xref: /openbmc/qemu/hw/i386/pc.c (revision 93f7c4f0)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "monitor/monitor.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/i386/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "kvm_i386.h"
49 #include "hw/xen/xen.h"
50 #include "sysemu/block-backend.h"
51 #include "hw/block/block.h"
52 #include "ui/qemu-spice.h"
53 #include "exec/memory.h"
54 #include "exec/address-spaces.h"
55 #include "sysemu/arch_init.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/config-file.h"
58 #include "hw/acpi/acpi.h"
59 #include "hw/acpi/cpu_hotplug.h"
60 #include "hw/cpu/icc_bus.h"
61 #include "hw/boards.h"
62 #include "hw/pci/pci_host.h"
63 #include "acpi-build.h"
64 #include "hw/mem/pc-dimm.h"
65 #include "trace.h"
66 #include "qapi/visitor.h"
67 #include "qapi-visit.h"
68 
69 /* debug PC/ISA interrupts */
70 //#define DEBUG_IRQ
71 
72 #ifdef DEBUG_IRQ
73 #define DPRINTF(fmt, ...)                                       \
74     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
75 #else
76 #define DPRINTF(fmt, ...)
77 #endif
78 
79 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
80  * (128K) and other BIOS datastructures (less than 4K reported to be used at
81  * the moment, 32K should be enough for a while).  */
82 static unsigned acpi_data_size = 0x20000 + 0x8000;
83 void pc_set_legacy_acpi_data_size(void)
84 {
85     acpi_data_size = 0x10000;
86 }
87 
88 #define BIOS_CFG_IOPORT 0x510
89 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
90 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
91 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
92 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
93 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
94 
95 #define E820_NR_ENTRIES		16
96 
97 struct e820_entry {
98     uint64_t address;
99     uint64_t length;
100     uint32_t type;
101 } QEMU_PACKED __attribute((__aligned__(4)));
102 
103 struct e820_table {
104     uint32_t count;
105     struct e820_entry entry[E820_NR_ENTRIES];
106 } QEMU_PACKED __attribute((__aligned__(4)));
107 
108 static struct e820_table e820_reserve;
109 static struct e820_entry *e820_table;
110 static unsigned e820_entries;
111 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
112 
113 void gsi_handler(void *opaque, int n, int level)
114 {
115     GSIState *s = opaque;
116 
117     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
118     if (n < ISA_NUM_IRQS) {
119         qemu_set_irq(s->i8259_irq[n], level);
120     }
121     qemu_set_irq(s->ioapic_irq[n], level);
122 }
123 
124 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
125                            unsigned size)
126 {
127 }
128 
129 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
130 {
131     return 0xffffffffffffffffULL;
132 }
133 
134 /* MSDOS compatibility mode FPU exception support */
135 static qemu_irq ferr_irq;
136 
137 void pc_register_ferr_irq(qemu_irq irq)
138 {
139     ferr_irq = irq;
140 }
141 
142 /* XXX: add IGNNE support */
143 void cpu_set_ferr(CPUX86State *s)
144 {
145     qemu_irq_raise(ferr_irq);
146 }
147 
148 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
149                            unsigned size)
150 {
151     qemu_irq_lower(ferr_irq);
152 }
153 
154 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
155 {
156     return 0xffffffffffffffffULL;
157 }
158 
159 /* TSC handling */
160 uint64_t cpu_get_tsc(CPUX86State *env)
161 {
162     return cpu_get_ticks();
163 }
164 
165 /* SMM support */
166 
167 static cpu_set_smm_t smm_set;
168 static void *smm_arg;
169 
170 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
171 {
172     assert(smm_set == NULL);
173     assert(smm_arg == NULL);
174     smm_set = callback;
175     smm_arg = arg;
176 }
177 
178 void cpu_smm_update(CPUX86State *env)
179 {
180     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
181         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
182     }
183 }
184 
185 
186 /* IRQ handling */
187 int cpu_get_pic_interrupt(CPUX86State *env)
188 {
189     X86CPU *cpu = x86_env_get_cpu(env);
190     int intno;
191 
192     intno = apic_get_interrupt(cpu->apic_state);
193     if (intno >= 0) {
194         return intno;
195     }
196     /* read the irq from the PIC */
197     if (!apic_accept_pic_intr(cpu->apic_state)) {
198         return -1;
199     }
200 
201     intno = pic_read_irq(isa_pic);
202     return intno;
203 }
204 
205 static void pic_irq_request(void *opaque, int irq, int level)
206 {
207     CPUState *cs = first_cpu;
208     X86CPU *cpu = X86_CPU(cs);
209 
210     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
211     if (cpu->apic_state) {
212         CPU_FOREACH(cs) {
213             cpu = X86_CPU(cs);
214             if (apic_accept_pic_intr(cpu->apic_state)) {
215                 apic_deliver_pic_intr(cpu->apic_state, level);
216             }
217         }
218     } else {
219         if (level) {
220             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
221         } else {
222             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
223         }
224     }
225 }
226 
227 /* PC cmos mappings */
228 
229 #define REG_EQUIPMENT_BYTE          0x14
230 
231 static int cmos_get_fd_drive_type(FDriveType fd0)
232 {
233     int val;
234 
235     switch (fd0) {
236     case FDRIVE_DRV_144:
237         /* 1.44 Mb 3"5 drive */
238         val = 4;
239         break;
240     case FDRIVE_DRV_288:
241         /* 2.88 Mb 3"5 drive */
242         val = 5;
243         break;
244     case FDRIVE_DRV_120:
245         /* 1.2 Mb 5"5 drive */
246         val = 2;
247         break;
248     case FDRIVE_DRV_NONE:
249     default:
250         val = 0;
251         break;
252     }
253     return val;
254 }
255 
256 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
257                          int16_t cylinders, int8_t heads, int8_t sectors)
258 {
259     rtc_set_memory(s, type_ofs, 47);
260     rtc_set_memory(s, info_ofs, cylinders);
261     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
262     rtc_set_memory(s, info_ofs + 2, heads);
263     rtc_set_memory(s, info_ofs + 3, 0xff);
264     rtc_set_memory(s, info_ofs + 4, 0xff);
265     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
266     rtc_set_memory(s, info_ofs + 6, cylinders);
267     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
268     rtc_set_memory(s, info_ofs + 8, sectors);
269 }
270 
271 /* convert boot_device letter to something recognizable by the bios */
272 static int boot_device2nibble(char boot_device)
273 {
274     switch(boot_device) {
275     case 'a':
276     case 'b':
277         return 0x01; /* floppy boot */
278     case 'c':
279         return 0x02; /* hard drive boot */
280     case 'd':
281         return 0x03; /* CD-ROM boot */
282     case 'n':
283         return 0x04; /* Network boot */
284     }
285     return 0;
286 }
287 
288 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
289 {
290 #define PC_MAX_BOOT_DEVICES 3
291     int nbds, bds[3] = { 0, };
292     int i;
293 
294     nbds = strlen(boot_device);
295     if (nbds > PC_MAX_BOOT_DEVICES) {
296         error_setg(errp, "Too many boot devices for PC");
297         return;
298     }
299     for (i = 0; i < nbds; i++) {
300         bds[i] = boot_device2nibble(boot_device[i]);
301         if (bds[i] == 0) {
302             error_setg(errp, "Invalid boot device for PC: '%c'",
303                        boot_device[i]);
304             return;
305         }
306     }
307     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
308     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
309 }
310 
311 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
312 {
