1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/smbios/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 void gsi_handler(void *opaque, int n, int level) 113 { 114 GSIState *s = opaque; 115 116 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 117 if (n < ISA_NUM_IRQS) { 118 qemu_set_irq(s->i8259_irq[n], level); 119 } 120 qemu_set_irq(s->ioapic_irq[n], level); 121 } 122 123 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 124 unsigned size) 125 { 126 } 127 128 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 129 { 130 return 0xffffffffffffffffULL; 131 } 132 133 /* MSDOS compatibility mode FPU exception support */ 134 static qemu_irq ferr_irq; 135 136 void pc_register_ferr_irq(qemu_irq irq) 137 { 138 ferr_irq = irq; 139 } 140 141 /* XXX: add IGNNE support */ 142 void cpu_set_ferr(CPUX86State *s) 143 { 144 qemu_irq_raise(ferr_irq); 145 } 146 147 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 148 unsigned size) 149 { 150 qemu_irq_lower(ferr_irq); 151 } 152 153 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 154 { 155 return 0xffffffffffffffffULL; 156 } 157 158 /* TSC handling */ 159 uint64_t cpu_get_tsc(CPUX86State *env) 160 { 161 return cpu_get_ticks(); 162 } 163 164 /* IRQ handling */ 165 int cpu_get_pic_interrupt(CPUX86State *env) 166 { 167 X86CPU *cpu = x86_env_get_cpu(env); 168 int intno; 169 170 if (!kvm_irqchip_in_kernel()) { 171 intno = apic_get_interrupt(cpu->apic_state); 172 if (intno >= 0) { 173 return intno; 174 } 175 /* read the irq from the PIC */ 176 if (!apic_accept_pic_intr(cpu->apic_state)) { 177 return -1; 178 } 179 } 180 181 intno = pic_read_irq(isa_pic); 182 return intno; 183 } 184 185 static void pic_irq_request(void *opaque, int irq, int level) 186 { 187 CPUState *cs = first_cpu; 188 X86CPU *cpu = X86_CPU(cs); 189 190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 191 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 192 CPU_FOREACH(cs) { 193 cpu = X86_CPU(cs); 194 if (apic_accept_pic_intr(cpu->apic_state)) { 195 apic_deliver_pic_intr(cpu->apic_state, level); 196 } 197 } 198 } else { 199 if (level) { 200 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 201 } else { 202 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 203 } 204 } 205 } 206 207 /* PC cmos mappings */ 208 209 #define REG_EQUIPMENT_BYTE 0x14 210 211 int cmos_get_fd_drive_type(FloppyDriveType fd0) 212 { 213 int val; 214 215 switch (fd0) { 216 case FLOPPY_DRIVE_TYPE_144: 217 /* 1.44 Mb 3"5 drive */ 218 val = 4; 219 break; 220 case FLOPPY_DRIVE_TYPE_288: 221 /* 2.88 Mb 3"5 drive */ 222 val = 5; 223 break; 224 case FLOPPY_DRIVE_TYPE_120: 225 /* 1.2 Mb 5"5 drive */ 226 val = 2; 227 break; 228 case FLOPPY_DRIVE_TYPE_NONE: 229 default: 230 val = 0; 231 break; 232 } 233 return val; 234 } 235 236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 237 int16_t cylinders, int8_t heads, int8_t sectors) 238 { 239 rtc_set_memory(s, type_ofs, 47); 240 rtc_set_memory(s, info_ofs, cylinders); 241 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 242 rtc_set_memory(s, info_ofs + 2, heads); 243 rtc_set_memory(s, info_ofs + 3, 0xff); 244 rtc_set_memory(s, info_ofs + 4, 0xff); 245 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 246 rtc_set_memory(s, info_ofs + 6, cylinders); 247 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 248 rtc_set_memory(s, info_ofs + 8, sectors); 249 } 250 251 /* convert boot_device letter to something recognizable by the bios */ 252 static int boot_device2nibble(char boot_device) 253 { 254 switch(boot_device) { 255 case 'a': 256 case 'b': 257 return 0x01; /* floppy boot */ 258 case 'c': 259 return 0x02; /* hard drive boot */ 260 case 'd': 261 return 0x03; /* CD-ROM boot */ 262 case 'n': 263 return 0x04; /* Network boot */ 264 } 265 return 0; 266 } 267 268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 269 { 270 #define PC_MAX_BOOT_DEVICES 3 271 int nbds, bds[3] = { 0, }; 272 int i; 273 274 nbds = strlen(boot_device); 275 if (nbds > PC_MAX_BOOT_DEVICES) { 276 error_setg(errp, "Too many boot devices for PC"); 277 return; 278 } 279 for (i = 0; i < nbds; i++) { 280 bds[i] = boot_device2nibble(boot_device[i]); 281 if (bds[i] == 0) { 282 error_setg(errp, "Invalid boot device for PC: '%c'", 283 boot_device[i]); 284 return; 285 } 286 } 287 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 288 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 289 } 290 291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 292 { 293 set_boot_dev(opaque, boot_device, errp); 294 } 295 296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 297 { 298 int val, nb, i; 299 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 300 FLOPPY_DRIVE_TYPE_NONE }; 301 302 /* floppy type */ 303 if (floppy) { 304 for (i = 0; i < 2; i++) { 305 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 306 } 307 } 308 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 309 cmos_get_fd_drive_type(fd_type[1]); 310 rtc_set_memory(rtc_state, 0x10, val); 311 312 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 313 nb = 0; 314 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 315 nb++; 316 } 317 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 318 nb++; 319 } 320 switch (nb) { 321 case 0: 322 break; 323 case 1: 324 val |= 0x01; /* 1 drive, ready for boot */ 325 break; 326 case 2: 327 val |= 0x41; /* 2 drives, ready for boot */ 328 break; 329 } 330 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 331 } 332 333 typedef struct pc_cmos_init_late_arg { 334 ISADevice *rtc_state; 335 BusState *idebus[2]; 336 } pc_cmos_init_late_arg; 337 338 typedef struct check_fdc_state { 339 ISADevice *floppy; 340 bool multiple; 341 } CheckFdcState; 342 343 static int check_fdc(Object *obj, void *opaque) 344 { 345 CheckFdcState *state = opaque; 346 Object *fdc; 347 uint32_t iobase; 348 Error *local_err = NULL; 349 350 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 351 if (!fdc) { 352 return 0; 353 } 354 355 iobase = object_property_get_uint(obj, "iobase", &local_err); 356 if (local_err || iobase != 0x3f0) { 357 error_free(local_err); 358 return 0; 359 } 360 361 if (state->floppy) { 362 state->multiple = true; 363 } else { 364 state->floppy = ISA_DEVICE(obj); 365 } 366 return 0; 367 } 368 369 static const char * const fdc_container_path[] = { 370 "/unattached", "/peripheral", "/peripheral-anon" 371 }; 372 373 /* 374 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 375 * and ACPI objects. 376 */ 377 ISADevice *pc_find_fdc0(void) 378 { 379 int i; 380 Object *container; 381 CheckFdcState state = { 0 }; 382 383 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 384 container = container_get(qdev_get_machine(), fdc_container_path[i]); 385 object_child_foreach(container, check_fdc, &state); 386 } 387 388 if (state.multiple) { 389 warn_report("multiple floppy disk controllers with " 390 "iobase=0x3f0 have been found"); 391 error_printf("the one being picked for CMOS setup might not reflect " 392 "your intent"); 393 } 394 395 return state.floppy; 396 } 397 398 static void pc_cmos_init_late(void *opaque) 399 { 400 pc_cmos_init_late_arg *arg = opaque; 401 ISADevice *s = arg->rtc_state; 402 int16_t cylinders; 403 int8_t heads, sectors; 404 int val; 405 int i, trans; 406 407 val = 0; 408 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 409 &cylinders, &heads, §ors) >= 0) { 410 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 411 val |= 0xf0; 412 } 413 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 414 &cylinders, &heads, §ors) >= 0) { 415 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 416 val |= 0x0f; 417 } 418 rtc_set_memory(s, 0x12, val); 419 420 val = 0; 421 for (i = 0; i < 4; i++) { 422 /* NOTE: ide_get_geometry() returns the physical 423 geometry. It is always such that: 1 <= sects <= 63, 1 424 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 425 geometry can be different if a translation is done. */ 426 if (arg->idebus[i / 2] && 427 ide_get_geometry(arg->idebus[i / 2], i % 2, 428 &cylinders, &heads, §ors) >= 0) { 429 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 430 assert((trans & ~3) == 0); 431 val |= trans << (i * 2); 432 } 433 } 434 rtc_set_memory(s, 0x39, val); 435 436 pc_cmos_init_floppy(s, pc_find_fdc0()); 437 438 qemu_unregister_reset(pc_cmos_init_late, opaque); 439 } 440 441 void pc_cmos_init(PCMachineState *pcms, 442 BusState *idebus0, BusState *idebus1, 443 ISADevice *s) 444 { 445 int val; 446 static pc_cmos_init_late_arg arg; 447 448 /* various important CMOS locations needed by PC/Bochs bios */ 449 450 /* memory size */ 451 /* base memory (first MiB) */ 