1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/smbios/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 void gsi_handler(void *opaque, int n, int level) 113 { 114 GSIState *s = opaque; 115 116 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 117 if (n < ISA_NUM_IRQS) { 118 qemu_set_irq(s->i8259_irq[n], level); 119 } 120 qemu_set_irq(s->ioapic_irq[n], level); 121 } 122 123 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 124 unsigned size) 125 { 126 } 127 128 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 129 { 130 return 0xffffffffffffffffULL; 131 } 132 133 /* MSDOS compatibility mode FPU exception support */ 134 static qemu_irq ferr_irq; 135 136 void pc_register_ferr_irq(qemu_irq irq) 137 { 138 ferr_irq = irq; 139 } 140 141 /* XXX: add IGNNE support */ 142 void cpu_set_ferr(CPUX86State *s) 143 { 144 qemu_irq_raise(ferr_irq); 145 } 146 147 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 148 unsigned size) 149 { 150 qemu_irq_lower(ferr_irq); 151 } 152 153 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 154 { 155 return 0xffffffffffffffffULL; 156 } 157 158 /* TSC handling */ 159 uint64_t cpu_get_tsc(CPUX86State *env) 160 { 161 return cpu_get_ticks(); 162 } 163 164 /* IRQ handling */ 165 int cpu_get_pic_interrupt(CPUX86State *env) 166 { 167 X86CPU *cpu = x86_env_get_cpu(env); 168 int intno; 169 170 if (!kvm_irqchip_in_kernel()) { 171 intno = apic_get_interrupt(cpu->apic_state); 172 if (intno >= 0) { 173 return intno; 174 } 175 /* read the irq from the PIC */ 176 if (!apic_accept_pic_intr(cpu->apic_state)) { 177 return -1; 178 } 179 } 180 181 intno = pic_read_irq(isa_pic); 182 return intno; 183 } 184 185 static void pic_irq_request(void *opaque, int irq, int level) 186 { 187 CPUState *cs = first_cpu; 188 X86CPU *cpu = X86_CPU(cs); 189 190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 191 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 192 CPU_FOREACH(cs) { 193 cpu = X86_CPU(cs); 194 if (apic_accept_pic_intr(cpu->apic_state)) { 195 apic_deliver_pic_intr(cpu->apic_state, level); 196 } 197 } 198 } else { 199 if (level) { 200 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 201 } else { 202 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 203 } 204 } 205 } 206 207 /* PC cmos mappings */ 208 209 #define REG_EQUIPMENT_BYTE 0x14 210 211 int cmos_get_fd_drive_type(FloppyDriveType fd0) 212 { 213 int val; 214 215 switch (fd0) { 216 case FLOPPY_DRIVE_TYPE_144: 217 /* 1.44 Mb 3"5 drive */ 218 val = 4; 219 break; 220 case FLOPPY_DRIVE_TYPE_288: 221 /* 2.88 Mb 3"5 drive */ 222 val = 5; 223 break; 224 case FLOPPY_DRIVE_TYPE_120: 225 /* 1.2 Mb 5"5 drive */ 226 val = 2; 227 break; 228 case FLOPPY_DRIVE_TYPE_NONE: 229 default: 230 val = 0; 231 break; 232 } 233 return val; 234 } 235 236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 237 int16_t cylinders, int8_t heads, int8_t sectors) 238 { 239 rtc_set_memory(s, type_ofs, 47); 240 rtc_set_memory(s, info_ofs, cylinders); 241 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 242 rtc_set_memory(s, info_ofs + 2, heads); 243 rtc_set_memory(s, info_ofs + 3, 0xff); 244 rtc_set_memory(s, info_ofs + 4, 0xff); 245 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 246 rtc_set_memory(s, info_ofs + 6, cylinders); 247 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 248 rtc_set_memory(s, info_ofs + 8, sectors); 249 } 250 251 /* convert boot_device letter to something recognizable by the bios */ 252 static int boot_device2nibble(char boot_device) 253 { 254 switch(boot_device) { 255 case 'a': 256 case 'b': 257 return 0x01; /* floppy boot */ 258 case 'c': 259 return 0x02; /* hard drive boot */ 260 case 'd': 261 return 0x03; /* CD-ROM boot */ 262 case 'n': 263 return 0x04; /* Network boot */ 264 } 265 return 0; 266 } 267 268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 269 { 270 #define PC_MAX_BOOT_DEVICES 3 271 int nbds, bds[3] = { 0, }; 272 int i; 273 274 nbds = strlen(boot_device); 275 if (nbds > PC_MAX_BOOT_DEVICES) { 276 error_setg(errp, "Too many boot devices for PC"); 277 return; 278 } 279 for (i = 0; i < nbds; i++) { 280 bds[i] = boot_device2nibble(boot_device[i]); 281 if (bds[i] == 0) { 282 error_setg(errp, "Invalid boot device for PC: '%c'", 283 boot_device[i]); 284 return; 285 } 286 } 287 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 288 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 289 } 290 291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 292 { 293 set_boot_dev(opaque, boot_device, errp); 294 } 295 296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 297 { 298 int val, nb, i; 299 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 300 FLOPPY_DRIVE_TYPE_NONE }; 301 302 /* floppy type */ 303 if (floppy) { 304 for (i = 0; i < 2; i++) { 305 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 306 } 307 } 308 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 309 cmos_get_fd_drive_type(fd_type[1]); 310 rtc_set_memory(rtc_state, 0x10, val); 311 312 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 313 nb = 0; 314 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 315 nb++; 316 } 317 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 318 nb++; 319 } 320 switch (nb) { 321 case 0: 322 break; 323 case 1: 324 val |= 0x01; /* 1 drive, ready for boot */ 325 break; 326 case 2: 327 val |= 0x41; /* 2 drives, ready for boot */ 328 break; 329 } 330 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 331 } 332 333 typedef struct pc_cmos_init_late_arg { 334 ISADevice *rtc_state; 335 BusState *idebus[2]; 336 } pc_cmos_init_late_arg; 337 338 typedef struct check_fdc_state { 339 ISADevice *floppy; 340 bool multiple; 341 } CheckFdcState; 342 343 static int check_fdc(Object *obj, void *opaque) 344 { 345 CheckFdcState *state = opaque; 346 Object *fdc; 347 uint32_t iobase; 348 Error *local_err = NULL; 349 350 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 351 if (!fdc) { 352 return 0; 353 } 354 355 iobase = object_property_get_uint(obj, "iobase", &local_err); 356 if (local_err || iobase != 0x3f0) { 357 error_free(local_err); 358 return 0; 359 } 360 361 if (state->floppy) { 362 state->multiple = true; 363 } else { 364 state->floppy = ISA_DEVICE(obj); 365 } 366 return 0; 367 } 368 369 static const char * const fdc_container_path[] = { 370 "/unattached", "/peripheral", "/peripheral-anon" 371 }; 372 373 /* 374 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 375 * and ACPI objects. 376 */ 377 ISADevice *pc_find_fdc0(void) 378 { 379 int i; 380 Object *container; 381 CheckFdcState state = { 0 }; 382 383 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 384 container = container_get(qdev_get_machine(), fdc_container_path[i]); 385 object_child_foreach(container, check_fdc, &state); 386 } 387 388 if (state.multiple) { 389 warn_report("multiple floppy disk controllers with " 390 "iobase=0x3f0 have been found"); 391 error_printf("the one being picked for CMOS setup might not reflect " 392 "your intent"); 393 } 394 395 return state.floppy; 396 } 397 398 static void pc_cmos_init_late(void *opaque) 399 { 400 pc_cmos_init_late_arg *arg = opaque; 401 ISADevice *s = arg->rtc_state; 402 int16_t cylinders; 403 int8_t heads, sectors; 404 int val; 405 int i, trans; 406 407 val = 0; 408 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 409 &cylinders, &heads, §ors) >= 0) { 410 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 411 val |= 0xf0; 412 } 413 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 414 &cylinders, &heads, §ors) >= 0) { 415 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 416 val |= 0x0f; 417 } 418 rtc_set_memory(s, 0x12, val); 419 420 val = 0; 421 for (i = 0; i < 4; i++) { 422 /* NOTE: ide_get_geometry() returns the physical 423 geometry. It is always such that: 1 <= sects <= 63, 1 424 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 425 geometry can be different if a translation is done. */ 426 if (arg->idebus[i / 2] && 427 ide_get_geometry(arg->idebus[i / 2], i % 2, 428 &cylinders, &heads, §ors) >= 0) { 429 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 430 assert((trans & ~3) == 0); 431 val |= trans << (i * 2); 432 } 433 } 434 rtc_set_memory(s, 0x39, val); 435 436 pc_cmos_init_floppy(s, pc_find_fdc0()); 437 438 qemu_unregister_reset(pc_cmos_init_late, opaque); 439 } 440 441 void pc_cmos_init(PCMachineState *pcms, 442 BusState *idebus0, BusState *idebus1, 443 ISADevice *s) 444 { 445 int val; 446 static pc_cmos_init_late_arg arg; 447 448 /* various important CMOS locations needed by PC/Bochs bios */ 449 450 /* memory size */ 451 /* base memory (first MiB) */ 452 val = MIN(pcms->below_4g_mem_size / KiB, 640); 453 rtc_set_memory(s, 0x15, val); 454 rtc_set_memory(s, 0x16, val >> 8); 455 /* extended memory (next 64MiB) */ 456 if (pcms->below_4g_mem_size > 1 * MiB) { 457 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 458 } else { 459 val = 0; 460 } 461 if (val > 65535) 462 val = 65535; 463 rtc_set_memory(s, 0x17, val); 464 rtc_set_memory(s, 0x18, val >> 8); 465 rtc_set_memory(s, 0x30, val); 466 rtc_set_memory(s, 0x31, val >> 8); 467 /* memory between 16MiB and 4GiB */ 468 if (pcms->below_4g_mem_size > 16 * MiB) { 469 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 470 } else { 471 val = 0; 472 } 473 if (val > 65535) 474 val = 65535; 475 rtc_set_memory(s, 0x34, val); 476 rtc_set_memory(s, 0x35, val >> 8); 477 /* memory above 4GiB */ 478 val = pcms->above_4g_mem_size / 65536; 479 rtc_set_memory(s, 0x5b, val); 480 rtc_set_memory(s, 0x5c, val >> 8); 481 rtc_set_memory(s, 0x5d, val >> 16); 482 483 object_property_add_link(OBJECT(pcms), "rtc_state", 484 TYPE_ISA_DEVICE, 485 (Object **)&pcms->rtc, 486 object_property_allow_set_link, 487 OBJ_PROP_LINK_STRONG, &error_abort); 488 object_property_set_link(OBJECT(pcms), OBJECT(s), 489 "rtc_state", &error_abort); 490 491 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 492 493 val = 0; 494 val |= 0x02; /* FPU is there */ 495 val |= 0x04; /* PS/2 mouse installed */ 496 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 497 498 /* hard drives and FDC */ 499 arg.rtc_state = s; 500 arg.idebus[0] = idebus0; 501 arg.idebus[1] = idebus1; 502 qemu_register_reset(pc_cmos_init_late, &arg); 503 } 504 505 #define TYPE_PORT92 "port92" 506 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 507 508 /* port 92 stuff: could be split off */ 509 typedef struct Port92State { 510 ISADevice parent_obj; 511 512 MemoryRegion io; 513 uint8_t outport; 514 qemu_irq a20_out; 515 } Port92State; 516 517 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 518 unsigned size) 519 { 520 Port92State *s = opaque; 521 int oldval = s->outport; 522 523 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 524 s->outport = val; 525 qemu_set_irq(s->a20_out, (val >> 1) & 1); 526 if ((val & 1) && !(oldval & 1)) { 527 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 528 } 529 } 530 531 static uint64_t port92_read(void *opaque, hwaddr addr, 532 unsigned size) 533 { 534 Port92State *s = opaque; 535 uint32_t ret; 536 537 ret = s->outport; 538 DPRINTF("port92: read 0x%02x\n", ret); 539 return ret; 540 } 541 542 static void port92_init(ISADevice *dev, qemu_irq a20_out) 543 { 544 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 545 } 546 547 static const VMStateDescription vmstate_port92_isa = { 548 .name = "port92", 549 .version_id = 1, 550 .minimum_version_id = 1, 551 .fields = (VMStateField[]) { 552 VMSTATE_UINT8(outport, Port92State), 553 VMSTATE_END_OF_LIST() 554 } 555 }; 556 557 static void port92_reset(DeviceState *d) 558 { 559 Port92State *s = PORT92(d); 560 561 s->outport &= ~1; 562 } 563 564 static const MemoryRegionOps port92_ops = { 565 .read = port92_read, 566 .write = port92_write, 567 .impl = { 568 .min_access_size = 1, 569 .max_access_size = 1, 570 }, 571 .endianness = DEVICE_LITTLE_ENDIAN, 572 }; 573 574 static void port92_initfn(Object *obj) 575 { 576 Port92State *s = PORT92(obj); 577 578 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 579 580 s->outport = 0; 581 582 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 583 } 584 585 static void port92_realizefn(DeviceState *dev, Error **errp) 586 { 587 ISADevice *isadev = ISA_DEVICE(dev); 588 Port92State *s = PORT92(dev); 589 590 isa_register_ioport(isadev, &s->io, 0x92); 591 } 592 593 static void port92_class_initfn(ObjectClass *klass, void *data) 594 { 595 DeviceClass *dc = DEVICE_CLASS(klass); 596 597 dc->realize = port92_realizefn; 598 dc->reset = port92_reset; 599 dc->vmsd = &vmstate_port92_isa; 600 /* 601 * Reason: unlike ordinary ISA devices, this one needs additional 602 * wiring: its A20 output line needs to be wired up by 603 * port92_init(). 604 */ 605 dc->user_creatable = false; 606 } 607 608 static const TypeInfo port92_info = { 609 .name = TYPE_PORT92, 610 .parent = TYPE_ISA_DEVICE, 611 .instance_size = sizeof(Port92State), 612 .instance_init = port92_initfn, 613 .class_init = port92_class_initfn, 614 }; 615 616 static void port92_register_types(void) 617 { 618 type_register_static(&port92_info); 619 } 620 621 type_init(port92_register_types) 622 623 static void handle_a20_line_change(void *opaque, int irq, int level) 624 { 625 X86CPU *cpu = opaque; 626 627 /* XXX: send to all CPUs ? */ 628 /* XXX: add logic to handle multiple A20 line sources */ 629 x86_cpu_set_a20(cpu, level); 630 } 631 632 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 633 { 634 int index = le32_to_cpu(e820_reserve.count); 635 struct e820_entry *entry; 636 637 if (type != E820_RAM) { 638 /* old FW_CFG_E820_TABLE entry -- reservations only */ 639 if (index >= E820_NR_ENTRIES) { 640 return -EBUSY; 641 } 642 entry = &e820_reserve.entry[index++]; 643 644 entry->address = cpu_to_le64(address); 645 entry->length = cpu_to_le64(length); 646 entry->type = cpu_to_le32(type); 647 648 e820_reserve.count = cpu_to_le32(index); 649 } 650 651 /* new "etc/e820" file -- include ram too */ 652 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 653 e820_table[e820_entries].address = cpu_to_le64(address); 654 e820_table[e820_entries].length = cpu_to_le64(length); 655 e820_table[e820_entries].type = cpu_to_le32(type); 656 e820_entries++; 657 658 return e820_entries; 659 } 660 661 int e820_get_num_entries(void) 662 { 663 return e820_entries; 664 } 665 666 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 667 { 668 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 669 *address = le64_to_cpu(e820_table[idx].address); 670 *length = le64_to_cpu(e820_table[idx].length); 671 return true; 672 } 673 return false; 674 } 675 676 /* Enables contiguous-apic-ID mode, for compatibility */ 677 static bool compat_apic_id_mode; 678 679 void enable_compat_apic_id_mode(void) 680 { 681 compat_apic_id_mode = true; 682 } 683 684 /* Calculates initial APIC ID for a specific CPU index 685 * 686 * Currently we need to be able to calculate the APIC ID from the CPU index 687 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 688 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 689 * all CPUs up to max_cpus. 690 */ 691 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 692 { 693 uint32_t correct_id; 694 static bool warned; 695 696 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 697 if (compat_apic_id_mode) { 698 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 699 error_report("APIC IDs set in compatibility mode, " 700 "CPU topology won't match the configuration"); 701 warned = true; 702 } 703 return cpu_index; 704 } else { 705 return correct_id; 706 } 707 } 708 709 static void pc_build_smbios(PCMachineState *pcms) 710 { 711 uint8_t *smbios_tables, *smbios_anchor; 712 size_t smbios_tables_len, smbios_anchor_len; 713 struct smbios_phys_mem_area *mem_array; 714 unsigned i, array_count; 715 MachineState *ms = MACHINE(pcms); 716 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 717 718 /* tell smbios about cpuid version and features */ 719 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 720 721 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 722 if (smbios_tables) { 723 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 724 smbios_tables, smbios_tables_len); 725 } 726 727 /* build the array of physical mem area from e820 table */ 728 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 729 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 730 uint64_t addr, len; 731 732 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 733 mem_array[array_count].address = addr; 734 mem_array[array_count].length = len; 735 array_count++; 736 } 737 } 738 smbios_get_tables(mem_array, array_count, 739 &smbios_tables, &smbios_tables_len, 740 &smbios_anchor, &smbios_anchor_len); 741 g_free(mem_array); 742 743 if (smbios_anchor) { 744 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 745 smbios_tables, smbios_tables_len); 746 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 747 smbios_anchor, smbios_anchor_len); 748 } 749 } 750 751 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 752 { 753 FWCfgState *fw_cfg; 754 uint64_t *numa_fw_cfg; 755 int i; 756 const CPUArchIdList *cpus; 757 MachineClass *mc = MACHINE_GET_CLASS(pcms); 758 759 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 760 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 761 762 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 763 * 764 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 765 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 766 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 767 * for CPU hotplug also uses APIC ID and not "CPU index". 