506     } else {
1507         return NULL;
1508     }
1509 }
1510 
1511 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1512 {
1513     X86CPU *cpu = opaque;
1514 
1515     if (level) {
1516         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1517     }
1518 }
1519 
1520 static void pc_new_cpu(PCMachineState *pcms, int64_t apic_id, Error **errp)
1521 {
1522     Object *cpu = NULL;
1523     Error *local_err = NULL;
1524     CPUX86State *env = NULL;
1525 
1526     cpu = object_new(MACHINE(pcms)->cpu_type);
1527 
1528     env = &X86_CPU(cpu)->env;
1529     env->nr_dies = pcms->smp_dies;
1530 
1531     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1532     object_property_set_bool(cpu, true, "realized", &local_err);
1533 
1534     object_unref(cpu);
1535     error_propagate(errp, local_err);
1536 }
1537 
1538 /*
1539  * This function is very similar to smp_parse()
1540  * in hw/core/machine.c but includes CPU die support.
1541  */
1542 void pc_smp_parse(MachineState *ms, QemuOpts *opts)
1543 {
1544     PCMachineState *pcms = PC_MACHINE(ms);
1545 
1546     if (opts) {
1547         unsigned cpus    = qemu_opt_get_number(opts, "cpus", 0);
1548         unsigned sockets = qemu_opt_get_number(opts, "sockets", 0);
1549         unsigned dies = qemu_opt_get_number(opts, "dies", 1);
1550         unsigned cores   = qemu_opt_get_number(opts, "cores", 0);
1551         unsigned threads = qemu_opt_get_number(opts, "threads", 0);
1552 
1553         /* compute missing values, prefer sockets over cores over threads */
1554         if (cpus == 0 || sockets == 0) {
1555             cores = cores > 0 ? cores : 1;
1556             threads = threads > 0 ? threads : 1;
1557             if (cpus == 0) {
1558                 sockets = sockets > 0 ? sockets : 1;
1559                 cpus = cores * threads * dies * sockets;
1560             } else {
1561                 ms->smp.max_cpus =
1562                         qemu_opt_get_number(opts, "maxcpus", cpus);
1563                 sockets = ms->smp.max_cpus / (cores * threads * dies);
1564             }
1565         } else if (cores == 0) {
1566             threads = threads > 0 ? threads : 1;
1567             cores = cpus / (sockets * dies * threads);
1568             cores = cores > 0 ? cores : 1;
1569         } else if (threads == 0) {
1570             threads = cpus / (cores * dies * sockets);
1571             threads = threads > 0 ? threads : 1;
1572         } else if (sockets * dies * cores * threads < cpus) {
1573             error_report("cpu topology: "
1574                          "sockets (%u) * dies (%u) * cores (%u) * threads (%u) < "
1575                          "smp_cpus (%u)",
1576                          sockets, dies, cores, threads, cpus);
1577             exit(1);
1578         }
1579 
1580         ms->smp.max_cpus =
1581                 qemu_opt_get_number(opts, "maxcpus", cpus);
1582 
1583         if (ms->smp.max_cpus < cpus) {
1584             error_report("maxcpus must be equal to or greater than smp");
1585             exit(1);
1586         }
1587 
1588         if (sockets * dies * cores * threads > ms->smp.max_cpus) {
1589             error_report("cpu topology: "
1590                          "sockets (%u) * dies (%u) * cores (%u) * threads (%u) > "
1591                          "maxcpus (%u)",
1592                          sockets, dies, cores, threads,
1593                          ms->smp.max_cpus);
1594             exit(1);
1595         }
1596 
1597         if (sockets * dies * cores * threads != ms->smp.max_cpus) {
1598             warn_report("Invalid CPU topology deprecated: "
1599                         "sockets (%u) * dies (%u) * cores (%u) * threads (%u) "
1600                         "!= maxcpus (%u)",
1601                         sockets, dies, cores, threads,
1602                         ms->smp.max_cpus);
1603         }
1604 
1605         ms->smp.cpus = cpus;
1606         ms->smp.cores = cores;
1607         ms->smp.threads = threads;
1608         pcms->smp_dies = dies;
1609     }
1610 
1611     if (ms->smp.cpus > 1) {
1612         Error *blocker = NULL;
1613         error_setg(&blocker, QERR_REPLAY_NOT_SUPPORTED, "smp");
1614         replay_add_blocker(blocker);
1615     }
1616 }
1617 
1618 void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp)
1619 {
1620     PCMachineState *pcms = PC_MACHINE(ms);
1621     int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
1622     Error *local_err = NULL;
1623 
1624     if (id < 0) {
1625         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1626         return;
1627     }
1628 
1629     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1630         error_setg(errp, "Unable to add CPU: %" PRIi64
1631                    ", resulting APIC ID (%" PRIi64 ") is too large",
1632                    id, apic_id);
1633         return;
1634     }
1635 
1636     pc_new_cpu(PC_MACHINE(ms), apic_id, &local_err);
1637     if (local_err) {
1638         error_propagate(errp, local_err);
1639         return;
1640     }
1641 }
1642 
1643 void pc_cpus_init(PCMachineState *pcms)
1644 {
1645     int i;
1646     const CPUArchIdList *possible_cpus;
1647     MachineState *ms = MACHINE(pcms);
1648     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1649     PCMachineClass *pcmc = PC_MACHINE_CLASS(mc);
1650 
1651     x86_cpu_set_default_version(pcmc->default_cpu_version);
1652 
1653     /* Calculates the limit to CPU APIC ID values
1654      *
1655      * Limit for the APIC ID value, so that all
1656      * CPU APIC IDs are < pcms->apic_id_limit.
