xref: /openbmc/qemu/hw/i386/pc.c (revision 81b07353c5e7ae9ae9360c357b7b4732b1cb03b4)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/numa.h"
45 #include "sysemu/kvm.h"
46 #include "kvm_i386.h"
47 #include "hw/xen/xen.h"
48 #include "sysemu/block-backend.h"
49 #include "hw/block/block.h"
50 #include "ui/qemu-spice.h"
51 #include "exec/memory.h"
52 #include "exec/address-spaces.h"
53 #include "sysemu/arch_init.h"
54 #include "qemu/bitmap.h"
55 #include "qemu/config-file.h"
56 #include "hw/acpi/acpi.h"
57 #include "hw/acpi/cpu_hotplug.h"
58 #include "hw/cpu/icc_bus.h"
59 #include "hw/boards.h"
60 #include "hw/pci/pci_host.h"
61 #include "acpi-build.h"
62 #include "hw/mem/pc-dimm.h"
63 #include "trace.h"
64 #include "qapi/visitor.h"
65 #include "qapi-visit.h"
66 
67 /* debug PC/ISA interrupts */
68 //#define DEBUG_IRQ
69 
70 #ifdef DEBUG_IRQ
71 #define DPRINTF(fmt, ...)                                       \
72     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
73 #else
74 #define DPRINTF(fmt, ...)
75 #endif
76 
77 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
78  * (128K) and other BIOS datastructures (less than 4K reported to be used at
79  * the moment, 32K should be enough for a while).  */
80 static unsigned acpi_data_size = 0x20000 + 0x8000;
81 void pc_set_legacy_acpi_data_size(void)
82 {
83     acpi_data_size = 0x10000;
84 }
85 
86 #define BIOS_CFG_IOPORT 0x510
87 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
88 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
89 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
90 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
91 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
92 
93 #define E820_NR_ENTRIES		16
94 
95 struct e820_entry {
96     uint64_t address;
97     uint64_t length;
98     uint32_t type;
99 } QEMU_PACKED __attribute((__aligned__(4)));
100 
101 struct e820_table {
102     uint32_t count;
103     struct e820_entry entry[E820_NR_ENTRIES];
104 } QEMU_PACKED __attribute((__aligned__(4)));
105 
106 static struct e820_table e820_reserve;
107 static struct e820_entry *e820_table;
108 static unsigned e820_entries;
109 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
110 
111 void gsi_handler(void *opaque, int n, int level)
112 {
113     GSIState *s = opaque;
114 
115     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
116     if (n < ISA_NUM_IRQS) {
117         qemu_set_irq(s->i8259_irq[n], level);
118     }
119     qemu_set_irq(s->ioapic_irq[n], level);
120 }
121 
122 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
123                            unsigned size)
124 {
125 }
126 
127 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
128 {
129     return 0xffffffffffffffffULL;
130 }
131 
132 /* MSDOS compatibility mode FPU exception support */
133 static qemu_irq ferr_irq;
134 
135 void pc_register_ferr_irq(qemu_irq irq)
136 {
137     ferr_irq = irq;
138 }
139 
140 /* XXX: add IGNNE support */
141 void cpu_set_ferr(CPUX86State *s)
142 {
143     qemu_irq_raise(ferr_irq);
144 }
145 
146 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
147                            unsigned size)
148 {
149     qemu_irq_lower(ferr_irq);
150 }
151 
152 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
153 {
154     return 0xffffffffffffffffULL;
155 }
156 
157 /* TSC handling */
158 uint64_t cpu_get_tsc(CPUX86State *env)
159 {
160     return cpu_get_ticks();
161 }
162 
163 /* SMM support */
164 
165 static cpu_set_smm_t smm_set;
166 static void *smm_arg;
167 
168 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
169 {
170     assert(smm_set == NULL);
171     assert(smm_arg == NULL);
172     smm_set = callback;
173     smm_arg = arg;
174 }
175 
176 void cpu_smm_update(CPUX86State *env)
177 {
178     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
179         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
180     }
181 }
182 
183 
184 /* IRQ handling */
185 int cpu_get_pic_interrupt(CPUX86State *env)
186 {
187     X86CPU *cpu = x86_env_get_cpu(env);
188     int intno;
189 
190     intno = apic_get_interrupt(cpu->apic_state);
191     if (intno >= 0) {
192         return intno;
193     }
194     /* read the irq from the PIC */
195     if (!apic_accept_pic_intr(cpu->apic_state)) {
196         return -1;
197     }
198 
199     intno = pic_read_irq(isa_pic);
200     return intno;
201 }
202 
203 static void pic_irq_request(void *opaque, int irq, int level)
204 {
205     CPUState *cs = first_cpu;
206     X86CPU *cpu = X86_CPU(cs);
207 
208     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
209     if (cpu->apic_state) {
210         CPU_FOREACH(cs) {
211             cpu = X86_CPU(cs);
212             if (apic_accept_pic_intr(cpu->apic_state)) {
213                 apic_deliver_pic_intr(cpu->apic_state, level);
214             }
215         }
216     } else {
217         if (level) {
218             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
219         } else {
220             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
221         }
222     }
223 }
224 
225 /* PC cmos mappings */
226 
227 #define REG_EQUIPMENT_BYTE          0x14
228 
229 static int cmos_get_fd_drive_type(FDriveType fd0)
230 {
231     int val;
232 
233     switch (fd0) {
234     case FDRIVE_DRV_144:
235         /* 1.44 Mb 3"5 drive */
236         val = 4;
237         break;
238     case FDRIVE_DRV_288:
239         /* 2.88 Mb 3"5 drive */
240         val = 5;
241         break;
242     case FDRIVE_DRV_120:
243         /* 1.2 Mb 5"5 drive */
244         val = 2;
245         break;
246     case FDRIVE_DRV_NONE:
247     default:
248         val = 0;
249         break;
250     }
251     return val;
252 }
253 
254 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
255                          int16_t cylinders, int8_t heads, int8_t sectors)
256 {
257     rtc_set_memory(s, type_ofs, 47);
258     rtc_set_memory(s, info_ofs, cylinders);
259     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
260     rtc_set_memory(s, info_ofs + 2, heads);
261     rtc_set_memory(s, info_ofs + 3, 0xff);
262     rtc_set_memory(s, info_ofs + 4, 0xff);
263     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
264     rtc_set_memory(s, info_ofs + 6, cylinders);
265     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
266     rtc_set_memory(s, info_ofs + 8, sectors);
267 }
268 
269 /* convert boot_device letter to something recognizable by the bios */
270 static int boot_device2nibble(char boot_device)
271 {
272     switch(boot_device) {
273     case 'a':
274     case 'b':
275         return 0x01; /* floppy boot */
276     case 'c':
277         return 0x02; /* hard drive boot */
278     case 'd':
279         return 0x03; /* CD-ROM boot */
280     case 'n':
281         return 0x04; /* Network boot */
282     }
283     return 0;
284 }
285 
286 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
287 {
288 #define PC_MAX_BOOT_DEVICES 3
289     int nbds, bds[3] = { 0, };
290     int i;
291 
292     nbds = strlen(boot_device);
293     if (nbds > PC_MAX_BOOT_DEVICES) {
294         error_setg(errp, "Too many boot devices for PC");
295         return;
296     }
297     for (i = 0; i < nbds; i++) {
298         bds[i] = boot_device2nibble(boot_device[i]);
299         if (bds[i] == 0) {
300             error_setg(errp, "Invalid boot device for PC: '%c'",
301                        boot_device[i]);
302             return;
303         }
304     }
305     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
306     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
307 }
308 
309 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
310 {
311     set_boot_dev(opaque, boot_device, errp);
312 }