452 val = MIN(pcms->below_4g_mem_size / KiB, 640); 453 rtc_set_memory(s, 0x15, val); 454 rtc_set_memory(s, 0x16, val >> 8); 455 /* extended memory (next 64MiB) */ 456 if (pcms->below_4g_mem_size > 1 * MiB) { 457 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 458 } else { 459 val = 0; 460 } 461 if (val > 65535) 462 val = 65535; 463 rtc_set_memory(s, 0x17, val); 464 rtc_set_memory(s, 0x18, val >> 8); 465 rtc_set_memory(s, 0x30, val); 466 rtc_set_memory(s, 0x31, val >> 8); 467 /* memory between 16MiB and 4GiB */ 468 if (pcms->below_4g_mem_size > 16 * MiB) { 469 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 470 } else { 471 val = 0; 472 } 473 if (val > 65535) 474 val = 65535; 475 rtc_set_memory(s, 0x34, val); 476 rtc_set_memory(s, 0x35, val >> 8); 477 /* memory above 4GiB */ 478 val = pcms->above_4g_mem_size / 65536; 479 rtc_set_memory(s, 0x5b, val); 480 rtc_set_memory(s, 0x5c, val >> 8); 481 rtc_set_memory(s, 0x5d, val >> 16); 482 483 object_property_add_link(OBJECT(pcms), "rtc_state", 484 TYPE_ISA_DEVICE, 485 (Object **)&pcms->rtc, 486 object_property_allow_set_link, 487 OBJ_PROP_LINK_STRONG, &error_abort); 488 object_property_set_link(OBJECT(pcms), OBJECT(s), 489 "rtc_state", &error_abort); 490 491 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 492 493 val = 0; 494 val |= 0x02; /* FPU is there */ 495 val |= 0x04; /* PS/2 mouse installed */ 496 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 497 498 /* hard drives and FDC */ 499 arg.rtc_state = s; 500 arg.idebus[0] = idebus0; 501 arg.idebus[1] = idebus1; 502 qemu_register_reset(pc_cmos_init_late, &arg); 503 } 504 505 #define TYPE_PORT92 "port92" 506 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 507 508 /* port 92 stuff: could be split off */ 509 typedef struct Port92State { 510 ISADevice parent_obj; 511 512 MemoryRegion io; 513 uint8_t outport; 514 qemu_irq a20_out; 515 } Port92State; 516 517 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 518 unsigned size) 519 { 520 Port92State *s = opaque; 521 int oldval = s->outport; 522 523 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 524 s->outport = val; 525 qemu_set_irq(s->a20_out, (val >> 1) & 1); 526 if ((val & 1) && !(oldval & 1)) { 527 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 528 } 529 } 530 531 static uint64_t port92_read(void *opaque, hwaddr addr, 532 unsigned size) 533 { 534 Port92State *s = opaque; 535 uint32_t ret; 536 537 ret = s->outport; 538 DPRINTF("port92: read 0x%02x\n", ret); 539 return ret; 540 } 541 542 static void port92_init(ISADevice *dev, qemu_irq a20_out) 543 { 544 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 545 } 546 547 static const VMStateDescription vmstate_port92_isa = { 548 .name = "port92", 549 .version_id = 1, 550 .minimum_version_id = 1, 551 .fields = (VMStateField[]) { 552 VMSTATE_UINT8(outport, Port92State), 553 VMSTATE_END_OF_LIST() 554 } 555 }; 556 557 static void port92_reset(DeviceState *d) 558 { 559 Port92State *s = PORT92(d); 560 561 s->outport &= ~1; 562 } 563 564 static const MemoryRegionOps port92_ops = { 565 .read = port92_read, 566 .write = port92_write, 567 .impl = { 568 .min_access_size = 1, 569 .max_access_size = 1, 570 }, 571 .endianness = DEVICE_LITTLE_ENDIAN, 572 }; 573 574 static void port92_initfn(Object *obj) 575 { 576 Port92State *s = PORT92(obj); 577 578 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 579 580 s->outport = 0; 581 582 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 583 } 584 585 static void port92_realizefn(DeviceState *dev, Error **errp) 586 { 587 ISADevice *isadev = ISA_DEVICE(dev); 588 Port92State *s = PORT92(dev); 589 590 isa_register_ioport(isadev, &s->io, 0x92); 591 } 592 593 static void port92_class_initfn(ObjectClass *klass, void *data) 594 { 595 DeviceClass *dc = DEVICE_CLASS(klass); 596 597 dc->realize = port92_realizefn; 598 dc->reset = port92_reset; 599 dc->vmsd = &vmstate_port92_isa; 600 /* 601 * Reason: unlike ordinary ISA devices, this one needs additional 602 * wiring: its A20 output line needs to be wired up by 603 * port92_init(). 604 */ 605 dc->user_creatable = false; 606 } 607 608 static const TypeInfo port92_info = { 609 .name = TYPE_PORT92, 610 .parent = TYPE_ISA_DEVICE, 611 .instance_size = sizeof(Port92State), 612 .instance_init = port92_initfn, 613 .class_init = port92_class_initfn, 614 }; 615 616 static void port92_register_types(void) 617 { 618 type_register_static(&port92_info); 619 } 620 621 type_init(port92_register_types) 622 623 static void handle_a20_line_change(void *opaque, int irq, int level) 624 { 625 X86CPU *cpu = opaque; 626 627 /* XXX: send to all CPUs ? */ 628 /* XXX: add logic to handle multiple A20 line sources */ 629 x86_cpu_set_a20(cpu, level); 630 } 631 632 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 633 { 634 int index = le32_to_cpu(e820_reserve.count); 635 struct e820_entry *entry; 636 637 if (type != E820_RAM) { 638 /* old FW_CFG_E820_TABLE entry -- reservations only */ 639 if (index >= E820_NR_ENTRIES) { 640 return -EBUSY; 641 } 642 entry = &e820_reserve.entry[index++]; 643 644 entry->address = cpu_to_le64(address); 645 entry->length = cpu_to_le64(length); 646 entry->type = cpu_to_le32(type); 647 648 e820_reserve.count = cpu_to_le32(index); 649 } 650 651 /* new "etc/e820" file -- include ram too */ 652 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 653 e820_table[e820_entries].address = cpu_to_le64(address); 654 e820_table[e820_entries].length = cpu_to_le64(length); 655 e820_table[e820_entries].type = cpu_to_le32(type); 656 e820_entries++; 657 658 return e820_entries; 659 } 660 661 int e820_get_num_entries(void) 662 { 663 return e820_entries; 664 } 665 666 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 667 { 668 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 669 *address = le64_to_cpu(e820_table[idx].address); 670 *length = le64_to_cpu(e820_table[idx].length); 671 return true; 672 } 673 return false; 674 } 675 676 /* Enables contiguous-apic-ID mode, for compatibility */ 677 static bool compat_apic_id_mode; 678 679 void enable_compat_apic_id_mode(void) 680 { 681 compat_apic_id_mode = true; 682 } 683 684 /* Calculates initial APIC ID for a specific CPU index 685 * 686 * Currently we need to be able to calculate the APIC ID from the CPU index 687 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 688 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 689 * all CPUs up to max_cpus. 690 */ 691 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 692 { 693 uint32_t correct_id; 694 static bool warned; 695 696 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 697 if (compat_apic_id_mode) { 698 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 699 error_report("APIC IDs set in compatibility mode, " 700 "CPU topology won't match the configuration"); 701 warned = true; 702 } 703 return cpu_index; 704 } else { 705 return correct_id; 706 } 707 } 708 709 static void pc_build_smbios(PCMachineState *pcms) 710 { 711 uint8_t *smbios_tables, *smbios_anchor; 712 size_t smbios_tables_len, smbios_anchor_len; 713 struct smbios_phys_mem_area *mem_array; 714 unsigned i, array_count; 715 MachineState *ms = MACHINE(pcms); 716 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 717 718 /* tell smbios about cpuid version and features */ 719 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 720 721 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 722 if (smbios_tables) { 723 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 724 smbios_tables, smbios_tables_len); 725 } 726 727 /* build the array of physical mem area from e820 table */ 728 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 729 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 730 uint64_t addr, len; 731 732 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 733 mem_array[array_count].address = addr; 734 mem_array[array_count].length = len; 735 array_count++; 736 } 737 } 738 smbios_get_tables(mem_array, array_count, 739 &smbios_tables, &smbios_tables_len, 740 &smbios_anchor, &smbios_anchor_len); 741 g_free(mem_array); 742 743 if (smbios_anchor) { 744 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 745 smbios_tables, smbios_tables_len); 746 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 747 smbios_anchor, smbios_anchor_len); 748 } 749 } 750 751 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 752 { 753 FWCfgState *fw_cfg; 754 uint64_t *numa_fw_cfg; 755 int i; 756 const CPUArchIdList *cpus; 757 MachineClass *mc = MACHINE_GET_CLASS(pcms); 758 759 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 760 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 761 762 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 763 * 764 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 765 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 766 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 767 * for CPU hotplug also uses APIC ID and not "CPU index". 