1657      *
1658      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1659      */
1660     pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
1661                                                      ms->smp.max_cpus - 1) + 1;
1662     possible_cpus = mc->possible_cpu_arch_ids(ms);
1663     for (i = 0; i < ms->smp.cpus; i++) {
1664         pc_new_cpu(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
1665     }
1666 }
1667 
1668 static void pc_build_feature_control_file(PCMachineState *pcms)
1669 {
1670     MachineState *ms = MACHINE(pcms);
1671     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1672     CPUX86State *env = &cpu->env;
1673     uint32_t unused, ecx, edx;
1674     uint64_t feature_control_bits = 0;
1675     uint64_t *val;
1676 
1677     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1678     if (ecx & CPUID_EXT_VMX) {
1679         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1680     }
1681 
1682     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1683         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1684         (env->mcg_cap & MCG_LMCE_P)) {
1685         feature_control_bits |= FEATURE_CONTROL_LMCE;
1686     }
1687 
1688     if (!feature_control_bits) {
1689         return;
1690     }
1691 
1692     val = g_malloc(sizeof(*val));
1693     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1694     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1695 }
1696 
1697 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1698 {
1699     if (cpus_count > 0xff) {
1700         /* If the number of CPUs can't be represented in 8 bits, the
1701          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1702          * to make old BIOSes fail more predictably.
1703          */
1704         rtc_set_memory(rtc, 0x5f, 0);
1705     } else {
1706         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1707     }
1708 }
1709 
1710 static
1711 void pc_machine_done(Notifier *notifier, void *data)
1712 {
1713     PCMachineState *pcms = container_of(notifier,
1714                                         PCMachineState, machine_done);
1715     PCIBus *bus = pcms->bus;
1716 
1717     /* set the number of CPUs */
1718     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1719 
1720     if (bus) {
1721         int extra_hosts = 0;
1722 
1723         QLIST_FOREACH(bus, &bus->child, sibling) {
1724             /* look for expander root buses */
1725             if (pci_bus_is_root(bus)) {
1726                 extra_hosts++;
1727             }
1728         }
1729         if (extra_hosts && pcms->fw_cfg) {
1730             uint64_t *val = g_malloc(sizeof(*val));
1731             *val = cpu_to_le64(extra_hosts);
1732             fw_cfg_add_file(pcms->fw_cfg,
1733                     "etc/extra-pci-roots", val, sizeof(*val));
1734         }
1735     }
1736 
1737     acpi_setup();
1738     if (pcms->fw_cfg) {
1739         pc_build_smbios(pcms);
1740         pc_build_feature_control_file(pcms);
1741         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1742         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1743     }
1744 
1745     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1746         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1747 
1748         if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1749             iommu->intr_eim != ON_OFF_AUTO_ON) {
1750             error_report("current -smp configuration requires "
1751                          "Extended Interrupt Mode enabled. "
1752                          "You can add an IOMMU using: "
1753                          "-device intel-iommu,intremap=on,eim=on");
1754             exit(EXIT_FAILURE);
1755         }
1756     }
1757 }
1758 
1759 void pc_guest_info_init(PCMachineState *pcms)
1760 {
1761     int i;
1762 
1763     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1764     pcms->numa_nodes = nb_numa_nodes;
1765     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1766                                     sizeof *pcms->node_mem);
1767     for (i = 0; i < nb_numa_nodes; i++) {
1768         pcms->node_mem[i] = numa_info[i].node_mem;
1769     }
1770 
1771     pcms->machine_done.notify = pc_machine_done;
1772     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1773 }
1774 
1775 /* setup pci memory address space mapping into system address space */
1776 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1777                             MemoryRegion *pci_address_space)
1778 {
1779     /* Set to lower priority than RAM */
1780     memory_region_add_subregion_overlap(system_memory, 0x0,
1781                                         pci_address_space, -1);
1782 }
1783 
1784 void xen_load_linux(PCMachineState *pcms)
1785 {
1786     int i;
1787     FWCfgState *fw_cfg;
1788 
1789     assert(MACHINE(pcms)->kernel_filename != NULL);
1790 
1791     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1792     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1793     rom_set_fw(fw_cfg);
1794 
1795     load_linux(pcms, fw_cfg);
1796     for (i = 0; i < nb_option_roms; i++) {
1797         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1798                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1799                !strcmp(option_rom[i].name, "pvh.bin") ||
1800                !strcmp(option_rom[i].name, "multiboot.bin"));
1801         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1802     }
1803     pcms->fw_cfg = fw_cfg;
1804 }
1805 
1806 void pc_memory_init(PCMachineState *pcms,
1807                     MemoryRegion *system_memory,
1808                     MemoryRegion *rom_memory,
1809                     MemoryRegion **ram_memory)
1810 {
1811     int linux_boot, i;
1812     MemoryRegion *ram, *option_rom_mr;
1813     MemoryRegion *ram_below_4g, *ram_above_4g;
1814     FWCfgState *fw_cfg;
1815     MachineState *machine = MACHINE(pcms);
1816     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1817 
1818     assert(machine->ram_size == pcms->below_4g_mem_size +
1819                                 pcms->above_4g_mem_size);
1820 
1821     linux_boot = (machine->kernel_filename != NULL);
1822 
1823     /* Allocate RAM.  We allocate it as a single memory region and use
1824      * aliases to address portions of it, mostly for backwards compatibility
1825      * with older qemus that used qemu_ram_alloc().