313 
314 typedef struct pc_cmos_init_late_arg {
315     ISADevice *rtc_state;
316     BusState *idebus[2];
317 } pc_cmos_init_late_arg;
318 
319 static void pc_cmos_init_late(void *opaque)
320 {
321     pc_cmos_init_late_arg *arg = opaque;
322     ISADevice *s = arg->rtc_state;
323     int16_t cylinders;
324     int8_t heads, sectors;
325     int val;
326     int i, trans;
327 
328     val = 0;
329     if (ide_get_geometry(arg->idebus[0], 0,
330                          &cylinders, &heads, &sectors) >= 0) {
331         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
332         val |= 0xf0;
333     }
334     if (ide_get_geometry(arg->idebus[0], 1,
335                          &cylinders, &heads, &sectors) >= 0) {
336         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
337         val |= 0x0f;
338     }
339     rtc_set_memory(s, 0x12, val);
340 
341     val = 0;
342     for (i = 0; i < 4; i++) {
343         /* NOTE: ide_get_geometry() returns the physical
344            geometry.  It is always such that: 1 <= sects <= 63, 1
345            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
346            geometry can be different if a translation is done. */
347         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
348                              &cylinders, &heads, &sectors) >= 0) {
349             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
350             assert((trans & ~3) == 0);
351             val |= trans << (i * 2);
352         }
353     }
354     rtc_set_memory(s, 0x39, val);
355 
356     qemu_unregister_reset(pc_cmos_init_late, opaque);
357 }
358 
359 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
360                   const char *boot_device, MachineState *machine,
361                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
362                   ISADevice *s)
363 {
364     int val, nb, i;
365     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
366     static pc_cmos_init_late_arg arg;
367     PCMachineState *pc_machine = PC_MACHINE(machine);
368     Error *local_err = NULL;
369 
370     /* various important CMOS locations needed by PC/Bochs bios */
371 
372     /* memory size */
373     /* base memory (first MiB) */
374     val = MIN(ram_size / 1024, 640);
375     rtc_set_memory(s, 0x15, val);
376     rtc_set_memory(s, 0x16, val >> 8);
377     /* extended memory (next 64MiB) */
378     if (ram_size > 1024 * 1024) {
379         val = (ram_size - 1024 * 1024) / 1024;
380     } else {
381         val = 0;
382     }
383     if (val > 65535)
384         val = 65535;
385     rtc_set_memory(s, 0x17, val);
386     rtc_set_memory(s, 0x18, val >> 8);
387     rtc_set_memory(s, 0x30, val);
388     rtc_set_memory(s, 0x31, val >> 8);
389     /* memory between 16MiB and 4GiB */
390     if (ram_size > 16 * 1024 * 1024) {
391         val = (ram_size - 16 * 1024 * 1024) / 65536;
392     } else {
393         val = 0;
394     }
395     if (val > 65535)
396         val = 65535;
397     rtc_set_memory(s, 0x34, val);
398     rtc_set_memory(s, 0x35, val >> 8);
399     /* memory above 4GiB */
400     val = above_4g_mem_size / 65536;
401     rtc_set_memory(s, 0x5b, val);
402     rtc_set_memory(s, 0x5c, val >> 8);
403     rtc_set_memory(s, 0x5d, val >> 16);
404 
405     /* set the number of CPU */
406     rtc_set_memory(s, 0x5f, smp_cpus - 1);
407 
408     object_property_add_link(OBJECT(machine), "rtc_state",
409                              TYPE_ISA_DEVICE,
410                              (Object **)&pc_machine->rtc,
411                              object_property_allow_set_link,
412                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
413     object_property_set_link(OBJECT(machine), OBJECT(s),
414                              "rtc_state", &error_abort);
415 
416     set_boot_dev(s, boot_device, &local_err);
417     if (local_err) {
418         error_report_err(local_err);
419         exit(1);
420     }
421 
422     /* floppy type */
423     if (floppy) {
424         for (i = 0; i < 2; i++) {
425             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
426         }
427     }
428     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
429         cmos_get_fd_drive_type(fd_type[1]);
430     rtc_set_memory(s, 0x10, val);
431 
432     val = 0;
433     nb = 0;
434     if (fd_type[0] < FDRIVE_DRV_NONE) {
435         nb++;
436     }
437     if (fd_type[1] < FDRIVE_DRV_NONE) {
438         nb++;
439     }
440     switch (nb) {
441     case 0:
442         break;
443     case 1:
444         val |= 0x01; /* 1 drive, ready for boot */
445         break;
446     case 2:
447         val |= 0x41; /* 2 drives, ready for boot */
448         break;
449     }
450     val |= 0x02; /* FPU is there */
451     val |= 0x04; /* PS/2 mouse installed */
452     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
453 
454     /* hard drives */
455     arg.rtc_state = s;
456     arg.idebus[0] = idebus0;
457     arg.idebus[1] = idebus1;
458     qemu_register_reset(pc_cmos_init_late, &arg);
459 }
460 
461 #define TYPE_PORT92 "port92"
462 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
463 
464 /* port 92 stuff: could be split off */
465 typedef struct Port92State {
466     ISADevice parent_obj;
467 
468     MemoryRegion io;
469     uint8_t outport;
470     qemu_irq *a20_out;
471 } Port92State;
472 
473 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
474                          unsigned size)
475 {
476     Port92State *s = opaque;
477     int oldval = s->outport;
478 
479     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
480     s->outport = val;
481     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
482     if ((val & 1) && !(oldval & 1)) {
483         qemu_system_reset_request();
484     }
485 }
486 
487 static uint64_t port92_read(void *opaque, hwaddr addr,
488                             unsigned size)
489 {
490     Port92State *s = opaque;
491     uint32_t ret;
492 
493     ret = s->outport;
494     DPRINTF("port92: read 0x%02x\n", ret);
495     return ret;
496 }
497 
498 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
499 {
500     Port92State *s = PORT92(dev);
501 
502     s->a20_out = a20_out;
503 }
504 
505 static const VMStateDescription vmstate_port92_isa = {
506     .name = "port92",
507     .version_id = 1,
508     .minimum_version_id = 1,
509     .fields = (VMStateField[]) {
510         VMSTATE_UINT8(outport, Port92State),
511         VMSTATE_END_OF_LIST()
512     }
513 };
514 
515 static void port92_reset(DeviceState *d)
516 {
517     Port92State *s = PORT92(d);
518 
519     s->outport &= ~1;
520 }
521 
522 static const MemoryRegionOps port92_ops = {
523     .read = port92_read,
524     .write = port92_write,
525     .impl = {
526         .min_access_size = 1,
527         .max_access_size = 1,
528     },
529     .endianness = DEVICE_LITTLE_ENDIAN,
530 };
531 
532 static void port92_initfn(Object *obj)
533 {
534     Port92State *s = PORT92(obj);
535 
536     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
537 
538     s->outport = 0;
539 }
540 
541 static void port92_realizefn(DeviceState *dev, Error **errp)
542 {
543     ISADevice *isadev = ISA_DEVICE(dev);
544     Port92State *s = PORT92(dev);
545 
546     isa_register_ioport(isadev, &s->io, 0x92);
547 }
548 
549 static void port92_class_initfn(ObjectClass *klass, void *data)
550 {
551     DeviceClass *dc = DEVICE_CLASS(klass);
552 
553     dc->realize = port92_realizefn;
554     dc->reset = port92_reset;
555     dc->vmsd = &vmstate_port92_isa;
556     /*
557      * Reason: unlike ordinary ISA devices, this one needs additional
558      * wiring: its A20 output line needs to be wired up by
559      * port92_init().