768 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 769 * but the "limit to the APIC ID values SeaBIOS may see". 770 * 771 * So for compatibility reasons with old BIOSes we are stuck with 772 * "etc/max-cpus" actually being apic_id_limit 773 */ 774 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 775 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 776 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 777 acpi_tables, acpi_tables_len); 778 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 779 780 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 781 &e820_reserve, sizeof(e820_reserve)); 782 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 783 sizeof(struct e820_entry) * e820_entries); 784 785 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 786 /* allocate memory for the NUMA channel: one (64bit) word for the number 787 * of nodes, one word for each VCPU->node and one word for each node to 788 * hold the amount of memory. 789 */ 790 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 791 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 792 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 793 for (i = 0; i < cpus->len; i++) { 794 unsigned int apic_id = cpus->cpus[i].arch_id; 795 assert(apic_id < pcms->apic_id_limit); 796 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 797 } 798 for (i = 0; i < nb_numa_nodes; i++) { 799 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 800 cpu_to_le64(numa_info[i].node_mem); 801 } 802 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 803 (1 + pcms->apic_id_limit + nb_numa_nodes) * 804 sizeof(*numa_fw_cfg)); 805 806 return fw_cfg; 807 } 808 809 static long get_file_size(FILE *f) 810 { 811 long where, size; 812 813 /* XXX: on Unix systems, using fstat() probably makes more sense */ 814 815 where = ftell(f); 816 fseek(f, 0, SEEK_END); 817 size = ftell(f); 818 fseek(f, where, SEEK_SET); 819 820 return size; 821 } 822 823 /* setup_data types */ 824 #define SETUP_NONE 0 825 #define SETUP_E820_EXT 1 826 #define SETUP_DTB 2 827 #define SETUP_PCI 3 828 #define SETUP_EFI 4 829 830 struct setup_data { 831 uint64_t next; 832 uint32_t type; 833 uint32_t len; 834 uint8_t data[0]; 835 } __attribute__((packed)); 836 837 static void load_linux(PCMachineState *pcms, 838 FWCfgState *fw_cfg) 839 { 840 uint16_t protocol; 841 int setup_size, kernel_size, cmdline_size; 842 int dtb_size, setup_data_offset; 843 uint32_t initrd_max; 844 uint8_t header[8192], *setup, *kernel; 845 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 846 FILE *f; 847 char *vmode; 848 MachineState *machine = MACHINE(pcms); 849 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 850 struct setup_data *setup_data; 851 const char *kernel_filename = machine->kernel_filename; 852 const char *initrd_filename = machine->initrd_filename; 853 const char *dtb_filename = machine->dtb; 854 const char *kernel_cmdline = machine->kernel_cmdline; 855 856 /* Align to 16 bytes as a paranoia measure */ 857 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 858 859 /* load the kernel header */ 860 f = fopen(kernel_filename, "rb"); 861 if (!f || !(kernel_size = get_file_size(f)) || 862 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 863 MIN(ARRAY_SIZE(header), kernel_size)) { 864 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 865 kernel_filename, strerror(errno)); 866 exit(1); 867 } 868 869 /* kernel protocol version */ 870 #if 0 871 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 872 #endif 873 if (ldl_p(header+0x202) == 0x53726448) { 874 protocol = lduw_p(header+0x206); 875 } else { 876 /* This looks like a multiboot kernel. If it is, let's stop 877 treating it like a Linux kernel. */ 878 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 879 kernel_cmdline, kernel_size, header)) { 880 return; 881 } 882 protocol = 0; 883 } 884 885 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 886 /* Low kernel */ 887 real_addr = 0x90000; 888 cmdline_addr = 0x9a000 - cmdline_size; 889 prot_addr = 0x10000; 890 } else if (protocol < 0x202) { 891 /* High but ancient kernel */ 892 real_addr = 0x90000; 893 cmdline_addr = 0x9a000 - cmdline_size; 894 prot_addr = 0x100000; 895 } else { 896 /* High and recent kernel */ 897 real_addr = 0x10000; 898 cmdline_addr = 0x20000; 899 prot_addr = 0x100000; 900 } 901 902 #if 0 903 fprintf(stderr, 904 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 905 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 906 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 907 real_addr, 908 cmdline_addr, 909 prot_addr); 910 #endif 911 912 /* highest address for loading the initrd */ 913 if (protocol >= 0x203) { 914 initrd_max = ldl_p(header+0x22c); 915 } else { 916 initrd_max = 0x37ffffff; 917 } 918 919 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 920 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 921 } 922 923 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 924 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 925 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 926 927 if (protocol >= 0x202) { 928 stl_p(header+0x228, cmdline_addr); 929 } else { 930 stw_p(header+0x20, 0xA33F); 931 stw_p(header+0x22, cmdline_addr-real_addr); 932 } 933 934 /* handle vga= parameter */ 935 vmode = strstr(kernel_cmdline, "vga="); 936 if (vmode) { 937 unsigned int video_mode; 938 /* skip "vga=" */ 939 vmode += 4; 940 if (!strncmp(vmode, "normal", 6)) { 941 video_mode = 0xffff; 942 } else if (!strncmp(vmode, "ext", 3)) { 943 video_mode = 0xfffe; 944 } else if (!strncmp(vmode, "ask", 3)) { 945 video_mode = 0xfffd; 946 } else { 947 video_mode = strtol(vmode, NULL, 0); 948 } 949 stw_p(header+0x1fa, video_mode); 950 } 951 952 /* loader type */ 953 /* High nybble = B reserved for QEMU; low nybble is revision number. 954 If this code is substantially changed, you may want to consider 955 incrementing the revision. */ 956 if (protocol >= 0x200) { 957 header[0x210] = 0xB0; 958 } 959 /* heap */ 960 if (protocol >= 0x201) { 961 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 962 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 963 } 964 965 /* load initrd */ 966 if (initrd_filename) { 967 gsize initrd_size; 968 gchar *initrd_data; 969 GError *gerr = NULL; 970 971 if (protocol < 0x200) { 972 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 973 exit(1); 974 } 975 976 if (!g_file_get_contents(initrd_filename, &initrd_data, 977 &initrd_size, &gerr)) { 978 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 979 initrd_filename, gerr->message); 980 exit(1); 981 } 982 if (initrd_size >= initrd_max) { 983 fprintf(stderr, "qemu: initrd is too large, cannot support." 984 "(max: %"PRIu32", need %"PRId64")\n", 985 initrd_max, (uint64_t)initrd_size); 986 exit(1); 987 } 988 989 initrd_addr = (initrd_max-initrd_size) & ~4095; 990 991 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 992 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 993 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 994 995 stl_p(header+0x218, initrd_addr); 996 stl_p(header+0x21c, initrd_size); 997 } 998 999 /* load kernel and setup */ 1000 setup_size = header[0x1f1]; 1001 if (setup_size == 0) { 1002 setup_size = 4; 1003 } 1004 setup_size = (setup_size+1)*512; 1005 if (setup_size > kernel_size) { 1006 fprintf(stderr, "qemu: invalid kernel header\n"); 1007 exit(1); 1008 } 1009 kernel_size -= setup_size; 1010 1011 setup = g_malloc(setup_size); 1012 kernel = g_malloc(kernel_size); 1013 fseek(f, 0, SEEK_SET); 1014 if (fread(setup, 1, setup_size, f) != setup_size) { 1015 fprintf(stderr, "fread() failed\n"); 1016 exit(1); 1017 } 1018 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1019 fprintf(stderr, "fread() failed\n"); 1020 exit(1); 1021 } 1022 fclose(f); 1023 1024 /* append dtb to kernel */ 1025 if (dtb_filename) { 1026 if (protocol < 0x209) { 1027 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1028 exit(1); 1029 } 1030 1031 dtb_size = get_image_size(dtb_filename); 1032 if (dtb_size <= 0) { 1033 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1034 dtb_filename, strerror(errno)); 1035 exit(1); 1036 } 1037 1038 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1039 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1040 kernel = g_realloc(kernel, kernel_size); 