1826      */
1827     ram = g_malloc(sizeof(*ram));
1828     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1829                                          machine->ram_size);
1830     *ram_memory = ram;
1831     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1832     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1833                              0, pcms->below_4g_mem_size);
1834     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1835     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1836     if (pcms->above_4g_mem_size > 0) {
1837         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1838         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1839                                  pcms->below_4g_mem_size,
1840                                  pcms->above_4g_mem_size);
1841         memory_region_add_subregion(system_memory, 0x100000000ULL,
1842                                     ram_above_4g);
1843         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1844     }
1845 
1846     if (!pcmc->has_reserved_memory &&
1847         (machine->ram_slots ||
1848          (machine->maxram_size > machine->ram_size))) {
1849         MachineClass *mc = MACHINE_GET_CLASS(machine);
1850 
1851         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1852                      mc->name);
1853         exit(EXIT_FAILURE);
1854     }
1855 
1856     /* always allocate the device memory information */
1857     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1858 
1859     /* initialize device memory address space */
1860     if (pcmc->has_reserved_memory &&
1861         (machine->ram_size < machine->maxram_size)) {
1862         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1863 
1864         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1865             error_report("unsupported amount of memory slots: %"PRIu64,
1866                          machine->ram_slots);
1867             exit(EXIT_FAILURE);
1868         }
1869 
1870         if (QEMU_ALIGN_UP(machine->maxram_size,
1871                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1872             error_report("maximum memory size must by aligned to multiple of "
1873                          "%d bytes", TARGET_PAGE_SIZE);
1874             exit(EXIT_FAILURE);
1875         }
1876 
1877         machine->device_memory->base =
1878             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1879 
1880         if (pcmc->enforce_aligned_dimm) {
1881             /* size device region assuming 1G page max alignment per slot */
1882             device_mem_size += (1 * GiB) * machine->ram_slots;
1883         }
1884 
1885         if ((machine->device_memory->base + device_mem_size) <
1886             device_mem_size) {
1887             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1888                          machine->maxram_size);
1889             exit(EXIT_FAILURE);
1890         }
1891 
1892         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1893                            "device-memory", device_mem_size);
1894         memory_region_add_subregion(system_memory, machine->device_memory->base,
1895                                     &machine->device_memory->mr);
1896     }
1897 
1898     /* Initialize PC system firmware */
1899     pc_system_firmware_init(pcms, rom_memory);
1900 
1901     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1902     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1903                            &error_fatal);
1904     if (pcmc->pci_enabled) {
1905         memory_region_set_readonly(option_rom_mr, true);
1906     }
1907     memory_region_add_subregion_overlap(rom_memory,
1908                                         PC_ROM_MIN_VGA,
1909                                         option_rom_mr,
1910                                         1);
1911 
1912     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1913 
1914     rom_set_fw(fw_cfg);
1915 
1916     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1917         uint64_t *val = g_malloc(sizeof(*val));
1918         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1919         uint64_t res_mem_end = machine->device_memory->base;
1920 
1921         if (!pcmc->broken_reserved_end) {
1922             res_mem_end += memory_region_size(&machine->device_memory->mr);
1923         }
1924         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1925         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1926     }
1927 
1928     if (linux_boot) {
1929         load_linux(pcms, fw_cfg);
1930     }
1931 
1932     for (i = 0; i < nb_option_roms; i++) {
1933         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1934     }
1935     pcms->fw_cfg = fw_cfg;
1936 
1937     /* Init default IOAPIC address space */
1938     pcms->ioapic_as = &address_space_memory;
1939 }
1940 
1941 /*
1942  * The 64bit pci hole starts after "above 4G RAM" and
1943  * potentially the space reserved for memory hotplug.
1944  */
1945 uint64_t pc_pci_hole64_start(void)
1946 {
1947     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1948     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1949     MachineState *ms = MACHINE(pcms);
1950     uint64_t hole64_start = 0;
1951 
1952     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1953         hole64_start = ms->device_memory->base;
1954         if (!pcmc->broken_reserved_end) {
1955             hole64_start += memory_region_size(&ms->device_memory->mr);
1956         }
1957     } else {
1958         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1959     }
1960 
1961     return ROUND_UP(hole64_start, 1 * GiB);
1962 }
1963 
1964 qemu_irq pc_allocate_cpu_irq(void)
1965 {
1966     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1967 }
1968 
1969 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1970 {
1971     DeviceState *dev = NULL;
1972 
1973     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1974     if (pci_bus) {
1975         PCIDevice *pcidev = pci_vga_init(pci_bus);
1976         dev = pcidev ? &pcidev->qdev : NULL;
1977     } else if (isa_bus) {
1978         ISADevice *isadev = isa_vga_init(isa_bus);
1979         dev = isadev ? DEVICE(isadev) : NULL;
1980     }
1981     rom_reset_order_override();
1982     return dev;
1983 }
1984 
1985 static const MemoryRegionOps ioport80_io_ops = {
1986     .write = ioport80_write,
1987     .read = ioport80_read,
1988     .endianness = DEVICE_NATIVE_ENDIAN,
1989     .impl = {
1990         .min_access_size = 1,
1991         .max_access_size = 1,
1992     },
1993 };
1994 
1995 static const MemoryRegionOps ioportF0_io_ops = {
1996     .write = ioportF0_write,
1997     .read = ioportF0_read,
1998     .endianness = DEVICE_NATIVE_ENDIAN,
1999     .impl = {
2000         .min_access_size = 1,
2001         .max_access_size = 1,
2002     },
2003 };
2004 
2005 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
2006 {
2007     int i;
2008     DriveInfo *fd[MAX_FD];
2009     qemu_irq *a20_line;
2010     ISADevice *i8042, *port92, *vmmouse;
2011 
2012     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
2013     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
2014 
2015     for (i = 0; i < MAX_FD; i++) {
2016         fd[i] = drive_get(IF_FLOPPY, 0, i);
2017         create_fdctrl |= !!fd[i];
2018     }
2019     if (create_fdctrl) {
2020         fdctrl_init_isa(isa_bus, fd);
2021     }
2022 
2023     i8042 = isa_create_simple(isa_bus, "i8042");
2024     if (!no_vmport) {
2025         vmport_init(isa_bus);
2026         vmmouse = isa_try_create(isa_bus, "vmmouse");
2027     } else {
2028         vmmouse = NULL;
2029     }
2030     if (vmmouse) {
2031         DeviceState *dev = DEVICE(vmmouse);
2032         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
2033         qdev_init_nofail(dev);
2034     }
2035     port92 = isa_create_simple(isa_bus, "port92");
2036 
2037     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
2038     i8042_setup_a20_line(i8042, a20_line[0]);
2039     port92_init(port92, a20_line[1]);
2040     g_free(a20_line);
2041 }
2042 
2043 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
2044                           ISADevice **rtc_state,
2045                           bool create_fdctrl,
2046                           bool no_vmport,
2047                           bool has_pit,
2048                           uint32_t hpet_irqs)
2049 {
2050     int i;
2051     DeviceState *hpet = NULL;
2052     int pit_isa_irq = 0;
2053     qemu_irq pit_alt_irq = NULL;
2054     qemu_irq rtc_irq = NULL;
2055     ISADevice *pit = NULL;
2056     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
2057     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
2058 
2059     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
2060     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
2061 
2062     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
2063     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
2064 
2065     /*
2066      * Check if an HPET shall be created.