560      */
561     dc->cannot_instantiate_with_device_add_yet = true;
562 }
563 
564 static const TypeInfo port92_info = {
565     .name          = TYPE_PORT92,
566     .parent        = TYPE_ISA_DEVICE,
567     .instance_size = sizeof(Port92State),
568     .instance_init = port92_initfn,
569     .class_init    = port92_class_initfn,
570 };
571 
572 static void port92_register_types(void)
573 {
574     type_register_static(&port92_info);
575 }
576 
577 type_init(port92_register_types)
578 
579 static void handle_a20_line_change(void *opaque, int irq, int level)
580 {
581     X86CPU *cpu = opaque;
582 
583     /* XXX: send to all CPUs ? */
584     /* XXX: add logic to handle multiple A20 line sources */
585     x86_cpu_set_a20(cpu, level);
586 }
587 
588 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
589 {
590     int index = le32_to_cpu(e820_reserve.count);
591     struct e820_entry *entry;
592 
593     if (type != E820_RAM) {
594         /* old FW_CFG_E820_TABLE entry -- reservations only */
595         if (index >= E820_NR_ENTRIES) {
596             return -EBUSY;
597         }
598         entry = &e820_reserve.entry[index++];
599 
600         entry->address = cpu_to_le64(address);
601         entry->length = cpu_to_le64(length);
602         entry->type = cpu_to_le32(type);
603 
604         e820_reserve.count = cpu_to_le32(index);
605     }
606 
607     /* new "etc/e820" file -- include ram too */
608     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
609     e820_table[e820_entries].address = cpu_to_le64(address);
610     e820_table[e820_entries].length = cpu_to_le64(length);
611     e820_table[e820_entries].type = cpu_to_le32(type);
612     e820_entries++;
613 
614     return e820_entries;
615 }
616 
617 int e820_get_num_entries(void)
618 {
619     return e820_entries;
620 }
621 
622 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
623 {
624     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
625         *address = le64_to_cpu(e820_table[idx].address);
626         *length = le64_to_cpu(e820_table[idx].length);
627         return true;
628     }
629     return false;
630 }
631 
632 /* Calculates the limit to CPU APIC ID values
633  *
634  * This function returns the limit for the APIC ID value, so that all
635  * CPU APIC IDs are < pc_apic_id_limit().
636  *
637  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
638  */
639 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
640 {
641     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
642 }
643 
644 static FWCfgState *bochs_bios_init(void)
645 {
646     FWCfgState *fw_cfg;
647     uint8_t *smbios_tables, *smbios_anchor;
648     size_t smbios_tables_len, smbios_anchor_len;
649     uint64_t *numa_fw_cfg;
650     int i, j;
651     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
652 
653     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
654     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
655      *
656      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
657      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
658      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
659      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
660      * may see".
661      *
662      * So, this means we must not use max_cpus, here, but the maximum possible
663      * APIC ID value, plus one.
664      *
665      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
666      *     the APIC ID, not the "CPU index"
667      */
668     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
669     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
670     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
671     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
672                      acpi_tables, acpi_tables_len);
673     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
674 
675     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
676     if (smbios_tables) {
677         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
678                          smbios_tables, smbios_tables_len);
679     }
680 
681     smbios_get_tables(&smbios_tables, &smbios_tables_len,
682                       &smbios_anchor, &smbios_anchor_len);
683     if (smbios_anchor) {
684         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
685                         smbios_tables, smbios_tables_len);
686         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
687                         smbios_anchor, smbios_anchor_len);
688     }
689 
690     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
691                      &e820_reserve, sizeof(e820_reserve));
692     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
693                     sizeof(struct e820_entry) * e820_entries);
694 
695     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
696     /* allocate memory for the NUMA channel: one (64bit) word for the number
697      * of nodes, one word for each VCPU->node and one word for each node to
698      * hold the amount of memory.