1041 1042 stq_p(header+0x250, prot_addr + setup_data_offset); 1043 1044 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1045 setup_data->next = 0; 1046 setup_data->type = cpu_to_le32(SETUP_DTB); 1047 setup_data->len = cpu_to_le32(dtb_size); 1048 1049 load_image_size(dtb_filename, setup_data->data, dtb_size); 1050 } 1051 1052 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1053 1054 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1055 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1056 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1057 1058 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1059 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1060 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1061 1062 option_rom[nb_option_roms].bootindex = 0; 1063 option_rom[nb_option_roms].name = "linuxboot.bin"; 1064 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1065 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1066 } 1067 nb_option_roms++; 1068 } 1069 1070 #define NE2000_NB_MAX 6 1071 1072 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1073 0x280, 0x380 }; 1074 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1075 1076 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1077 { 1078 static int nb_ne2k = 0; 1079 1080 if (nb_ne2k == NE2000_NB_MAX) 1081 return; 1082 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1083 ne2000_irq[nb_ne2k], nd); 1084 nb_ne2k++; 1085 } 1086 1087 DeviceState *cpu_get_current_apic(void) 1088 { 1089 if (current_cpu) { 1090 X86CPU *cpu = X86_CPU(current_cpu); 1091 return cpu->apic_state; 1092 } else { 1093 return NULL; 1094 } 1095 } 1096 1097 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1098 { 1099 X86CPU *cpu = opaque; 1100 1101 if (level) { 1102 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1103 } 1104 } 1105 1106 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1107 { 1108 Object *cpu = NULL; 1109 Error *local_err = NULL; 1110 1111 cpu = object_new(typename); 1112 1113 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1114 object_property_set_bool(cpu, true, "realized", &local_err); 1115 1116 object_unref(cpu); 1117 error_propagate(errp, local_err); 1118 } 1119 1120 void pc_hot_add_cpu(const int64_t id, Error **errp) 1121 { 1122 MachineState *ms = MACHINE(qdev_get_machine()); 1123 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1124 Error *local_err = NULL; 1125 1126 if (id < 0) { 1127 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1128 return; 1129 } 1130 1131 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1132 error_setg(errp, "Unable to add CPU: %" PRIi64 1133 ", resulting APIC ID (%" PRIi64 ") is too large", 1134 id, apic_id); 1135 return; 1136 } 1137 1138 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1139 if (local_err) { 1140 error_propagate(errp, local_err); 1141 return; 1142 } 1143 } 1144 1145 void pc_cpus_init(PCMachineState *pcms) 1146 { 1147 int i; 1148 const CPUArchIdList *possible_cpus; 1149 MachineState *ms = MACHINE(pcms); 1150 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1151 1152 /* Calculates the limit to CPU APIC ID values 1153 * 1154 * Limit for the APIC ID value, so that all 1155 * CPU APIC IDs are < pcms->apic_id_limit. 1156 * 1157 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1158 */ 1159 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1160 possible_cpus = mc->possible_cpu_arch_ids(ms); 1161 for (i = 0; i < smp_cpus; i++) { 1162 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1163 &error_fatal); 1164 } 1165 } 1166 1167 static void pc_build_feature_control_file(PCMachineState *pcms) 1168 { 1169 MachineState *ms = MACHINE(pcms); 1170 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1171 CPUX86State *env = &cpu->env; 1172 uint32_t unused, ecx, edx; 1173 uint64_t feature_control_bits = 0; 1174 uint64_t *val; 1175 1176 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1177 if (ecx & CPUID_EXT_VMX) { 1178 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1179 } 1180 1181 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1182 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1183 (env->mcg_cap & MCG_LMCE_P)) { 1184 feature_control_bits |= FEATURE_CONTROL_LMCE; 1185 } 1186 1187 if (!feature_control_bits) { 1188 return; 1189 } 1190 1191 val = g_malloc(sizeof(*val)); 1192 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1193 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1194 } 1195 1196 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1197 { 1198 if (cpus_count > 0xff) { 1199 /* If the number of CPUs can't be represented in 8 bits, the 1200 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1201 * to make old BIOSes fail more predictably. 1202 */ 1203 rtc_set_memory(rtc, 0x5f, 0); 1204 } else { 1205 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1206 } 1207 } 1208 1209 static 1210 void pc_machine_done(Notifier *notifier, void *data) 1211 { 1212 PCMachineState *pcms = container_of(notifier, 1213 PCMachineState, machine_done); 1214 PCIBus *bus = pcms->bus; 1215 1216 /* set the number of CPUs */ 1217 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1218 1219 if (bus) { 1220 int extra_hosts = 0; 1221 1222 QLIST_FOREACH(bus, &bus->child, sibling) { 1223 /* look for expander root buses */ 1224 if (pci_bus_is_root(bus)) { 1225 extra_hosts++; 1226 } 1227 } 1228 if (extra_hosts && pcms->fw_cfg) { 1229 uint64_t *val = g_malloc(sizeof(*val)); 1230 *val = cpu_to_le64(extra_hosts); 1231 fw_cfg_add_file(pcms->fw_cfg, 1232 "etc/extra-pci-roots", val, sizeof(*val)); 1233 } 1234 } 1235 1236 acpi_setup(); 1237 if (pcms->fw_cfg) { 1238 pc_build_smbios(pcms); 1239 pc_build_feature_control_file(pcms); 1240 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1241 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1242 } 1243 1244 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1245 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1246 1247 if (!iommu || !iommu->x86_iommu.intr_supported || 1248 iommu->intr_eim != ON_OFF_AUTO_ON) { 1249 error_report("current -smp configuration requires " 1250 "Extended Interrupt Mode enabled. " 1251 "You can add an IOMMU using: " 1252 "-device intel-iommu,intremap=on,eim=on"); 1253 exit(EXIT_FAILURE); 1254 } 1255 } 1256 } 1257 1258 void pc_guest_info_init(PCMachineState *pcms) 1259 { 1260 int i; 1261 1262 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1263 pcms->numa_nodes = nb_numa_nodes; 1264 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1265 sizeof *pcms->node_mem); 1266 for (i = 0; i < nb_numa_nodes; i++) { 1267 pcms->node_mem[i] = numa_info[i].node_mem; 1268 } 1269 1270 pcms->machine_done.notify = pc_machine_done; 1271 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1272 } 1273 1274 /* setup pci memory address space mapping into system address space */ 1275 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1276 MemoryRegion *pci_address_space) 1277 { 1278 /* Set to lower priority than RAM */ 1279 memory_region_add_subregion_overlap(system_memory, 0x0, 1280 pci_address_space, -1); 1281 } 1282 1283 void pc_acpi_init(const char *default_dsdt) 1284 { 1285 char *filename; 1286 1287 if (acpi_tables != NULL) { 1288 /* manually set via -acpitable, leave it alone */ 1289 return; 1290 } 1291 1292 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1293 if (filename == NULL) { 1294 warn_report("failed to find %s", default_dsdt); 1295 } else { 1296 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1297 &error_abort); 1298 Error *err = NULL; 1299 1300 qemu_opt_set(opts, "file", filename, &error_abort); 1301 1302 acpi_table_add_builtin(opts, &err); 1303 if (err) { 1304 warn_reportf_err(err, "failed to load %s: ", filename); 1305 } 1306 g_free(filename); 1307 } 1308 } 1309 1310 void xen_load_linux(PCMachineState *pcms) 1311 { 1312 int i; 1313 FWCfgState *fw_cfg; 1314 1315 assert(MACHINE(pcms)->kernel_filename != NULL); 1316 1317 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1318 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1319 rom_set_fw(fw_cfg); 1320 1321 load_linux(pcms, fw_cfg); 1322 for (i = 0; i < nb_option_roms; i++) { 1323 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1324 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1325 !strcmp(option_rom[i].name, "multiboot.bin")); 1326 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1327 } 1328 pcms->fw_cfg = fw_cfg; 1329 } 1330 1331 void pc_memory_init(PCMachineState *pcms, 1332 MemoryRegion *system_memory, 1333 MemoryRegion *rom_memory, 1334 MemoryRegion **ram_memory) 1335 { 1336 int linux_boot, i; 1337 MemoryRegion *ram, *option_rom_mr; 1338 MemoryRegion *ram_below_4g, *ram_above_4g; 1339 FWCfgState *fw_cfg; 1340 MachineState *machine = MACHINE(pcms); 1341 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1342 1343 assert(machine->ram_size == pcms->below_4g_mem_size + 1344 pcms->above_4g_mem_size); 1345 1346 linux_boot = (machine->kernel_filename != NULL); 1347 1348 /* Allocate RAM. We allocate it as a single memory region and use 1349 * aliases to address portions of it, mostly for backwards compatibility 1350 * with older qemus that used qemu_ram_alloc(). 