768 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 769 * but the "limit to the APIC ID values SeaBIOS may see". 770 * 771 * So for compatibility reasons with old BIOSes we are stuck with 772 * "etc/max-cpus" actually being apic_id_limit 773 */ 774 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 775 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 776 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 777 acpi_tables, acpi_tables_len); 778 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 779 780 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 781 &e820_reserve, sizeof(e820_reserve)); 782 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 783 sizeof(struct e820_entry) * e820_entries); 784 785 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 786 /* allocate memory for the NUMA channel: one (64bit) word for the number 787 * of nodes, one word for each VCPU->node and one word for each node to 788 * hold the amount of memory. 789 */ 790 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 791 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 792 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 793 for (i = 0; i < cpus->len; i++) { 794 unsigned int apic_id = cpus->cpus[i].arch_id; 795 assert(apic_id < pcms->apic_id_limit); 796 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 797 } 798 for (i = 0; i < nb_numa_nodes; i++) { 799 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 800 cpu_to_le64(numa_info[i].node_mem); 801 } 802 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 803 (1 + pcms->apic_id_limit + nb_numa_nodes) * 804 sizeof(*numa_fw_cfg)); 805 806 return fw_cfg; 807 } 808 809 static long get_file_size(FILE *f) 810 { 811 long where, size; 812 813 /* XXX: on Unix systems, using fstat() probably makes more sense */ 814 815 where = ftell(f); 816 fseek(f, 0, SEEK_END); 817 size = ftell(f); 818 fseek(f, where, SEEK_SET); 819 820 return size; 821 } 822 823 /* setup_data types */ 824 #define SETUP_NONE 0 825 #define SETUP_E820_EXT 1 826 #define SETUP_DTB 2 827 #define SETUP_PCI 3 828 #define SETUP_EFI 4 829 830 struct setup_data { 831 uint64_t next; 832 uint32_t type; 833 uint32_t len; 834 uint8_t data[0]; 835 } __attribute__((packed)); 836 837 static void load_linux(PCMachineState *pcms, 838 FWCfgState *fw_cfg) 839 { 840 uint16_t protocol; 841 int setup_size, kernel_size, cmdline_size; 842 int64_t initrd_size = 0; 843 int dtb_size, setup_data_offset; 844 uint32_t initrd_max; 845 uint8_t header[8192], *setup, *kernel, *initrd_data; 846 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 847 FILE *f; 848 char *vmode; 849 MachineState *machine = MACHINE(pcms); 850 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 851 struct setup_data *setup_data; 852 const char *kernel_filename = machine->kernel_filename; 853 const char *initrd_filename = machine->initrd_filename; 854 const char *dtb_filename = machine->dtb; 855 const char *kernel_cmdline = machine->kernel_cmdline; 856 857 /* Align to 16 bytes as a paranoia measure */ 858 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 859 860 /* load the kernel header */ 861 f = fopen(kernel_filename, "rb"); 862 if (!f || !(kernel_size = get_file_size(f)) || 863 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 864 MIN(ARRAY_SIZE(header), kernel_size)) { 865 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 866 kernel_filename, strerror(errno)); 867 exit(1); 868 } 869 870 /* kernel protocol version */ 871 #if 0 872 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 873 #endif 874 if (ldl_p(header+0x202) == 0x53726448) { 875 protocol = lduw_p(header+0x206); 876 } else { 877 /* This looks like a multiboot kernel. If it is, let's stop 878 treating it like a Linux kernel. */ 879 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 880 kernel_cmdline, kernel_size, header)) { 881 return; 882 } 883 protocol = 0; 884 } 885 886 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 887 /* Low kernel */ 888 real_addr = 0x90000; 889 cmdline_addr = 0x9a000 - cmdline_size; 890 prot_addr = 0x10000; 891 } else if (protocol < 0x202) { 892 /* High but ancient kernel */ 893 real_addr = 0x90000; 894 cmdline_addr = 0x9a000 - cmdline_size; 895 prot_addr = 0x100000; 896 } else { 897 /* High and recent kernel */ 898 real_addr = 0x10000; 899 cmdline_addr = 0x20000; 900 prot_addr = 0x100000; 901 } 902 903 #if 0 904 fprintf(stderr, 905 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 906 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 907 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 908 real_addr, 909 cmdline_addr, 910 prot_addr); 911 #endif 912 913 /* highest address for loading the initrd */ 914 if (protocol >= 0x203) { 915 initrd_max = ldl_p(header+0x22c); 916 } else { 917 initrd_max = 0x37ffffff; 918 } 919 920 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 921 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 922 } 923 924 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 925 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 926 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 927 928 if (protocol >= 0x202) { 929 stl_p(header+0x228, cmdline_addr); 930 } else { 931 stw_p(header+0x20, 0xA33F); 932 stw_p(header+0x22, cmdline_addr-real_addr); 933 } 934 935 /* handle vga= parameter */ 936 vmode = strstr(kernel_cmdline, "vga="); 937 if (vmode) { 938 unsigned int video_mode; 939 /* skip "vga=" */ 940 vmode += 4; 941 if (!strncmp(vmode, "normal", 6)) { 942 video_mode = 0xffff; 943 } else if (!strncmp(vmode, "ext", 3)) { 944 video_mode = 0xfffe; 945 } else if (!strncmp(vmode, "ask", 3)) { 946 video_mode = 0xfffd; 947 } else { 948 video_mode = strtol(vmode, NULL, 0); 949 } 950 stw_p(header+0x1fa, video_mode); 951 } 952 953 /* loader type */ 954 /* High nybble = B reserved for QEMU; low nybble is revision number. 955 If this code is substantially changed, you may want to consider 956 incrementing the revision. */ 957 if (protocol >= 0x200) { 958 header[0x210] = 0xB0; 959 } 960 /* heap */ 961 if (protocol >= 0x201) { 962 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 963 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 964 } 965 966 /* load initrd */ 967 if (initrd_filename) { 968 if (protocol < 0x200) { 969 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 970 exit(1); 971 } 972 973 initrd_size = get_image_size(initrd_filename); 974 if (initrd_size < 0) { 975 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 976 initrd_filename, strerror(errno)); 977 exit(1); 978 } else if (initrd_size >= initrd_max) { 979 fprintf(stderr, "qemu: initrd is too large, cannot support." 980 "(max: %"PRIu32", need %"PRId64")\n", initrd_max, initrd_size); 981 exit(1); 982 } 983 984 initrd_addr = (initrd_max-initrd_size) & ~4095; 985 986 initrd_data = g_malloc(initrd_size); 987 load_image(initrd_filename, initrd_data); 988 989 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 990 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 991 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 992 993 stl_p(header+0x218, initrd_addr); 994 stl_p(header+0x21c, initrd_size); 995 } 996 997 /* load kernel and setup */ 998 setup_size = header[0x1f1]; 999 if (setup_size == 0) { 1000 setup_size = 4; 1001 } 1002 setup_size = (setup_size+1)*512; 1003 if (setup_size > kernel_size) { 1004 fprintf(stderr, "qemu: invalid kernel header\n"); 1005 exit(1); 1006 } 1007 kernel_size -= setup_size; 1008 1009 setup = g_malloc(setup_size); 1010 kernel = g_malloc(kernel_size); 1011 fseek(f, 0, SEEK_SET); 1012 if (fread(setup, 1, setup_size, f) != setup_size) { 1013 fprintf(stderr, "fread() failed\n"); 1014 exit(1); 1015 } 1016 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1017 fprintf(stderr, "fread() failed\n"); 1018 exit(1); 1019 } 1020 fclose(f); 1021 1022 /* append dtb to kernel */ 1023 if (dtb_filename) { 1024 if (protocol < 0x209) { 1025 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1026 exit(1); 1027 } 1028 1029 dtb_size = get_image_size(dtb_filename); 1030 if (dtb_size <= 0) { 1031 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1032 dtb_filename, strerror(errno)); 1033 exit(1); 1034 } 1035 1036 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1037 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1038 