313     set_boot_dev(opaque, boot_device, errp);
314 }
315 
316 typedef struct pc_cmos_init_late_arg {
317     ISADevice *rtc_state;
318     BusState *idebus[2];
319 } pc_cmos_init_late_arg;
320 
321 static void pc_cmos_init_late(void *opaque)
322 {
323     pc_cmos_init_late_arg *arg = opaque;
324     ISADevice *s = arg->rtc_state;
325     int16_t cylinders;
326     int8_t heads, sectors;
327     int val;
328     int i, trans;
329 
330     val = 0;
331     if (ide_get_geometry(arg->idebus[0], 0,
332                          &cylinders, &heads, &sectors) >= 0) {
333         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
334         val |= 0xf0;
335     }
336     if (ide_get_geometry(arg->idebus[0], 1,
337                          &cylinders, &heads, &sectors) >= 0) {
338         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
339         val |= 0x0f;
340     }
341     rtc_set_memory(s, 0x12, val);
342 
343     val = 0;
344     for (i = 0; i < 4; i++) {
345         /* NOTE: ide_get_geometry() returns the physical
346            geometry.  It is always such that: 1 <= sects <= 63, 1
347            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
348            geometry can be different if a translation is done. */
349         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
350                              &cylinders, &heads, &sectors) >= 0) {
351             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
352             assert((trans & ~3) == 0);
353             val |= trans << (i * 2);
354         }
355     }
356     rtc_set_memory(s, 0x39, val);
357 
358     qemu_unregister_reset(pc_cmos_init_late, opaque);
359 }
360 
361 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
362                   const char *boot_device, MachineState *machine,
363                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
364                   ISADevice *s)
365 {
366     int val, nb, i;
367     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
368     static pc_cmos_init_late_arg arg;
369     PCMachineState *pc_machine = PC_MACHINE(machine);
370     Error *local_err = NULL;
371 
372     /* various important CMOS locations needed by PC/Bochs bios */
373 
374     /* memory size */
375     /* base memory (first MiB) */
376     val = MIN(ram_size / 1024, 640);
377     rtc_set_memory(s, 0x15, val);
378     rtc_set_memory(s, 0x16, val >> 8);
379     /* extended memory (next 64MiB) */
380     if (ram_size > 1024 * 1024) {
381         val = (ram_size - 1024 * 1024) / 1024;
382     } else {
383         val = 0;
384     }
385     if (val > 65535)
386         val = 65535;
387     rtc_set_memory(s, 0x17, val);
388     rtc_set_memory(s, 0x18, val >> 8);
389     rtc_set_memory(s, 0x30, val);
390     rtc_set_memory(s, 0x31, val >> 8);
391     /* memory between 16MiB and 4GiB */
392     if (ram_size > 16 * 1024 * 1024) {
393         val = (ram_size - 16 * 1024 * 1024) / 65536;
394     } else {
395         val = 0;
396     }
397     if (val > 65535)
398         val = 65535;
399     rtc_set_memory(s, 0x34, val);
400     rtc_set_memory(s, 0x35, val >> 8);
401     /* memory above 4GiB */
402     val = above_4g_mem_size / 65536;
403     rtc_set_memory(s, 0x5b, val);
404     rtc_set_memory(s, 0x5c, val >> 8);
405     rtc_set_memory(s, 0x5d, val >> 16);
406 
407     /* set the number of CPU */
408     rtc_set_memory(s, 0x5f, smp_cpus - 1);
409 
410     object_property_add_link(OBJECT(machine), "rtc_state",
411                              TYPE_ISA_DEVICE,
412                              (Object **)&pc_machine->rtc,
413                              object_property_allow_set_link,
414                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
415     object_property_set_link(OBJECT(machine), OBJECT(s),
416                              "rtc_state", &error_abort);
417 
418     set_boot_dev(s, boot_device, &local_err);
419     if (local_err) {
420         error_report_err(local_err);
421         exit(1);
422     }
423 
424     /* floppy type */
425     if (floppy) {
426         for (i = 0; i < 2; i++) {
427             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
428         }
429     }
430     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
431         cmos_get_fd_drive_type(fd_type[1]);
432     rtc_set_memory(s, 0x10, val);
433 
434     val = 0;
435     nb = 0;
436     if (fd_type[0] < FDRIVE_DRV_NONE) {
437         nb++;
438     }
439     if (fd_type[1] < FDRIVE_DRV_NONE) {
440         nb++;
441     }
442     switch (nb) {
443     case 0:
444         break;
445     case 1:
446         val |= 0x01; /* 1 drive, ready for boot */
447         break;
448     case 2:
449         val |= 0x41; /* 2 drives, ready for boot */
450         break;
451     }
452     val |= 0x02; /* FPU is there */
453     val |= 0x04; /* PS/2 mouse installed */
454     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
455 
456     /* hard drives */
457     arg.rtc_state = s;
458     arg.idebus[0] = idebus0;
459     arg.idebus[1] = idebus1;
460     qemu_register_reset(pc_cmos_init_late, &arg);
461 }
462 
463 #define TYPE_PORT92 "port92"
464 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
465 
466 /* port 92 stuff: could be split off */
467 typedef struct Port92State {
468     ISADevice parent_obj;
469 
470     MemoryRegion io;
471     uint8_t outport;
472     qemu_irq *a20_out;
473 } Port92State;
474 
475 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
476                          unsigned size)
477 {
478     Port92State *s = opaque;
479     int oldval = s->outport;
480 
481     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
482     s->outport = val;
483     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
484     if ((val & 1) && !(oldval & 1)) {
485         qemu_system_reset_request();
486     }
487 }
488 
489 static uint64_t port92_read(void *opaque, hwaddr addr,
490                             unsigned size)
491 {
492     Port92State *s = opaque;
493     uint32_t ret;
494 
495     ret = s->outport;
496     DPRINTF("port92: read 0x%02x\n", ret);
497     return ret;
498 }
499 
500 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
501 {
502     Port92State *s = PORT92(dev);
503 
504     s->a20_out = a20_out;
505 }
506 
507 static const VMStateDescription vmstate_port92_isa = {
508     .name = "port92",
509     .version_id = 1,
510     .minimum_version_id = 1,
511     .fields = (VMStateField[]) {
512         VMSTATE_UINT8(outport, Port92State),
513         VMSTATE_END_OF_LIST()
514     }
515 };
516 
517 static void port92_reset(DeviceState *d)
518 {
519     Port92State *s = PORT92(d);
520 
521     s->outport &= ~1;
522 }
523 
524 static const MemoryRegionOps port92_ops = {
525     .read = port92_read,
526     .write = port92_write,
527     .impl = {
528         .min_access_size = 1,
529         .max_access_size = 1,
530     },
531     .endianness = DEVICE_LITTLE_ENDIAN,
532 };
533 
534 static void port92_initfn(Object *obj)
535 {
536     Port92State *s = PORT92(obj);
537 
538     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
539 
540     s->outport = 0;
541 }
542 
543 static void port92_realizefn(DeviceState *dev, Error **errp)
544 {
545     ISADevice *isadev = ISA_DEVICE(dev);
546     Port92State *s = PORT92(dev);
547 
548     isa_register_ioport(isadev, &s->io, 0x92);
549 }
550 
551 static void port92_class_initfn(ObjectClass *klass, void *data)
552 {
553     DeviceClass *dc = DEVICE_CLASS(klass);
554 
555     dc->realize = port92_realizefn;
556     dc->reset = port92_reset;
557     dc->vmsd = &vmstate_port92_isa;
558     /*
559      * Reason: unlike ordinary ISA devices, this one needs additional
560      * wiring: its A20 output line needs to be wired up by
561      * port92_init().
