xref: /openbmc/qemu/hw/i386/pc.c (revision 79974027dc0de4e256b869e2d32168c1a44896d3)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "hw/i386/fw_cfg.h"
34 #include "sysemu/cpus.h"
35 #include "hw/block/fdc.h"
36 #include "hw/ide.h"
37 #include "hw/pci/pci.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/nvram/fw_cfg.h"
40 #include "hw/timer/hpet.h"
41 #include "hw/firmware/smbios.h"
42 #include "hw/loader.h"
43 #include "elf.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/audio/pcspk.h"
50 #include "hw/pci/msi.h"
51 #include "hw/sysbus.h"
52 #include "sysemu/sysemu.h"
53 #include "sysemu/tcg.h"
54 #include "sysemu/numa.h"
55 #include "sysemu/kvm.h"
56 #include "sysemu/qtest.h"
57 #include "kvm_i386.h"
58 #include "hw/xen/xen.h"
59 #include "hw/xen/start_info.h"
60 #include "ui/qemu-spice.h"
61 #include "exec/memory.h"
62 #include "exec/address-spaces.h"
63 #include "sysemu/arch_init.h"
64 #include "qemu/bitmap.h"
65 #include "qemu/config-file.h"
66 #include "qemu/error-report.h"
67 #include "qemu/option.h"
68 #include "hw/acpi/acpi.h"
69 #include "hw/acpi/cpu_hotplug.h"
70 #include "hw/boards.h"
71 #include "acpi-build.h"
72 #include "hw/mem/pc-dimm.h"
73 #include "qapi/error.h"
74 #include "qapi/qapi-visit-common.h"
75 #include "qapi/visitor.h"
76 #include "qom/cpu.h"
77 #include "hw/nmi.h"
78 #include "hw/usb.h"
79 #include "hw/i386/intel_iommu.h"
80 #include "hw/net/ne2000-isa.h"
81 #include "standard-headers/asm-x86/bootparam.h"
82 #include "hw/virtio/virtio-pmem-pci.h"
83 #include "hw/mem/memory-device.h"
84 #include "sysemu/replay.h"
85 #include "qapi/qmp/qerror.h"
86 
87 /* debug PC/ISA interrupts */
88 //#define DEBUG_IRQ
89 
90 #ifdef DEBUG_IRQ
91 #define DPRINTF(fmt, ...)                                       \
92     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
93 #else
94 #define DPRINTF(fmt, ...)
95 #endif
96 
97 #define E820_NR_ENTRIES		16
98 
99 struct e820_entry {
100     uint64_t address;
101     uint64_t length;
102     uint32_t type;
103 } QEMU_PACKED __attribute((__aligned__(4)));
104 
105 struct e820_table {
106     uint32_t count;
107     struct e820_entry entry[E820_NR_ENTRIES];
108 } QEMU_PACKED __attribute((__aligned__(4)));
109 
110 static struct e820_table e820_reserve;
111 static struct e820_entry *e820_table;
112 static unsigned e820_entries;
113 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
114 
115 /* Physical Address of PVH entry point read from kernel ELF NOTE */
116 static size_t pvh_start_addr;
117 
118 GlobalProperty pc_compat_4_0[] = {};
119 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
120 
121 GlobalProperty pc_compat_3_1[] = {
122     { "intel-iommu", "dma-drain", "off" },
123     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
124     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
125     { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
126     { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
127     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
128     { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
129     { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
130     { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
131     { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
132     { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
133     { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
134     { "Skylake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
135     { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
136     { "Skylake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
137     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
138     { "Cascadelake-Server" "-" TYPE_X86_CPU,  "mpx", "on" },
139     { "Icelake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
140     { "Icelake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
141     { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
142     { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
143 };
144 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
145 
146 GlobalProperty pc_compat_3_0[] = {
147     { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
148     { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
149     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
150 };
151 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
152 
153 GlobalProperty pc_compat_2_12[] = {
154     { TYPE_X86_CPU, "legacy-cache", "on" },
155     { TYPE_X86_CPU, "topoext", "off" },
156     { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
157     { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
158 };
159 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
160 
161 GlobalProperty pc_compat_2_11[] = {
162     { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
163     { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
164 };
165 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
166 
167 GlobalProperty pc_compat_2_10[] = {
168     { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
169     { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
170     { "q35-pcihost", "x-pci-hole64-fix", "off" },
171 };
172 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
173 
174 GlobalProperty pc_compat_2_9[] = {
175     { "mch", "extended-tseg-mbytes", "0" },
176 };
177 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
178 
179 GlobalProperty pc_compat_2_8[] = {
180     { TYPE_X86_CPU, "tcg-cpuid", "off" },
181     { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
182     { "ICH9-LPC", "x-smi-broadcast", "off" },
183     { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
184     { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
185 };
186 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
187 
188 GlobalProperty pc_compat_2_7[] = {