kernel = g_realloc(kernel, kernel_size); 1039 1040 stq_p(header+0x250, prot_addr + setup_data_offset); 1041 1042 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1043 setup_data->next = 0; 1044 setup_data->type = cpu_to_le32(SETUP_DTB); 1045 setup_data->len = cpu_to_le32(dtb_size); 1046 1047 load_image_size(dtb_filename, setup_data->data, dtb_size); 1048 } 1049 1050 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1051 1052 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1053 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1054 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1055 1056 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1057 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1058 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1059 1060 option_rom[nb_option_roms].bootindex = 0; 1061 option_rom[nb_option_roms].name = "linuxboot.bin"; 1062 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1063 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1064 } 1065 nb_option_roms++; 1066 } 1067 1068 #define NE2000_NB_MAX 6 1069 1070 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1071 0x280, 0x380 }; 1072 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1073 1074 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1075 { 1076 static int nb_ne2k = 0; 1077 1078 if (nb_ne2k == NE2000_NB_MAX) 1079 return; 1080 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1081 ne2000_irq[nb_ne2k], nd); 1082 nb_ne2k++; 1083 } 1084 1085 DeviceState *cpu_get_current_apic(void) 1086 { 1087 if (current_cpu) { 1088 X86CPU *cpu = X86_CPU(current_cpu); 1089 return cpu->apic_state; 1090 } else { 1091 return NULL; 1092 } 1093 } 1094 1095 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1096 { 1097 X86CPU *cpu = opaque; 1098 1099 if (level) { 1100 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1101 } 1102 } 1103 1104 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1105 { 1106 Object *cpu = NULL; 1107 Error *local_err = NULL; 1108 1109 cpu = object_new(typename); 1110 1111 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1112 object_property_set_bool(cpu, true, "realized", &local_err); 1113 1114 object_unref(cpu); 1115 error_propagate(errp, local_err); 1116 } 1117 1118 void pc_hot_add_cpu(const int64_t id, Error **errp) 1119 { 1120 MachineState *ms = MACHINE(qdev_get_machine()); 1121 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1122 Error *local_err = NULL; 1123 1124 if (id < 0) { 1125 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1126 return; 1127 } 1128 1129 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1130 error_setg(errp, "Unable to add CPU: %" PRIi64 1131 ", resulting APIC ID (%" PRIi64 ") is too large", 1132 id, apic_id); 1133 return; 1134 } 1135 1136 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1137 if (local_err) { 1138 error_propagate(errp, local_err); 1139 return; 1140 } 1141 } 1142 1143 void pc_cpus_init(PCMachineState *pcms) 1144 { 1145 int i; 1146 const CPUArchIdList *possible_cpus; 1147 MachineState *ms = MACHINE(pcms); 1148 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1149 1150 /* Calculates the limit to CPU APIC ID values 1151 * 1152 * Limit for the APIC ID value, so that all 1153 * CPU APIC IDs are < pcms->apic_id_limit. 1154 * 1155 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1156 */ 1157 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1158 possible_cpus = mc->possible_cpu_arch_ids(ms); 1159 for (i = 0; i < smp_cpus; i++) { 1160 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1161 &error_fatal); 1162 } 1163 } 1164 1165 static void pc_build_feature_control_file(PCMachineState *pcms) 1166 { 1167 MachineState *ms = MACHINE(pcms); 1168 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1169 CPUX86State *env = &cpu->env; 1170 uint32_t unused, ecx, edx; 1171 uint64_t feature_control_bits = 0; 1172 uint64_t *val; 1173 1174 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1175 if (ecx & CPUID_EXT_VMX) { 1176 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1177 } 1178 1179 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1180 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1181 (env->mcg_cap & MCG_LMCE_P)) { 1182 feature_control_bits |= FEATURE_CONTROL_LMCE; 1183 } 1184 1185 if (!feature_control_bits) { 1186 return; 1187 } 1188 1189 val = g_malloc(sizeof(*val)); 1190 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1191 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1192 } 1193 1194 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1195 { 1196 if (cpus_count > 0xff) { 1197 /* If the number of CPUs can't be represented in 8 bits, the 1198 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1199 * to make old BIOSes fail more predictably. 1200 */ 1201 rtc_set_memory(rtc, 0x5f, 0); 1202 } else { 1203 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1204 } 1205 } 1206 1207 static 1208 void pc_machine_done(Notifier *notifier, void *data) 1209 { 1210 PCMachineState *pcms = container_of(notifier, 1211 PCMachineState, machine_done); 1212 PCIBus *bus = pcms->bus; 1213 1214 /* set the number of CPUs */ 1215 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1216 1217 if (bus) { 1218 int extra_hosts = 0; 1219 1220 QLIST_FOREACH(bus, &bus->child, sibling) { 1221 /* look for expander root buses */ 1222 if (pci_bus_is_root(bus)) { 1223 extra_hosts++; 1224 } 1225 } 1226 if (extra_hosts && pcms->fw_cfg) { 1227 uint64_t *val = g_malloc(sizeof(*val)); 1228 *val = cpu_to_le64(extra_hosts); 1229 fw_cfg_add_file(pcms->fw_cfg, 1230 "etc/extra-pci-roots", val, sizeof(*val)); 1231 } 1232 } 1233 1234 acpi_setup(); 1235 if (pcms->fw_cfg) { 1236 pc_build_smbios(pcms); 1237 pc_build_feature_control_file(pcms); 1238 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1239 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1240 } 1241 1242 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1243 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1244 1245 if (!iommu || !iommu->x86_iommu.intr_supported || 1246 iommu->intr_eim != ON_OFF_AUTO_ON) { 1247 error_report("current -smp configuration requires " 1248 "Extended Interrupt Mode enabled. " 1249 "You can add an IOMMU using: " 1250 "-device intel-iommu,intremap=on,eim=on"); 1251 exit(EXIT_FAILURE); 1252 } 1253 } 1254 } 1255 1256 void pc_guest_info_init(PCMachineState *pcms) 1257 { 1258 int i; 1259 1260 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1261 pcms->numa_nodes = nb_numa_nodes; 1262 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1263 sizeof *pcms->node_mem); 1264 for (i = 0; i < nb_numa_nodes; i++) { 1265 pcms->node_mem[i] = numa_info[i].node_mem; 1266 } 1267 1268 pcms->machine_done.notify = pc_machine_done; 1269 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1270 } 1271 1272 /* setup pci memory address space mapping into system address space */ 1273 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1274 MemoryRegion *pci_address_space) 1275 { 1276 /* Set to lower priority than RAM */ 1277 memory_region_add_subregion_overlap(system_memory, 0x0, 1278 pci_address_space, -1); 1279 } 1280 1281 void pc_acpi_init(const char *default_dsdt) 1282 { 1283 char *filename; 1284 1285 if (acpi_tables != NULL) { 1286 /* manually set via -acpitable, leave it alone */ 1287 return; 1288 } 1289 1290 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1291 if (filename == NULL) { 1292 warn_report("failed to find %s", default_dsdt); 1293 } else { 1294 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1295 &error_abort); 1296 Error *err = NULL; 1297 1298 qemu_opt_set(opts, "file", filename, &error_abort); 1299 1300 acpi_table_add_builtin(opts, &err); 1301 if (err) { 1302 warn_reportf_err(err, "failed to load %s: ", filename); 1303 } 1304 g_free(filename); 1305 } 1306 } 1307 1308 void xen_load_linux(PCMachineState *pcms) 1309 { 1310 int i; 1311 FWCfgState *fw_cfg; 1312 1313 assert(MACHINE(pcms)->kernel_filename != NULL); 1314 1315 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1316 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1317 rom_set_fw(fw_cfg); 1318 1319 load_linux(pcms, fw_cfg); 1320 for (i = 0; i < nb_option_roms; i++) { 1321 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1322 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1323 !strcmp(option_rom[i].name, "multiboot.bin")); 1324 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1325 } 1326 pcms->fw_cfg = fw_cfg; 1327 } 1328 1329 void pc_memory_init(PCMachineState *pcms, 1330 MemoryRegion *system_memory, 1331 MemoryRegion *rom_memory, 1332 MemoryRegion **ram_memory) 1333 { 1334 int linux_boot, i; 1335 MemoryRegion *ram, *option_rom_mr; 1336 MemoryRegion *ram_below_4g, *ram_above_4g; 1337 FWCfgState *fw_cfg; 1338 MachineState *machine = MACHINE(pcms); 1339 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1340 1341 assert(machine->ram_size == pcms->below_4g_mem_size + 1342 pcms->above_4g_mem_size); 1343 1344 linux_boot = (machine->kernel_filename != NULL); 1345 1346 /* Allocate RAM. We allocate it as a single memory region and use 1347 * aliases to address portions of it, mostly for backwards compatibility 1348 * with older qemus that used qemu_ram_alloc(). 