xref: /openbmc/qemu/hw/i386/pc.c (revision 82c4f87e)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/char/parallel.h"
30 #include "hw/i386/apic.h"
31 #include "hw/i386/topology.h"
32 #include "sysemu/cpus.h"
33 #include "hw/block/fdc.h"
34 #include "hw/ide.h"
35 #include "hw/pci/pci.h"
36 #include "hw/pci/pci_bus.h"
37 #include "hw/nvram/fw_cfg.h"
38 #include "hw/timer/hpet.h"
39 #include "hw/smbios/smbios.h"
40 #include "hw/loader.h"
41 #include "elf.h"
42 #include "multiboot.h"
43 #include "hw/timer/mc146818rtc.h"
44 #include "hw/dma/i8257.h"
45 #include "hw/timer/i8254.h"
46 #include "hw/input/i8042.h"
47 #include "hw/audio/pcspk.h"
48 #include "hw/pci/msi.h"
49 #include "hw/sysbus.h"
50 #include "sysemu/sysemu.h"
51 #include "sysemu/numa.h"
52 #include "sysemu/kvm.h"
53 #include "sysemu/qtest.h"
54 #include "kvm_i386.h"
55 #include "hw/xen/xen.h"
56 #include "ui/qemu-spice.h"
57 #include "exec/memory.h"
58 #include "exec/address-spaces.h"
59 #include "sysemu/arch_init.h"
60 #include "qemu/bitmap.h"
61 #include "qemu/config-file.h"
62 #include "qemu/error-report.h"
63 #include "qemu/option.h"
64 #include "hw/acpi/acpi.h"
65 #include "hw/acpi/cpu_hotplug.h"
66 #include "hw/boards.h"
67 #include "acpi-build.h"
68 #include "hw/mem/pc-dimm.h"
69 #include "qapi/error.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "qapi/visitor.h"
72 #include "qom/cpu.h"
73 #include "hw/nmi.h"
74 #include "hw/i386/intel_iommu.h"
75 #include "hw/net/ne2000-isa.h"
76 
77 /* debug PC/ISA interrupts */
78 //#define DEBUG_IRQ
79 
80 #ifdef DEBUG_IRQ
81 #define DPRINTF(fmt, ...)                                       \
82     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
83 #else
84 #define DPRINTF(fmt, ...)
85 #endif
86 
87 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
88 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
89 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
90 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
91 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
92 
93 #define E820_NR_ENTRIES		16
94 
95 struct e820_entry {
96     uint64_t address;
97     uint64_t length;
98     uint32_t type;
99 } QEMU_PACKED __attribute((__aligned__(4)));
100 
101 struct e820_table {
102     uint32_t count;
103     struct e820_entry entry[E820_NR_ENTRIES];
104 } QEMU_PACKED __attribute((__aligned__(4)));
105 
106 static struct e820_table e820_reserve;
107 static struct e820_entry *e820_table;
108 static unsigned e820_entries;
109 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
110 
111 void gsi_handler(void *opaque, int n, int level)
112 {
113     GSIState *s = opaque;
114 
115     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
116     if (n < ISA_NUM_IRQS) {
117         qemu_set_irq(s->i8259_irq[n], level);
118     }
119     qemu_set_irq(s->ioapic_irq[n], level);
120 }
121 
122 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
123                            unsigned size)
124 {
125 }
126 
127 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
128 {
129     return 0xffffffffffffffffULL;
130 }
131 
132 /* MSDOS compatibility mode FPU exception support */
133 static qemu_irq ferr_irq;
134 
135 void pc_register_ferr_irq(qemu_irq irq)
136 {
137     ferr_irq = irq;
138 }
139 
140 /* XXX: add IGNNE support */
141 void cpu_set_ferr(CPUX86State *s)
142 {
143     qemu_irq_raise(ferr_irq);
144 }
145 
146 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
147                            unsigned size)
148 {
149     qemu_irq_lower(ferr_irq);
150 }
151 
152 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
153 {
154     return 0xffffffffffffffffULL;
155 }
156 
157 /* TSC handling */
158 uint64_t cpu_get_tsc(CPUX86State *env)
159 {
160     return cpu_get_ticks();
161 }
162 
163 /* IRQ handling */
164 int cpu_get_pic_interrupt(CPUX86State *env)
165 {
166     X86CPU *cpu = x86_env_get_cpu(env);
167     int intno;
168 
169     if (!kvm_irqchip_in_kernel()) {
170         intno = apic_get_interrupt(cpu->apic_state);
171         if (intno >= 0) {
172             return intno;
173         }
174         /* read the irq from the PIC */
175         if (!apic_accept_pic_intr(cpu->apic_state)) {
176             return -1;
177         }
178     }
179 
180     intno = pic_read_irq(isa_pic);
181     return intno;
182 }
183 
184 static void pic_irq_request(void *opaque, int irq, int level)
185 {
186     CPUState *cs = first_cpu;
187     X86CPU *cpu = X86_CPU(cs);
188 
189     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
190     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
191         CPU_FOREACH(cs) {
192             cpu = X86_CPU(cs);
193             if (apic_accept_pic_intr(cpu->apic_state)) {
194                 apic_deliver_pic_intr(cpu->apic_state, level);
195             }
196         }
197     } else {
198         if (level) {
199             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
200         } else {
201             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
202         }
203     }
204 }
205 
206 /* PC cmos mappings */
207 
208 #define REG_EQUIPMENT_BYTE          0x14
209 
210 int cmos_get_fd_drive_type(FloppyDriveType fd0)
211 {
212     int val;
213 
214     switch (fd0) {
215     case FLOPPY_DRIVE_TYPE_144:
216         /* 1.44 Mb 3"5 drive */
217         val = 4;
218         break;
219     case FLOPPY_DRIVE_TYPE_288:
220         /* 2.88 Mb 3"5 drive */
221         val = 5;
222         break;
223     case FLOPPY_DRIVE_TYPE_120:
224         /* 1.2 Mb 5"5 drive */
225         val = 2;
226         break;
227     case FLOPPY_DRIVE_TYPE_NONE:
228     default:
229         val = 0;
230         break;
231     }
232     return val;
233 }
234 
235 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
236                          int16_t cylinders, int8_t heads, int8_t sectors)
237 {
238     rtc_set_memory(s, type_ofs, 47);
239     rtc_set_memory(s, info_ofs, cylinders);
240     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
241     rtc_set_memory(s, info_ofs + 2, heads);
242     rtc_set_memory(s, info_ofs + 3, 0xff);
243     rtc_set_memory(s, info_ofs + 4, 0xff);
244     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
245     rtc_set_memory(s, info_ofs + 6, cylinders);
246     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
247     rtc_set_memory(s, info_ofs + 8, sectors);
248 }
249 
250 /* convert boot_device letter to something recognizable by the bios */
251 static int boot_device2nibble(char boot_device)
252 {
253     switch(boot_device) {
254     case 'a':
255     case 'b':
256         return 0x01; /* floppy boot */
257     case 'c':
258         return 0x02; /* hard drive boot */
259     case 'd':
260         return 0x03; /* CD-ROM boot */
261     case 'n':
262         return 0x04; /* Network boot */
263     }
264     return 0;
265 }
266 
267 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
268 {
269 #define PC_MAX_BOOT_DEVICES 3
270     int nbds, bds[3] = { 0, };
271     int i;
272 
273     nbds = strlen(boot_device);
274     if (nbds > PC_MAX_BOOT_DEVICES) {
275         error_setg(errp, "Too many boot devices for PC");
276         return;
277     }
278     for (i = 0; i < nbds; i++) {
279         bds[i] = boot_device2nibble(boot_device[i]);
280         if (bds[i] == 0) {
281             error_setg(errp, "Invalid boot device for PC: '%c'",
282                        boot_device[i]);
283             return;
284         }
285     }
286     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
287     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
288 }
289 
290 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
291 {
292     set_boot_dev(opaque, boot_device, errp);
293 }
294 
295 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
296 {
297     int val, nb, i;
298     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
299                                    FLOPPY_DRIVE_TYPE_NONE };
300 
301     /* floppy type */
302     if (floppy) {
303         for (i = 0; i < 2; i++) {
304             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
305         }
306     }
307     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
308         cmos_get_fd_drive_type(fd_type[1]);
309     rtc_set_memory(rtc_state, 0x10, val);
310 
311     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
312     nb = 0;
313     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
314         nb++;
315     }
316     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
317         nb++;
318     }
319     switch (nb) {
320     case 0:
321         break;
322     case 1:
323         val |= 0x01; /* 1 drive, ready for boot */
324         break;
325     case 2:
326         val |= 0x41; /* 2 drives, ready for boot */
327         break;
328     }
329     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
330 }
331 
332 typedef struct pc_cmos_init_late_arg {
333     ISADevice *rtc_state;
334     BusState *idebus[2];
335 } pc_cmos_init_late_arg;
336 
337 typedef struct check_fdc_state {
338     ISADevice *floppy;
339     bool multiple;
340 } CheckFdcState;
341 
342 static int check_fdc(Object *obj, void *opaque)
343 {
344     CheckFdcState *state = opaque;
345     Object *fdc;
346     uint32_t iobase;
347     Error *local_err = NULL;
348 
349     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
350     if (!fdc) {
351         return 0;
352     }
353 
354     iobase = object_property_get_uint(obj, "iobase", &local_err);
355     if (local_err || iobase != 0x3f0) {
356         error_free(local_err);
357         return 0;
358     }
359 
360     if (state->floppy) {
361         state->multiple = true;
362     } else {
363         state->floppy = ISA_DEVICE(obj);
364     }
365     return 0;
366 }
367 
368 static const char * const fdc_container_path[] = {
369     "/unattached", "/peripheral", "/peripheral-anon"
370 };
371 
372 /*
373  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
374  * and ACPI objects.