562      */
563     dc->cannot_instantiate_with_device_add_yet = true;
564 }
565 
566 static const TypeInfo port92_info = {
567     .name          = TYPE_PORT92,
568     .parent        = TYPE_ISA_DEVICE,
569     .instance_size = sizeof(Port92State),
570     .instance_init = port92_initfn,
571     .class_init    = port92_class_initfn,
572 };
573 
574 static void port92_register_types(void)
575 {
576     type_register_static(&port92_info);
577 }
578 
579 type_init(port92_register_types)
580 
581 static void handle_a20_line_change(void *opaque, int irq, int level)
582 {
583     X86CPU *cpu = opaque;
584 
585     /* XXX: send to all CPUs ? */
586     /* XXX: add logic to handle multiple A20 line sources */
587     x86_cpu_set_a20(cpu, level);
588 }
589 
590 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
591 {
592     int index = le32_to_cpu(e820_reserve.count);
593     struct e820_entry *entry;
594 
595     if (type != E820_RAM) {
596         /* old FW_CFG_E820_TABLE entry -- reservations only */
597         if (index >= E820_NR_ENTRIES) {
598             return -EBUSY;
599         }
600         entry = &e820_reserve.entry[index++];
601 
602         entry->address = cpu_to_le64(address);
603         entry->length = cpu_to_le64(length);
604         entry->type = cpu_to_le32(type);
605 
606         e820_reserve.count = cpu_to_le32(index);
607     }
608 
609     /* new "etc/e820" file -- include ram too */
610     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
611     e820_table[e820_entries].address = cpu_to_le64(address);
612     e820_table[e820_entries].length = cpu_to_le64(length);
613     e820_table[e820_entries].type = cpu_to_le32(type);
614     e820_entries++;
615 
616     return e820_entries;
617 }
618 
619 int e820_get_num_entries(void)
620 {
621     return e820_entries;
622 }
623 
624 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
625 {
626     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
627         *address = le64_to_cpu(e820_table[idx].address);
628         *length = le64_to_cpu(e820_table[idx].length);
629         return true;
630     }
631     return false;
632 }
633 
634 /* Enables contiguous-apic-ID mode, for compatibility */
635 static bool compat_apic_id_mode;
636 
637 void enable_compat_apic_id_mode(void)
638 {
639     compat_apic_id_mode = true;
640 }
641 
642 /* Calculates initial APIC ID for a specific CPU index
643  *
644  * Currently we need to be able to calculate the APIC ID from the CPU index
645  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
646  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
647  * all CPUs up to max_cpus.
648  */
649 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
650 {
651     uint32_t correct_id;
652     static bool warned;
653 
654     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
655     if (compat_apic_id_mode) {
656         if (cpu_index != correct_id && !warned) {
657             error_report("APIC IDs set in compatibility mode, "
658                          "CPU topology won't match the configuration");
659             warned = true;
660         }
661         return cpu_index;
662     } else {
663         return correct_id;
664     }
665 }
666 
667 /* Calculates the limit to CPU APIC ID values
668  *
669  * This function returns the limit for the APIC ID value, so that all
670  * CPU APIC IDs are < pc_apic_id_limit().
671  *
672  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
673  */
674 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
675 {
676     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
677 }
678 
679 static FWCfgState *bochs_bios_init(void)
680 {
681     FWCfgState *fw_cfg;
682     uint8_t *smbios_tables, *smbios_anchor;
683     size_t smbios_tables_len, smbios_anchor_len;
684     uint64_t *numa_fw_cfg;
685     int i, j;
686     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
687 
688     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
689     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
690      *
691      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
692      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
693      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
694      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
695      * may see".
696      *
697      * So, this means we must not use max_cpus, here, but the maximum possible
698      * APIC ID value, plus one.
699      *
700      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
701      *     the APIC ID, not the "CPU index"
702      */
703     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
704     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
705     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
706     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
707                      acpi_tables, acpi_tables_len);
708     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
709 
710     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
711     if (smbios_tables) {
712         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
713                          smbios_tables, smbios_tables_len);
714     }
715 
716     smbios_get_tables(&smbios_tables, &smbios_tables_len,
717                       &smbios_anchor, &smbios_anchor_len);
718     if (smbios_anchor) {
719         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
720                         smbios_tables, smbios_tables_len);
721         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
722                         smbios_anchor, smbios_anchor_len);
723     }
724 
725     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
726                      &e820_reserve, sizeof(e820_reserve));
727     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
728                     sizeof(struct e820_entry) * e820_entries);
729 
730     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
731     /* allocate memory for the NUMA channel: one (64bit) word for the number
732      * of nodes, one word for each VCPU->node and one word for each node to
733      * hold the amount of memory.