699      */
700     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
701     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
702     for (i = 0; i < max_cpus; i++) {
703         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
704         assert(apic_id < apic_id_limit);
705         for (j = 0; j < nb_numa_nodes; j++) {
706             if (test_bit(i, numa_info[j].node_cpu)) {
707                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
708                 break;
709             }
710         }
711     }
712     for (i = 0; i < nb_numa_nodes; i++) {
713         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
714     }
715     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
716                      (1 + apic_id_limit + nb_numa_nodes) *
717                      sizeof(*numa_fw_cfg));
718 
719     return fw_cfg;
720 }
721 
722 static long get_file_size(FILE *f)
723 {
724     long where, size;
725 
726     /* XXX: on Unix systems, using fstat() probably makes more sense */
727 
728     where = ftell(f);
729     fseek(f, 0, SEEK_END);
730     size = ftell(f);
731     fseek(f, where, SEEK_SET);
732 
733     return size;
734 }
735 
736 static void load_linux(FWCfgState *fw_cfg,
737                        const char *kernel_filename,
738                        const char *initrd_filename,
739                        const char *kernel_cmdline,
740                        hwaddr max_ram_size)
741 {
742     uint16_t protocol;
743     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
744     uint32_t initrd_max;
745     uint8_t header[8192], *setup, *kernel, *initrd_data;
746     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
747     FILE *f;
748     char *vmode;
749 
750     /* Align to 16 bytes as a paranoia measure */
751     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
752 
753     /* load the kernel header */
754     f = fopen(kernel_filename, "rb");
755     if (!f || !(kernel_size = get_file_size(f)) ||
756         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
757         MIN(ARRAY_SIZE(header), kernel_size)) {
758         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
759                 kernel_filename, strerror(errno));
760         exit(1);
761     }
762 
763     /* kernel protocol version */
764 #if 0
765     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
766 #endif
767     if (ldl_p(header+0x202) == 0x53726448) {
768         protocol = lduw_p(header+0x206);
769     } else {
770         /* This looks like a multiboot kernel. If it is, let's stop
771            treating it like a Linux kernel. */
772         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
773                            kernel_cmdline, kernel_size, header)) {
774             return;
775         }
776         protocol = 0;
777     }
778 
779     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
780         /* Low kernel */
781         real_addr    = 0x90000;
782         cmdline_addr = 0x9a000 - cmdline_size;
783         prot_addr    = 0x10000;
784     } else if (protocol < 0x202) {
785         /* High but ancient kernel */
786         real_addr    = 0x90000;
787         cmdline_addr = 0x9a000 - cmdline_size;
788         prot_addr    = 0x100000;
789     } else {
790         /* High and recent kernel */
791         real_addr    = 0x10000;
792         cmdline_addr = 0x20000;
793         prot_addr    = 0x100000;
794     }
795 
796 #if 0
797     fprintf(stderr,
798             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
799             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
800             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
801             real_addr,
802             cmdline_addr,
803             prot_addr);
804 #endif
805 
806     /* highest address for loading the initrd */
807     if (protocol >= 0x203) {
808         initrd_max = ldl_p(header+0x22c);
809     } else {
810         initrd_max = 0x37ffffff;
811     }
812 
813     if (initrd_max >= max_ram_size - acpi_data_size) {
814         initrd_max = max_ram_size - acpi_data_size - 1;
815     }
816 
817     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
818     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
819     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
820 
821     if (protocol >= 0x202) {
822         stl_p(header+0x228, cmdline_addr);
823     } else {
824         stw_p(header+0x20, 0xA33F);
825         stw_p(header+0x22, cmdline_addr-real_addr);
826     }
827 
828     /* handle vga= parameter */
829     vmode = strstr(kernel_cmdline, "vga=");
830     if (vmode) {
831         unsigned int video_mode;
832         /* skip "vga=" */
833         vmode += 4;
834         if (!strncmp(vmode, "normal", 6)) {
835             video_mode = 0xffff;
836         } else if (!strncmp(vmode, "ext", 3)) {
837             video_mode = 0xfffe;
838         } else if (!strncmp(vmode, "ask", 3)) {
839             video_mode = 0xfffd;
840         } else {
841             video_mode = strtol(vmode, NULL, 0);
842         }
843         stw_p(header+0x1fa, video_mode);
844     }
845 
846     /* loader type */
847     /* High nybble = B reserved for QEMU; low nybble is revision number.
848        If this code is substantially changed, you may want to consider
849        incrementing the revision. */
850     if (protocol >= 0x200) {
851         header[0x210] = 0xB0;
852     }
853     /* heap */
854     if (protocol >= 0x201) {
855         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
856         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
857     }
858 
859     /* load initrd */
860     if (initrd_filename) {
861         if (protocol < 0x200) {
862             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
863             exit(1);
864         }
865 
866         initrd_size = get_image_size(initrd_filename);
867         if (initrd_size < 0) {
868             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
869                     initrd_filename, strerror(errno));
870             exit(1);
871         }
872 
873         initrd_addr = (initrd_max-initrd_size) & ~4095;
874 
875         initrd_data = g_malloc(initrd_size);
876         load_image(initrd_filename, initrd_data);
877 
878         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
879         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
880         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
881 
882         stl_p(header+0x218, initrd_addr);
883         stl_p(header+0x21c, initrd_size);
884     }
885 
886     /* load kernel and setup */
887     setup_size = header[0x1f1];
888     if (setup_size == 0) {
889         setup_size = 4;
890     }
891     setup_size = (setup_size+1)*512;
892     kernel_size -= setup_size;
893 
894     setup  = g_malloc(setup_size);
895     kernel = g_malloc(kernel_size);
896     fseek(f, 0, SEEK_SET);
897     if (fread(setup, 1, setup_size, f) != setup_size) {
898         fprintf(stderr, "fread() failed\n");
899         exit(1);
900     }
901     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
902         fprintf(stderr, "fread() failed\n");
903         exit(1);
904     }
905     fclose(f);
906     memcpy(setup, header, MIN(sizeof(header), setup_size));
907 
908     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
909     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
910     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
911 
912     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
913     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
914     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
915 
916     option_rom[nb_option_roms].name = "linuxboot.bin";
917     option_rom[nb_option_roms].bootindex = 0;
918     nb_option_roms++;
919 }
920 
921 #define NE2000_NB_MAX 6
922 
923 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
924                                               0x280, 0x380 };
925 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
926 
927 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
928 {
929     static int nb_ne2k = 0;
930 
931     if (nb_ne2k == NE2000_NB_MAX)
932         return;
933     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
934                     ne2000_irq[nb_ne2k], nd);
935     nb_ne2k++;
936 }
937 
938 DeviceState *cpu_get_current_apic(void)
939 {
940     if (current_cpu) {
941         X86CPU *cpu = X86_CPU(current_cpu);
942         return cpu->apic_state;
943     } else {
944         return NULL;
945     }
946 }
947 
948 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
949 {
950     X86CPU *cpu = opaque;
951 
952     if (level) {
953         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
954     }
955 }
956 