189     { TYPE_X86_CPU, "l3-cache", "off" },
190     { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
191     { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
192     { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
193     { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
194     { "isa-pcspk", "migrate", "off" },
195 };
196 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
197 
198 GlobalProperty pc_compat_2_6[] = {
199     { TYPE_X86_CPU, "cpuid-0xb", "off" },
200     { "vmxnet3", "romfile", "" },
201     { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
202     { "apic-common", "legacy-instance-id", "on", }
203 };
204 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
205 
206 GlobalProperty pc_compat_2_5[] = {};
207 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
208 
209 GlobalProperty pc_compat_2_4[] = {
210     PC_CPU_MODEL_IDS("2.4.0")
211     { "Haswell-" TYPE_X86_CPU, "abm", "off" },
212     { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
213     { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
214     { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
215     { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
216     { TYPE_X86_CPU, "check", "off" },
217     { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
218     { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
219     { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
220     { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
221     { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
222     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
223     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
224     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
225 };
226 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
227 
228 GlobalProperty pc_compat_2_3[] = {
229     PC_CPU_MODEL_IDS("2.3.0")
230     { TYPE_X86_CPU, "arat", "off" },
231     { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
232     { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
233     { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
234     { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
235     { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
236     { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
237     { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
238     { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239     { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240     { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241     { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242     { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243     { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244     { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245     { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246     { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247     { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
248     { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
249     { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
250 };
251 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
252 
253 GlobalProperty pc_compat_2_2[] = {
254     PC_CPU_MODEL_IDS("2.2.0")
255     { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
256     { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
257     { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
258     { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
259     { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
260     { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
261     { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
262     { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
263     { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
264     { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
265     { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
266     { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
267     { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
268     { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
269     { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
270     { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
271     { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
272     { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
273 };
274 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
275 
276 GlobalProperty pc_compat_2_1[] = {
277     PC_CPU_MODEL_IDS("2.1.0")
278     { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
279     { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
280 };
281 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
282 
283 GlobalProperty pc_compat_2_0[] = {
284     PC_CPU_MODEL_IDS("2.0.0")
285     { "virtio-scsi-pci", "any_layout", "off" },
286     { "PIIX4_PM", "memory-hotplug-support", "off" },
287     { "apic", "version", "0x11" },
288     { "nec-usb-xhci", "superspeed-ports-first", "off" },
289     { "nec-usb-xhci", "force-pcie-endcap", "on" },
290     { "pci-serial", "prog_if", "0" },
291     { "pci-serial-2x", "prog_if", "0" },
292     { "pci-serial-4x", "prog_if", "0" },
293     { "virtio-net-pci", "guest_announce", "off" },
294     { "ICH9-LPC", "memory-hotplug-support", "off" },
295     { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
296     { "ioh3420", COMPAT_PROP_PCP, "off" },
297 };
298 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
299 
300 GlobalProperty pc_compat_1_7[] = {
301     PC_CPU_MODEL_IDS("1.7.0")
302     { TYPE_USB_DEVICE, "msos-desc", "no" },
303     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
304     { "hpet", HPET_INTCAP, "4" },
305 };
306 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
307 
308 GlobalProperty pc_compat_1_6[] = {