375  */
376 ISADevice *pc_find_fdc0(void)
377 {
378     int i;
379     Object *container;
380     CheckFdcState state = { 0 };
381 
382     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
383         container = container_get(qdev_get_machine(), fdc_container_path[i]);
384         object_child_foreach(container, check_fdc, &state);
385     }
386 
387     if (state.multiple) {
388         warn_report("multiple floppy disk controllers with "
389                     "iobase=0x3f0 have been found");
390         error_printf("the one being picked for CMOS setup might not reflect "
391                      "your intent");
392     }
393 
394     return state.floppy;
395 }
396 
397 static void pc_cmos_init_late(void *opaque)
398 {
399     pc_cmos_init_late_arg *arg = opaque;
400     ISADevice *s = arg->rtc_state;
401     int16_t cylinders;
402     int8_t heads, sectors;
403     int val;
404     int i, trans;
405 
406     val = 0;
407     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
408                                            &cylinders, &heads, &sectors) >= 0) {
409         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
410         val |= 0xf0;
411     }
412     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
413                                            &cylinders, &heads, &sectors) >= 0) {
414         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
415         val |= 0x0f;
416     }
417     rtc_set_memory(s, 0x12, val);
418 
419     val = 0;
420     for (i = 0; i < 4; i++) {
421         /* NOTE: ide_get_geometry() returns the physical
422            geometry.  It is always such that: 1 <= sects <= 63, 1
423            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
424            geometry can be different if a translation is done. */
425         if (arg->idebus[i / 2] &&
426             ide_get_geometry(arg->idebus[i / 2], i % 2,
427                              &cylinders, &heads, &sectors) >= 0) {
428             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
429             assert((trans & ~3) == 0);
430             val |= trans << (i * 2);
431         }
432     }
433     rtc_set_memory(s, 0x39, val);
434 
435     pc_cmos_init_floppy(s, pc_find_fdc0());
436 
437     qemu_unregister_reset(pc_cmos_init_late, opaque);
438 }
439 
440 void pc_cmos_init(PCMachineState *pcms,
441                   BusState *idebus0, BusState *idebus1,
442                   ISADevice *s)
443 {
444     int val;
445     static pc_cmos_init_late_arg arg;
446 
447     /* various important CMOS locations needed by PC/Bochs bios */
448 
449     /* memory size */
450     /* base memory (first MiB) */
451     val = MIN(pcms->below_4g_mem_size / 1024, 640);
452     rtc_set_memory(s, 0x15, val);
453     rtc_set_memory(s, 0x16, val >> 8);
454     /* extended memory (next 64MiB) */
455     if (pcms->below_4g_mem_size > 1024 * 1024) {
456         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
457     } else {
458         val = 0;
459     }
460     if (val > 65535)
461         val = 65535;
462     rtc_set_memory(s, 0x17, val);
463     rtc_set_memory(s, 0x18, val >> 8);
464     rtc_set_memory(s, 0x30, val);
465     rtc_set_memory(s, 0x31, val >> 8);
466     /* memory between 16MiB and 4GiB */
467     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
468         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
469     } else {
470         val = 0;
471     }
472     if (val > 65535)
473         val = 65535;
474     rtc_set_memory(s, 0x34, val);
475     rtc_set_memory(s, 0x35, val >> 8);
476     /* memory above 4GiB */
477     val = pcms->above_4g_mem_size / 65536;
478     rtc_set_memory(s, 0x5b, val);
479     rtc_set_memory(s, 0x5c, val >> 8);
480     rtc_set_memory(s, 0x5d, val >> 16);
481 
482     object_property_add_link(OBJECT(pcms), "rtc_state",
483                              TYPE_ISA_DEVICE,
484                              (Object **)&pcms->rtc,
485                              object_property_allow_set_link,
486                              OBJ_PROP_LINK_STRONG, &error_abort);
487     object_property_set_link(OBJECT(pcms), OBJECT(s),
488                              "rtc_state", &error_abort);
489 
490     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
491 
492     val = 0;
493     val |= 0x02; /* FPU is there */
494     val |= 0x04; /* PS/2 mouse installed */
495     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
496 
497     /* hard drives and FDC */
498     arg.rtc_state = s;
499     arg.idebus[0] = idebus0;
500     arg.idebus[1] = idebus1;
501     qemu_register_reset(pc_cmos_init_late, &arg);
502 }
503 
504 #define TYPE_PORT92 "port92"
505 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
506 
507 /* port 92 stuff: could be split off */
508 typedef struct Port92State {
509     ISADevice parent_obj;
510 
511     MemoryRegion io;
512     uint8_t outport;
513     qemu_irq a20_out;
514 } Port92State;
515 
516 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
517                          unsigned size)
518 {
519     Port92State *s = opaque;
520     int oldval = s->outport;
521 
522     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
523     s->outport = val;
524     qemu_set_irq(s->a20_out, (val >> 1) & 1);
525     if ((val & 1) && !(oldval & 1)) {
526         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
527     }
528 }
529 
530 static uint64_t port92_read(void *opaque, hwaddr addr,
531                             unsigned size)
532 {
533     Port92State *s = opaque;
534     uint32_t ret;
535 
536     ret = s->outport;
537     DPRINTF("port92: read 0x%02x\n", ret);
538     return ret;
539 }
540 
541 static void port92_init(ISADevice *dev, qemu_irq a20_out)
542 {
543     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
544 }
545 
546 static const VMStateDescription vmstate_port92_isa = {
547     .name = "port92",
548     .version_id = 1,
549     .minimum_version_id = 1,
550     .fields = (VMStateField[]) {
551         VMSTATE_UINT8(outport, Port92State),
552         VMSTATE_END_OF_LIST()
553     }
554 };
555 
556 static void port92_reset(DeviceState *d)
557 {
558     Port92State *s = PORT92(d);
559 
560     s->outport &= ~1;
561 }
562 
563 static const MemoryRegionOps port92_ops = {
564     .read = port92_read,
565     .write = port92_write,
566     .impl = {
567         .min_access_size = 1,
568         .max_access_size = 1,
569     },
570     .endianness = DEVICE_LITTLE_ENDIAN,
571 };
572 
573 static void port92_initfn(Object *obj)
574 {
575     Port92State *s = PORT92(obj);
576 
577     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
578 
579     s->outport = 0;
580 
581     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
582 }
583 
584 static void port92_realizefn(DeviceState *dev, Error **errp)
585 {
586     ISADevice *isadev = ISA_DEVICE(dev);
587     Port92State *s = PORT92(dev);
588 
589     isa_register_ioport(isadev, &s->io, 0x92);
590 }
591 
592 static void port92_class_initfn(ObjectClass *klass, void *data)
593 {
594     DeviceClass *dc = DEVICE_CLASS(klass);
595 
596     dc->realize = port92_realizefn;
597     dc->reset = port92_reset;
598     dc->vmsd = &vmstate_port92_isa;
599     /*
600      * Reason: unlike ordinary ISA devices, this one needs additional
601      * wiring: its A20 output line needs to be wired up by
602      * port92_init().