1351 */ 1352 ram = g_malloc(sizeof(*ram)); 1353 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1354 machine->ram_size); 1355 *ram_memory = ram; 1356 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1357 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1358 0, pcms->below_4g_mem_size); 1359 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1360 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1361 if (pcms->above_4g_mem_size > 0) { 1362 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1363 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1364 pcms->below_4g_mem_size, 1365 pcms->above_4g_mem_size); 1366 memory_region_add_subregion(system_memory, 0x100000000ULL, 1367 ram_above_4g); 1368 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1369 } 1370 1371 if (!pcmc->has_reserved_memory && 1372 (machine->ram_slots || 1373 (machine->maxram_size > machine->ram_size))) { 1374 MachineClass *mc = MACHINE_GET_CLASS(machine); 1375 1376 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1377 mc->name); 1378 exit(EXIT_FAILURE); 1379 } 1380 1381 /* always allocate the device memory information */ 1382 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1383 1384 /* initialize device memory address space */ 1385 if (pcmc->has_reserved_memory && 1386 (machine->ram_size < machine->maxram_size)) { 1387 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1388 1389 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1390 error_report("unsupported amount of memory slots: %"PRIu64, 1391 machine->ram_slots); 1392 exit(EXIT_FAILURE); 1393 } 1394 1395 if (QEMU_ALIGN_UP(machine->maxram_size, 1396 TARGET_PAGE_SIZE) != machine->maxram_size) { 1397 error_report("maximum memory size must by aligned to multiple of " 1398 "%d bytes", TARGET_PAGE_SIZE); 1399 exit(EXIT_FAILURE); 1400 } 1401 1402 machine->device_memory->base = 1403 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1404 1405 if (pcmc->enforce_aligned_dimm) { 1406 /* size device region assuming 1G page max alignment per slot */ 1407 device_mem_size += (1 * GiB) * machine->ram_slots; 1408 } 1409 1410 if ((machine->device_memory->base + device_mem_size) < 1411 device_mem_size) { 1412 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1413 machine->maxram_size); 1414 exit(EXIT_FAILURE); 1415 } 1416 1417 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1418 "device-memory", device_mem_size); 1419 memory_region_add_subregion(system_memory, machine->device_memory->base, 1420 &machine->device_memory->mr); 1421 } 1422 1423 /* Initialize PC system firmware */ 1424 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1425 1426 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1427 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1428 &error_fatal); 1429 if (pcmc->pci_enabled) { 1430 memory_region_set_readonly(option_rom_mr, true); 1431 } 1432 memory_region_add_subregion_overlap(rom_memory, 1433 PC_ROM_MIN_VGA, 1434 option_rom_mr, 1435 1); 1436 1437 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1438 1439 rom_set_fw(fw_cfg); 1440 1441 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1442 uint64_t *val = g_malloc(sizeof(*val)); 1443 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1444 uint64_t res_mem_end = machine->device_memory->base; 1445 1446 if (!pcmc->broken_reserved_end) { 1447 res_mem_end += memory_region_size(&machine->device_memory->mr); 1448 } 1449 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1450 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1451 } 1452 1453 if (linux_boot) { 1454 load_linux(pcms, fw_cfg); 1455 } 1456 1457 for (i = 0; i < nb_option_roms; i++) { 1458 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1459 } 1460 pcms->fw_cfg = fw_cfg; 1461 1462 /* Init default IOAPIC address space */ 1463 pcms->ioapic_as = &address_space_memory; 1464 } 1465 1466 /* 1467 * The 64bit pci hole starts after "above 4G RAM" and 1468 * potentially the space reserved for memory hotplug. 1469 */ 1470 uint64_t pc_pci_hole64_start(void) 1471 { 1472 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1473 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1474 MachineState *ms = MACHINE(pcms); 1475 uint64_t hole64_start = 0; 1476 1477 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1478 hole64_start = ms->device_memory->base; 1479 if (!pcmc->broken_reserved_end) { 1480 hole64_start += memory_region_size(&ms->device_memory->mr); 1481 } 1482 } else { 1483 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1484 } 1485 1486 return ROUND_UP(hole64_start, 1 * GiB); 1487 } 1488 1489 qemu_irq pc_allocate_cpu_irq(void) 1490 { 1491 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1492 } 1493 1494 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1495 { 1496 DeviceState *dev = NULL; 1497 1498 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1499 if (pci_bus) { 1500 PCIDevice *pcidev = pci_vga_init(pci_bus); 1501 dev = pcidev ? &pcidev->qdev : NULL; 1502 } else if (isa_bus) { 1503 ISADevice *isadev = isa_vga_init(isa_bus); 1504 dev = isadev ? DEVICE(isadev) : NULL; 1505 } 1506 rom_reset_order_override(); 1507 return dev; 1508 } 1509 1510 static const MemoryRegionOps ioport80_io_ops = { 1511 .write = ioport80_write, 1512 .read = ioport80_read, 1513 .endianness = DEVICE_NATIVE_ENDIAN, 1514 .impl = { 1515 .min_access_size = 1, 1516 .max_access_size = 1, 1517 }, 1518 }; 1519 1520 static const MemoryRegionOps ioportF0_io_ops = { 1521 .write = ioportF0_write, 1522 .read = ioportF0_read, 1523 .endianness = DEVICE_NATIVE_ENDIAN, 1524 .impl = { 1525 .min_access_size = 1, 1526 .max_access_size = 1, 1527 }, 1528 }; 1529 1530 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1531 { 1532 int i; 1533 DriveInfo *fd[MAX_FD]; 1534 qemu_irq *a20_line; 1535 ISADevice *i8042, *port92, *vmmouse; 1536 1537 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1538 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1539 1540 for (i = 0; i < MAX_FD; i++) { 1541 fd[i] = drive_get(IF_FLOPPY, 0, i); 1542 create_fdctrl |= !!fd[i]; 1543 } 1544 if (create_fdctrl) { 1545 fdctrl_init_isa(isa_bus, fd); 1546 } 1547 1548 i8042 = isa_create_simple(isa_bus, "i8042"); 1549 if (!no_vmport) { 1550 vmport_init(isa_bus); 1551 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1552 } else { 1553 vmmouse = NULL; 1554 } 1555 if (vmmouse) { 1556 DeviceState *dev = DEVICE(vmmouse); 1557 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1558 qdev_init_nofail(dev); 1559 } 1560 port92 = isa_create_simple(isa_bus, "port92"); 1561 1562 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1563 i8042_setup_a20_line(i8042, a20_line[0]); 1564 port92_init(port92, a20_line[1]); 1565 g_free(a20_line); 1566 } 1567 1568 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1569 ISADevice **rtc_state, 1570 bool create_fdctrl, 1571 bool no_vmport, 1572 bool has_pit, 1573 uint32_t hpet_irqs) 1574 { 1575 int i; 1576 DeviceState *hpet = NULL; 1577 int pit_isa_irq = 0; 1578 qemu_irq pit_alt_irq = NULL; 1579 qemu_irq rtc_irq = NULL; 1580 ISADevice *pit = NULL; 1581 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1582 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1583 1584 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1585 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1586 1587 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1588 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1589 1590 /* 1591 * Check if an HPET shall be created. 1592 * 1593 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1594 * when the HPET wants to take over. Thus we have to disable the latter. 1595 */ 1596 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1597 /* In order to set property, here not using sysbus_try_create_simple */ 1598 hpet = qdev_try_create(NULL, TYPE_HPET); 1599 if (hpet) { 1600 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1601 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1602 * IRQ8 and IRQ2. 