2067      *
2068      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
2069      * when the HPET wants to take over. Thus we have to disable the latter.
2070      */
2071     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
2072         /* In order to set property, here not using sysbus_try_create_simple */
2073         hpet = qdev_try_create(NULL, TYPE_HPET);
2074         if (hpet) {
2075             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
2076              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
2077              * IRQ8 and IRQ2.
2078              */
2079             uint8_t compat = object_property_get_uint(OBJECT(hpet),
2080                     HPET_INTCAP, NULL);
2081             if (!compat) {
2082                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
2083             }
2084             qdev_init_nofail(hpet);
2085             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2086 
2087             for (i = 0; i < GSI_NUM_PINS; i++) {
2088                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2089             }
2090             pit_isa_irq = -1;
2091             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2092             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2093         }
2094     }
2095     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2096 
2097     qemu_register_boot_set(pc_boot_set, *rtc_state);
2098 
2099     if (!xen_enabled() && has_pit) {
2100         if (kvm_pit_in_kernel()) {
2101             pit = kvm_pit_init(isa_bus, 0x40);
2102         } else {
2103             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2104         }
2105         if (hpet) {
2106             /* connect PIT to output control line of the HPET */
2107             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2108         }
2109         pcspk_init(isa_bus, pit);
2110     }
2111 
2112     i8257_dma_init(isa_bus, 0);
2113 
2114     /* Super I/O */
2115     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2116 }
2117 
2118 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2119 {
2120     int i;
2121 
2122     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2123     for (i = 0; i < nb_nics; i++) {
2124         NICInfo *nd = &nd_table[i];
2125         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2126 
2127         if (g_str_equal(model, "ne2k_isa")) {
2128             pc_init_ne2k_isa(isa_bus, nd);
2129         } else {
2130             pci_nic_init_nofail(nd, pci_bus, model, NULL);
2131         }
2132     }
2133     rom_reset_order_override();
2134 }
2135 
2136 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2137 {
2138     DeviceState *dev;
2139     SysBusDevice *d;
2140     unsigned int i;
2141 
2142     if (kvm_ioapic_in_kernel()) {
2143         dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2144     } else {
2145         dev = qdev_create(NULL, TYPE_IOAPIC);
2146     }
2147     if (parent_name) {
2148         object_property_add_child(object_resolve_path(parent_name, NULL),
2149                                   "ioapic", OBJECT(dev), NULL);
2150     }
2151     qdev_init_nofail(dev);
2152     d = SYS_BUS_DEVICE(dev);
2153     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2154 
2155     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2156         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2157     }
2158 }
2159 
2160 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2161                                Error **errp)
2162 {
2163     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2164     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2165     const MachineState *ms = MACHINE(hotplug_dev);
2166     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2167     const uint64_t legacy_align = TARGET_PAGE_SIZE;
2168     Error *local_err = NULL;
2169 
2170     /*
2171      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2172      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2173      * addition to cover this case.
2174      */
2175     if (!pcms->acpi_dev || !acpi_enabled) {
2176         error_setg(errp,
2177                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2178         return;
2179     }
2180 
2181     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2182         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2183         return;
2184     }
2185 
2186     hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2187     if (local_err) {
2188         error_propagate(errp, local_err);
2189         return;
2190     }
2191 
2192     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2193                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2194 }
2195 
2196 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2197                            DeviceState *dev, Error **errp)
2198 {
2199     Error *local_err = NULL;
2200     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2201     MachineState *ms = MACHINE(hotplug_dev);
2202     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2203 
2204     pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2205     if (local_err) {
2206         goto out;
2207     }
2208 
2209     if (is_nvdimm) {
2210         nvdimm_plug(ms->nvdimms_state);
2211     }
2212 
2213     hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2214 out:
2215     error_propagate(errp, local_err);
2216 }
2217 
2218 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2219                                      DeviceState *dev, Error **errp)
2220 {
2221     Error *local_err = NULL;
2222     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2223 
2224     /*
2225      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2226      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2227      * addition to cover this case.