603      */
604     dc->user_creatable = false;
605 }
606 
607 static const TypeInfo port92_info = {
608     .name          = TYPE_PORT92,
609     .parent        = TYPE_ISA_DEVICE,
610     .instance_size = sizeof(Port92State),
611     .instance_init = port92_initfn,
612     .class_init    = port92_class_initfn,
613 };
614 
615 static void port92_register_types(void)
616 {
617     type_register_static(&port92_info);
618 }
619 
620 type_init(port92_register_types)
621 
622 static void handle_a20_line_change(void *opaque, int irq, int level)
623 {
624     X86CPU *cpu = opaque;
625 
626     /* XXX: send to all CPUs ? */
627     /* XXX: add logic to handle multiple A20 line sources */
628     x86_cpu_set_a20(cpu, level);
629 }
630 
631 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
632 {
633     int index = le32_to_cpu(e820_reserve.count);
634     struct e820_entry *entry;
635 
636     if (type != E820_RAM) {
637         /* old FW_CFG_E820_TABLE entry -- reservations only */
638         if (index >= E820_NR_ENTRIES) {
639             return -EBUSY;
640         }
641         entry = &e820_reserve.entry[index++];
642 
643         entry->address = cpu_to_le64(address);
644         entry->length = cpu_to_le64(length);
645         entry->type = cpu_to_le32(type);
646 
647         e820_reserve.count = cpu_to_le32(index);
648     }
649 
650     /* new "etc/e820" file -- include ram too */
651     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
652     e820_table[e820_entries].address = cpu_to_le64(address);
653     e820_table[e820_entries].length = cpu_to_le64(length);
654     e820_table[e820_entries].type = cpu_to_le32(type);
655     e820_entries++;
656 
657     return e820_entries;
658 }
659 
660 int e820_get_num_entries(void)
661 {
662     return e820_entries;
663 }
664 
665 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
666 {
667     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
668         *address = le64_to_cpu(e820_table[idx].address);
669         *length = le64_to_cpu(e820_table[idx].length);
670         return true;
671     }
672     return false;
673 }
674 
675 /* Enables contiguous-apic-ID mode, for compatibility */
676 static bool compat_apic_id_mode;
677 
678 void enable_compat_apic_id_mode(void)
679 {
680     compat_apic_id_mode = true;
681 }
682 
683 /* Calculates initial APIC ID for a specific CPU index
684  *
685  * Currently we need to be able to calculate the APIC ID from the CPU index
686  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
687  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
688  * all CPUs up to max_cpus.
689  */
690 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
691 {
692     uint32_t correct_id;
693     static bool warned;
694 
695     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
696     if (compat_apic_id_mode) {
697         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
698             error_report("APIC IDs set in compatibility mode, "
699                          "CPU topology won't match the configuration");
700             warned = true;
701         }
702         return cpu_index;
703     } else {
704         return correct_id;
705     }
706 }
707 
708 static void pc_build_smbios(PCMachineState *pcms)
709 {
710     uint8_t *smbios_tables, *smbios_anchor;
711     size_t smbios_tables_len, smbios_anchor_len;
712     struct smbios_phys_mem_area *mem_array;
713     unsigned i, array_count;
714     MachineState *ms = MACHINE(pcms);
715     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
716 
717     /* tell smbios about cpuid version and features */
718     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
719 
720     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
721     if (smbios_tables) {
722         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
723                          smbios_tables, smbios_tables_len);
724     }
725 
726     /* build the array of physical mem area from e820 table */
727     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
728     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
729         uint64_t addr, len;
730 
731         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
732             mem_array[array_count].address = addr;
733             mem_array[array_count].length = len;
734             array_count++;
735         }
736     }
737     smbios_get_tables(mem_array, array_count,
738                       &smbios_tables, &smbios_tables_len,
739                       &smbios_anchor, &smbios_anchor_len);
740     g_free(mem_array);
741 
742     if (smbios_anchor) {
743         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
744                         smbios_tables, smbios_tables_len);
745         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
746                         smbios_anchor, smbios_anchor_len);
747     }
748 }
749 
750 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
751 {
752     FWCfgState *fw_cfg;
753     uint64_t *numa_fw_cfg;
754     int i;
755     const CPUArchIdList *cpus;
756     MachineClass *mc = MACHINE_GET_CLASS(pcms);
757 
758     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
759     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
760 
761     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
762      *
763      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
764      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
765      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
766      * for CPU hotplug also uses APIC ID and not "CPU index".
767      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
768      * but the "limit to the APIC ID values SeaBIOS may see".
769      *
770      * So for compatibility reasons with old BIOSes we are stuck with
771      * "etc/max-cpus" actually being apic_id_limit
772      */
773     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
774     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
775     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
776                      acpi_tables, acpi_tables_len);
777     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
778 
779     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
780                      &e820_reserve, sizeof(e820_reserve));
781     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
782                     sizeof(struct e820_entry) * e820_entries);
783 
784     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
785     /* allocate memory for the NUMA channel: one (64bit) word for the number
786      * of nodes, one word for each VCPU->node and one word for each node to
787      * hold the amount of memory.
788      */
789     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
790     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
791     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
792     for (i = 0; i < cpus->len; i++) {
793         unsigned int apic_id = cpus->cpus[i].arch_id;
794         assert(apic_id < pcms->apic_id_limit);
795         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
796     }
797     for (i = 0; i < nb_numa_nodes; i++) {
798         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
799             cpu_to_le64(numa_info[i].node_mem);
800     }
801     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
802                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
803                      sizeof(*numa_fw_cfg));
804 
805     return fw_cfg;
806 }
807 
808 static long get_file_size(FILE *f)
809 {
810     long where, size;
811 
812     /* XXX: on Unix systems, using fstat() probably makes more sense */
813 
814     where = ftell(f);
815     fseek(f, 0, SEEK_END);
816     size = ftell(f);
817     fseek(f, where, SEEK_SET);
818 
819     return size;
820 }
821 
822 /* setup_data types */
823 #define SETUP_NONE     0
824 #define SETUP_E820_EXT 1
825 #define SETUP_DTB      2
826 #define SETUP_PCI      3
827 #define SETUP_EFI      4
828 
829 struct setup_data {
830     uint64_t next;
831     uint32_t type;
832     uint32_t len;
833     uint8_t data[0];
834 } __attribute__((packed));
835 
836 static void load_linux(PCMachineState *pcms,
837                        FWCfgState *fw_cfg)
838 {
839     uint16_t protocol;
840     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
841     int dtb_size, setup_data_offset;
842     uint32_t initrd_max;
843     uint8_t header[8192], *setup, *kernel, *initrd_data;
844     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
845     FILE *f;
846     char *vmode;
847     MachineState *machine = MACHINE(pcms);
848     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
849     struct setup_data *setup_data;
850     const char *kernel_filename = machine->kernel_filename;
851     const char *initrd_filename = machine->initrd_filename;
852     const char *dtb_filename = machine->dtb;
853     const char *kernel_cmdline = machine->kernel_cmdline;
854 
855     /* Align to 16 bytes as a paranoia measure */
856     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
857 
858     /* load the kernel header */
859     f = fopen(kernel_filename, "rb");
860     if (!f || !(kernel_size = get_file_size(f)) ||
861         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
862         MIN(ARRAY_SIZE(header), kernel_size)) {
863         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
864                 kernel_filename, strerror(errno));
865         exit(1);
866     }
867 
868     /* kernel protocol version */
869 #if 0
870     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
871 #endif
872     if (ldl_p(header+0x202) == 0x53726448) {
873         protocol = lduw_p(header+0x206);
874     } else {
875         /* This looks like a multiboot kernel. If it is, let's stop
876            treating it like a Linux kernel. */
877         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
878                            kernel_cmdline, kernel_size, header)) {
879             return;
880         }
881         protocol = 0;
882     }
883 
884     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
885         /* Low kernel */
886         real_addr    = 0x90000;
887         cmdline_addr = 0x9a000 - cmdline_size;
888         prot_addr    = 0x10000;
889     } else if (protocol < 0x202) {
890         /* High but ancient kernel */
891         real_addr    = 0x90000;
892         cmdline_addr = 0x9a000 - cmdline_size;
893         prot_addr    = 0x100000;
894     } else {
895         /* High and recent kernel */
896         real_addr    = 0x10000;
897         cmdline_addr = 0x20000;
898         prot_addr    = 0x100000;
899     }
900 
901 #if 0
902     fprintf(stderr,
903             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
904             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
905             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
906             real_addr,
907             cmdline_addr,
908             prot_addr);
909 #endif
910 
911     /* highest address for loading the initrd */
912     if (protocol >= 0x203) {
913         initrd_max = ldl_p(header+0x22c);
914     } else {
915         initrd_max = 0x37ffffff;
916     }
917 
918     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
919         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
920     }
921 
922     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
923     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
924     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
925 
926     if (protocol >= 0x202) {
927         stl_p(header+0x228, cmdline_addr);
928     } else {
929         stw_p(header+0x20, 0xA33F);
930         stw_p(header+0x22, cmdline_addr-real_addr);
931     }
932 
933     /* handle vga= parameter */
934     vmode = strstr(kernel_cmdline, "vga=");
935     if (vmode) {
936         unsigned int video_mode;
937         /* skip "vga=" */
938         vmode += 4;
939         if (!strncmp(vmode, "normal", 6)) {
940             video_mode = 0xffff;
941         } else if (!strncmp(vmode, "ext", 3)) {
942             video_mode = 0xfffe;
943         } else if (!strncmp(vmode, "ask", 3)) {
944             video_mode = 0xfffd;
945         } else {
946             video_mode = strtol(vmode, NULL, 0);
947         }
948         stw_p(header+0x1fa, video_mode);
949     }
950 
951     /* loader type */
952     /* High nybble = B reserved for QEMU; low nybble is revision number.