957 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
958                           DeviceState *icc_bridge, Error **errp)
959 {
960     X86CPU *cpu;
961     Error *local_err = NULL;
962 
963     cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
964     if (local_err != NULL) {
965         error_propagate(errp, local_err);
966         return NULL;
967     }
968 
969     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
970     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
971 
972     if (local_err) {
973         error_propagate(errp, local_err);
974         object_unref(OBJECT(cpu));
975         cpu = NULL;
976     }
977     return cpu;
978 }
979 
980 static const char *current_cpu_model;
981 
982 void pc_hot_add_cpu(const int64_t id, Error **errp)
983 {
984     DeviceState *icc_bridge;
985     int64_t apic_id = x86_cpu_apic_id_from_index(id);
986 
987     if (id < 0) {
988         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
989         return;
990     }
991 
992     if (cpu_exists(apic_id)) {
993         error_setg(errp, "Unable to add CPU: %" PRIi64
994                    ", it already exists", id);
995         return;
996     }
997 
998     if (id >= max_cpus) {
999         error_setg(errp, "Unable to add CPU: %" PRIi64
1000                    ", max allowed: %d", id, max_cpus - 1);
1001         return;
1002     }
1003 
1004     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1005         error_setg(errp, "Unable to add CPU: %" PRIi64
1006                    ", resulting APIC ID (%" PRIi64 ") is too large",
1007                    id, apic_id);
1008         return;
1009     }
1010 
1011     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1012                                                  TYPE_ICC_BRIDGE, NULL));
1013     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1014 }
1015 
1016 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1017 {
1018     int i;
1019     X86CPU *cpu = NULL;
1020     Error *error = NULL;
1021     unsigned long apic_id_limit;
1022 
1023     /* init CPUs */
1024     if (cpu_model == NULL) {
1025 #ifdef TARGET_X86_64
1026         cpu_model = "qemu64";
1027 #else
1028         cpu_model = "qemu32";
1029 #endif
1030     }
1031     current_cpu_model = cpu_model;
1032 
1033     apic_id_limit = pc_apic_id_limit(max_cpus);
1034     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1035         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1036                      apic_id_limit - 1);
1037         exit(1);
1038     }
1039 
1040     for (i = 0; i < smp_cpus; i++) {
1041         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1042                          icc_bridge, &error);
1043         if (error) {
1044             error_report_err(error);
1045             exit(1);
1046         }
1047     }
1048 
1049     /* map APIC MMIO area if CPU has APIC */
1050     if (cpu && cpu->apic_state) {
1051         /* XXX: what if the base changes? */
1052         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1053                                 APIC_DEFAULT_ADDRESS, 0x1000);
1054     }
1055 
1056     /* tell smbios about cpuid version and features */
1057     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1058 }
1059 
1060 /* pci-info ROM file. Little endian format */
1061 typedef struct PcRomPciInfo {
1062     uint64_t w32_min;
1063     uint64_t w32_max;
1064     uint64_t w64_min;
1065     uint64_t w64_max;
1066 } PcRomPciInfo;
1067 
1068 typedef struct PcGuestInfoState {
1069     PcGuestInfo info;
1070     Notifier machine_done;
1071 } PcGuestInfoState;
1072 
1073 static
1074 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1075 {
1076     PcGuestInfoState *guest_info_state = container_of(notifier,
1077                                                       PcGuestInfoState,
1078                                                       machine_done);
1079     acpi_setup(&guest_info_state->info);
1080 }
1081 
1082 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1083                                 ram_addr_t above_4g_mem_size)
1084 {
1085     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1086     PcGuestInfo *guest_info = &guest_info_state->info;
1087     int i, j;
1088 
1089     guest_info->ram_size_below_4g = below_4g_mem_size;
1090     guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1091     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1092     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1093     guest_info->numa_nodes = nb_numa_nodes;
1094     guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1095                                     sizeof *guest_info->node_mem);
1096     for (i = 0; i < nb_numa_nodes; i++) {
1097         guest_info->node_mem[i] = numa_info[i].node_mem;
1098     }
1099 
1100     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1101                                      sizeof *guest_info->node_cpu);
1102 
1103     for (i = 0; i < max_cpus; i++) {
1104         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1105         assert(apic_id < guest_info->apic_id_limit);
1106         for (j = 0; j < nb_numa_nodes; j++) {
1107             if (test_bit(i, numa_info[j].node_cpu)) {
1108                 guest_info->node_cpu[apic_id] = j;
1109                 break;
1110             }
1111         }
1112     }
1113 
1114     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1115     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1116     return guest_info;
1117 }
1118 
1119 /* setup pci memory address space mapping into system address space */
1120 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1121                             MemoryRegion *pci_address_space)
1122 {
1123     /* Set to lower priority than RAM */
1124     memory_region_add_subregion_overlap(system_memory, 0x0,
1125                                         pci_address_space, -1);
1126 }
1127 
1128 void pc_acpi_init(const char *default_dsdt)
1129 {
1130     char *filename;
1131 
1132     if (acpi_tables != NULL) {
1133         /* manually set via -acpitable, leave it alone */
1134         return;
1135     }
1136 
1137     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1138     if (filename == NULL) {
1139         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1140     } else {
1141         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1142                                           &error_abort);
1143         Error *err = NULL;
1144 
1145         qemu_opt_set(opts, "file", filename, &error_abort);
1146 
1147         acpi_table_add_builtin(opts, &err);
1148         if (err) {
1149             error_report("WARNING: failed to load %s: %s", filename,
1150                          error_get_pretty(err));
1151             error_free(err);
1152         }
1153         g_free(filename);
1154     }
1155 }
1156 
1157 FWCfgState *xen_load_linux(const char *kernel_filename,
1158                            const char *kernel_cmdline,
1159                            const char *initrd_filename,
1160                            ram_addr_t below_4g_mem_size,
1161                            PcGuestInfo *guest_info)
1162 {
1163     int i;
1164     FWCfgState *fw_cfg;
1165 
1166     assert(kernel_filename != NULL);
1167 
1168     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1169     rom_set_fw(fw_cfg);
1170 
1171     load_linux(fw_cfg, kernel_filename, initrd_filename,
1172                kernel_cmdline, below_4g_mem_size);
1173     for (i = 0; i < nb_option_roms; i++) {
1174         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1175                !strcmp(option_rom[i].name, "multiboot.bin"));
1176         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1177     }
1178     guest_info->fw_cfg = fw_cfg;
1179     return fw_cfg;
1180 }
1181 
1182 FWCfgState *pc_memory_init(MachineState *machine,
1183                            MemoryRegion *system_memory,
1184                            ram_addr_t below_4g_mem_size,
1185                            ram_addr_t above_4g_mem_size,
1186                            MemoryRegion *rom_memory,
1187                            MemoryRegion **ram_memory,
1188                            PcGuestInfo *guest_info)
1189 {
1190     int linux_boot, i;
1191     MemoryRegion *ram, *option_rom_mr;
1192     MemoryRegion *ram_below_4g, *ram_above_4g;
1193     FWCfgState *fw_cfg;
1194     PCMachineState *pcms = PC_MACHINE(machine);
1195 
1196     assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1197 
1198     linux_boot = (machine->kernel_filename != NULL);
1199 
1200     /* Allocate RAM.  We allocate it as a single memory region and use
1201      * aliases to address portions of it, mostly for backwards compatibility
1202      * with older qemus that used qemu_ram_alloc().