1349 */ 1350 ram = g_malloc(sizeof(*ram)); 1351 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1352 machine->ram_size); 1353 *ram_memory = ram; 1354 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1355 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1356 0, pcms->below_4g_mem_size); 1357 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1358 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1359 if (pcms->above_4g_mem_size > 0) { 1360 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1361 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1362 pcms->below_4g_mem_size, 1363 pcms->above_4g_mem_size); 1364 memory_region_add_subregion(system_memory, 0x100000000ULL, 1365 ram_above_4g); 1366 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1367 } 1368 1369 if (!pcmc->has_reserved_memory && 1370 (machine->ram_slots || 1371 (machine->maxram_size > machine->ram_size))) { 1372 MachineClass *mc = MACHINE_GET_CLASS(machine); 1373 1374 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1375 mc->name); 1376 exit(EXIT_FAILURE); 1377 } 1378 1379 /* always allocate the device memory information */ 1380 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1381 1382 /* initialize device memory address space */ 1383 if (pcmc->has_reserved_memory && 1384 (machine->ram_size < machine->maxram_size)) { 1385 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1386 1387 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1388 error_report("unsupported amount of memory slots: %"PRIu64, 1389 machine->ram_slots); 1390 exit(EXIT_FAILURE); 1391 } 1392 1393 if (QEMU_ALIGN_UP(machine->maxram_size, 1394 TARGET_PAGE_SIZE) != machine->maxram_size) { 1395 error_report("maximum memory size must by aligned to multiple of " 1396 "%d bytes", TARGET_PAGE_SIZE); 1397 exit(EXIT_FAILURE); 1398 } 1399 1400 machine->device_memory->base = 1401 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1402 1403 if (pcmc->enforce_aligned_dimm) { 1404 /* size device region assuming 1G page max alignment per slot */ 1405 device_mem_size += (1 * GiB) * machine->ram_slots; 1406 } 1407 1408 if ((machine->device_memory->base + device_mem_size) < 1409 device_mem_size) { 1410 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1411 machine->maxram_size); 1412 exit(EXIT_FAILURE); 1413 } 1414 1415 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1416 "device-memory", device_mem_size); 1417 memory_region_add_subregion(system_memory, machine->device_memory->base, 1418 &machine->device_memory->mr); 1419 } 1420 1421 /* Initialize PC system firmware */ 1422 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1423 1424 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1425 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1426 &error_fatal); 1427 if (pcmc->pci_enabled) { 1428 memory_region_set_readonly(option_rom_mr, true); 1429 } 1430 memory_region_add_subregion_overlap(rom_memory, 1431 PC_ROM_MIN_VGA, 1432 option_rom_mr, 1433 1); 1434 1435 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1436 1437 rom_set_fw(fw_cfg); 1438 1439 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1440 uint64_t *val = g_malloc(sizeof(*val)); 1441 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1442 uint64_t res_mem_end = machine->device_memory->base; 1443 1444 if (!pcmc->broken_reserved_end) { 1445 res_mem_end += memory_region_size(&machine->device_memory->mr); 1446 } 1447 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1448 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1449 } 1450 1451 if (linux_boot) { 1452 load_linux(pcms, fw_cfg); 1453 } 1454 1455 for (i = 0; i < nb_option_roms; i++) { 1456 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1457 } 1458 pcms->fw_cfg = fw_cfg; 1459 1460 /* Init default IOAPIC address space */ 1461 pcms->ioapic_as = &address_space_memory; 1462 } 1463 1464 /* 1465 * The 64bit pci hole starts after "above 4G RAM" and 1466 * potentially the space reserved for memory hotplug. 1467 */ 1468 uint64_t pc_pci_hole64_start(void) 1469 { 1470 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1471 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1472 MachineState *ms = MACHINE(pcms); 1473 uint64_t hole64_start = 0; 1474 1475 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1476 hole64_start = ms->device_memory->base; 1477 if (!pcmc->broken_reserved_end) { 1478 hole64_start += memory_region_size(&ms->device_memory->mr); 1479 } 1480 } else { 1481 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1482 } 1483 1484 return ROUND_UP(hole64_start, 1 * GiB); 1485 } 1486 1487 qemu_irq pc_allocate_cpu_irq(void) 1488 { 1489 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1490 } 1491 1492 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1493 { 1494 DeviceState *dev = NULL; 1495 1496 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1497 if (pci_bus) { 1498 PCIDevice *pcidev = pci_vga_init(pci_bus); 1499 dev = pcidev ? &pcidev->qdev : NULL; 1500 } else if (isa_bus) { 1501 ISADevice *isadev = isa_vga_init(isa_bus); 1502 dev = isadev ? DEVICE(isadev) : NULL; 1503 } 1504 rom_reset_order_override(); 1505 return dev; 1506 } 1507 1508 static const MemoryRegionOps ioport80_io_ops = { 1509 .write = ioport80_write, 1510 .read = ioport80_read, 1511 .endianness = DEVICE_NATIVE_ENDIAN, 1512 .impl = { 1513 .min_access_size = 1, 1514 .max_access_size = 1, 1515 }, 1516 }; 1517 1518 static const MemoryRegionOps ioportF0_io_ops = { 1519 .write = ioportF0_write, 1520 .read = ioportF0_read, 1521 .endianness = DEVICE_NATIVE_ENDIAN, 1522 .impl = { 1523 .min_access_size = 1, 1524 .max_access_size = 1, 1525 }, 1526 }; 1527 1528 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1529 { 1530 int i; 1531 DriveInfo *fd[MAX_FD]; 1532 qemu_irq *a20_line; 1533 ISADevice *i8042, *port92, *vmmouse; 1534 1535 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1536 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1537 1538 for (i = 0; i < MAX_FD; i++) { 1539 fd[i] = drive_get(IF_FLOPPY, 0, i); 1540 create_fdctrl |= !!fd[i]; 1541 } 1542 if (create_fdctrl) { 1543 fdctrl_init_isa(isa_bus, fd); 1544 } 1545 1546 i8042 = isa_create_simple(isa_bus, "i8042"); 1547 if (!no_vmport) { 1548 vmport_init(isa_bus); 1549 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1550 } else { 1551 vmmouse = NULL; 1552 } 1553 if (vmmouse) { 1554 DeviceState *dev = DEVICE(vmmouse); 1555 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1556 qdev_init_nofail(dev); 1557 } 1558 port92 = isa_create_simple(isa_bus, "port92"); 1559 1560 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1561 i8042_setup_a20_line(i8042, a20_line[0]); 1562 port92_init(port92, a20_line[1]); 1563 g_free(a20_line); 1564 } 1565 1566 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1567 ISADevice **rtc_state, 1568 bool create_fdctrl, 1569 bool no_vmport, 1570 bool has_pit, 1571 uint32_t hpet_irqs) 1572 { 1573 int i; 1574 DeviceState *hpet = NULL; 1575 int pit_isa_irq = 0; 1576 qemu_irq pit_alt_irq = NULL; 1577 qemu_irq rtc_irq = NULL; 1578 ISADevice *pit = NULL; 1579 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1580 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1581 1582 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1583 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1584 1585 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1586 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1587 1588 /* 1589 * Check if an HPET shall be created. 1590 * 1591 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1592 * when the HPET wants to take over. Thus we have to disable the latter. 1593 */ 1594 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1595 /* In order to set property, here not using sysbus_try_create_simple */ 1596 hpet = qdev_try_create(NULL, TYPE_HPET); 1597 if (hpet) { 1598 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1599 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1600 * IRQ8 and IRQ2. 