953        If this code is substantially changed, you may want to consider
954        incrementing the revision. */
955     if (protocol >= 0x200) {
956         header[0x210] = 0xB0;
957     }
958     /* heap */
959     if (protocol >= 0x201) {
960         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
961         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
962     }
963 
964     /* load initrd */
965     if (initrd_filename) {
966         if (protocol < 0x200) {
967             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
968             exit(1);
969         }
970 
971         initrd_size = get_image_size(initrd_filename);
972         if (initrd_size < 0) {
973             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
974                     initrd_filename, strerror(errno));
975             exit(1);
976         }
977 
978         initrd_addr = (initrd_max-initrd_size) & ~4095;
979 
980         initrd_data = g_malloc(initrd_size);
981         load_image(initrd_filename, initrd_data);
982 
983         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
984         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
985         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
986 
987         stl_p(header+0x218, initrd_addr);
988         stl_p(header+0x21c, initrd_size);
989     }
990 
991     /* load kernel and setup */
992     setup_size = header[0x1f1];
993     if (setup_size == 0) {
994         setup_size = 4;
995     }
996     setup_size = (setup_size+1)*512;
997     if (setup_size > kernel_size) {
998         fprintf(stderr, "qemu: invalid kernel header\n");
999         exit(1);
1000     }
1001     kernel_size -= setup_size;
1002 
1003     setup  = g_malloc(setup_size);
1004     kernel = g_malloc(kernel_size);
1005     fseek(f, 0, SEEK_SET);
1006     if (fread(setup, 1, setup_size, f) != setup_size) {
1007         fprintf(stderr, "fread() failed\n");
1008         exit(1);
1009     }
1010     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1011         fprintf(stderr, "fread() failed\n");
1012         exit(1);
1013     }
1014     fclose(f);
1015 
1016     /* append dtb to kernel */
1017     if (dtb_filename) {
1018         if (protocol < 0x209) {
1019             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1020             exit(1);
1021         }
1022 
1023         dtb_size = get_image_size(dtb_filename);
1024         if (dtb_size <= 0) {
1025             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1026                     dtb_filename, strerror(errno));
1027             exit(1);
1028         }
1029 
1030         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1031         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1032         kernel = g_realloc(kernel, kernel_size);
1033 
1034         stq_p(header+0x250, prot_addr + setup_data_offset);
1035 
1036         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1037         setup_data->next = 0;
1038         setup_data->type = cpu_to_le32(SETUP_DTB);
1039         setup_data->len = cpu_to_le32(dtb_size);
1040 
1041         load_image_size(dtb_filename, setup_data->data, dtb_size);
1042     }
1043 
1044     memcpy(setup, header, MIN(sizeof(header), setup_size));
1045 
1046     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1047     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1048     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1049 
1050     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1051     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1052     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1053 
1054     option_rom[nb_option_roms].bootindex = 0;
1055     option_rom[nb_option_roms].name = "linuxboot.bin";
1056     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1057         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1058     }
1059     nb_option_roms++;
1060 }
1061 
1062 #define NE2000_NB_MAX 6
1063 
1064 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1065                                               0x280, 0x380 };
1066 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1067 
1068 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1069 {
1070     static int nb_ne2k = 0;
1071 
1072     if (nb_ne2k == NE2000_NB_MAX)
1073         return;
1074     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1075                     ne2000_irq[nb_ne2k], nd);
1076     nb_ne2k++;
1077 }
1078 
1079 DeviceState *cpu_get_current_apic(void)
1080 {
1081     if (current_cpu) {
1082         X86CPU *cpu = X86_CPU(current_cpu);
1083         return cpu->apic_state;
1084     } else {
1085         return NULL;
1086     }
1087 }
1088 
1089 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1090 {
1091     X86CPU *cpu = opaque;
1092 
1093     if (level) {
1094         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1095     }
1096 }
1097 
1098 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1099 {
1100     Object *cpu = NULL;
1101     Error *local_err = NULL;
1102 
1103     cpu = object_new(typename);
1104 
1105     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1106     object_property_set_bool(cpu, true, "realized", &local_err);
1107 
1108     object_unref(cpu);
1109     error_propagate(errp, local_err);
1110 }
1111 
1112 void pc_hot_add_cpu(const int64_t id, Error **errp)
1113 {
1114     MachineState *ms = MACHINE(qdev_get_machine());
1115     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1116     Error *local_err = NULL;
1117 
1118     if (id < 0) {
1119         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1120         return;
1121     }
1122 
1123     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1124         error_setg(errp, "Unable to add CPU: %" PRIi64
1125                    ", resulting APIC ID (%" PRIi64 ") is too large",
1126                    id, apic_id);
1127         return;
1128     }
1129 
1130     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1131     if (local_err) {
1132         error_propagate(errp, local_err);
1133         return;
1134     }
1135 }
1136 
1137 void pc_cpus_init(PCMachineState *pcms)
1138 {
1139     int i;
1140     const CPUArchIdList *possible_cpus;
1141     MachineState *ms = MACHINE(pcms);
1142     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1143 
1144     /* Calculates the limit to CPU APIC ID values
1145      *
1146      * Limit for the APIC ID value, so that all
1147      * CPU APIC IDs are < pcms->apic_id_limit.
1148      *
1149      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1150      */
1151     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1152     possible_cpus = mc->possible_cpu_arch_ids(ms);
1153     for (i = 0; i < smp_cpus; i++) {
1154         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1155                    &error_fatal);
1156     }
1157 }
1158 
1159 static void pc_build_feature_control_file(PCMachineState *pcms)
1160 {
1161     MachineState *ms = MACHINE(pcms);
1162     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1163     CPUX86State *env = &cpu->env;
1164     uint32_t unused, ecx, edx;
1165     uint64_t feature_control_bits = 0;
1166     uint64_t *val;
1167 
1168     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1169     if (ecx & CPUID_EXT_VMX) {
1170         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1171     }
1172 
1173     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1174         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1175         (env->mcg_cap & MCG_LMCE_P)) {
1176         feature_control_bits |= FEATURE_CONTROL_LMCE;
1177     }
1178 
1179     if (!feature_control_bits) {
1180         return;
1181     }
1182 
1183     val = g_malloc(sizeof(*val));
1184     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1185     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1186 }
1187 
1188 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1189 {
1190     if (cpus_count > 0xff) {
1191         /* If the number of CPUs can't be represented in 8 bits, the
1192          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1193          * to make old BIOSes fail more predictably.