309     PC_CPU_MODEL_IDS("1.6.0")
310     { "e1000", "mitigation", "off" },
311     { "qemu64-" TYPE_X86_CPU, "model", "2" },
312     { "qemu32-" TYPE_X86_CPU, "model", "3" },
313     { "i440FX-pcihost", "short_root_bus", "1" },
314     { "q35-pcihost", "short_root_bus", "1" },
315 };
316 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
317 
318 GlobalProperty pc_compat_1_5[] = {
319     PC_CPU_MODEL_IDS("1.5.0")
320     { "Conroe-" TYPE_X86_CPU, "model", "2" },
321     { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
322     { "Penryn-" TYPE_X86_CPU, "model", "2" },
323     { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
324     { "Nehalem-" TYPE_X86_CPU, "model", "2" },
325     { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
326     { "virtio-net-pci", "any_layout", "off" },
327     { TYPE_X86_CPU, "pmu", "on" },
328     { "i440FX-pcihost", "short_root_bus", "0" },
329     { "q35-pcihost", "short_root_bus", "0" },
330 };
331 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
332 
333 GlobalProperty pc_compat_1_4[] = {
334     PC_CPU_MODEL_IDS("1.4.0")
335     { "scsi-hd", "discard_granularity", "0" },
336     { "scsi-cd", "discard_granularity", "0" },
337     { "scsi-disk", "discard_granularity", "0" },
338     { "ide-hd", "discard_granularity", "0" },
339     { "ide-cd", "discard_granularity", "0" },
340     { "ide-drive", "discard_granularity", "0" },
341     { "virtio-blk-pci", "discard_granularity", "0" },
342     /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
343     { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
344     { "virtio-net-pci", "ctrl_guest_offloads", "off" },
345     { "e1000", "romfile", "pxe-e1000.rom" },
346     { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
347     { "pcnet", "romfile", "pxe-pcnet.rom" },
348     { "rtl8139", "romfile", "pxe-rtl8139.rom" },
349     { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
350     { "486-" TYPE_X86_CPU, "model", "0" },
351     { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
352     { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
353 };
354 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
355 
356 void gsi_handler(void *opaque, int n, int level)
357 {
358     GSIState *s = opaque;
359 
360     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
361     if (n < ISA_NUM_IRQS) {
362         qemu_set_irq(s->i8259_irq[n], level);
363     }
364     qemu_set_irq(s->ioapic_irq[n], level);
365 }
366 
367 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
368                            unsigned size)
369 {
370 }
371 
372 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
373 {
374     return 0xffffffffffffffffULL;
375 }
376 
377 /* MSDOS compatibility mode FPU exception support */
378 static qemu_irq ferr_irq;
379 
380 void pc_register_ferr_irq(qemu_irq irq)
381 {
382     ferr_irq = irq;
383 }
384 
385 /* XXX: add IGNNE support */
386 void cpu_set_ferr(CPUX86State *s)
387 {
388     qemu_irq_raise(ferr_irq);
389 }
390 
391 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
392                            unsigned size)
393 {
394     qemu_irq_lower(ferr_irq);
395 }
396 
397 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
398 {
399     return 0xffffffffffffffffULL;
400 }
401 
402 /* TSC handling */
403 uint64_t cpu_get_tsc(CPUX86State *env)
404 {
405     return cpu_get_ticks();
406 }
407 
408 /* IRQ handling */
409 int cpu_get_pic_interrupt(CPUX86State *env)
410 {
411     X86CPU *cpu = env_archcpu(env);
412     int intno;
413 
414     if (!kvm_irqchip_in_kernel()) {
415         intno = apic_get_interrupt(cpu->apic_state);
416         if (intno >= 0) {
417             return intno;
418         }
419         /* read the irq from the PIC */
420         if (!apic_accept_pic_intr(cpu->apic_state)) {
421             return -1;
422         }
423     }
424 
425     intno = pic_read_irq(isa_pic);
426     return intno;
427 }
428 
429 static void pic_irq_request(void *opaque, int irq, int level)
430 {
431     CPUState *cs = first_cpu;
432     X86CPU *cpu = X86_CPU(cs);
433 
434     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
435     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
436         CPU_FOREACH(cs) {
437             cpu = X86_CPU(cs);
438             if (apic_accept_pic_intr(cpu->apic_state)) {
439                 apic_deliver_pic_intr(cpu->apic_state, level);
440             }
441         }
442     } else {
443         if (level) {
444             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
445         } else {
446             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
447         }
448     }
449 }
450 
451 /* PC cmos mappings */
452 
453 #define REG_EQUIPMENT_BYTE          0x14
454 
455 int cmos_get_fd_drive_type(FloppyDriveType fd0)
456 {
457     int val;
458 
459     switch (fd0) {
460     case FLOPPY_DRIVE_TYPE_144:
461         /* 1.44 Mb 3"5 drive */
462         val = 4;
463         break;
464     case FLOPPY_DRIVE_TYPE_288:
465         /* 2.88 Mb 3"5 drive */
466         val = 5;
467         break;
468     case FLOPPY_DRIVE_TYPE_120:
469         /* 1.2 Mb 5"5 drive */
470         val = 2;
471         break;
472     case FLOPPY_DRIVE_TYPE_NONE:
473     default:
474         val = 0;
475         break;
476     }
477     return val;
478 }
479 
480 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
481                          int16_t cylinders, int8_t heads, int8_t sectors)
482 {
483     rtc_set_memory(s, type_ofs, 47);
484     rtc_set_memory(s, info_ofs, cylinders);
485     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
486     rtc_set_memory(s, info_ofs + 2, heads);
487     rtc_set_memory(s, info_ofs + 3, 0xff);
488     rtc_set_memory(s, info_ofs + 4, 0xff);
489     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