1601 */ 1602 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1603 HPET_INTCAP, NULL); 1604 if (!compat) { 1605 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1606 } 1607 qdev_init_nofail(hpet); 1608 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1609 1610 for (i = 0; i < GSI_NUM_PINS; i++) { 1611 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1612 } 1613 pit_isa_irq = -1; 1614 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1615 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1616 } 1617 } 1618 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1619 1620 qemu_register_boot_set(pc_boot_set, *rtc_state); 1621 1622 if (!xen_enabled() && has_pit) { 1623 if (kvm_pit_in_kernel()) { 1624 pit = kvm_pit_init(isa_bus, 0x40); 1625 } else { 1626 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1627 } 1628 if (hpet) { 1629 /* connect PIT to output control line of the HPET */ 1630 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1631 } 1632 pcspk_init(isa_bus, pit); 1633 } 1634 1635 i8257_dma_init(isa_bus, 0); 1636 1637 /* Super I/O */ 1638 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1639 } 1640 1641 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1642 { 1643 int i; 1644 1645 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1646 for (i = 0; i < nb_nics; i++) { 1647 NICInfo *nd = &nd_table[i]; 1648 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1649 1650 if (g_str_equal(model, "ne2k_isa")) { 1651 pc_init_ne2k_isa(isa_bus, nd); 1652 } else { 1653 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1654 } 1655 } 1656 rom_reset_order_override(); 1657 } 1658 1659 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1660 { 1661 DeviceState *dev; 1662 SysBusDevice *d; 1663 unsigned int i; 1664 1665 if (kvm_ioapic_in_kernel()) { 1666 dev = qdev_create(NULL, "kvm-ioapic"); 1667 } else { 1668 dev = qdev_create(NULL, "ioapic"); 1669 } 1670 if (parent_name) { 1671 object_property_add_child(object_resolve_path(parent_name, NULL), 1672 "ioapic", OBJECT(dev), NULL); 1673 } 1674 qdev_init_nofail(dev); 1675 d = SYS_BUS_DEVICE(dev); 1676 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1677 1678 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1679 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1680 } 1681 } 1682 1683 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1684 Error **errp) 1685 { 1686 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1687 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1688 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1689 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1690 1691 /* 1692 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1693 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1694 * addition to cover this case. 1695 */ 1696 if (!pcms->acpi_dev || !acpi_enabled) { 1697 error_setg(errp, 1698 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1699 return; 1700 } 1701 1702 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1703 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1704 return; 1705 } 1706 1707 pc_dimm_pre_plug(dev, MACHINE(hotplug_dev), 1708 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1709 } 1710 1711 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1712 DeviceState *dev, Error **errp) 1713 { 1714 HotplugHandlerClass *hhc; 1715 Error *local_err = NULL; 1716 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1717 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1718 1719 pc_dimm_plug(dev, MACHINE(pcms), &local_err); 1720 if (local_err) { 1721 goto out; 1722 } 1723 1724 if (is_nvdimm) { 1725 nvdimm_plug(&pcms->acpi_nvdimm_state); 1726 } 1727 1728 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1729 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1730 out: 1731 error_propagate(errp, local_err); 1732 } 1733 1734 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1735 DeviceState *dev, Error **errp) 1736 { 1737 HotplugHandlerClass *hhc; 1738 Error *local_err = NULL; 1739 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1740 1741 /* 1742 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1743 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1744 * addition to cover this case. 1745 */ 1746 if (!pcms->acpi_dev || !acpi_enabled) { 1747 error_setg(&local_err, 1748 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1749 goto out; 1750 } 1751 1752 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1753 error_setg(&local_err, 1754 "nvdimm device hot unplug is not supported yet."); 1755 goto out; 1756 } 1757 1758 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1759 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1760 1761 out: 1762 error_propagate(errp, local_err); 1763 } 1764 1765 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1766 DeviceState *dev, Error **errp) 1767 { 1768 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1769 HotplugHandlerClass *hhc; 1770 Error *local_err = NULL; 1771 1772 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1773 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1774 1775 if (local_err) { 1776 goto out; 1777 } 1778 1779 pc_dimm_unplug(dev, MACHINE(pcms)); 1780 object_unparent(OBJECT(dev)); 1781 1782 out: 1783 error_propagate(errp, local_err); 1784 } 1785 1786 static int pc_apic_cmp(const void *a, const void *b) 1787 { 1788 CPUArchId *apic_a = (CPUArchId *)a; 1789 CPUArchId *apic_b = (CPUArchId *)b; 1790 1791 return apic_a->arch_id - apic_b->arch_id; 1792 } 1793 1794 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1795 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1796 * entry corresponding to CPU's apic_id returns NULL. 1797 */ 1798 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1799 { 1800 CPUArchId apic_id, *found_cpu; 1801 1802 apic_id.arch_id = id; 1803 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1804 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1805 pc_apic_cmp); 1806 if (found_cpu && idx) { 1807 *idx = found_cpu - ms->possible_cpus->cpus; 1808 } 1809 return found_cpu; 1810 } 1811 1812 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1813 DeviceState *dev, Error **errp) 1814 { 1815 CPUArchId *found_cpu; 1816 HotplugHandlerClass *hhc; 1817 Error *local_err = NULL; 1818 X86CPU *cpu = X86_CPU(dev); 1819 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1820 1821 if (pcms->acpi_dev) { 1822 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1823 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1824 if (local_err) { 1825 goto out; 1826 } 1827 } 1828 1829 /* increment the number of CPUs */ 1830 pcms->boot_cpus++; 1831 if (pcms->rtc) { 1832 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1833 } 1834 if (pcms->fw_cfg) { 1835 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1836 } 1837 1838 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1839 found_cpu->cpu = OBJECT(dev); 1840 out: 1841 error_propagate(errp, local_err); 1842 } 1843 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1844 DeviceState *dev, Error **errp) 1845 { 1846 int idx = -1; 1847 HotplugHandlerClass *hhc; 1848 Error *local_err = NULL; 1849 X86CPU *cpu = X86_CPU(dev); 1850 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1851 1852 if (!pcms->acpi_dev) { 1853 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1854 goto out; 1855 } 1856 1857 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1858 assert(idx != -1); 1859 if (idx == 0) { 1860 error_setg(&local_err, "Boot CPU is unpluggable"); 1861 goto out; 1862 } 1863 1864 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1865 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1866 1867 if (local_err) { 1868 goto out; 1869 } 1870 1871 out: 1872 error_propagate(errp, local_err); 1873 1874 } 1875 1876 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1877 DeviceState *dev, Error **errp) 1878 { 1879 CPUArchId *found_cpu; 1880 HotplugHandlerClass *hhc; 1881 Error *local_err = NULL; 1882 X86CPU *cpu = X86_CPU(dev); 1883 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1884 1885 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1886 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1887 1888 if (local_err) { 1889 goto out; 1890 } 1891 1892 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1893 found_cpu->cpu = NULL; 1894 object_unparent(OBJECT(dev)); 1895 1896 /* decrement the number of CPUs */ 1897 pcms->boot_cpus--; 1898 /* Update the number of CPUs in CMOS */ 1899 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1900 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1901 out: 1902 error_propagate(errp, local_err); 1903 } 