734      */
735     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
736     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
737     for (i = 0; i < max_cpus; i++) {
738         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
739         assert(apic_id < apic_id_limit);
740         for (j = 0; j < nb_numa_nodes; j++) {
741             if (test_bit(i, numa_info[j].node_cpu)) {
742                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
743                 break;
744             }
745         }
746     }
747     for (i = 0; i < nb_numa_nodes; i++) {
748         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
749     }
750     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
751                      (1 + apic_id_limit + nb_numa_nodes) *
752                      sizeof(*numa_fw_cfg));
753 
754     return fw_cfg;
755 }
756 
757 static long get_file_size(FILE *f)
758 {
759     long where, size;
760 
761     /* XXX: on Unix systems, using fstat() probably makes more sense */
762 
763     where = ftell(f);
764     fseek(f, 0, SEEK_END);
765     size = ftell(f);
766     fseek(f, where, SEEK_SET);
767 
768     return size;
769 }
770 
771 static void load_linux(FWCfgState *fw_cfg,
772                        const char *kernel_filename,
773                        const char *initrd_filename,
774                        const char *kernel_cmdline,
775                        hwaddr max_ram_size)
776 {
777     uint16_t protocol;
778     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
779     uint32_t initrd_max;
780     uint8_t header[8192], *setup, *kernel, *initrd_data;
781     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
782     FILE *f;
783     char *vmode;
784 
785     /* Align to 16 bytes as a paranoia measure */
786     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
787 
788     /* load the kernel header */
789     f = fopen(kernel_filename, "rb");
790     if (!f || !(kernel_size = get_file_size(f)) ||
791         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
792         MIN(ARRAY_SIZE(header), kernel_size)) {
793         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
794                 kernel_filename, strerror(errno));
795         exit(1);
796     }
797 
798     /* kernel protocol version */
799 #if 0
800     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
801 #endif
802     if (ldl_p(header+0x202) == 0x53726448) {
803         protocol = lduw_p(header+0x206);
804     } else {
805         /* This looks like a multiboot kernel. If it is, let's stop
806            treating it like a Linux kernel. */
807         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
808                            kernel_cmdline, kernel_size, header)) {
809             return;
810         }
811         protocol = 0;
812     }
813 
814     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
815         /* Low kernel */
816         real_addr    = 0x90000;
817         cmdline_addr = 0x9a000 - cmdline_size;
818         prot_addr    = 0x10000;
819     } else if (protocol < 0x202) {
820         /* High but ancient kernel */
821         real_addr    = 0x90000;
822         cmdline_addr = 0x9a000 - cmdline_size;
823         prot_addr    = 0x100000;
824     } else {
825         /* High and recent kernel */
826         real_addr    = 0x10000;
827         cmdline_addr = 0x20000;
828         prot_addr    = 0x100000;
829     }
830 
831 #if 0
832     fprintf(stderr,
833             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
834             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
835             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
836             real_addr,
837             cmdline_addr,
838             prot_addr);
839 #endif
840 
841     /* highest address for loading the initrd */
842     if (protocol >= 0x203) {
843         initrd_max = ldl_p(header+0x22c);
844     } else {
845         initrd_max = 0x37ffffff;
846     }
847 
848     if (initrd_max >= max_ram_size - acpi_data_size) {
849         initrd_max = max_ram_size - acpi_data_size - 1;
850     }
851 
852     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
853     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
854     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
855 
856     if (protocol >= 0x202) {
857         stl_p(header+0x228, cmdline_addr);
858     } else {
859         stw_p(header+0x20, 0xA33F);
860         stw_p(header+0x22, cmdline_addr-real_addr);
861     }
862 
863     /* handle vga= parameter */
864     vmode = strstr(kernel_cmdline, "vga=");
865     if (vmode) {
866         unsigned int video_mode;
867         /* skip "vga=" */
868         vmode += 4;
869         if (!strncmp(vmode, "normal", 6)) {
870             video_mode = 0xffff;
871         } else if (!strncmp(vmode, "ext", 3)) {
872             video_mode = 0xfffe;
873         } else if (!strncmp(vmode, "ask", 3)) {
874             video_mode = 0xfffd;
875         } else {
876             video_mode = strtol(vmode, NULL, 0);
877         }
878         stw_p(header+0x1fa, video_mode);
879     }
880 
881     /* loader type */
882     /* High nybble = B reserved for QEMU; low nybble is revision number.
883        If this code is substantially changed, you may want to consider
884        incrementing the revision. */
885     if (protocol >= 0x200) {
886         header[0x210] = 0xB0;
887     }
888     /* heap */
889     if (protocol >= 0x201) {
890         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
891         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
892     }
893 
894     /* load initrd */
895     if (initrd_filename) {
896         if (protocol < 0x200) {
897             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
898             exit(1);
899         }
900 
901         initrd_size = get_image_size(initrd_filename);
902         if (initrd_size < 0) {
903             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
904                     initrd_filename, strerror(errno));
905             exit(1);
906         }
907 
908         initrd_addr = (initrd_max-initrd_size) & ~4095;
909 
910         initrd_data = g_malloc(initrd_size);
911         load_image(initrd_filename, initrd_data);
912 
913         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
914         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
915         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
916 
917         stl_p(header+0x218, initrd_addr);
918         stl_p(header+0x21c, initrd_size);
919     }
920 
921     /* load kernel and setup */
922     setup_size = header[0x1f1];
923     if (setup_size == 0) {
924         setup_size = 4;
925     }
926     setup_size = (setup_size+1)*512;
927     kernel_size -= setup_size;
928 
929     setup  = g_malloc(setup_size);
930     kernel = g_malloc(kernel_size);
931     fseek(f, 0, SEEK_SET);
932     if (fread(setup, 1, setup_size, f) != setup_size) {
933         fprintf(stderr, "fread() failed\n");
934         exit(1);
935     }
936     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
937         fprintf(stderr, "fread() failed\n");
938         exit(1);
939     }
940     fclose(f);
941     memcpy(setup, header, MIN(sizeof(header), setup_size));
942 
943     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
944     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
945     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
946 
947     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
948     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
949     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
950 
951     option_rom[nb_option_roms].name = "linuxboot.bin";
952     option_rom[nb_option_roms].bootindex = 0;
953     nb_option_roms++;
954 }
955 
956 #define NE2000_NB_MAX 6
957 
958 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
959                                               0x280, 0x380 };
960 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
961 
962 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
963 {
964     static int nb_ne2k = 0;
965 
966     if (nb_ne2k == NE2000_NB_MAX)
967         return;
968     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
969                     ne2000_irq[nb_ne2k], nd);
970     nb_ne2k++;
971 }
972 
973 DeviceState *cpu_get_current_apic(void)
974 {
975     if (current_cpu) {
976         X86CPU *cpu = X86_CPU(current_cpu);
977         return cpu->apic_state;
978     } else {
979         return NULL;
980     }
981 }
982 
983 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
984 {
985     X86CPU *cpu = opaque;
986 
987     if (level) {
988         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
989     }
990 }
991 
992 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