2228      */
2229     if (!pcms->acpi_dev || !acpi_enabled) {
2230         error_setg(&local_err,
2231                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2232         goto out;
2233     }
2234 
2235     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2236         error_setg(&local_err,
2237                    "nvdimm device hot unplug is not supported yet.");
2238         goto out;
2239     }
2240 
2241     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2242                                    &local_err);
2243 out:
2244     error_propagate(errp, local_err);
2245 }
2246 
2247 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2248                              DeviceState *dev, Error **errp)
2249 {
2250     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2251     Error *local_err = NULL;
2252 
2253     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2254     if (local_err) {
2255         goto out;
2256     }
2257 
2258     pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2259     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2260  out:
2261     error_propagate(errp, local_err);
2262 }
2263 
2264 static int pc_apic_cmp(const void *a, const void *b)
2265 {
2266    CPUArchId *apic_a = (CPUArchId *)a;
2267    CPUArchId *apic_b = (CPUArchId *)b;
2268 
2269    return apic_a->arch_id - apic_b->arch_id;
2270 }
2271 
2272 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2273  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2274  * entry corresponding to CPU's apic_id returns NULL.
2275  */
2276 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2277 {
2278     CPUArchId apic_id, *found_cpu;
2279 
2280     apic_id.arch_id = id;
2281     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2282         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2283         pc_apic_cmp);
2284     if (found_cpu && idx) {
2285         *idx = found_cpu - ms->possible_cpus->cpus;
2286     }
2287     return found_cpu;
2288 }
2289 
2290 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2291                         DeviceState *dev, Error **errp)
2292 {
2293     CPUArchId *found_cpu;
2294     Error *local_err = NULL;
2295     X86CPU *cpu = X86_CPU(dev);
2296     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2297 
2298     if (pcms->acpi_dev) {
2299         hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2300         if (local_err) {
2301             goto out;
2302         }
2303     }
2304 
2305     /* increment the number of CPUs */
2306     pcms->boot_cpus++;
2307     if (pcms->rtc) {
2308         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2309     }
2310     if (pcms->fw_cfg) {
2311         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2312     }
2313 
2314     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2315     found_cpu->cpu = OBJECT(dev);
2316 out:
2317     error_propagate(errp, local_err);
2318 }
2319 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2320                                      DeviceState *dev, Error **errp)
2321 {
2322     int idx = -1;
2323     Error *local_err = NULL;
2324     X86CPU *cpu = X86_CPU(dev);
2325     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2326 
2327     if (!pcms->acpi_dev) {
2328         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2329         goto out;
2330     }
2331 
2332     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2333     assert(idx != -1);
2334     if (idx == 0) {
2335         error_setg(&local_err, "Boot CPU is unpluggable");
2336         goto out;
2337     }
2338 
2339     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2340                                    &local_err);
2341     if (local_err) {
2342         goto out;
2343     }
2344 
2345  out:
2346     error_propagate(errp, local_err);
2347 
2348 }
2349 
2350 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2351                              DeviceState *dev, Error **errp)
2352 {
2353     CPUArchId *found_cpu;
2354     Error *local_err = NULL;
2355     X86CPU *cpu = X86_CPU(dev);
2356     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2357 
2358     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2359     if (local_err) {
2360         goto out;
2361     }
2362 
2363     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2364     found_cpu->cpu = NULL;
2365     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2366 
2367     /* decrement the number of CPUs */
2368     pcms->boot_cpus--;
2369     /* Update the number of CPUs in CMOS */
2370     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2371     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2372  out:
2373     error_propagate(errp, local_err);
2374 }
2375 
2376 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2377                             DeviceState *dev, Error **errp)
2378 {
2379     int idx;
2380     CPUState *cs;
2381     CPUArchId *cpu_slot;
2382     X86CPUTopoInfo topo;
2383     X86CPU *cpu = X86_CPU(dev);
2384     CPUX86State *env = &cpu->env;
2385     MachineState *ms = MACHINE(hotplug_dev);
2386     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2387     unsigned int smp_cores = ms->smp.cores;
2388     unsigned int smp_threads = ms->smp.threads;
2389 
2390     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2391         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2392                    ms->cpu_type);
2393         return;
2394     }
2395 
2396     env->nr_dies = pcms->smp_dies;
2397 
2398     /*
2399      * If APIC ID is not set,
2400      * set it based on socket/die/core/thread properties.