1904 1905 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1906 DeviceState *dev, Error **errp) 1907 { 1908 int idx; 1909 CPUState *cs; 1910 CPUArchId *cpu_slot; 1911 X86CPUTopoInfo topo; 1912 X86CPU *cpu = X86_CPU(dev); 1913 MachineState *ms = MACHINE(hotplug_dev); 1914 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1915 1916 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1917 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1918 ms->cpu_type); 1919 return; 1920 } 1921 1922 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1923 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1924 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1925 1926 if (cpu->socket_id < 0) { 1927 error_setg(errp, "CPU socket-id is not set"); 1928 return; 1929 } else if (cpu->socket_id > max_socket) { 1930 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1931 cpu->socket_id, max_socket); 1932 return; 1933 } 1934 if (cpu->core_id < 0) { 1935 error_setg(errp, "CPU core-id is not set"); 1936 return; 1937 } else if (cpu->core_id > (smp_cores - 1)) { 1938 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1939 cpu->core_id, smp_cores - 1); 1940 return; 1941 } 1942 if (cpu->thread_id < 0) { 1943 error_setg(errp, "CPU thread-id is not set"); 1944 return; 1945 } else if (cpu->thread_id > (smp_threads - 1)) { 1946 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1947 cpu->thread_id, smp_threads - 1); 1948 return; 1949 } 1950 1951 topo.pkg_id = cpu->socket_id; 1952 topo.core_id = cpu->core_id; 1953 topo.smt_id = cpu->thread_id; 1954 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1955 } 1956 1957 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1958 if (!cpu_slot) { 1959 MachineState *ms = MACHINE(pcms); 1960 1961 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1962 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1963 " APIC ID %" PRIu32 ", valid index range 0:%d", 1964 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1965 ms->possible_cpus->len - 1); 1966 return; 1967 } 1968 1969 if (cpu_slot->cpu) { 1970 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1971 idx, cpu->apic_id); 1972 return; 1973 } 1974 1975 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1976 * so that machine_query_hotpluggable_cpus would show correct values 1977 */ 1978 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1979 * once -smp refactoring is complete and there will be CPU private 1980 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1981 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1982 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1983 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1984 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1985 return; 1986 } 1987 cpu->socket_id = topo.pkg_id; 1988 1989 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 1990 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 1991 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 1992 return; 1993 } 1994 cpu->core_id = topo.core_id; 1995 1996 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 1997 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 1998 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 1999 return; 2000 } 2001 cpu->thread_id = topo.smt_id; 2002 2003 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2004 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2005 return; 2006 } 2007 2008 cs = CPU(cpu); 2009 cs->cpu_index = idx; 2010 2011 numa_cpu_pre_plug(cpu_slot, dev, errp); 2012 } 2013 2014 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2015 DeviceState *dev, Error **errp) 2016 { 2017 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2018 pc_memory_pre_plug(hotplug_dev, dev, errp); 2019 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2020 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2021 } 2022 } 2023 2024 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2025 DeviceState *dev, Error **errp) 2026 { 2027 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2028 pc_memory_plug(hotplug_dev, dev, errp); 2029 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2030 pc_cpu_plug(hotplug_dev, dev, errp); 2031 } 2032 } 2033 2034 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2035 DeviceState *dev, Error **errp) 2036 { 2037 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2038 pc_memory_unplug_request(hotplug_dev, dev, errp); 2039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2040 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2041 } else { 2042 error_setg(errp, "acpi: device unplug request for not supported device" 2043 " type: %s", object_get_typename(OBJECT(dev))); 2044 } 2045 } 2046 2047 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2048 DeviceState *dev, Error **errp) 2049 { 2050 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2051 pc_memory_unplug(hotplug_dev, dev, errp); 2052 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2053 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2054 } else { 2055 error_setg(errp, "acpi: device unplug for not supported device" 2056 " type: %s", object_get_typename(OBJECT(dev))); 2057 } 2058 } 2059 2060 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2061 DeviceState *dev) 2062 { 2063 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2064 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2065 return HOTPLUG_HANDLER(machine); 2066 } 2067 2068 return NULL; 2069 } 2070 2071 static void 2072 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2073 const char *name, void *opaque, 2074 Error **errp) 2075 { 2076 MachineState *ms = MACHINE(obj); 2077 int64_t value = memory_region_size(&ms->device_memory->mr); 2078 2079 visit_type_int(v, name, &value, errp); 2080 } 2081 2082 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2083 const char *name, void *opaque, 2084 Error **errp) 2085 { 2086 PCMachineState *pcms = PC_MACHINE(obj); 2087 uint64_t value = pcms->max_ram_below_4g; 2088 2089 visit_type_size(v, name, &value, errp); 2090 } 2091 2092 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2093 const char *name, void *opaque, 2094 Error **errp) 2095 { 2096 PCMachineState *pcms = PC_MACHINE(obj); 2097 Error *error = NULL; 2098 uint64_t value; 2099 2100 visit_type_size(v, name, &value, &error); 2101 if (error) { 2102 error_propagate(errp, error); 2103 return; 2104 } 2105 if (value > 4 * GiB) { 2106 error_setg(&error, 2107 "Machine option 'max-ram-below-4g=%"PRIu64 2108 "' expects size less than or equal to 4G", value); 2109 error_propagate(errp, error); 2110 return; 2111 } 2112 2113 if (value < 1 * MiB) { 2114 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2115 "BIOS may not work with less than 1MiB", value); 2116 } 2117 2118 pcms->max_ram_below_4g = value; 2119 } 2120 2121 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2122 void *opaque, Error **errp) 2123 { 2124 PCMachineState *pcms = PC_MACHINE(obj); 2125 OnOffAuto vmport = pcms->vmport; 2126 2127 visit_type_OnOffAuto(v, name, &vmport, errp); 2128 } 2129 2130 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2131 void *opaque, Error **errp) 2132 { 2133 PCMachineState *pcms = PC_MACHINE(obj); 2134 2135 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2136 } 2137 2138 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2139 { 2140 bool smm_available = false; 2141 2142 if (pcms->smm == ON_OFF_AUTO_OFF) { 2143 return false; 2144 } 2145 2146 if (tcg_enabled() || qtest_enabled()) { 2147 smm_available = true; 2148 } else if (kvm_enabled()) { 2149 smm_available = kvm_has_smm(); 2150 } 2151 2152 if (smm_available) { 2153 return true; 2154 } 2155 2156 if (pcms->smm == ON_OFF_AUTO_ON) { 2157 error_report("System Management Mode not supported by this hypervisor."); 2158 exit(1); 2159 } 2160 return false; 2161 } 2162 2163 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2164 void *opaque, Error **errp) 2165 { 2166 PCMachineState *pcms = PC_MACHINE(obj); 2167 OnOffAuto smm = pcms->smm; 2168 2169 visit_type_OnOffAuto(v, name, &smm, errp); 2170 } 2171 2172 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2173 void *opaque, Error **errp) 2174 { 2175 PCMachineState *pcms = PC_MACHINE(obj); 2176 2177 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2178 } 2179 2180 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2181 { 2182 PCMachineState *pcms = PC_MACHINE(obj); 2183 2184 return pcms->acpi_nvdimm_state.is_enabled; 2185 } 2186 2187 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2188 { 2189 PCMachineState *pcms = PC_MACHINE(obj); 2190 2191 pcms->acpi_nvdimm_state.is_enabled = value; 2192 } 2193 