993                           DeviceState *icc_bridge, Error **errp)
994 {
995     X86CPU *cpu;
996     Error *local_err = NULL;
997 
998     cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
999     if (local_err != NULL) {
1000         error_propagate(errp, local_err);
1001         return NULL;
1002     }
1003 
1004     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1005     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1006 
1007     if (local_err) {
1008         error_propagate(errp, local_err);
1009         object_unref(OBJECT(cpu));
1010         cpu = NULL;
1011     }
1012     return cpu;
1013 }
1014 
1015 static const char *current_cpu_model;
1016 
1017 void pc_hot_add_cpu(const int64_t id, Error **errp)
1018 {
1019     DeviceState *icc_bridge;
1020     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1021 
1022     if (id < 0) {
1023         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1024         return;
1025     }
1026 
1027     if (cpu_exists(apic_id)) {
1028         error_setg(errp, "Unable to add CPU: %" PRIi64
1029                    ", it already exists", id);
1030         return;
1031     }
1032 
1033     if (id >= max_cpus) {
1034         error_setg(errp, "Unable to add CPU: %" PRIi64
1035                    ", max allowed: %d", id, max_cpus - 1);
1036         return;
1037     }
1038 
1039     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1040         error_setg(errp, "Unable to add CPU: %" PRIi64
1041                    ", resulting APIC ID (%" PRIi64 ") is too large",
1042                    id, apic_id);
1043         return;
1044     }
1045 
1046     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1047                                                  TYPE_ICC_BRIDGE, NULL));
1048     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1049 }
1050 
1051 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1052 {
1053     int i;
1054     X86CPU *cpu = NULL;
1055     Error *error = NULL;
1056     unsigned long apic_id_limit;
1057 
1058     /* init CPUs */
1059     if (cpu_model == NULL) {
1060 #ifdef TARGET_X86_64
1061         cpu_model = "qemu64";
1062 #else
1063         cpu_model = "qemu32";
1064 #endif
1065     }
1066     current_cpu_model = cpu_model;
1067 
1068     apic_id_limit = pc_apic_id_limit(max_cpus);
1069     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1070         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1071                      apic_id_limit - 1);
1072         exit(1);
1073     }
1074 
1075     for (i = 0; i < smp_cpus; i++) {
1076         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1077                          icc_bridge, &error);
1078         if (error) {
1079             error_report_err(error);
1080             exit(1);
1081         }
1082     }
1083 
1084     /* map APIC MMIO area if CPU has APIC */
1085     if (cpu && cpu->apic_state) {
1086         /* XXX: what if the base changes? */
1087         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1088                                 APIC_DEFAULT_ADDRESS, 0x1000);
1089     }
1090 
1091     /* tell smbios about cpuid version and features */
1092     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1093 }
1094 
1095 /* pci-info ROM file. Little endian format */
1096 typedef struct PcRomPciInfo {
1097     uint64_t w32_min;
1098     uint64_t w32_max;
1099     uint64_t w64_min;
1100     uint64_t w64_max;
1101 } PcRomPciInfo;
1102 
1103 typedef struct PcGuestInfoState {
1104     PcGuestInfo info;
1105     Notifier machine_done;
1106 } PcGuestInfoState;
1107 
1108 static
1109 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1110 {
1111     PcGuestInfoState *guest_info_state = container_of(notifier,
1112                                                       PcGuestInfoState,
1113                                                       machine_done);
1114     acpi_setup(&guest_info_state->info);
1115 }
1116 
1117 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1118                                 ram_addr_t above_4g_mem_size)
1119 {
1120     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1121     PcGuestInfo *guest_info = &guest_info_state->info;
1122     int i, j;
1123 
1124     guest_info->ram_size_below_4g = below_4g_mem_size;
1125     guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1126     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1127     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1128     guest_info->numa_nodes = nb_numa_nodes;
1129     guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1130                                     sizeof *guest_info->node_mem);
1131     for (i = 0; i < nb_numa_nodes; i++) {
1132         guest_info->node_mem[i] = numa_info[i].node_mem;
1133     }
1134 
1135     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1136                                      sizeof *guest_info->node_cpu);
1137 
1138     for (i = 0; i < max_cpus; i++) {
1139         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1140         assert(apic_id < guest_info->apic_id_limit);
1141         for (j = 0; j < nb_numa_nodes; j++) {
1142             if (test_bit(i, numa_info[j].node_cpu)) {
1143                 guest_info->node_cpu[apic_id] = j;
1144                 break;
1145             }
1146         }
1147     }
1148 
1149     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1150     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1151     return guest_info;
1152 }
1153 
1154 /* setup pci memory address space mapping into system address space */
1155 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1156                             MemoryRegion *pci_address_space)
1157 {
1158     /* Set to lower priority than RAM */
1159     memory_region_add_subregion_overlap(system_memory, 0x0,
1160                                         pci_address_space, -1);
1161 }
1162 
1163 void pc_acpi_init(const char *default_dsdt)
1164 {
1165     char *filename;
1166 
1167     if (acpi_tables != NULL) {
1168         /* manually set via -acpitable, leave it alone */
1169         return;
1170     }
1171 
1172     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1173     if (filename == NULL) {
1174         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1175     } else {
1176         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1177                                           &error_abort);
1178         Error *err = NULL;
1179 
1180         qemu_opt_set(opts, "file", filename, &error_abort);
1181 
1182         acpi_table_add_builtin(opts, &err);
1183         if (err) {
1184             error_report("WARNING: failed to load %s: %s", filename,
1185                          error_get_pretty(err));
1186             error_free(err);
1187         }
1188         g_free(filename);
1189     }
1190 }
1191 
1192 FWCfgState *xen_load_linux(const char *kernel_filename,
1193                            const char *kernel_cmdline,
1194                            const char *initrd_filename,
1195                            ram_addr_t below_4g_mem_size,
1196                            PcGuestInfo *guest_info)
1197 {
1198     int i;
1199     FWCfgState *fw_cfg;
1200 
1201     assert(kernel_filename != NULL);
1202 
1203     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1204     rom_set_fw(fw_cfg);
1205 
1206     load_linux(fw_cfg, kernel_filename, initrd_filename,
1207                kernel_cmdline, below_4g_mem_size);
1208     for (i = 0; i < nb_option_roms; i++) {
1209         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1210                !strcmp(option_rom[i].name, "multiboot.bin"));
1211         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1212     }
1213     guest_info->fw_cfg = fw_cfg;
1214     return fw_cfg;
1215 }
1216 
1217 FWCfgState *pc_memory_init(MachineState *machine,
1218                            MemoryRegion *system_memory,
1219                            ram_addr_t below_4g_mem_size,
1220                            ram_addr_t above_4g_mem_size,
1221                            MemoryRegion *rom_memory,
1222                            MemoryRegion **ram_memory,
1223                            PcGuestInfo *guest_info)
1224 {
1225     int linux_boot, i;
1226     MemoryRegion *ram, *option_rom_mr;
1227     MemoryRegion *ram_below_4g, *ram_above_4g;
1228     FWCfgState *fw_cfg;
1229     PCMachineState *pcms = PC_MACHINE(machine);
1230 
1231     assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1232 
1233     linux_boot = (machine->kernel_filename != NULL);
1234 
1235     /* Allocate RAM.  We allocate it as a single memory region and use
1236      * aliases to address portions of it, mostly for backwards compatibility
1237      * with older qemus that used qemu_ram_alloc().