1194          */
1195         rtc_set_memory(rtc, 0x5f, 0);
1196     } else {
1197         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1198     }
1199 }
1200 
1201 static
1202 void pc_machine_done(Notifier *notifier, void *data)
1203 {
1204     PCMachineState *pcms = container_of(notifier,
1205                                         PCMachineState, machine_done);
1206     PCIBus *bus = pcms->bus;
1207 
1208     /* set the number of CPUs */
1209     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1210 
1211     if (bus) {
1212         int extra_hosts = 0;
1213 
1214         QLIST_FOREACH(bus, &bus->child, sibling) {
1215             /* look for expander root buses */
1216             if (pci_bus_is_root(bus)) {
1217                 extra_hosts++;
1218             }
1219         }
1220         if (extra_hosts && pcms->fw_cfg) {
1221             uint64_t *val = g_malloc(sizeof(*val));
1222             *val = cpu_to_le64(extra_hosts);
1223             fw_cfg_add_file(pcms->fw_cfg,
1224                     "etc/extra-pci-roots", val, sizeof(*val));
1225         }
1226     }
1227 
1228     acpi_setup();
1229     if (pcms->fw_cfg) {
1230         pc_build_smbios(pcms);
1231         pc_build_feature_control_file(pcms);
1232         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1233         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1234     }
1235 
1236     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1237         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1238 
1239         if (!iommu || !iommu->x86_iommu.intr_supported ||
1240             iommu->intr_eim != ON_OFF_AUTO_ON) {
1241             error_report("current -smp configuration requires "
1242                          "Extended Interrupt Mode enabled. "
1243                          "You can add an IOMMU using: "
1244                          "-device intel-iommu,intremap=on,eim=on");
1245             exit(EXIT_FAILURE);
1246         }
1247     }
1248 }
1249 
1250 void pc_guest_info_init(PCMachineState *pcms)
1251 {
1252     int i;
1253 
1254     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1255     pcms->numa_nodes = nb_numa_nodes;
1256     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1257                                     sizeof *pcms->node_mem);
1258     for (i = 0; i < nb_numa_nodes; i++) {
1259         pcms->node_mem[i] = numa_info[i].node_mem;
1260     }
1261 
1262     pcms->machine_done.notify = pc_machine_done;
1263     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1264 }
1265 
1266 /* setup pci memory address space mapping into system address space */
1267 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1268                             MemoryRegion *pci_address_space)
1269 {
1270     /* Set to lower priority than RAM */
1271     memory_region_add_subregion_overlap(system_memory, 0x0,
1272                                         pci_address_space, -1);
1273 }
1274 
1275 void pc_acpi_init(const char *default_dsdt)
1276 {
1277     char *filename;
1278 
1279     if (acpi_tables != NULL) {
1280         /* manually set via -acpitable, leave it alone */
1281         return;
1282     }
1283 
1284     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1285     if (filename == NULL) {
1286         warn_report("failed to find %s", default_dsdt);
1287     } else {
1288         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1289                                           &error_abort);
1290         Error *err = NULL;
1291 
1292         qemu_opt_set(opts, "file", filename, &error_abort);
1293 
1294         acpi_table_add_builtin(opts, &err);
1295         if (err) {
1296             warn_reportf_err(err, "failed to load %s: ", filename);
1297         }
1298         g_free(filename);
1299     }
1300 }
1301 
1302 void xen_load_linux(PCMachineState *pcms)
1303 {
1304     int i;
1305     FWCfgState *fw_cfg;
1306 
1307     assert(MACHINE(pcms)->kernel_filename != NULL);
1308 
1309     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1310     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1311     rom_set_fw(fw_cfg);
1312 
1313     load_linux(pcms, fw_cfg);
1314     for (i = 0; i < nb_option_roms; i++) {
1315         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1316                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1317                !strcmp(option_rom[i].name, "multiboot.bin"));
1318         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1319     }
1320     pcms->fw_cfg = fw_cfg;
1321 }
1322 
1323 void pc_memory_init(PCMachineState *pcms,
1324                     MemoryRegion *system_memory,
1325                     MemoryRegion *rom_memory,
1326                     MemoryRegion **ram_memory)
1327 {
1328     int linux_boot, i;
1329     MemoryRegion *ram, *option_rom_mr;
1330     MemoryRegion *ram_below_4g, *ram_above_4g;
1331     FWCfgState *fw_cfg;
1332     MachineState *machine = MACHINE(pcms);
1333     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1334 
1335     assert(machine->ram_size == pcms->below_4g_mem_size +
1336                                 pcms->above_4g_mem_size);
1337 
1338     linux_boot = (machine->kernel_filename != NULL);
1339 
1340     /* Allocate RAM.  We allocate it as a single memory region and use
1341      * aliases to address portions of it, mostly for backwards compatibility
1342      * with older qemus that used qemu_ram_alloc().
1343      */
1344     ram = g_malloc(sizeof(*ram));
1345     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1346                                          machine->ram_size);
1347     *ram_memory = ram;
1348     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1349     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1350                              0, pcms->below_4g_mem_size);
1351     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1352     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1353     if (pcms->above_4g_mem_size > 0) {
1354         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1355         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1356                                  pcms->below_4g_mem_size,
1357                                  pcms->above_4g_mem_size);
1358         memory_region_add_subregion(system_memory, 0x100000000ULL,
1359                                     ram_above_4g);
1360         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1361     }
1362 
1363     if (!pcmc->has_reserved_memory &&
1364         (machine->ram_slots ||
1365          (machine->maxram_size > machine->ram_size))) {
1366         MachineClass *mc = MACHINE_GET_CLASS(machine);
1367 
1368         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1369                      mc->name);
1370         exit(EXIT_FAILURE);
1371     }
1372 
1373     /* always allocate the device memory information */
1374     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1375 
1376     /* initialize device memory address space */
1377     if (pcmc->has_reserved_memory &&
1378         (machine->ram_size < machine->maxram_size)) {
1379         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1380 
1381         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1382             error_report("unsupported amount of memory slots: %"PRIu64,
1383                          machine->ram_slots);
1384             exit(EXIT_FAILURE);
1385         }
1386 
1387         if (QEMU_ALIGN_UP(machine->maxram_size,
1388                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1389             error_report("maximum memory size must by aligned to multiple of "
1390                          "%d bytes", TARGET_PAGE_SIZE);
1391             exit(EXIT_FAILURE);
1392         }
1393 
1394         machine->device_memory->base =
1395             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1396 
1397         if (pcmc->enforce_aligned_dimm) {
1398             /* size device region assuming 1G page max alignment per slot */
1399             device_mem_size += (1ULL << 30) * machine->ram_slots;
1400         }
1401 
1402         if ((machine->device_memory->base + device_mem_size) <
1403             device_mem_size) {
1404             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1405                          machine->maxram_size);
1406             exit(EXIT_FAILURE);
1407         }
1408 
1409         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1410                            "device-memory", device_mem_size);
1411         memory_region_add_subregion(system_memory, machine->device_memory->base,
1412                                     &machine->device_memory->mr);
1413     }
1414 
1415     /* Initialize PC system firmware */
1416     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1417 
1418     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1419     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1420                            &error_fatal);
1421     if (pcmc->pci_enabled) {
1422         memory_region_set_readonly(option_rom_mr, true);
1423     }
1424     memory_region_add_subregion_overlap(rom_memory,
1425                                         PC_ROM_MIN_VGA,
1426                                         option_rom_mr,
1427                                         1);
1428 
1429     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1430 
1431     rom_set_fw(fw_cfg);
1432 
1433     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1434         uint64_t *val = g_malloc(sizeof(*val));
1435         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1436         uint64_t res_mem_end = machine->device_memory->base;
1437 
1438         if (!pcmc->broken_reserved_end) {
1439             res_mem_end += memory_region_size(&machine->device_memory->mr);
1440         }
1441         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1442         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1443     }
1444 
1445     if (linux_boot) {
1446         load_linux(pcms, fw_cfg);
1447     }
1448 
1449     for (i = 0; i < nb_option_roms; i++) {
1450         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1451     }
1452     pcms->fw_cfg = fw_cfg;
1453 
1454     /* Init default IOAPIC address space */
1455     pcms->ioapic_as = &address_space_memory;
1456 }
1457 
1458 /*
1459  * The 64bit pci hole starts after "above 4G RAM" and
1460  * potentially the space reserved for memory hotplug.