1603 */ 1604 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1605 HPET_INTCAP, NULL); 1606 if (!compat) { 1607 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1608 } 1609 qdev_init_nofail(hpet); 1610 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1611 1612 for (i = 0; i < GSI_NUM_PINS; i++) { 1613 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1614 } 1615 pit_isa_irq = -1; 1616 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1617 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1618 } 1619 } 1620 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1621 1622 qemu_register_boot_set(pc_boot_set, *rtc_state); 1623 1624 if (!xen_enabled() && has_pit) { 1625 if (kvm_pit_in_kernel()) { 1626 pit = kvm_pit_init(isa_bus, 0x40); 1627 } else { 1628 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1629 } 1630 if (hpet) { 1631 /* connect PIT to output control line of the HPET */ 1632 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1633 } 1634 pcspk_init(isa_bus, pit); 1635 } 1636 1637 i8257_dma_init(isa_bus, 0); 1638 1639 /* Super I/O */ 1640 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1641 } 1642 1643 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1644 { 1645 int i; 1646 1647 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1648 for (i = 0; i < nb_nics; i++) { 1649 NICInfo *nd = &nd_table[i]; 1650 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1651 1652 if (g_str_equal(model, "ne2k_isa")) { 1653 pc_init_ne2k_isa(isa_bus, nd); 1654 } else { 1655 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1656 } 1657 } 1658 rom_reset_order_override(); 1659 } 1660 1661 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1662 { 1663 DeviceState *dev; 1664 SysBusDevice *d; 1665 unsigned int i; 1666 1667 if (kvm_ioapic_in_kernel()) { 1668 dev = qdev_create(NULL, "kvm-ioapic"); 1669 } else { 1670 dev = qdev_create(NULL, "ioapic"); 1671 } 1672 if (parent_name) { 1673 object_property_add_child(object_resolve_path(parent_name, NULL), 1674 "ioapic", OBJECT(dev), NULL); 1675 } 1676 qdev_init_nofail(dev); 1677 d = SYS_BUS_DEVICE(dev); 1678 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1679 1680 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1681 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1682 } 1683 } 1684 1685 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1686 Error **errp) 1687 { 1688 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1689 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1690 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1691 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1692 1693 /* 1694 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1695 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1696 * addition to cover this case. 1697 */ 1698 if (!pcms->acpi_dev || !acpi_enabled) { 1699 error_setg(errp, 1700 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1701 return; 1702 } 1703 1704 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1705 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1706 return; 1707 } 1708 1709 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), 1710 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1711 } 1712 1713 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1714 DeviceState *dev, Error **errp) 1715 { 1716 HotplugHandlerClass *hhc; 1717 Error *local_err = NULL; 1718 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1719 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1720 1721 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); 1722 if (local_err) { 1723 goto out; 1724 } 1725 1726 if (is_nvdimm) { 1727 nvdimm_plug(&pcms->acpi_nvdimm_state); 1728 } 1729 1730 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1731 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1732 out: 1733 error_propagate(errp, local_err); 1734 } 1735 1736 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1737 DeviceState *dev, Error **errp) 1738 { 1739 HotplugHandlerClass *hhc; 1740 Error *local_err = NULL; 1741 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1742 1743 /* 1744 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1745 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1746 * addition to cover this case. 1747 */ 1748 if (!pcms->acpi_dev || !acpi_enabled) { 1749 error_setg(&local_err, 1750 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1751 goto out; 1752 } 1753 1754 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1755 error_setg(&local_err, 1756 "nvdimm device hot unplug is not supported yet."); 1757 goto out; 1758 } 1759 1760 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1761 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1762 1763 out: 1764 error_propagate(errp, local_err); 1765 } 1766 1767 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1768 DeviceState *dev, Error **errp) 1769 { 1770 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1771 HotplugHandlerClass *hhc; 1772 Error *local_err = NULL; 1773 1774 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1775 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1776 1777 if (local_err) { 1778 goto out; 1779 } 1780 1781 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); 1782 object_unparent(OBJECT(dev)); 1783 1784 out: 1785 error_propagate(errp, local_err); 1786 } 1787 1788 static int pc_apic_cmp(const void *a, const void *b) 1789 { 1790 CPUArchId *apic_a = (CPUArchId *)a; 1791 CPUArchId *apic_b = (CPUArchId *)b; 1792 1793 return apic_a->arch_id - apic_b->arch_id; 1794 } 1795 1796 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1797 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1798 * entry corresponding to CPU's apic_id returns NULL. 1799 */ 1800 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1801 { 1802 CPUArchId apic_id, *found_cpu; 1803 1804 apic_id.arch_id = id; 1805 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1806 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1807 pc_apic_cmp); 1808 if (found_cpu && idx) { 1809 *idx = found_cpu - ms->possible_cpus->cpus; 1810 } 1811 return found_cpu; 1812 } 1813 1814 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1815 DeviceState *dev, Error **errp) 1816 { 1817 CPUArchId *found_cpu; 1818 HotplugHandlerClass *hhc; 1819 Error *local_err = NULL; 1820 X86CPU *cpu = X86_CPU(dev); 1821 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1822 1823 if (pcms->acpi_dev) { 1824 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1825 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1826 if (local_err) { 1827 goto out; 1828 } 1829 } 1830 1831 /* increment the number of CPUs */ 1832 pcms->boot_cpus++; 1833 if (pcms->rtc) { 1834 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1835 } 1836 if (pcms->fw_cfg) { 1837 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1838 } 1839 1840 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1841 found_cpu->cpu = OBJECT(dev); 1842 out: 1843 error_propagate(errp, local_err); 1844 } 1845 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1846 DeviceState *dev, Error **errp) 1847 { 1848 int idx = -1; 1849 HotplugHandlerClass *hhc; 1850 Error *local_err = NULL; 1851 X86CPU *cpu = X86_CPU(dev); 1852 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1853 1854 if (!pcms->acpi_dev) { 1855 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1856 goto out; 1857 } 1858 1859 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1860 assert(idx != -1); 1861 if (idx == 0) { 1862 error_setg(&local_err, "Boot CPU is unpluggable"); 1863 goto out; 1864 } 1865 1866 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1867 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1868 1869 if (local_err) { 1870 goto out; 1871 } 1872 1873 out: 1874 error_propagate(errp, local_err); 1875 1876 } 1877 1878 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1879 DeviceState *dev, Error **errp) 1880 { 1881 CPUArchId *found_cpu; 1882 HotplugHandlerClass *hhc; 1883 Error *local_err = NULL; 1884 X86CPU *cpu = X86_CPU(dev); 1885 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1886 1887 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1888 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1889 1890 if (local_err) { 1891 goto out; 1892 } 1893 1894 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1895 found_cpu->cpu = NULL; 1896 object_unparent(OBJECT(dev)); 1897 1898 /* decrement the number of CPUs */ 1899 pcms->boot_cpus--; 1900 /* Update the number of CPUs in CMOS */ 1901 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1902 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1903 out: 1904 error_propagate(errp, local_err); 1905 } 1906 1907 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1908 