1238      */
1239     ram = g_malloc(sizeof(*ram));
1240     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1241                                          machine->ram_size);
1242     *ram_memory = ram;
1243     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1244     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1245                              0, below_4g_mem_size);
1246     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1247     e820_add_entry(0, below_4g_mem_size, E820_RAM);
1248     if (above_4g_mem_size > 0) {
1249         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1250         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1251                                  below_4g_mem_size, above_4g_mem_size);
1252         memory_region_add_subregion(system_memory, 0x100000000ULL,
1253                                     ram_above_4g);
1254         e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1255     }
1256 
1257     if (!guest_info->has_reserved_memory &&
1258         (machine->ram_slots ||
1259          (machine->maxram_size > machine->ram_size))) {
1260         MachineClass *mc = MACHINE_GET_CLASS(machine);
1261 
1262         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1263                      mc->name);
1264         exit(EXIT_FAILURE);
1265     }
1266 
1267     /* initialize hotplug memory address space */
1268     if (guest_info->has_reserved_memory &&
1269         (machine->ram_size < machine->maxram_size)) {
1270         ram_addr_t hotplug_mem_size =
1271             machine->maxram_size - machine->ram_size;
1272 
1273         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1274             error_report("unsupported amount of memory slots: %"PRIu64,
1275                          machine->ram_slots);
1276             exit(EXIT_FAILURE);
1277         }
1278 
1279         if (QEMU_ALIGN_UP(machine->maxram_size,
1280                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1281             error_report("maximum memory size must by aligned to multiple of "
1282                          "%d bytes", TARGET_PAGE_SIZE);
1283             exit(EXIT_FAILURE);
1284         }
1285 
1286         pcms->hotplug_memory_base =
1287             ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1288 
1289         if (pcms->enforce_aligned_dimm) {
1290             /* size hotplug region assuming 1G page max alignment per slot */
1291             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1292         }
1293 
1294         if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1295             hotplug_mem_size) {
1296             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1297                          machine->maxram_size);
1298             exit(EXIT_FAILURE);
1299         }
1300 
1301         memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1302                            "hotplug-memory", hotplug_mem_size);
1303         memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1304                                     &pcms->hotplug_memory);
1305     }
1306 
1307     /* Initialize PC system firmware */
1308     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1309 
1310     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1311     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1312                            &error_abort);
1313     vmstate_register_ram_global(option_rom_mr);
1314     memory_region_add_subregion_overlap(rom_memory,
1315                                         PC_ROM_MIN_VGA,
1316                                         option_rom_mr,
1317                                         1);
1318 
1319     fw_cfg = bochs_bios_init();
1320     rom_set_fw(fw_cfg);
1321 
1322     if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1323         uint64_t *val = g_malloc(sizeof(*val));
1324         *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1325         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1326     }
1327 
1328     if (linux_boot) {
1329         load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1330                    machine->kernel_cmdline, below_4g_mem_size);
1331     }
1332 
1333     for (i = 0; i < nb_option_roms; i++) {
1334         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1335     }
1336     guest_info->fw_cfg = fw_cfg;
1337     return fw_cfg;
1338 }
1339 
1340 qemu_irq *pc_allocate_cpu_irq(void)
1341 {
1342     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1343 }
1344 
1345 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1346 {
1347     DeviceState *dev = NULL;
1348 
1349     if (pci_bus) {
1350         PCIDevice *pcidev = pci_vga_init(pci_bus);
1351         dev = pcidev ? &pcidev->qdev : NULL;
1352     } else if (isa_bus) {
1353         ISADevice *isadev = isa_vga_init(isa_bus);
1354         dev = isadev ? DEVICE(isadev) : NULL;
1355     }
1356     return dev;
1357 }
1358 
1359 static void cpu_request_exit(void *opaque, int irq, int level)
1360 {
1361     CPUState *cpu = current_cpu;
1362 
1363     if (cpu && level) {
1364         cpu_exit(cpu);
1365     }
1366 }
1367 
1368 static const MemoryRegionOps ioport80_io_ops = {
1369     .write = ioport80_write,
1370     .read = ioport80_read,
1371     .endianness = DEVICE_NATIVE_ENDIAN,
1372     .impl = {
1373         .min_access_size = 1,
1374         .max_access_size = 1,
1375     },
1376 };
1377 
1378 static const MemoryRegionOps ioportF0_io_ops = {
1379     .write = ioportF0_write,
1380     .read = ioportF0_read,
1381     .endianness = DEVICE_NATIVE_ENDIAN,
1382     .impl = {
1383         .min_access_size = 1,
1384         .max_access_size = 1,
1385     },
1386 };
1387 
1388 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1389                           ISADevice **rtc_state,
1390                           ISADevice **floppy,
1391                           bool no_vmport,
1392                           uint32 hpet_irqs)
1393 {
1394     int i;
1395     DriveInfo *fd[MAX_FD];
1396     DeviceState *hpet = NULL;
1397     int pit_isa_irq = 0;
1398     qemu_irq pit_alt_irq = NULL;
1399     qemu_irq rtc_irq = NULL;
1400     qemu_irq *a20_line;
1401     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1402     qemu_irq *cpu_exit_irq;
1403     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1404     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1405 
1406     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1407     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1408 
1409     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1410     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1411 
1412     /*
1413      * Check if an HPET shall be created.
1414      *
1415      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1416      * when the HPET wants to take over. Thus we have to disable the latter.
1417      */
1418     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1419         /* In order to set property, here not using sysbus_try_create_simple */
1420         hpet = qdev_try_create(NULL, TYPE_HPET);
1421         if (hpet) {
1422             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1423              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1424              * IRQ8 and IRQ2.