2401      */
2402     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2403         int max_socket = (ms->smp.max_cpus - 1) /
2404                                 smp_threads / smp_cores / pcms->smp_dies;
2405 
2406         if (cpu->socket_id < 0) {
2407             error_setg(errp, "CPU socket-id is not set");
2408             return;
2409         } else if (cpu->socket_id > max_socket) {
2410             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2411                        cpu->socket_id, max_socket);
2412             return;
2413         } else if (cpu->die_id > pcms->smp_dies - 1) {
2414             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
2415                        cpu->die_id, max_socket);
2416             return;
2417         }
2418         if (cpu->core_id < 0) {
2419             error_setg(errp, "CPU core-id is not set");
2420             return;
2421         } else if (cpu->core_id > (smp_cores - 1)) {
2422             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2423                        cpu->core_id, smp_cores - 1);
2424             return;
2425         }
2426         if (cpu->thread_id < 0) {
2427             error_setg(errp, "CPU thread-id is not set");
2428             return;
2429         } else if (cpu->thread_id > (smp_threads - 1)) {
2430             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2431                        cpu->thread_id, smp_threads - 1);
2432             return;
2433         }
2434 
2435         topo.pkg_id = cpu->socket_id;
2436         topo.die_id = cpu->die_id;
2437         topo.core_id = cpu->core_id;
2438         topo.smt_id = cpu->thread_id;
2439         cpu->apic_id = apicid_from_topo_ids(pcms->smp_dies, smp_cores,
2440                                             smp_threads, &topo);
2441     }
2442 
2443     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2444     if (!cpu_slot) {
2445         MachineState *ms = MACHINE(pcms);
2446 
2447         x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2448                                  smp_cores, smp_threads, &topo);
2449         error_setg(errp,
2450             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
2451             " APIC ID %" PRIu32 ", valid index range 0:%d",
2452             topo.pkg_id, topo.die_id, topo.core_id, topo.smt_id,
2453             cpu->apic_id, ms->possible_cpus->len - 1);
2454         return;
2455     }
2456 
2457     if (cpu_slot->cpu) {
2458         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2459                    idx, cpu->apic_id);
2460         return;
2461     }
2462 
2463     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2464      * so that machine_query_hotpluggable_cpus would show correct values
2465      */
2466     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2467      * once -smp refactoring is complete and there will be CPU private
2468      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2469     x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2470                              smp_cores, smp_threads, &topo);
2471     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2472         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2473             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2474         return;
2475     }
2476     cpu->socket_id = topo.pkg_id;
2477 
2478     if (cpu->die_id != -1 && cpu->die_id != topo.die_id) {
2479         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
2480             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo.die_id);
2481         return;
2482     }
2483     cpu->die_id = topo.die_id;
2484 
2485     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2486         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2487             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2488         return;
2489     }
2490     cpu->core_id = topo.core_id;
2491 
2492     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2493         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2494             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2495         return;
2496     }
2497     cpu->thread_id = topo.smt_id;
2498 
2499     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
2500         !kvm_hv_vpindex_settable()) {
2501         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2502         return;
2503     }
2504 
2505     cs = CPU(cpu);
2506     cs->cpu_index = idx;
2507 
2508     numa_cpu_pre_plug(cpu_slot, dev, errp);
2509 }
2510 
2511 static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
2512                                         DeviceState *dev, Error **errp)
2513 {
2514     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2515     Error *local_err = NULL;
2516 
2517     if (!hotplug_dev2) {
2518         /*
2519          * Without a bus hotplug handler, we cannot control the plug/unplug
2520          * order. This should never be the case on x86, however better add
2521          * a safety net.
2522          */
2523         error_setg(errp, "virtio-pmem-pci not supported on this bus.");
2524         return;
2525     }
2526     /*
2527      * First, see if we can plug this memory device at all. If that
2528      * succeeds, branch of to the actual hotplug handler.
2529      */
2530     memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2531                            &local_err);
2532     if (!local_err) {
2533         hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2534     }
2535     error_propagate(errp, local_err);
2536 }
2537 
2538 static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
2539                                     DeviceState *dev, Error **errp)
2540 {
2541     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2542     Error *local_err = NULL;
2543 
2544     /*
2545      * Plug the memory device first and then branch off to the actual
2546      * hotplug handler. If that one fails, we can easily undo the memory
2547      * device bits.
2548      */
2549     memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2550     hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2551     if (local_err) {
2552         memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2553     }
2554     error_propagate(errp, local_err);
2555 }
2556 
2557 static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
2558                                               DeviceState *dev, Error **errp)
2559 {
2560     /* We don't support virtio pmem hot unplug */
2561     error_setg(errp, "virtio pmem device unplug not supported.");
2562 }
2563 
2564 static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
2565                                       DeviceState *dev, Error **errp)
2566 {
2567     /* We don't support virtio pmem hot unplug */
2568 }
2569 
2570 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2571                                           DeviceState *dev, Error **errp)
2572 {
2573     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2574         pc_memory_pre_plug(hotplug_dev, dev, errp);
2575     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2576         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2577     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2578         pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
2579     }
2580 }
2581 
2582 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2583                                       DeviceState *dev, Error **errp)
2584 {
2585     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2586         pc_memory_plug(hotplug_dev, dev, errp);