2194 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2195 { 2196 PCMachineState *pcms = PC_MACHINE(obj); 2197 2198 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2199 } 2200 2201 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2202 Error **errp) 2203 { 2204 PCMachineState *pcms = PC_MACHINE(obj); 2205 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2206 2207 if (strcmp(value, "cpu") == 0) 2208 nvdimm_state->persistence = 3; 2209 else if (strcmp(value, "mem-ctrl") == 0) 2210 nvdimm_state->persistence = 2; 2211 else { 2212 error_report("-machine nvdimm-persistence=%s: unsupported option", value); 2213 exit(EXIT_FAILURE); 2214 } 2215 2216 g_free(nvdimm_state->persistence_string); 2217 nvdimm_state->persistence_string = g_strdup(value); 2218 } 2219 2220 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2221 { 2222 PCMachineState *pcms = PC_MACHINE(obj); 2223 2224 return pcms->smbus; 2225 } 2226 2227 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2228 { 2229 PCMachineState *pcms = PC_MACHINE(obj); 2230 2231 pcms->smbus = value; 2232 } 2233 2234 static bool pc_machine_get_sata(Object *obj, Error **errp) 2235 { 2236 PCMachineState *pcms = PC_MACHINE(obj); 2237 2238 return pcms->sata; 2239 } 2240 2241 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2242 { 2243 PCMachineState *pcms = PC_MACHINE(obj); 2244 2245 pcms->sata = value; 2246 } 2247 2248 static bool pc_machine_get_pit(Object *obj, Error **errp) 2249 { 2250 PCMachineState *pcms = PC_MACHINE(obj); 2251 2252 return pcms->pit; 2253 } 2254 2255 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2256 { 2257 PCMachineState *pcms = PC_MACHINE(obj); 2258 2259 pcms->pit = value; 2260 } 2261 2262 static void pc_machine_initfn(Object *obj) 2263 { 2264 PCMachineState *pcms = PC_MACHINE(obj); 2265 2266 pcms->max_ram_below_4g = 0; /* use default */ 2267 pcms->smm = ON_OFF_AUTO_AUTO; 2268 pcms->vmport = ON_OFF_AUTO_AUTO; 2269 /* nvdimm is disabled on default. */ 2270 pcms->acpi_nvdimm_state.is_enabled = false; 2271 /* acpi build is enabled by default if machine supports it */ 2272 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2273 pcms->smbus = true; 2274 pcms->sata = true; 2275 pcms->pit = true; 2276 } 2277 2278 static void pc_machine_reset(void) 2279 { 2280 CPUState *cs; 2281 X86CPU *cpu; 2282 2283 qemu_devices_reset(); 2284 2285 /* Reset APIC after devices have been reset to cancel 2286 * any changes that qemu_devices_reset() might have done. 2287 */ 2288 CPU_FOREACH(cs) { 2289 cpu = X86_CPU(cs); 2290 2291 if (cpu->apic_state) { 2292 device_reset(cpu->apic_state); 2293 } 2294 } 2295 } 2296 2297 static CpuInstanceProperties 2298 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2299 { 2300 MachineClass *mc = MACHINE_GET_CLASS(ms); 2301 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2302 2303 assert(cpu_index < possible_cpus->len); 2304 return possible_cpus->cpus[cpu_index].props; 2305 } 2306 2307 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2308 { 2309 X86CPUTopoInfo topo; 2310 2311 assert(idx < ms->possible_cpus->len); 2312 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2313 smp_cores, smp_threads, &topo); 2314 return topo.pkg_id % nb_numa_nodes; 2315 } 2316 2317 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2318 { 2319 int i; 2320 2321 if (ms->possible_cpus) { 2322 /* 2323 * make sure that max_cpus hasn't changed since the first use, i.e. 2324 * -smp hasn't been parsed after it 2325 */ 2326 assert(ms->possible_cpus->len == max_cpus); 2327 return ms->possible_cpus; 2328 } 2329 2330 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2331 sizeof(CPUArchId) * max_cpus); 2332 ms->possible_cpus->len = max_cpus; 2333 for (i = 0; i < ms->possible_cpus->len; i++) { 2334 X86CPUTopoInfo topo; 2335 2336 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2337 ms->possible_cpus->cpus[i].vcpus_count = 1; 2338 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2339 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2340 smp_cores, smp_threads, &topo); 2341 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2342 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2343 ms->possible_cpus->cpus[i].props.has_core_id = true; 2344 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2345 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2346 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2347 } 2348 return ms->possible_cpus; 2349 } 2350 2351 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2352 { 2353 /* cpu index isn't used */ 2354 CPUState *cs; 2355 2356 CPU_FOREACH(cs) { 2357 X86CPU *cpu = X86_CPU(cs); 2358 2359 if (!cpu->apic_state) { 2360 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2361 } else { 2362 apic_deliver_nmi(cpu->apic_state); 2363 } 2364 } 2365 } 2366 2367 static void pc_machine_class_init(ObjectClass *oc, void *data) 2368 { 2369 MachineClass *mc = MACHINE_CLASS(oc); 2370 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2371 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2372 NMIClass *nc = NMI_CLASS(oc); 2373 2374 pcmc->pci_enabled = true; 2375 pcmc->has_acpi_build = true; 2376 pcmc->rsdp_in_ram = true; 2377 pcmc->smbios_defaults = true; 2378 pcmc->smbios_uuid_encoded = true; 2379 pcmc->gigabyte_align = true; 2380 pcmc->has_reserved_memory = true; 2381 pcmc->kvmclock_enabled = true; 2382 pcmc->enforce_aligned_dimm = true; 2383 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2384 * to be used at the moment, 32K should be enough for a while. */ 2385 pcmc->acpi_data_size = 0x20000 + 0x8000; 2386 pcmc->save_tsc_khz = true; 2387 pcmc->linuxboot_dma_enabled = true; 2388 assert(!mc->get_hotplug_handler); 2389 mc->get_hotplug_handler = pc_get_hotpug_handler; 2390 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2391 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2392 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2393 mc->auto_enable_numa_with_memhp = true; 2394 mc->has_hotpluggable_cpus = true; 2395 mc->default_boot_order = "cad"; 2396 mc->hot_add_cpu = pc_hot_add_cpu; 2397 mc->block_default_type = IF_IDE; 2398 mc->max_cpus = 255; 2399 mc->reset = pc_machine_reset; 2400 hc->pre_plug = pc_machine_device_pre_plug_cb; 2401 hc->plug = pc_machine_device_plug_cb; 2402 hc->unplug_request = pc_machine_device_unplug_request_cb; 2403 hc->unplug = pc_machine_device_unplug_cb; 2404 nc->nmi_monitor_handler = x86_nmi; 2405 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2406 2407 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2408 pc_machine_get_device_memory_region_size, NULL, 2409 NULL, NULL, &error_abort); 2410 2411 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2412 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2413 NULL, NULL, &error_abort); 2414 2415 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2416 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2417 2418 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2419 pc_machine_get_smm, pc_machine_set_smm, 2420 NULL, NULL, &error_abort); 2421 object_class_property_set_description(oc, PC_MACHINE_SMM, 2422 "Enable SMM (pc & q35)", &error_abort); 2423 2424 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2425 pc_machine_get_vmport, pc_machine_set_vmport, 2426 NULL, NULL, &error_abort); 2427 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2428 "Enable vmport (pc & q35)", &error_abort); 2429 2430 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2431 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2432 2433 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2434 pc_machine_get_nvdimm_persistence, 2435 pc_machine_set_nvdimm_persistence, &error_abort); 2436 2437 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2438 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2439 2440 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2441 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2442 2443 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2444 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2445 } 2446 2447 static const TypeInfo pc_machine_info = { 2448 .name = TYPE_PC_MACHINE, 2449 .parent = TYPE_MACHINE, 2450 .abstract = true, 2451 .instance_size = sizeof(PCMachineState), 2452 .instance_init = pc_machine_initfn, 2453 .class_size = sizeof(PCMachineClass), 2454 .class_init = pc_machine_class_init, 2455 .interfaces = (InterfaceInfo[]) { 2456 { TYPE_HOTPLUG_HANDLER }, 2457 { TYPE_NMI }, 2458 { } 2459 }, 2460 }; 2461 2462 static void pc_machine_register_types(void) 2463 { 2464 type_register_static(&pc_machine_info); 2465 } 2466 2467 type_init(pc_machine_register_types) 2468