1425              */
1426             uint8_t compat = object_property_get_int(OBJECT(hpet),
1427                     HPET_INTCAP, NULL);
1428             if (!compat) {
1429                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1430             }
1431             qdev_init_nofail(hpet);
1432             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1433 
1434             for (i = 0; i < GSI_NUM_PINS; i++) {
1435                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1436             }
1437             pit_isa_irq = -1;
1438             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1439             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1440         }
1441     }
1442     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1443 
1444     qemu_register_boot_set(pc_boot_set, *rtc_state);
1445 
1446     if (!xen_enabled()) {
1447         if (kvm_irqchip_in_kernel()) {
1448             pit = kvm_pit_init(isa_bus, 0x40);
1449         } else {
1450             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1451         }
1452         if (hpet) {
1453             /* connect PIT to output control line of the HPET */
1454             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1455         }
1456         pcspk_init(isa_bus, pit);
1457     }
1458 
1459     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1460     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1461 
1462     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1463     i8042 = isa_create_simple(isa_bus, "i8042");
1464     i8042_setup_a20_line(i8042, &a20_line[0]);
1465     if (!no_vmport) {
1466         vmport_init(isa_bus);
1467         vmmouse = isa_try_create(isa_bus, "vmmouse");
1468     } else {
1469         vmmouse = NULL;
1470     }
1471     if (vmmouse) {
1472         DeviceState *dev = DEVICE(vmmouse);
1473         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1474         qdev_init_nofail(dev);
1475     }
1476     port92 = isa_create_simple(isa_bus, "port92");
1477     port92_init(port92, &a20_line[1]);
1478 
1479     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1480     DMA_init(0, cpu_exit_irq);
1481 
1482     for(i = 0; i < MAX_FD; i++) {
1483         fd[i] = drive_get(IF_FLOPPY, 0, i);
1484     }
1485     *floppy = fdctrl_init_isa(isa_bus, fd);
1486 }
1487 
1488 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1489 {
1490     int i;
1491 
1492     for (i = 0; i < nb_nics; i++) {
1493         NICInfo *nd = &nd_table[i];
1494 
1495         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1496             pc_init_ne2k_isa(isa_bus, nd);
1497         } else {
1498             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1499         }
1500     }
1501 }
1502 
1503 void pc_pci_device_init(PCIBus *pci_bus)
1504 {
1505     int max_bus;
1506     int bus;
1507 
1508     max_bus = drive_get_max_bus(IF_SCSI);
1509     for (bus = 0; bus <= max_bus; bus++) {
1510         pci_create_simple(pci_bus, -1, "lsi53c895a");
1511     }
1512 }
1513 
1514 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1515 {
1516     DeviceState *dev;
1517     SysBusDevice *d;
1518     unsigned int i;
1519 
1520     if (kvm_irqchip_in_kernel()) {
1521         dev = qdev_create(NULL, "kvm-ioapic");
1522     } else {
1523         dev = qdev_create(NULL, "ioapic");
1524     }
1525     if (parent_name) {
1526         object_property_add_child(object_resolve_path(parent_name, NULL),
1527                                   "ioapic", OBJECT(dev), NULL);
1528     }
1529     qdev_init_nofail(dev);
1530     d = SYS_BUS_DEVICE(dev);
1531     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1532 
1533     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1534         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1535     }
1536 }
1537 
1538 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1539 {
1540     MachineClass *mc = MACHINE_CLASS(oc);
1541     QEMUMachine *qm = data;
1542 
1543     mc->family = qm->family;
1544     mc->name = qm->name;
1545     mc->alias = qm->alias;
1546     mc->desc = qm->desc;
1547     mc->init = qm->init;
1548     mc->reset = qm->reset;
1549     mc->hot_add_cpu = qm->hot_add_cpu;
1550     mc->kvm_type = qm->kvm_type;
1551     mc->block_default_type = qm->block_default_type;
1552     mc->units_per_default_bus = qm->units_per_default_bus;
1553     mc->max_cpus = qm->max_cpus;
1554     mc->no_serial = qm->no_serial;
1555     mc->no_parallel = qm->no_parallel;
1556     mc->use_virtcon = qm->use_virtcon;
1557     mc->use_sclp = qm->use_sclp;
1558     mc->no_floppy = qm->no_floppy;
1559     mc->no_cdrom = qm->no_cdrom;
1560     mc->no_sdcard = qm->no_sdcard;
1561     mc->is_default = qm->is_default;
1562     mc->default_machine_opts = qm->default_machine_opts;
1563     mc->default_boot_order = qm->default_boot_order;
1564     mc->default_display = qm->default_display;
1565     mc->compat_props = qm->compat_props;
1566     mc->hw_version = qm->hw_version;
1567 }
1568 
1569 void qemu_register_pc_machine(QEMUMachine *m)
1570 {
1571     char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1572     TypeInfo ti = {
1573         .name       = name,
1574         .parent     = TYPE_PC_MACHINE,
1575         .class_init = pc_generic_machine_class_init,
1576         .class_data = (void *)m,
1577     };
1578 
1579     type_register(&ti);
1580     g_free(name);
1581 }
1582 
1583 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1584                          DeviceState *dev, Error **errp)
1585 {
1586     int slot;
1587     HotplugHandlerClass *hhc;
1588     Error *local_err = NULL;
1589     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1590     MachineState *machine = MACHINE(hotplug_dev);
1591     PCDIMMDevice *dimm = PC_DIMM(dev);
1592     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1593     MemoryRegion *mr = ddc->get_memory_region(dimm);
1594     uint64_t existing_dimms_capacity = 0;
1595     uint64_t align = TARGET_PAGE_SIZE;
1596     uint64_t addr;
1597 
1598     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
1599     if (local_err) {
1600         goto out;
1601     }
1602 
1603     if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1604         align = memory_region_get_alignment(mr);
1605     }
1606 
1607     addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1608                                  memory_region_size(&pcms->hotplug_memory),
1609                                  !addr ? NULL : &addr, align,
1610                                  memory_region_size(mr), &local_err);
1611     if (local_err) {
1612         goto out;
1613     }
1614 
1615     existing_dimms_capacity = pc_existing_dimms_capacity(&local_err);
1616     if (local_err) {
1617         goto out;
1618     }
1619 
1620     if (existing_dimms_capacity + memory_region_size(mr) >
1621         machine->maxram_size - machine->ram_size) {
1622         error_setg(&local_err, "not enough space, currently 0x%" PRIx64
1623                    " in use of total hot pluggable 0x" RAM_ADDR_FMT,
1624                    existing_dimms_capacity,
1625                    machine->maxram_size - machine->ram_size);
1626         goto out;
1627     }
1628 
1629     object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1630     if (local_err) {
1631         goto out;
1632     }
1633     trace_mhp_pc_dimm_assigned_address(addr);
1634 
1635     slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1636     if (local_err) {
1637         goto out;
1638     }
1639 
1640     slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1641                                  machine->ram_slots, &local_err);
1642     if (local_err) {
1643         goto out;
1644     }
1645     object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1646     if (local_err) {
1647         goto out;
1648     }
1649     trace_mhp_pc_dimm_assigned_slot(slot);
1650 
1651     if (!pcms->acpi_dev) {
1652         error_setg(&local_err,
1653                    "memory hotplug is not enabled: missing acpi device");
1654         goto out;
1655     }
1656 