1203      */
1204     ram = g_malloc(sizeof(*ram));
1205     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1206                                          machine->ram_size);
1207     *ram_memory = ram;
1208     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1209     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1210                              0, below_4g_mem_size);
1211     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1212     e820_add_entry(0, below_4g_mem_size, E820_RAM);
1213     if (above_4g_mem_size > 0) {
1214         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1215         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1216                                  below_4g_mem_size, above_4g_mem_size);
1217         memory_region_add_subregion(system_memory, 0x100000000ULL,
1218                                     ram_above_4g);
1219         e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1220     }
1221 
1222     if (!guest_info->has_reserved_memory &&
1223         (machine->ram_slots ||
1224          (machine->maxram_size > machine->ram_size))) {
1225         MachineClass *mc = MACHINE_GET_CLASS(machine);
1226 
1227         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1228                      mc->name);
1229         exit(EXIT_FAILURE);
1230     }
1231 
1232     /* initialize hotplug memory address space */
1233     if (guest_info->has_reserved_memory &&
1234         (machine->ram_size < machine->maxram_size)) {
1235         ram_addr_t hotplug_mem_size =
1236             machine->maxram_size - machine->ram_size;
1237 
1238         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1239             error_report("unsupported amount of memory slots: %"PRIu64,
1240                          machine->ram_slots);
1241             exit(EXIT_FAILURE);
1242         }
1243 
1244         if (QEMU_ALIGN_UP(machine->maxram_size,
1245                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1246             error_report("maximum memory size must by aligned to multiple of "
1247                          "%d bytes", TARGET_PAGE_SIZE);
1248             exit(EXIT_FAILURE);
1249         }
1250 
1251         pcms->hotplug_memory_base =
1252             ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1253 
1254         if (pcms->enforce_aligned_dimm) {
1255             /* size hotplug region assuming 1G page max alignment per slot */
1256             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1257         }
1258 
1259         if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1260             hotplug_mem_size) {
1261             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1262                          machine->maxram_size);
1263             exit(EXIT_FAILURE);
1264         }
1265 
1266         memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1267                            "hotplug-memory", hotplug_mem_size);
1268         memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1269                                     &pcms->hotplug_memory);
1270     }
1271 
1272     /* Initialize PC system firmware */
1273     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1274 
1275     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1276     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1277                            &error_abort);
1278     vmstate_register_ram_global(option_rom_mr);
1279     memory_region_add_subregion_overlap(rom_memory,
1280                                         PC_ROM_MIN_VGA,
1281                                         option_rom_mr,
1282                                         1);
1283 
1284     fw_cfg = bochs_bios_init();
1285     rom_set_fw(fw_cfg);
1286 
1287     if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1288         uint64_t *val = g_malloc(sizeof(*val));
1289         *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1290         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1291     }
1292 
1293     if (linux_boot) {
1294         load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1295                    machine->kernel_cmdline, below_4g_mem_size);
1296     }
1297 
1298     for (i = 0; i < nb_option_roms; i++) {
1299         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1300     }
1301     guest_info->fw_cfg = fw_cfg;
1302     return fw_cfg;
1303 }
1304 
1305 qemu_irq *pc_allocate_cpu_irq(void)
1306 {
1307     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1308 }
1309 
1310 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1311 {
1312     DeviceState *dev = NULL;
1313 
1314     if (pci_bus) {
1315         PCIDevice *pcidev = pci_vga_init(pci_bus);
1316         dev = pcidev ? &pcidev->qdev : NULL;
1317     } else if (isa_bus) {
1318         ISADevice *isadev = isa_vga_init(isa_bus);
1319         dev = isadev ? DEVICE(isadev) : NULL;
1320     }
1321     return dev;
1322 }
1323 
1324 static void cpu_request_exit(void *opaque, int irq, int level)
1325 {
1326     CPUState *cpu = current_cpu;
1327 
1328     if (cpu && level) {
1329         cpu_exit(cpu);
1330     }
1331 }
1332 
1333 static const MemoryRegionOps ioport80_io_ops = {
1334     .write = ioport80_write,
1335     .read = ioport80_read,
1336     .endianness = DEVICE_NATIVE_ENDIAN,
1337     .impl = {
1338         .min_access_size = 1,
1339         .max_access_size = 1,
1340     },
1341 };
1342 
1343 static const MemoryRegionOps ioportF0_io_ops = {
1344     .write = ioportF0_write,
1345     .read = ioportF0_read,
1346     .endianness = DEVICE_NATIVE_ENDIAN,
1347     .impl = {
1348         .min_access_size = 1,
1349         .max_access_size = 1,
1350     },
1351 };
1352 
1353 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1354                           ISADevice **rtc_state,
1355                           ISADevice **floppy,
1356                           bool no_vmport,
1357                           uint32 hpet_irqs)
1358 {
1359     int i;
1360     DriveInfo *fd[MAX_FD];
1361     DeviceState *hpet = NULL;
1362     int pit_isa_irq = 0;
1363     qemu_irq pit_alt_irq = NULL;
1364     qemu_irq rtc_irq = NULL;
1365     qemu_irq *a20_line;
1366     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1367     qemu_irq *cpu_exit_irq;
1368     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1369     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1370 
1371     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1372     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1373 
1374     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1375     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1376 
1377     /*
1378      * Check if an HPET shall be created.
1379      *
1380      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1381      * when the HPET wants to take over. Thus we have to disable the latter.
1382      */
1383     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1384         /* In order to set property, here not using sysbus_try_create_simple */
1385         hpet = qdev_try_create(NULL, TYPE_HPET);
1386         if (hpet) {
1387             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1388              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1389              * IRQ8 and IRQ2.