1461  */
1462 uint64_t pc_pci_hole64_start(void)
1463 {
1464     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1465     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1466     MachineState *ms = MACHINE(pcms);
1467     uint64_t hole64_start = 0;
1468 
1469     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1470         hole64_start = ms->device_memory->base;
1471         if (!pcmc->broken_reserved_end) {
1472             hole64_start += memory_region_size(&ms->device_memory->mr);
1473         }
1474     } else {
1475         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1476     }
1477 
1478     return ROUND_UP(hole64_start, 1ULL << 30);
1479 }
1480 
1481 qemu_irq pc_allocate_cpu_irq(void)
1482 {
1483     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1484 }
1485 
1486 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1487 {
1488     DeviceState *dev = NULL;
1489 
1490     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1491     if (pci_bus) {
1492         PCIDevice *pcidev = pci_vga_init(pci_bus);
1493         dev = pcidev ? &pcidev->qdev : NULL;
1494     } else if (isa_bus) {
1495         ISADevice *isadev = isa_vga_init(isa_bus);
1496         dev = isadev ? DEVICE(isadev) : NULL;
1497     }
1498     rom_reset_order_override();
1499     return dev;
1500 }
1501 
1502 static const MemoryRegionOps ioport80_io_ops = {
1503     .write = ioport80_write,
1504     .read = ioport80_read,
1505     .endianness = DEVICE_NATIVE_ENDIAN,
1506     .impl = {
1507         .min_access_size = 1,
1508         .max_access_size = 1,
1509     },
1510 };
1511 
1512 static const MemoryRegionOps ioportF0_io_ops = {
1513     .write = ioportF0_write,
1514     .read = ioportF0_read,
1515     .endianness = DEVICE_NATIVE_ENDIAN,
1516     .impl = {
1517         .min_access_size = 1,
1518         .max_access_size = 1,
1519     },
1520 };
1521 
1522 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1523 {
1524     int i;
1525     DriveInfo *fd[MAX_FD];
1526     qemu_irq *a20_line;
1527     ISADevice *i8042, *port92, *vmmouse;
1528 
1529     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1530     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1531 
1532     for (i = 0; i < MAX_FD; i++) {
1533         fd[i] = drive_get(IF_FLOPPY, 0, i);
1534         create_fdctrl |= !!fd[i];
1535     }
1536     if (create_fdctrl) {
1537         fdctrl_init_isa(isa_bus, fd);
1538     }
1539 
1540     i8042 = isa_create_simple(isa_bus, "i8042");
1541     if (!no_vmport) {
1542         vmport_init(isa_bus);
1543         vmmouse = isa_try_create(isa_bus, "vmmouse");
1544     } else {
1545         vmmouse = NULL;
1546     }
1547     if (vmmouse) {
1548         DeviceState *dev = DEVICE(vmmouse);
1549         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1550         qdev_init_nofail(dev);
1551     }
1552     port92 = isa_create_simple(isa_bus, "port92");
1553 
1554     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1555     i8042_setup_a20_line(i8042, a20_line[0]);
1556     port92_init(port92, a20_line[1]);
1557     g_free(a20_line);
1558 }
1559 
1560 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1561                           ISADevice **rtc_state,
1562                           bool create_fdctrl,
1563                           bool no_vmport,
1564                           bool has_pit,
1565                           uint32_t hpet_irqs)
1566 {
1567     int i;
1568     DeviceState *hpet = NULL;
1569     int pit_isa_irq = 0;
1570     qemu_irq pit_alt_irq = NULL;
1571     qemu_irq rtc_irq = NULL;
1572     ISADevice *pit = NULL;
1573     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1574     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1575 
1576     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1577     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1578 
1579     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1580     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1581 
1582     /*
1583      * Check if an HPET shall be created.
1584      *
1585      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1586      * when the HPET wants to take over. Thus we have to disable the latter.
1587      */
1588     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1589         /* In order to set property, here not using sysbus_try_create_simple */
1590         hpet = qdev_try_create(NULL, TYPE_HPET);
1591         if (hpet) {
1592             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1593              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1594              * IRQ8 and IRQ2.
1595              */
1596             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1597                     HPET_INTCAP, NULL);
1598             if (!compat) {
1599                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1600             }
1601             qdev_init_nofail(hpet);
1602             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1603 
1604             for (i = 0; i < GSI_NUM_PINS; i++) {
1605                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1606             }
1607             pit_isa_irq = -1;
1608             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1609             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1610         }
1611     }
1612     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1613 
1614     qemu_register_boot_set(pc_boot_set, *rtc_state);
1615 
1616     if (!xen_enabled() && has_pit) {
1617         if (kvm_pit_in_kernel()) {
1618             pit = kvm_pit_init(isa_bus, 0x40);
1619         } else {
1620             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1621         }
1622         if (hpet) {
1623             /* connect PIT to output control line of the HPET */
1624             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1625         }
1626         pcspk_init(isa_bus, pit);
1627     }
1628 
1629     i8257_dma_init(isa_bus, 0);
1630 
1631     /* Super I/O */
1632     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1633 }
1634 
1635 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1636 {
1637     int i;
1638 
1639     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1640     for (i = 0; i < nb_nics; i++) {
1641         NICInfo *nd = &nd_table[i];
1642         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1643 
1644         if (g_str_equal(model, "ne2k_isa")) {
1645             pc_init_ne2k_isa(isa_bus, nd);
1646         } else {
1647             pci_nic_init_nofail(nd, pci_bus, model, NULL);
1648         }
1649     }
1650     rom_reset_order_override();
1651 }
1652 
1653 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1654 {
1655     DeviceState *dev;
1656     SysBusDevice *d;
1657     unsigned int i;
1658 
1659     if (kvm_ioapic_in_kernel()) {
1660         dev = qdev_create(NULL, "kvm-ioapic");
1661     } else {
1662         dev = qdev_create(NULL, "ioapic");
1663     }
1664     if (parent_name) {
1665         object_property_add_child(object_resolve_path(parent_name, NULL),
1666                                   "ioapic", OBJECT(dev), NULL);
1667     }
1668     qdev_init_nofail(dev);
1669     d = SYS_BUS_DEVICE(dev);
1670     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1671 
1672     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1673         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1674     }
1675 }
1676 
1677 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1678                          DeviceState *dev, Error **errp)
1679 {
1680     HotplugHandlerClass *hhc;
1681     Error *local_err = NULL;
1682     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1683     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1684     PCDIMMDevice *dimm = PC_DIMM(dev);
1685     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1686     MemoryRegion *mr;
1687     uint64_t align = TARGET_PAGE_SIZE;
1688     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1689 
1690     mr = ddc->get_memory_region(dimm, &local_err);
1691     if (local_err) {
1692         goto out;
1693     }
1694 
1695     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1696         align = memory_region_get_alignment(mr);
1697     }
1698 
1699     /*
1700      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1701      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1702      * addition to cover this case.
1703      */
1704     if (!pcms->acpi_dev || !acpi_enabled) {
1705         error_setg(&local_err,
1706                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1707         goto out;
1708     }
1709 
1710     if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1711         error_setg(&local_err,
1712                    "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1713         goto out;
1714     }
1715 
1716     pc_dimm_memory_plug(dev, MACHINE(pcms), align, &local_err);
1717     if (local_err) {
1718         goto out;
1719     }
1720 
1721     if (is_nvdimm) {
1722         nvdimm_plug(&pcms->acpi_nvdimm_state);
1723     }
1724 
1725     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1726     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1727 out:
1728     error_propagate(errp, local_err);
1729 }
1730 
1731 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1732                                    DeviceState *dev, Error **errp)
1733 {
1734     HotplugHandlerClass *hhc;
1735     Error *local_err = NULL;
1736     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1737 
1738     /*
1739      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1740      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1741      * addition to cover this case.
1742      */
1743     if (!pcms->acpi_dev || !acpi_enabled) {
1744         error_setg(&local_err,
1745                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1746         goto out;
1747     }
1748 
1749     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1750         error_setg(&local_err,
1751                    "nvdimm device hot unplug is not supported yet.");
1752         goto out;
1753     }
1754 
1755     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1756     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1757 
1758 out:
1759     error_propagate(errp, local_err);
1760 }
1761 
1762 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1763                            DeviceState *dev, Error **errp)
1764 {
1765     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1766     HotplugHandlerClass *hhc;
1767     Error *local_err = NULL;
1768 
1769     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1770     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1771 
1772     if (local_err) {
1773         goto out;
1774     }
1775 
1776     pc_dimm_memory_unplug(dev, MACHINE(pcms));
1777     object_unparent(OBJECT(dev));
1778 
1779  out:
1780     error_propagate(errp, local_err);
1781 }
1782 
1783 static int pc_apic_cmp(const void *a, const void *b)
1784 {
1785    CPUArchId *apic_a = (CPUArchId *)a;
1786    CPUArchId *apic_b = (CPUArchId *)b;
1787 
1788    return apic_a->arch_id - apic_b->arch_id;
1789 }
1790 
1791 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1792  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1793  * entry corresponding to CPU's apic_id returns NULL.