DeviceState *dev, Error **errp) 1909 { 1910 int idx; 1911 CPUState *cs; 1912 CPUArchId *cpu_slot; 1913 X86CPUTopoInfo topo; 1914 X86CPU *cpu = X86_CPU(dev); 1915 MachineState *ms = MACHINE(hotplug_dev); 1916 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1917 1918 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1919 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1920 ms->cpu_type); 1921 return; 1922 } 1923 1924 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1925 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1926 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1927 1928 if (cpu->socket_id < 0) { 1929 error_setg(errp, "CPU socket-id is not set"); 1930 return; 1931 } else if (cpu->socket_id > max_socket) { 1932 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1933 cpu->socket_id, max_socket); 1934 return; 1935 } 1936 if (cpu->core_id < 0) { 1937 error_setg(errp, "CPU core-id is not set"); 1938 return; 1939 } else if (cpu->core_id > (smp_cores - 1)) { 1940 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1941 cpu->core_id, smp_cores - 1); 1942 return; 1943 } 1944 if (cpu->thread_id < 0) { 1945 error_setg(errp, "CPU thread-id is not set"); 1946 return; 1947 } else if (cpu->thread_id > (smp_threads - 1)) { 1948 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1949 cpu->thread_id, smp_threads - 1); 1950 return; 1951 } 1952 1953 topo.pkg_id = cpu->socket_id; 1954 topo.core_id = cpu->core_id; 1955 topo.smt_id = cpu->thread_id; 1956 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1957 } 1958 1959 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1960 if (!cpu_slot) { 1961 MachineState *ms = MACHINE(pcms); 1962 1963 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1964 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1965 " APIC ID %" PRIu32 ", valid index range 0:%d", 1966 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1967 ms->possible_cpus->len - 1); 1968 return; 1969 } 1970 1971 if (cpu_slot->cpu) { 1972 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1973 idx, cpu->apic_id); 1974 return; 1975 } 1976 1977 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1978 * so that machine_query_hotpluggable_cpus would show correct values 1979 */ 1980 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1981 * once -smp refactoring is complete and there will be CPU private 1982 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1983 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1984 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1985 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1986 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1987 return; 1988 } 1989 cpu->socket_id = topo.pkg_id; 1990 1991 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 1992 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 1993 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 1994 return; 1995 } 1996 cpu->core_id = topo.core_id; 1997 1998 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 1999 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2000 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2001 return; 2002 } 2003 cpu->thread_id = topo.smt_id; 2004 2005 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2006 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2007 return; 2008 } 2009 2010 cs = CPU(cpu); 2011 cs->cpu_index = idx; 2012 2013 numa_cpu_pre_plug(cpu_slot, dev, errp); 2014 } 2015 2016 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2017 DeviceState *dev, Error **errp) 2018 { 2019 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2020 pc_memory_pre_plug(hotplug_dev, dev, errp); 2021 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2022 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2023 } 2024 } 2025 2026 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2027 DeviceState *dev, Error **errp) 2028 { 2029 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2030 pc_memory_plug(hotplug_dev, dev, errp); 2031 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2032 pc_cpu_plug(hotplug_dev, dev, errp); 2033 } 2034 } 2035 2036 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2037 DeviceState *dev, Error **errp) 2038 { 2039 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2040 pc_memory_unplug_request(hotplug_dev, dev, errp); 2041 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2042 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2043 } else { 2044 error_setg(errp, "acpi: device unplug request for not supported device" 2045 " type: %s", object_get_typename(OBJECT(dev))); 2046 } 2047 } 2048 2049 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2050 DeviceState *dev, Error **errp) 2051 { 2052 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2053 pc_memory_unplug(hotplug_dev, dev, errp); 2054 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2055 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2056 } else { 2057 error_setg(errp, "acpi: device unplug for not supported device" 2058 " type: %s", object_get_typename(OBJECT(dev))); 2059 } 2060 } 2061 2062 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2063 DeviceState *dev) 2064 { 2065 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2066 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2067 return HOTPLUG_HANDLER(machine); 2068 } 2069 2070 return NULL; 2071 } 2072 2073 static void 2074 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2075 const char *name, void *opaque, 2076 Error **errp) 2077 { 2078 MachineState *ms = MACHINE(obj); 2079 int64_t value = memory_region_size(&ms->device_memory->mr); 2080 2081 visit_type_int(v, name, &value, errp); 2082 } 2083 2084 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2085 const char *name, void *opaque, 2086 Error **errp) 2087 { 2088 PCMachineState *pcms = PC_MACHINE(obj); 2089 uint64_t value = pcms->max_ram_below_4g; 2090 2091 visit_type_size(v, name, &value, errp); 2092 } 2093 2094 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2095 const char *name, void *opaque, 2096 Error **errp) 2097 { 2098 PCMachineState *pcms = PC_MACHINE(obj); 2099 Error *error = NULL; 2100 uint64_t value; 2101 2102 visit_type_size(v, name, &value, &error); 2103 if (error) { 2104 error_propagate(errp, error); 2105 return; 2106 } 2107 if (value > 4 * GiB) { 2108 error_setg(&error, 2109 "Machine option 'max-ram-below-4g=%"PRIu64 2110 "' expects size less than or equal to 4G", value); 2111 error_propagate(errp, error); 2112 return; 2113 } 2114 2115 if (value < 1 * MiB) { 2116 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2117 "BIOS may not work with less than 1MiB", value); 2118 } 2119 2120 pcms->max_ram_below_4g = value; 2121 } 2122 2123 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2124 void *opaque, Error **errp) 2125 { 2126 PCMachineState *pcms = PC_MACHINE(obj); 2127 OnOffAuto vmport = pcms->vmport; 2128 2129 visit_type_OnOffAuto(v, name, &vmport, errp); 2130 } 2131 2132 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2133 void *opaque, Error **errp) 2134 { 2135 PCMachineState *pcms = PC_MACHINE(obj); 2136 2137 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2138 } 2139 2140 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2141 { 2142 bool smm_available = false; 2143 2144 if (pcms->smm == ON_OFF_AUTO_OFF) { 2145 return false; 2146 } 2147 2148 if (tcg_enabled() || qtest_enabled()) { 2149 smm_available = true; 2150 } else if (kvm_enabled()) { 2151 smm_available = kvm_has_smm(); 2152 } 2153 2154 if (smm_available) { 2155 return true; 2156 } 2157 2158 if (pcms->smm == ON_OFF_AUTO_ON) { 2159 error_report("System Management Mode not supported by this hypervisor."); 2160 exit(1); 2161 } 2162 return false; 2163 } 2164 2165 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2166 void *opaque, Error **errp) 2167 { 2168 PCMachineState *pcms = PC_MACHINE(obj); 2169 OnOffAuto smm = pcms->smm; 2170 2171 visit_type_OnOffAuto(v, name, &smm, errp); 2172 } 2173 2174 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2175 void *opaque, Error **errp) 2176 { 2177 PCMachineState *pcms = PC_MACHINE(obj); 2178 2179 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2180 } 2181 2182 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2183 { 2184 PCMachineState *pcms = PC_MACHINE(obj); 2185 2186 return pcms->acpi_nvdimm_state.is_enabled; 2187 } 2188 2189 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2190 { 2191 PCMachineState *pcms = PC_MACHINE(obj); 2192 2193 pcms->acpi_nvdimm_state.is_enabled = value; 2194 } 2195 2196 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2197 { 2198 PCMachineState *pcms = PC_MACHINE(obj); 2199 2200 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2201 } 2202 2203 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2204 Error **errp) 2205 { 2206 PCMachineState *pcms = PC_MACHINE(obj); 2207 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2208 2209 if (strcmp(value, "cpu") == 0) 2210 nvdimm_state->persistence = 3; 2211 else if (strcmp(value, "mem-ctrl") == 0) 2212 nvdimm_state->persistence = 2; 2213 else { 2214 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option", 2215 value); 2216 return; 2217 } 2218 2219 g_free(nvdimm_state->persistence_string); 2220 nvdimm_state->persistence_string = g_strdup(value); 2221 } 2222 2223 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2224 { 2225 PCMachineState *pcms = PC_MACHINE(obj); 2226 2227 return pcms->smbus_enabled; 2228 } 2229 2230 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2231 { 2232 PCMachineState *pcms = PC_MACHINE(obj); 2233 2234 pcms->smbus_enabled = value; 2235 } 2236 2237 static bool pc_machine_get_sata(Object *obj, Error **errp) 2238 { 2239 PCMachineState *pcms = PC_MACHINE(obj); 2240 2241 return pcms->sata_enabled; 2242 } 2243 2244 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2245 { 2246 PCMachineState *pcms = PC_MACHINE(obj); 2247 2248 pcms->sata_enabled = value; 2249 } 2250 2251 static bool pc_machine_get_pit(Object *obj, Error **errp) 2252 { 2253 PCMachineState *pcms = PC_MACHINE(obj); 2254 2255 return pcms->pit_enabled; 2256 } 2257 2258 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2259 { 2260 PCMachineState *pcms = PC_MACHINE(obj); 2261 2262 pcms->pit_enabled = value; 2263 } 2264 2265 static void pc_machine_initfn(Object *obj) 2266 { 2267 PCMachineState *pcms = PC_MACHINE(obj); 2268 2269 pcms->max_ram_below_4g = 0; /* use default */ 2270 pcms->smm = ON_OFF_AUTO_AUTO; 2271 pcms->vmport = ON_OFF_AUTO_AUTO; 2272 /* nvdimm is disabled on default. */ 2273 pcms->acpi_nvdimm_state.is_enabled = false; 2274 /* acpi build is enabled by default if machine supports it */ 2275 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2276 pcms->smbus_enabled = true; 2277 pcms->sata_enabled = true; 2278 pcms->pit_enabled = true; 2279 } 2280 2281 static void pc_machine_reset(void) 2282 { 2283 CPUState *cs; 2284 X86CPU *cpu; 2285 2286 qemu_devices_reset(); 2287 2288 /* Reset APIC after devices have been reset to cancel 2289 * any changes that qemu_devices_reset() might have done. 2290 */ 2291 CPU_FOREACH(cs) { 2292 cpu = X86_CPU(cs); 2293 2294 if (cpu->apic_state) { 2295 device_reset(cpu->apic_state); 2296 } 2297 } 2298 } 2299 2300 static CpuInstanceProperties 2301 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2302 { 2303 MachineClass *mc = MACHINE_GET_CLASS(ms); 2304 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2305 2306 assert(cpu_index < possible_cpus->len); 2307 return possible_cpus->cpus[cpu_index].props; 2308 } 2309 2310 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2311 { 2312 X86CPUTopoInfo topo; 2313 2314 assert(idx < ms->possible_cpus->len); 2315 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2316 smp_cores, smp_threads, &topo); 2317 return topo.pkg_id % nb_numa_nodes; 2318 } 2319 2320 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2321 { 2322 int i; 2323 2324 if (ms->possible_cpus) { 2325 /* 2326 * make sure that max_cpus hasn't changed since the first use, i.e. 2327 * -smp hasn't been parsed after it 2328 */ 2329 assert(ms->possible_cpus->len == max_cpus); 2330 return ms->possible_cpus; 2331 } 2332 2333 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2334 sizeof(CPUArchId) * max_cpus); 2335 ms->possible_cpus->len = max_cpus; 2336 for (i = 0; i < ms->possible_cpus->len; i++) { 2337 X86CPUTopoInfo topo; 2338 2339 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2340 ms->possible_cpus->cpus[i].vcpus_count = 1; 2341 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2342 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2343 smp_cores, smp_threads, &topo); 2344 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2345 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2346 ms->possible_cpus->cpus[i].props.has_core_id = true; 2347 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2348 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2349 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2350 } 2351 return ms->possible_cpus; 2352 } 2353 2354 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2355 { 2356 /* cpu index isn't used */ 2357 CPUState *cs; 2358 2359 CPU_FOREACH(cs) { 2360 X86CPU *cpu = X86_CPU(cs); 2361 2362 if (!cpu->apic_state) { 2363 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2364 } else { 2365 apic_deliver_nmi(cpu->apic_state); 2366 } 2367 } 2368 } 2369 2370 static void pc_machine_class_init(ObjectClass *oc, void *data) 2371 { 2372 MachineClass *mc = MACHINE_CLASS(oc); 2373 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2374 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2375 NMIClass *nc = NMI_CLASS(oc); 2376 2377 pcmc->pci_enabled = true; 2378 pcmc->has_acpi_build = true; 2379 pcmc->rsdp_in_ram = true; 2380 pcmc->smbios_defaults = true; 2381 pcmc->smbios_uuid_encoded = true; 2382 pcmc->gigabyte_align = true; 2383 pcmc->has_reserved_memory = true; 2384 pcmc->kvmclock_enabled = true; 2385 pcmc->enforce_aligned_dimm = true; 2386 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2387 * to be used at the moment, 32K should be enough for a while. */ 2388 pcmc->acpi_data_size = 0x20000 + 0x8000; 2389 pcmc->save_tsc_khz = true; 2390 pcmc->linuxboot_dma_enabled = true; 2391 assert(!mc->get_hotplug_handler); 2392 mc->get_hotplug_handler = pc_get_hotpug_handler; 2393 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2394 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2395 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2396 mc->auto_enable_numa_with_memhp = true; 2397 mc->has_hotpluggable_cpus = true; 2398 mc->default_boot_order = "cad"; 2399 mc->hot_add_cpu = pc_hot_add_cpu; 2400 mc->block_default_type = IF_IDE; 2401 mc->max_cpus = 255; 2402 mc->reset = pc_machine_reset; 2403 hc->pre_plug = pc_machine_device_pre_plug_cb; 2404 hc->plug = pc_machine_device_plug_cb; 2405 hc->unplug_request = pc_machine_device_unplug_request_cb; 2406 hc->unplug = pc_machine_device_unplug_cb; 2407 nc->nmi_monitor_handler = x86_nmi; 2408 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2409 2410 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2411 pc_machine_get_device_memory_region_size, NULL, 2412 NULL, NULL, &error_abort); 2413 2414 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2415 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2416 NULL, NULL, &error_abort); 2417 2418 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2419 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2420 2421 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2422 pc_machine_get_smm, pc_machine_set_smm, 2423 NULL, NULL, &error_abort); 2424 object_class_property_set_description(oc, PC_MACHINE_SMM, 2425 "Enable SMM (pc & q35)", &error_abort); 2426 2427 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2428 pc_machine_get_vmport, pc_machine_set_vmport, 2429 NULL, NULL, &error_abort); 2430 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2431 "Enable vmport (pc & q35)", &error_abort); 2432 2433 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2434 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2435 2436 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2437 pc_machine_get_nvdimm_persistence, 2438 pc_machine_set_nvdimm_persistence, &error_abort); 2439 2440 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2441 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2442 2443 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2444 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2445 2446 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2447 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2448 } 2449 2450 static const TypeInfo pc_machine_info = { 2451 .name = TYPE_PC_MACHINE, 2452 .parent = TYPE_MACHINE, 2453 .abstract = true, 2454 .instance_size = sizeof(PCMachineState), 2455 .instance_init = pc_machine_initfn, 2456 .class_size = sizeof(PCMachineClass), 2457 .class_init = pc_machine_class_init, 2458 .interfaces = (InterfaceInfo[]) { 2459 { TYPE_HOTPLUG_HANDLER }, 2460 { TYPE_NMI }, 2461 { } 2462 }, 2463 }; 2464 2465 static void pc_machine_register_types(void) 2466 { 2467 type_register_static(&pc_machine_info); 2468 } 2469 2470 type_init(pc_machine_register_types) 2471