1390              */
1391             uint8_t compat = object_property_get_int(OBJECT(hpet),
1392                     HPET_INTCAP, NULL);
1393             if (!compat) {
1394                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1395             }
1396             qdev_init_nofail(hpet);
1397             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1398 
1399             for (i = 0; i < GSI_NUM_PINS; i++) {
1400                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1401             }
1402             pit_isa_irq = -1;
1403             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1404             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1405         }
1406     }
1407     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1408 
1409     qemu_register_boot_set(pc_boot_set, *rtc_state);
1410 
1411     if (!xen_enabled()) {
1412         if (kvm_irqchip_in_kernel()) {
1413             pit = kvm_pit_init(isa_bus, 0x40);
1414         } else {
1415             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1416         }
1417         if (hpet) {
1418             /* connect PIT to output control line of the HPET */
1419             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1420         }
1421         pcspk_init(isa_bus, pit);
1422     }
1423 
1424     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1425     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1426 
1427     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1428     i8042 = isa_create_simple(isa_bus, "i8042");
1429     i8042_setup_a20_line(i8042, &a20_line[0]);
1430     if (!no_vmport) {
1431         vmport_init(isa_bus);
1432         vmmouse = isa_try_create(isa_bus, "vmmouse");
1433     } else {
1434         vmmouse = NULL;
1435     }
1436     if (vmmouse) {
1437         DeviceState *dev = DEVICE(vmmouse);
1438         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1439         qdev_init_nofail(dev);
1440     }
1441     port92 = isa_create_simple(isa_bus, "port92");
1442     port92_init(port92, &a20_line[1]);
1443 
1444     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1445     DMA_init(0, cpu_exit_irq);
1446 
1447     for(i = 0; i < MAX_FD; i++) {
1448         fd[i] = drive_get(IF_FLOPPY, 0, i);
1449     }
1450     *floppy = fdctrl_init_isa(isa_bus, fd);
1451 }
1452 
1453 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1454 {
1455     int i;
1456 
1457     for (i = 0; i < nb_nics; i++) {
1458         NICInfo *nd = &nd_table[i];
1459 
1460         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1461             pc_init_ne2k_isa(isa_bus, nd);
1462         } else {
1463             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1464         }
1465     }
1466 }
1467 
1468 void pc_pci_device_init(PCIBus *pci_bus)
1469 {
1470     int max_bus;
1471     int bus;
1472 
1473     max_bus = drive_get_max_bus(IF_SCSI);
1474     for (bus = 0; bus <= max_bus; bus++) {
1475         pci_create_simple(pci_bus, -1, "lsi53c895a");
1476     }
1477 }
1478 
1479 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1480 {
1481     DeviceState *dev;
1482     SysBusDevice *d;
1483     unsigned int i;
1484 
1485     if (kvm_irqchip_in_kernel()) {
1486         dev = qdev_create(NULL, "kvm-ioapic");
1487     } else {
1488         dev = qdev_create(NULL, "ioapic");
1489     }
1490     if (parent_name) {
1491         object_property_add_child(object_resolve_path(parent_name, NULL),
1492                                   "ioapic", OBJECT(dev), NULL);
1493     }
1494     qdev_init_nofail(dev);
1495     d = SYS_BUS_DEVICE(dev);
1496     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1497 
1498     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1499         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1500     }
1501 }
1502 
1503 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1504 {
1505     MachineClass *mc = MACHINE_CLASS(oc);
1506     QEMUMachine *qm = data;
1507 
1508     mc->family = qm->family;
1509     mc->name = qm->name;
1510     mc->alias = qm->alias;
1511     mc->desc = qm->desc;
1512     mc->init = qm->init;
1513     mc->reset = qm->reset;
1514     mc->hot_add_cpu = qm->hot_add_cpu;
1515     mc->kvm_type = qm->kvm_type;
1516     mc->block_default_type = qm->block_default_type;
1517     mc->units_per_default_bus = qm->units_per_default_bus;
1518     mc->max_cpus = qm->max_cpus;
1519     mc->no_serial = qm->no_serial;
1520     mc->no_parallel = qm->no_parallel;
1521     mc->use_virtcon = qm->use_virtcon;
1522     mc->use_sclp = qm->use_sclp;
1523     mc->no_floppy = qm->no_floppy;
1524     mc->no_cdrom = qm->no_cdrom;
1525     mc->no_sdcard = qm->no_sdcard;
1526     mc->is_default = qm->is_default;
1527     mc->default_machine_opts = qm->default_machine_opts;
1528     mc->default_boot_order = qm->default_boot_order;
1529     mc->default_display = qm->default_display;
1530     mc->compat_props = qm->compat_props;
1531     mc->hw_version = qm->hw_version;
1532 }
1533 
1534 void qemu_register_pc_machine(QEMUMachine *m)
1535 {
1536     char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1537     TypeInfo ti = {
1538         .name       = name,
1539         .parent     = TYPE_PC_MACHINE,
1540         .class_init = pc_generic_machine_class_init,
1541         .class_data = (void *)m,
1542     };
1543 
1544     type_register(&ti);
1545     g_free(name);
1546 }
1547 
1548 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1549                          DeviceState *dev, Error **errp)
1550 {
1551     int slot;
1552     HotplugHandlerClass *hhc;
1553     Error *local_err = NULL;
1554     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1555     MachineState *machine = MACHINE(hotplug_dev);
1556     PCDIMMDevice *dimm = PC_DIMM(dev);
1557     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1558     MemoryRegion *mr = ddc->get_memory_region(dimm);
1559     uint64_t existing_dimms_capacity = 0;
1560     uint64_t align = TARGET_PAGE_SIZE;
1561     uint64_t addr;
1562 
1563     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
1564     if (local_err) {
1565         goto out;
1566     }
1567 
1568     if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1569         align = memory_region_get_alignment(mr);
1570     }
1571 
1572     addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1573                                  memory_region_size(&pcms->hotplug_memory),
1574                                  !addr ? NULL : &addr, align,
1575                                  memory_region_size(mr), &local_err);
1576     if (local_err) {
1577         goto out;
1578     }
1579 
1580     existing_dimms_capacity = pc_existing_dimms_capacity(&local_err);
1581     if (local_err) {
1582         goto out;
1583     }
1584 
1585     if (existing_dimms_capacity + memory_region_size(mr) >
1586         machine->maxram_size - machine->ram_size) {
1587         error_setg(&local_err, "not enough space, currently 0x%" PRIx64
1588                    " in use of total hot pluggable 0x" RAM_ADDR_FMT,
1589                    existing_dimms_capacity,
1590                    machine->maxram_size - machine->ram_size);
1591         goto out;
1592     }
1593 
1594     object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1595     if (local_err) {
1596         goto out;
1597     }
1598     trace_mhp_pc_dimm_assigned_address(addr);
1599 
1600     slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1601     if (local_err) {
1602         goto out;
1603     }
1604 
1605     slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1606                                  machine->ram_slots, &local_err);
1607     if (local_err) {
1608         goto out;
1609     }
1610     object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1611     if (local_err) {
1612         goto out;
1613     }
1614     trace_mhp_pc_dimm_assigned_slot(slot);
1615 
1616     if (!pcms->acpi_dev) {
1617         error_setg(&local_err,
1618                    "memory hotplug is not enabled: missing acpi device");
1619         goto out;
1620     }
1621 