2587     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2588         pc_cpu_plug(hotplug_dev, dev, errp);
2589     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2590         pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
2591     }
2592 }
2593 
2594 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2595                                                 DeviceState *dev, Error **errp)
2596 {
2597     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2598         pc_memory_unplug_request(hotplug_dev, dev, errp);
2599     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2600         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2601     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2602         pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
2603     } else {
2604         error_setg(errp, "acpi: device unplug request for not supported device"
2605                    " type: %s", object_get_typename(OBJECT(dev)));
2606     }
2607 }
2608 
2609 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2610                                         DeviceState *dev, Error **errp)
2611 {
2612     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2613         pc_memory_unplug(hotplug_dev, dev, errp);
2614     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2615         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2616     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2617         pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
2618     } else {
2619         error_setg(errp, "acpi: device unplug for not supported device"
2620                    " type: %s", object_get_typename(OBJECT(dev)));
2621     }
2622 }
2623 
2624 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2625                                              DeviceState *dev)
2626 {
2627     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2628         object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
2629         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2630         return HOTPLUG_HANDLER(machine);
2631     }
2632 
2633     return NULL;
2634 }
2635 
2636 static void
2637 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2638                                          const char *name, void *opaque,
2639                                          Error **errp)
2640 {
2641     MachineState *ms = MACHINE(obj);
2642     int64_t value = 0;
2643 
2644     if (ms->device_memory) {
2645         value = memory_region_size(&ms->device_memory->mr);
2646     }
2647 
2648     visit_type_int(v, name, &value, errp);
2649 }
2650 
2651 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2652                                             const char *name, void *opaque,
2653                                             Error **errp)
2654 {
2655     PCMachineState *pcms = PC_MACHINE(obj);
2656     uint64_t value = pcms->max_ram_below_4g;
2657 
2658     visit_type_size(v, name, &value, errp);
2659 }
2660 
2661 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2662                                             const char *name, void *opaque,
2663                                             Error **errp)
2664 {
2665     PCMachineState *pcms = PC_MACHINE(obj);
2666     Error *error = NULL;
2667     uint64_t value;
2668 
2669     visit_type_size(v, name, &value, &error);
2670     if (error) {
2671         error_propagate(errp, error);
2672         return;
2673     }
2674     if (value > 4 * GiB) {
2675         error_setg(&error,
2676                    "Machine option 'max-ram-below-4g=%"PRIu64
2677                    "' expects size less than or equal to 4G", value);
2678         error_propagate(errp, error);
2679         return;
2680     }
2681 
2682     if (value < 1 * MiB) {
2683         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2684                     "BIOS may not work with less than 1MiB", value);
2685     }
2686 
2687     pcms->max_ram_below_4g = value;
2688 }
2689 
2690 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2691                                   void *opaque, Error **errp)
2692 {
2693     PCMachineState *pcms = PC_MACHINE(obj);
2694     OnOffAuto vmport = pcms->vmport;
2695 
2696     visit_type_OnOffAuto(v, name, &vmport, errp);
2697 }
2698 
2699 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2700                                   void *opaque, Error **errp)
2701 {
2702     PCMachineState *pcms = PC_MACHINE(obj);
2703 
2704     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2705 }
2706 
2707 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2708 {
2709     bool smm_available = false;
2710 
2711     if (pcms->smm == ON_OFF_AUTO_OFF) {
2712         return false;
2713     }
2714 
2715     if (tcg_enabled() || qtest_enabled()) {
2716         smm_available = true;
2717     } else if (kvm_enabled()) {
2718         smm_available = kvm_has_smm();
2719     }
2720 
2721     if (smm_available) {
2722         return true;
2723     }
2724 
2725     if (pcms->smm == ON_OFF_AUTO_ON) {
2726         error_report("System Management Mode not supported by this hypervisor.");
2727         exit(1);
2728     }
2729     return false;
2730 }
2731 
2732 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2733                                void *opaque, Error **errp)
2734 {
2735     PCMachineState *pcms = PC_MACHINE(obj);
2736     OnOffAuto smm = pcms->smm;
2737 
2738     visit_type_OnOffAuto(v, name, &smm, errp);
2739 }
2740 
2741 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2742                                void *opaque, Error **errp)
2743 {
2744     PCMachineState *pcms = PC_MACHINE(obj);
2745 
2746     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2747 }
2748 
2749 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2750 {
2751     PCMachineState *pcms = PC_MACHINE(obj);
2752 
2753     return pcms->smbus_enabled;
2754 }
2755 
2756 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2757 {
2758     PCMachineState *pcms = PC_MACHINE(obj);
2759 
2760     pcms->smbus_enabled = value;
2761 }
2762 
2763 static bool pc_machine_get_sata(Object *obj, Error **errp)
2764 {
2765     PCMachineState *pcms = PC_MACHINE(obj);
2766 
2767     return pcms->sata_enabled;
2768 }
2769 
2770 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2771 {
2772     PCMachineState *pcms = PC_MACHINE(obj);
2773 
2774     pcms->sata_enabled = value;
2775 }
2776 
2777 static bool pc_machine_get_pit(Object *obj, Error **errp)
2778 {
2779     PCMachineState *pcms = PC_MACHINE(obj);
2780 
2781     return pcms->pit_enabled;
2782 }
2783 
2784 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2785 {
2786     PCMachineState *pcms = PC_MACHINE(obj);
2787 
2788     pcms->pit_enabled = value;
2789 }
2790 
2791 static void pc_machine_initfn(Object *obj)
2792 {
2793     PCMachineState *pcms = PC_MACHINE(obj);
2794 
2795     pcms->max_ram_below_4g = 0; /* use default */
2796     pcms->smm = ON_OFF_AUTO_AUTO;
2797 #ifdef CONFIG_VMPORT
2798     pcms->vmport = ON_OFF_AUTO_AUTO;
2799 #else
2800     pcms->vmport = ON_OFF_AUTO_OFF;
2801 #endif /* CONFIG_VMPORT */
2802     /* acpi build is enabled by default if machine supports it */
2803     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2804     pcms->smbus_enabled = true;
2805     pcms->sata_enabled = true;
2806     pcms->pit_enabled = true;
2807     pcms->smp_dies = 1;
2808 
2809     pc_system_flash_create(pcms);
2810 }
2811 
2812 static void pc_machine_reset(MachineState *machine)
2813 {
2814     CPUState *cs;
2815     X86CPU *cpu;
2816 
2817     qemu_devices_reset();
2818 
2819     /* Reset APIC after devices have been reset to cancel
2820      * any changes that qemu_devices_reset() might have done.