1794  */
1795 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1796 {
1797     CPUArchId apic_id, *found_cpu;
1798 
1799     apic_id.arch_id = id;
1800     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1801         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1802         pc_apic_cmp);
1803     if (found_cpu && idx) {
1804         *idx = found_cpu - ms->possible_cpus->cpus;
1805     }
1806     return found_cpu;
1807 }
1808 
1809 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1810                         DeviceState *dev, Error **errp)
1811 {
1812     CPUArchId *found_cpu;
1813     HotplugHandlerClass *hhc;
1814     Error *local_err = NULL;
1815     X86CPU *cpu = X86_CPU(dev);
1816     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1817 
1818     if (pcms->acpi_dev) {
1819         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1820         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1821         if (local_err) {
1822             goto out;
1823         }
1824     }
1825 
1826     /* increment the number of CPUs */
1827     pcms->boot_cpus++;
1828     if (pcms->rtc) {
1829         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1830     }
1831     if (pcms->fw_cfg) {
1832         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1833     }
1834 
1835     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1836     found_cpu->cpu = OBJECT(dev);
1837 out:
1838     error_propagate(errp, local_err);
1839 }
1840 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1841                                      DeviceState *dev, Error **errp)
1842 {
1843     int idx = -1;
1844     HotplugHandlerClass *hhc;
1845     Error *local_err = NULL;
1846     X86CPU *cpu = X86_CPU(dev);
1847     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1848 
1849     if (!pcms->acpi_dev) {
1850         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1851         goto out;
1852     }
1853 
1854     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1855     assert(idx != -1);
1856     if (idx == 0) {
1857         error_setg(&local_err, "Boot CPU is unpluggable");
1858         goto out;
1859     }
1860 
1861     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1862     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1863 
1864     if (local_err) {
1865         goto out;
1866     }
1867 
1868  out:
1869     error_propagate(errp, local_err);
1870 
1871 }
1872 
1873 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1874                              DeviceState *dev, Error **errp)
1875 {
1876     CPUArchId *found_cpu;
1877     HotplugHandlerClass *hhc;
1878     Error *local_err = NULL;
1879     X86CPU *cpu = X86_CPU(dev);
1880     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1881 
1882     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1883     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1884 
1885     if (local_err) {
1886         goto out;
1887     }
1888 
1889     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1890     found_cpu->cpu = NULL;
1891     object_unparent(OBJECT(dev));
1892 
1893     /* decrement the number of CPUs */
1894     pcms->boot_cpus--;
1895     /* Update the number of CPUs in CMOS */
1896     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1897     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1898  out:
1899     error_propagate(errp, local_err);
1900 }
1901 
1902 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1903                             DeviceState *dev, Error **errp)
1904 {
1905     int idx;
1906     CPUState *cs;
1907     CPUArchId *cpu_slot;
1908     X86CPUTopoInfo topo;
1909     X86CPU *cpu = X86_CPU(dev);
1910     MachineState *ms = MACHINE(hotplug_dev);
1911     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1912 
1913     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1914         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1915                    ms->cpu_type);
1916         return;
1917     }
1918 
1919     /* if APIC ID is not set, set it based on socket/core/thread properties */
1920     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1921         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1922 
1923         if (cpu->socket_id < 0) {
1924             error_setg(errp, "CPU socket-id is not set");
1925             return;
1926         } else if (cpu->socket_id > max_socket) {
1927             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1928                        cpu->socket_id, max_socket);
1929             return;
1930         }
1931         if (cpu->core_id < 0) {
1932             error_setg(errp, "CPU core-id is not set");
1933             return;
1934         } else if (cpu->core_id > (smp_cores - 1)) {
1935             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1936                        cpu->core_id, smp_cores - 1);
1937             return;
1938         }
1939         if (cpu->thread_id < 0) {
1940             error_setg(errp, "CPU thread-id is not set");
1941             return;
1942         } else if (cpu->thread_id > (smp_threads - 1)) {
1943             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1944                        cpu->thread_id, smp_threads - 1);
1945             return;
1946         }
1947 
1948         topo.pkg_id = cpu->socket_id;
1949         topo.core_id = cpu->core_id;
1950         topo.smt_id = cpu->thread_id;
1951         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1952     }
1953 
1954     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1955     if (!cpu_slot) {
1956         MachineState *ms = MACHINE(pcms);
1957 
1958         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1959         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1960                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1961                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1962                    ms->possible_cpus->len - 1);
1963         return;
1964     }
1965 
1966     if (cpu_slot->cpu) {
1967         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1968                    idx, cpu->apic_id);
1969         return;
1970     }
1971 
1972     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1973      * so that machine_query_hotpluggable_cpus would show correct values
1974      */
1975     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1976      * once -smp refactoring is complete and there will be CPU private
1977      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1978     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1979     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1980         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1981             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1982         return;
1983     }
1984     cpu->socket_id = topo.pkg_id;
1985 
1986     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1987         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1988             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1989         return;
1990     }
1991     cpu->core_id = topo.core_id;
1992 
1993     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1994         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1995             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1996         return;
1997     }
1998     cpu->thread_id = topo.smt_id;
1999 
2000     cs = CPU(cpu);
2001     cs->cpu_index = idx;
2002 
2003     numa_cpu_pre_plug(cpu_slot, dev, errp);
2004 }
2005 
2006 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2007                                           DeviceState *dev, Error **errp)
2008 {
2009     if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2010         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2011     }
2012 }
2013 
2014 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2015                                       DeviceState *dev, Error **errp)
2016 {
2017     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2018         pc_dimm_plug(hotplug_dev, dev, errp);
2019     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2020         pc_cpu_plug(hotplug_dev, dev, errp);
2021     }
2022 }
2023 
2024 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2025                                                 DeviceState *dev, Error **errp)
2026 {
2027     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2028         pc_dimm_unplug_request(hotplug_dev, dev, errp);
2029     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2030         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2031     } else {
2032         error_setg(errp, "acpi: device unplug request for not supported device"
2033                    " type: %s", object_get_typename(OBJECT(dev)));
2034     }
2035 }
2036 
2037 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2038                                         DeviceState *dev, Error **errp)
2039 {
2040     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2041         pc_dimm_unplug(hotplug_dev, dev, errp);
2042     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2043         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2044     } else {
2045         error_setg(errp, "acpi: device unplug for not supported device"
2046                    " type: %s", object_get_typename(OBJECT(dev)));
2047     }
2048 }
2049 
2050 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2051                                              DeviceState *dev)
2052 {
2053     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2054         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2055         return HOTPLUG_HANDLER(machine);
2056     }
2057 
2058     return NULL;
2059 }
2060 
2061 static void
2062 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2063                                          const char *name, void *opaque,
2064                                          Error **errp)
2065 {
2066     MachineState *ms = MACHINE(obj);
2067     int64_t value = memory_region_size(&ms->device_memory->mr);
2068 
2069     visit_type_int(v, name, &value, errp);
2070 }
2071 
2072 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2073                                             const char *name, void *opaque,
2074                                             Error **errp)
2075 {
2076     PCMachineState *pcms = PC_MACHINE(obj);
2077     uint64_t value = pcms->max_ram_below_4g;
2078 
2079     visit_type_size(v, name, &value, errp);
2080 }
2081 
2082 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2083                                             const char *name, void *opaque,
2084                                             Error **errp)
2085 {
2086     PCMachineState *pcms = PC_MACHINE(obj);
2087     Error *error = NULL;
2088     uint64_t value;
2089 
2090     visit_type_size(v, name, &value, &error);
2091     if (error) {
2092         error_propagate(errp, error);
2093         return;
2094     }
2095     if (value > (1ULL << 32)) {
2096         error_setg(&error,
2097                    "Machine option 'max-ram-below-4g=%"PRIu64
2098                    "' expects size less than or equal to 4G", value);
2099         error_propagate(errp, error);
2100         return;
2101     }
2102 
2103     if (value < (1ULL << 20)) {
2104         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2105                     "BIOS may not work with less than 1MiB", value);
2106     }
2107 
2108     pcms->max_ram_below_4g = value;
2109 }
2110 
2111 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2112                                   void *opaque, Error **errp)
2113 {