1622     if (kvm_enabled() && !kvm_has_free_slot(machine)) {
1623         error_setg(&local_err, "hypervisor has no free memory slots left");
1624         goto out;
1625     }
1626 
1627     memory_region_add_subregion(&pcms->hotplug_memory,
1628                                 addr - pcms->hotplug_memory_base, mr);
1629     vmstate_register_ram(mr, dev);
1630 
1631     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1632     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1633 out:
1634     error_propagate(errp, local_err);
1635 }
1636 
1637 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1638                         DeviceState *dev, Error **errp)
1639 {
1640     HotplugHandlerClass *hhc;
1641     Error *local_err = NULL;
1642     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1643 
1644     if (!dev->hotplugged) {
1645         goto out;
1646     }
1647 
1648     if (!pcms->acpi_dev) {
1649         error_setg(&local_err,
1650                    "cpu hotplug is not enabled: missing acpi device");
1651         goto out;
1652     }
1653 
1654     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1655     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1656     if (local_err) {
1657         goto out;
1658     }
1659 
1660     /* increment the number of CPUs */
1661     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1662 out:
1663     error_propagate(errp, local_err);
1664 }
1665 
1666 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1667                                       DeviceState *dev, Error **errp)
1668 {
1669     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1670         pc_dimm_plug(hotplug_dev, dev, errp);
1671     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1672         pc_cpu_plug(hotplug_dev, dev, errp);
1673     }
1674 }
1675 
1676 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1677                                                 DeviceState *dev, Error **errp)
1678 {
1679     error_setg(errp, "acpi: device unplug request for not supported device"
1680                " type: %s", object_get_typename(OBJECT(dev)));
1681 }
1682 
1683 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1684                                         DeviceState *dev, Error **errp)
1685 {
1686     error_setg(errp, "acpi: device unplug for not supported device"
1687                " type: %s", object_get_typename(OBJECT(dev)));
1688 }
1689 
1690 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1691                                              DeviceState *dev)
1692 {
1693     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1694 
1695     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1696         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1697         return HOTPLUG_HANDLER(machine);
1698     }
1699 
1700     return pcmc->get_hotplug_handler ?
1701         pcmc->get_hotplug_handler(machine, dev) : NULL;
1702 }
1703 
1704 static void
1705 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1706                                           const char *name, Error **errp)
1707 {
1708     PCMachineState *pcms = PC_MACHINE(obj);
1709     int64_t value = memory_region_size(&pcms->hotplug_memory);
1710 
1711     visit_type_int(v, &value, name, errp);
1712 }
1713 
1714 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1715                                          void *opaque, const char *name,
1716                                          Error **errp)
1717 {
1718     PCMachineState *pcms = PC_MACHINE(obj);
1719     uint64_t value = pcms->max_ram_below_4g;
1720 
1721     visit_type_size(v, &value, name, errp);
1722 }
1723 
1724 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1725                                          void *opaque, const char *name,
1726                                          Error **errp)
1727 {
1728     PCMachineState *pcms = PC_MACHINE(obj);
1729     Error *error = NULL;
1730     uint64_t value;
1731 
1732     visit_type_size(v, &value, name, &error);
1733     if (error) {
1734         error_propagate(errp, error);
1735         return;
1736     }
1737     if (value > (1ULL << 32)) {
1738         error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1739                   "Machine option 'max-ram-below-4g=%"PRIu64
1740                   "' expects size less than or equal to 4G", value);
1741         error_propagate(errp, error);
1742         return;
1743     }
1744 
1745     if (value < (1ULL << 20)) {
1746         error_report("Warning: small max_ram_below_4g(%"PRIu64
1747                      ") less than 1M.  BIOS may not work..",
1748                      value);
1749     }
1750 
1751     pcms->max_ram_below_4g = value;
1752 }
1753 
1754 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1755                                   const char *name, Error **errp)
1756 {
1757     PCMachineState *pcms = PC_MACHINE(obj);
1758     OnOffAuto vmport = pcms->vmport;
1759 
1760     visit_type_OnOffAuto(v, &vmport, name, errp);
1761 }
1762 
1763 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1764                                   const char *name, Error **errp)
1765 {
1766     PCMachineState *pcms = PC_MACHINE(obj);
1767 
1768     visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1769 }
1770 
1771 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1772 {
1773     PCMachineState *pcms = PC_MACHINE(obj);
1774 
1775     return pcms->enforce_aligned_dimm;
1776 }
1777 
1778 static void pc_machine_initfn(Object *obj)
1779 {
1780     PCMachineState *pcms = PC_MACHINE(obj);
1781 
1782     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1783                         pc_machine_get_hotplug_memory_region_size,
1784                         NULL, NULL, NULL, NULL);
1785 
1786     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1787     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1788                         pc_machine_get_max_ram_below_4g,
1789                         pc_machine_set_max_ram_below_4g,
1790                         NULL, NULL, NULL);
1791     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1792                                     "Maximum ram below the 4G boundary (32bit boundary)",
1793                                     NULL);
1794 
1795     pcms->vmport = ON_OFF_AUTO_AUTO;
1796     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1797                         pc_machine_get_vmport,
1798                         pc_machine_set_vmport,
1799                         NULL, NULL, NULL);
1800     object_property_set_description(obj, PC_MACHINE_VMPORT,
1801                                     "Enable vmport (pc & q35)",
1802                                     NULL);
1803 
1804     pcms->enforce_aligned_dimm = true;
1805     object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1806                              pc_machine_get_aligned_dimm,
1807                              NULL, NULL);
1808 }
1809 
1810 static void pc_machine_class_init(ObjectClass *oc, void *data)
1811 {
1812     MachineClass *mc = MACHINE_CLASS(oc);
1813     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1814     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1815 
1816     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1817     mc->get_hotplug_handler = pc_get_hotpug_handler;
1818     hc->plug = pc_machine_device_plug_cb;
1819     hc->unplug_request = pc_machine_device_unplug_request_cb;
1820     hc->unplug = pc_machine_device_unplug_cb;
1821 }
1822 
1823 static const TypeInfo pc_machine_info = {
1824     .name = TYPE_PC_MACHINE,
1825     .parent = TYPE_MACHINE,
1826     .abstract = true,
1827     .instance_size = sizeof(PCMachineState),
1828     .instance_init = pc_machine_initfn,
1829     .class_size = sizeof(PCMachineClass),
1830     .class_init = pc_machine_class_init,
1831     .interfaces = (InterfaceInfo[]) {
1832          { TYPE_HOTPLUG_HANDLER },
1833          { }
1834     },
1835 };
1836 
1837 static void pc_machine_register_types(void)
1838 {
1839     type_register_static(&pc_machine_info);
1840 }
1841 
1842 type_init(pc_machine_register_types)
1843