2821      */
2822     CPU_FOREACH(cs) {
2823         cpu = X86_CPU(cs);
2824 
2825         if (cpu->apic_state) {
2826             device_reset(cpu->apic_state);
2827         }
2828     }
2829 }
2830 
2831 static CpuInstanceProperties
2832 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2833 {
2834     MachineClass *mc = MACHINE_GET_CLASS(ms);
2835     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2836 
2837     assert(cpu_index < possible_cpus->len);
2838     return possible_cpus->cpus[cpu_index].props;
2839 }
2840 
2841 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2842 {
2843    X86CPUTopoInfo topo;
2844    PCMachineState *pcms = PC_MACHINE(ms);
2845 
2846    assert(idx < ms->possible_cpus->len);
2847    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2848                             pcms->smp_dies, ms->smp.cores,
2849                             ms->smp.threads, &topo);
2850    return topo.pkg_id % nb_numa_nodes;
2851 }
2852 
2853 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2854 {
2855     PCMachineState *pcms = PC_MACHINE(ms);
2856     int i;
2857     unsigned int max_cpus = ms->smp.max_cpus;
2858 
2859     if (ms->possible_cpus) {
2860         /*
2861          * make sure that max_cpus hasn't changed since the first use, i.e.
2862          * -smp hasn't been parsed after it
2863         */
2864         assert(ms->possible_cpus->len == max_cpus);
2865         return ms->possible_cpus;
2866     }
2867 
2868     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2869                                   sizeof(CPUArchId) * max_cpus);
2870     ms->possible_cpus->len = max_cpus;
2871     for (i = 0; i < ms->possible_cpus->len; i++) {
2872         X86CPUTopoInfo topo;
2873 
2874         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2875         ms->possible_cpus->cpus[i].vcpus_count = 1;
2876         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
2877         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2878                                  pcms->smp_dies, ms->smp.cores,
2879                                  ms->smp.threads, &topo);
2880         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2881         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2882         ms->possible_cpus->cpus[i].props.has_die_id = true;
2883         ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
2884         ms->possible_cpus->cpus[i].props.has_core_id = true;
2885         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2886         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2887         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2888     }
2889     return ms->possible_cpus;
2890 }
2891 
2892 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2893 {
2894     /* cpu index isn't used */
2895     CPUState *cs;
2896 
2897     CPU_FOREACH(cs) {
2898         X86CPU *cpu = X86_CPU(cs);
2899 
2900         if (!cpu->apic_state) {
2901             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2902         } else {
2903             apic_deliver_nmi(cpu->apic_state);
2904         }
2905     }
2906 }
2907 
2908 static void pc_machine_class_init(ObjectClass *oc, void *data)
2909 {
2910     MachineClass *mc = MACHINE_CLASS(oc);
2911     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2912     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2913     NMIClass *nc = NMI_CLASS(oc);
2914 
2915     pcmc->pci_enabled = true;
2916     pcmc->has_acpi_build = true;
2917     pcmc->rsdp_in_ram = true;
2918     pcmc->smbios_defaults = true;
2919     pcmc->smbios_uuid_encoded = true;
2920     pcmc->gigabyte_align = true;
2921     pcmc->has_reserved_memory = true;
2922     pcmc->kvmclock_enabled = true;
2923     pcmc->enforce_aligned_dimm = true;
2924     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2925      * to be used at the moment, 32K should be enough for a while.  */
2926     pcmc->acpi_data_size = 0x20000 + 0x8000;
2927     pcmc->save_tsc_khz = true;
2928     pcmc->linuxboot_dma_enabled = true;
2929     pcmc->pvh_enabled = true;
2930     assert(!mc->get_hotplug_handler);
2931     mc->get_hotplug_handler = pc_get_hotplug_handler;
2932     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2933     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2934     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2935     mc->auto_enable_numa_with_memhp = true;
2936     mc->has_hotpluggable_cpus = true;
2937     mc->default_boot_order = "cad";
2938     mc->hot_add_cpu = pc_hot_add_cpu;
2939     mc->smp_parse = pc_smp_parse;
2940     mc->block_default_type = IF_IDE;
2941     mc->max_cpus = 255;
2942     mc->reset = pc_machine_reset;
2943     hc->pre_plug = pc_machine_device_pre_plug_cb;
2944     hc->plug = pc_machine_device_plug_cb;
2945     hc->unplug_request = pc_machine_device_unplug_request_cb;
2946     hc->unplug = pc_machine_device_unplug_cb;
2947     nc->nmi_monitor_handler = x86_nmi;
2948     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2949     mc->nvdimm_supported = true;
2950     mc->numa_mem_supported = true;
2951 
2952     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2953         pc_machine_get_device_memory_region_size, NULL,
2954         NULL, NULL, &error_abort);
2955 
2956     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2957         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2958         NULL, NULL, &error_abort);
2959 
2960     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2961         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2962 
2963     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2964         pc_machine_get_smm, pc_machine_set_smm,
2965         NULL, NULL, &error_abort);
2966     object_class_property_set_description(oc, PC_MACHINE_SMM,
2967         "Enable SMM (pc & q35)", &error_abort);
2968 
2969     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2970         pc_machine_get_vmport, pc_machine_set_vmport,
2971         NULL, NULL, &error_abort);
2972     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2973         "Enable vmport (pc & q35)", &error_abort);
2974 
2975     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2976         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2977 
2978     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2979         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2980 
2981     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2982         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2983 }
2984 
2985 static const TypeInfo pc_machine_info = {
2986     .name = TYPE_PC_MACHINE,
2987     .parent = TYPE_MACHINE,
2988     .abstract = true,
2989     .instance_size = sizeof(PCMachineState),
2990     .instance_init = pc_machine_initfn,
2991     .class_size = sizeof(PCMachineClass),
2992     .class_init = pc_machine_class_init,
2993     .interfaces = (InterfaceInfo[]) {
2994          { TYPE_HOTPLUG_HANDLER },
2995          { TYPE_NMI },
2996          { }
2997     },
2998 };
2999 
3000 static void pc_machine_register_types(void)
3001 {
3002     type_register_static(&pc_machine_info);
3003 }
3004 
3005 type_init(pc_machine_register_types)
3006