1657     if (kvm_enabled() && !kvm_has_free_slot(machine)) {
1658         error_setg(&local_err, "hypervisor has no free memory slots left");
1659         goto out;
1660     }
1661 
1662     memory_region_add_subregion(&pcms->hotplug_memory,
1663                                 addr - pcms->hotplug_memory_base, mr);
1664     vmstate_register_ram(mr, dev);
1665 
1666     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1667     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1668 out:
1669     error_propagate(errp, local_err);
1670 }
1671 
1672 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1673                         DeviceState *dev, Error **errp)
1674 {
1675     HotplugHandlerClass *hhc;
1676     Error *local_err = NULL;
1677     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1678 
1679     if (!dev->hotplugged) {
1680         goto out;
1681     }
1682 
1683     if (!pcms->acpi_dev) {
1684         error_setg(&local_err,
1685                    "cpu hotplug is not enabled: missing acpi device");
1686         goto out;
1687     }
1688 
1689     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1690     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1691     if (local_err) {
1692         goto out;
1693     }
1694 
1695     /* increment the number of CPUs */
1696     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1697 out:
1698     error_propagate(errp, local_err);
1699 }
1700 
1701 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1702                                       DeviceState *dev, Error **errp)
1703 {
1704     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1705         pc_dimm_plug(hotplug_dev, dev, errp);
1706     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1707         pc_cpu_plug(hotplug_dev, dev, errp);
1708     }
1709 }
1710 
1711 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1712                                                 DeviceState *dev, Error **errp)
1713 {
1714     error_setg(errp, "acpi: device unplug request for not supported device"
1715                " type: %s", object_get_typename(OBJECT(dev)));
1716 }
1717 
1718 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1719                                         DeviceState *dev, Error **errp)
1720 {
1721     error_setg(errp, "acpi: device unplug for not supported device"
1722                " type: %s", object_get_typename(OBJECT(dev)));
1723 }
1724 
1725 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1726                                              DeviceState *dev)
1727 {
1728     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1729 
1730     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1731         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1732         return HOTPLUG_HANDLER(machine);
1733     }
1734 
1735     return pcmc->get_hotplug_handler ?
1736         pcmc->get_hotplug_handler(machine, dev) : NULL;
1737 }
1738 
1739 static void
1740 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1741                                           const char *name, Error **errp)
1742 {
1743     PCMachineState *pcms = PC_MACHINE(obj);
1744     int64_t value = memory_region_size(&pcms->hotplug_memory);
1745 
1746     visit_type_int(v, &value, name, errp);
1747 }
1748 
1749 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1750                                          void *opaque, const char *name,
1751                                          Error **errp)
1752 {
1753     PCMachineState *pcms = PC_MACHINE(obj);
1754     uint64_t value = pcms->max_ram_below_4g;
1755 
1756     visit_type_size(v, &value, name, errp);
1757 }
1758 
1759 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1760                                          void *opaque, const char *name,
1761                                          Error **errp)
1762 {
1763     PCMachineState *pcms = PC_MACHINE(obj);
1764     Error *error = NULL;
1765     uint64_t value;
1766 
1767     visit_type_size(v, &value, name, &error);
1768     if (error) {
1769         error_propagate(errp, error);
1770         return;
1771     }
1772     if (value > (1ULL << 32)) {
1773         error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1774                   "Machine option 'max-ram-below-4g=%"PRIu64
1775                   "' expects size less than or equal to 4G", value);
1776         error_propagate(errp, error);
1777         return;
1778     }
1779 
1780     if (value < (1ULL << 20)) {
1781         error_report("Warning: small max_ram_below_4g(%"PRIu64
1782                      ") less than 1M.  BIOS may not work..",
1783                      value);
1784     }
1785 
1786     pcms->max_ram_below_4g = value;
1787 }
1788 
1789 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1790                                   const char *name, Error **errp)
1791 {
1792     PCMachineState *pcms = PC_MACHINE(obj);
1793     OnOffAuto vmport = pcms->vmport;
1794 
1795     visit_type_OnOffAuto(v, &vmport, name, errp);
1796 }
1797 
1798 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1799                                   const char *name, Error **errp)
1800 {
1801     PCMachineState *pcms = PC_MACHINE(obj);
1802 
1803     visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1804 }
1805 
1806 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1807 {
1808     PCMachineState *pcms = PC_MACHINE(obj);
1809 
1810     return pcms->enforce_aligned_dimm;
1811 }
1812 
1813 static void pc_machine_initfn(Object *obj)
1814 {
1815     PCMachineState *pcms = PC_MACHINE(obj);
1816 
1817     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1818                         pc_machine_get_hotplug_memory_region_size,
1819                         NULL, NULL, NULL, NULL);
1820 
1821     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1822     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1823                         pc_machine_get_max_ram_below_4g,
1824                         pc_machine_set_max_ram_below_4g,
1825                         NULL, NULL, NULL);
1826     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1827                                     "Maximum ram below the 4G boundary (32bit boundary)",
1828                                     NULL);
1829 
1830     pcms->vmport = ON_OFF_AUTO_AUTO;
1831     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1832                         pc_machine_get_vmport,
1833                         pc_machine_set_vmport,
1834                         NULL, NULL, NULL);
1835     object_property_set_description(obj, PC_MACHINE_VMPORT,
1836                                     "Enable vmport (pc & q35)",
1837                                     NULL);
1838 
1839     pcms->enforce_aligned_dimm = true;
1840     object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1841                              pc_machine_get_aligned_dimm,
1842                              NULL, NULL);
1843 }
1844 
1845 static void pc_machine_class_init(ObjectClass *oc, void *data)
1846 {
1847     MachineClass *mc = MACHINE_CLASS(oc);
1848     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1849     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1850 
1851     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1852     mc->get_hotplug_handler = pc_get_hotpug_handler;
1853     hc->plug = pc_machine_device_plug_cb;
1854     hc->unplug_request = pc_machine_device_unplug_request_cb;
1855     hc->unplug = pc_machine_device_unplug_cb;
1856 }
1857 
1858 static const TypeInfo pc_machine_info = {
1859     .name = TYPE_PC_MACHINE,
1860     .parent = TYPE_MACHINE,
1861     .abstract = true,
1862     .instance_size = sizeof(PCMachineState),
1863     .instance_init = pc_machine_initfn,
1864     .class_size = sizeof(PCMachineClass),
1865     .class_init = pc_machine_class_init,
1866     .interfaces = (InterfaceInfo[]) {
1867          { TYPE_HOTPLUG_HANDLER },
1868          { }
1869     },
1870 };
1871 
1872 static void pc_machine_register_types(void)
1873 {
1874     type_register_static(&pc_machine_info);
1875 }
1876 
1877 type_init(pc_machine_register_types)
1878