2114     PCMachineState *pcms = PC_MACHINE(obj);
2115     OnOffAuto vmport = pcms->vmport;
2116 
2117     visit_type_OnOffAuto(v, name, &vmport, errp);
2118 }
2119 
2120 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2121                                   void *opaque, Error **errp)
2122 {
2123     PCMachineState *pcms = PC_MACHINE(obj);
2124 
2125     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2126 }
2127 
2128 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2129 {
2130     bool smm_available = false;
2131 
2132     if (pcms->smm == ON_OFF_AUTO_OFF) {
2133         return false;
2134     }
2135 
2136     if (tcg_enabled() || qtest_enabled()) {
2137         smm_available = true;
2138     } else if (kvm_enabled()) {
2139         smm_available = kvm_has_smm();
2140     }
2141 
2142     if (smm_available) {
2143         return true;
2144     }
2145 
2146     if (pcms->smm == ON_OFF_AUTO_ON) {
2147         error_report("System Management Mode not supported by this hypervisor.");
2148         exit(1);
2149     }
2150     return false;
2151 }
2152 
2153 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2154                                void *opaque, Error **errp)
2155 {
2156     PCMachineState *pcms = PC_MACHINE(obj);
2157     OnOffAuto smm = pcms->smm;
2158 
2159     visit_type_OnOffAuto(v, name, &smm, errp);
2160 }
2161 
2162 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2163                                void *opaque, Error **errp)
2164 {
2165     PCMachineState *pcms = PC_MACHINE(obj);
2166 
2167     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2168 }
2169 
2170 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2171 {
2172     PCMachineState *pcms = PC_MACHINE(obj);
2173 
2174     return pcms->acpi_nvdimm_state.is_enabled;
2175 }
2176 
2177 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2178 {
2179     PCMachineState *pcms = PC_MACHINE(obj);
2180 
2181     pcms->acpi_nvdimm_state.is_enabled = value;
2182 }
2183 
2184 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2185 {
2186     PCMachineState *pcms = PC_MACHINE(obj);
2187 
2188     return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2189 }
2190 
2191 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2192                                                Error **errp)
2193 {
2194     PCMachineState *pcms = PC_MACHINE(obj);
2195     AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2196 
2197     if (strcmp(value, "cpu") == 0)
2198         nvdimm_state->persistence = 3;
2199     else if (strcmp(value, "mem-ctrl") == 0)
2200         nvdimm_state->persistence = 2;
2201     else {
2202         error_report("-machine nvdimm-persistence=%s: unsupported option", value);
2203         exit(EXIT_FAILURE);
2204     }
2205 
2206     g_free(nvdimm_state->persistence_string);
2207     nvdimm_state->persistence_string = g_strdup(value);
2208 }
2209 
2210 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2211 {
2212     PCMachineState *pcms = PC_MACHINE(obj);
2213 
2214     return pcms->smbus;
2215 }
2216 
2217 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2218 {
2219     PCMachineState *pcms = PC_MACHINE(obj);
2220 
2221     pcms->smbus = value;
2222 }
2223 
2224 static bool pc_machine_get_sata(Object *obj, Error **errp)
2225 {
2226     PCMachineState *pcms = PC_MACHINE(obj);
2227 
2228     return pcms->sata;
2229 }
2230 
2231 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2232 {
2233     PCMachineState *pcms = PC_MACHINE(obj);
2234 
2235     pcms->sata = value;
2236 }
2237 
2238 static bool pc_machine_get_pit(Object *obj, Error **errp)
2239 {
2240     PCMachineState *pcms = PC_MACHINE(obj);
2241 
2242     return pcms->pit;
2243 }
2244 
2245 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2246 {
2247     PCMachineState *pcms = PC_MACHINE(obj);
2248 
2249     pcms->pit = value;
2250 }
2251 
2252 static void pc_machine_initfn(Object *obj)
2253 {
2254     PCMachineState *pcms = PC_MACHINE(obj);
2255 
2256     pcms->max_ram_below_4g = 0; /* use default */
2257     pcms->smm = ON_OFF_AUTO_AUTO;
2258     pcms->vmport = ON_OFF_AUTO_AUTO;
2259     /* nvdimm is disabled on default. */
2260     pcms->acpi_nvdimm_state.is_enabled = false;
2261     /* acpi build is enabled by default if machine supports it */
2262     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2263     pcms->smbus = true;
2264     pcms->sata = true;
2265     pcms->pit = true;
2266 }
2267 
2268 static void pc_machine_reset(void)
2269 {
2270     CPUState *cs;
2271     X86CPU *cpu;
2272 
2273     qemu_devices_reset();
2274 
2275     /* Reset APIC after devices have been reset to cancel
2276      * any changes that qemu_devices_reset() might have done.
2277      */
2278     CPU_FOREACH(cs) {
2279         cpu = X86_CPU(cs);
2280 
2281         if (cpu->apic_state) {
2282             device_reset(cpu->apic_state);
2283         }
2284     }
2285 }
2286 
2287 static CpuInstanceProperties
2288 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2289 {
2290     MachineClass *mc = MACHINE_GET_CLASS(ms);
2291     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2292 
2293     assert(cpu_index < possible_cpus->len);
2294     return possible_cpus->cpus[cpu_index].props;
2295 }
2296 
2297 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2298 {
2299    X86CPUTopoInfo topo;
2300 
2301    assert(idx < ms->possible_cpus->len);
2302    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2303                             smp_cores, smp_threads, &topo);
2304    return topo.pkg_id % nb_numa_nodes;
2305 }
2306 
2307 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2308 {
2309     int i;
2310 
2311     if (ms->possible_cpus) {
2312         /*
2313          * make sure that max_cpus hasn't changed since the first use, i.e.
2314          * -smp hasn't been parsed after it
2315         */
2316         assert(ms->possible_cpus->len == max_cpus);
2317         return ms->possible_cpus;
2318     }
2319 
2320     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2321                                   sizeof(CPUArchId) * max_cpus);
2322     ms->possible_cpus->len = max_cpus;
2323     for (i = 0; i < ms->possible_cpus->len; i++) {
2324         X86CPUTopoInfo topo;
2325 
2326         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2327         ms->possible_cpus->cpus[i].vcpus_count = 1;
2328         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2329         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2330                                  smp_cores, smp_threads, &topo);
2331         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2332         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2333         ms->possible_cpus->cpus[i].props.has_core_id = true;
2334         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2335         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2336         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2337     }
2338     return ms->possible_cpus;
2339 }
2340 
2341 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2342 {
2343     /* cpu index isn't used */
2344     CPUState *cs;
2345 
2346     CPU_FOREACH(cs) {
2347         X86CPU *cpu = X86_CPU(cs);
2348 
2349         if (!cpu->apic_state) {
2350             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2351         } else {
2352             apic_deliver_nmi(cpu->apic_state);
2353         }
2354     }
2355 }
2356 
2357 static void pc_machine_class_init(ObjectClass *oc, void *data)
2358 {
2359     MachineClass *mc = MACHINE_CLASS(oc);
2360     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2361     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2362     NMIClass *nc = NMI_CLASS(oc);
2363 
2364     pcmc->pci_enabled = true;
2365     pcmc->has_acpi_build = true;
2366     pcmc->rsdp_in_ram = true;
2367     pcmc->smbios_defaults = true;
2368     pcmc->smbios_uuid_encoded = true;
2369     pcmc->gigabyte_align = true;
2370     pcmc->has_reserved_memory = true;
2371     pcmc->kvmclock_enabled = true;
2372     pcmc->enforce_aligned_dimm = true;
2373     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2374      * to be used at the moment, 32K should be enough for a while.  */
2375     pcmc->acpi_data_size = 0x20000 + 0x8000;
2376     pcmc->save_tsc_khz = true;
2377     pcmc->linuxboot_dma_enabled = true;
2378     assert(!mc->get_hotplug_handler);
2379     mc->get_hotplug_handler = pc_get_hotpug_handler;
2380     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2381     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2382     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2383     mc->auto_enable_numa_with_memhp = true;
2384     mc->has_hotpluggable_cpus = true;
2385     mc->default_boot_order = "cad";
2386     mc->hot_add_cpu = pc_hot_add_cpu;
2387     mc->block_default_type = IF_IDE;
2388     mc->max_cpus = 255;
2389     mc->reset = pc_machine_reset;
2390     hc->pre_plug = pc_machine_device_pre_plug_cb;
2391     hc->plug = pc_machine_device_plug_cb;
2392     hc->unplug_request = pc_machine_device_unplug_request_cb;
2393     hc->unplug = pc_machine_device_unplug_cb;
2394     nc->nmi_monitor_handler = x86_nmi;
2395     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2396 
2397     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2398         pc_machine_get_device_memory_region_size, NULL,
2399         NULL, NULL, &error_abort);
2400 
2401     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2402         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2403         NULL, NULL, &error_abort);
2404 
2405     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2406         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2407 
2408     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2409         pc_machine_get_smm, pc_machine_set_smm,
2410         NULL, NULL, &error_abort);
2411     object_class_property_set_description(oc, PC_MACHINE_SMM,
2412         "Enable SMM (pc & q35)", &error_abort);
2413 
2414     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2415         pc_machine_get_vmport, pc_machine_set_vmport,
2416         NULL, NULL, &error_abort);
2417     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2418         "Enable vmport (pc & q35)", &error_abort);
2419 
2420     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2421         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2422 
2423     object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2424         pc_machine_get_nvdimm_persistence,
2425         pc_machine_set_nvdimm_persistence, &error_abort);
2426 
2427     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2428         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2429 
2430     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2431         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2432 
2433     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2434         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2435 }
2436 
2437 static const TypeInfo pc_machine_info = {
2438     .name = TYPE_PC_MACHINE,
2439     .parent = TYPE_MACHINE,
2440     .abstract = true,
2441     .instance_size = sizeof(PCMachineState),
2442     .instance_init = pc_machine_initfn,
2443     .class_size = sizeof(PCMachineClass),
2444     .class_init = pc_machine_class_init,
2445     .interfaces = (InterfaceInfo[]) {
2446          { TYPE_HOTPLUG_HANDLER },
2447          { TYPE_NMI },
2448          { }
2449     },
2450 };
2451 
2452 static void pc_machine_register_types(void)
2453 {
2454     type_register_static(&pc_machine_info);
2455 }
2456 
2457 type_init(pc_machine_register_types)
2458