490     rtc_set_memory(s, info_ofs + 6, cylinders);
491     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
492     rtc_set_memory(s, info_ofs + 8, sectors);
493 }
494 
495 /* convert boot_device letter to something recognizable by the bios */
496 static int boot_device2nibble(char boot_device)
497 {
498     switch(boot_device) {
499     case 'a':
500     case 'b':
501         return 0x01; /* floppy boot */
502     case 'c':
503         return 0x02; /* hard drive boot */
504     case 'd':
505         return 0x03; /* CD-ROM boot */
506     case 'n':
507         return 0x04; /* Network boot */
508     }
509     return 0;
510 }
511 
512 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
513 {
514 #define PC_MAX_BOOT_DEVICES 3
515     int nbds, bds[3] = { 0, };
516     int i;
517 
518     nbds = strlen(boot_device);
519     if (nbds > PC_MAX_BOOT_DEVICES) {
520         error_setg(errp, "Too many boot devices for PC");
521         return;
522     }
523     for (i = 0; i < nbds; i++) {
524         bds[i] = boot_device2nibble(boot_device[i]);
525         if (bds[i] == 0) {
526             error_setg(errp, "Invalid boot device for PC: '%c'",
527                        boot_device[i]);
528             return;
529         }
530     }
531     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
532     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
533 }
534 
535 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
536 {
537     set_boot_dev(opaque, boot_device, errp);
538 }
539 
540 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
541 {
542     int val, nb, i;
543     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
544                                    FLOPPY_DRIVE_TYPE_NONE };
545 
546     /* floppy type */
547     if (floppy) {
548         for (i = 0; i < 2; i++) {
549             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
550         }
551     }
552     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
553         cmos_get_fd_drive_type(fd_type[1]);
554     rtc_set_memory(rtc_state, 0x10, val);
555 
556     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
557     nb = 0;
558     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
559         nb++;
560     }
561     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
562         nb++;
563     }
564     switch (nb) {
565     case 0:
566         break;
567     case 1:
568         val |= 0x01; /* 1 drive, ready for boot */
569         break;
570     case 2:
571         val |= 0x41; /* 2 drives, ready for boot */
572         break;
573     }
574     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
575 }
576 
577 typedef struct pc_cmos_init_late_arg {
578     ISADevice *rtc_state;
579     BusState *idebus[2];
580 } pc_cmos_init_late_arg;
581 
582 typedef struct check_fdc_state {
583     ISADevice *floppy;
584     bool multiple;
585 } CheckFdcState;
586 
587 static int check_fdc(Object *obj, void *opaque)
588 {
589     CheckFdcState *state = opaque;
590     Object *fdc;
591     uint32_t iobase;
592     Error *local_err = NULL;
593 
594     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
595     if (!fdc) {
596         return 0;
597     }
598 
599     iobase = object_property_get_uint(obj, "iobase", &local_err);
600     if (local_err || iobase != 0x3f0) {
601         error_free(local_err);
602         return 0;
603     }
604 
605     if (state->floppy) {
606         state->multiple = true;
607     } else {
608         state->floppy = ISA_DEVICE(obj);
609     }
610     return 0;
611 }
612 
613 static const char * const fdc_container_path[] = {
614     "/unattached", "/peripheral", "/peripheral-anon"
615 };
616 
617 /*
618  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
619  * and ACPI objects.
620  */
621 ISADevice *pc_find_fdc0(void)
622 {
623     int i;
624     Object *container;
625     CheckFdcState state = { 0 };
626 
627     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
628         container = container_get(qdev_get_machine(), fdc_container_path[i]);
629         object_child_foreach(container, check_fdc, &state);
630     }
631 
632     if (state.multiple) {
633         warn_report("multiple floppy disk controllers with "
634                     "iobase=0x3f0 have been found");
635         error_printf("the one being picked for CMOS setup might not reflect "
636                      "your intent");
637     }
638 
639     return state.floppy;
640 }
641 
642 static void pc_cmos_init_late(void *opaque)
643 {
644     pc_cmos_init_late_arg *arg = opaque;
645     ISADevice *s = arg->rtc_state;
646     int16_t cylinders;
647     int8_t heads, sectors;
648     int val;
649     int i, trans;
650 
651     val = 0;
652     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
653                                            &cylinders, &heads, &sectors) >= 0) {
654         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
655         val |= 0xf0;
656     }
657     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
658                                            &cylinders, &heads, &sectors) >= 0) {
659         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
660         val |= 0x0f;
661     }
662     rtc_set_memory(s, 0x12, val);
663 
664     val = 0;
665     for (i = 0; i < 4; i++) {
666         /* NOTE: ide_get_geometry() returns the physical
667            geometry.  It is always such that: 1 <= sects <= 63, 1
668            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
669            geometry can be different if a translation is done. */
670         if (arg->idebus[i / 2] &&
671             ide_get_geometry(arg->idebus[i / 2], i % 2,
672                              &cylinders, &heads, &sectors) >= 0) {
673             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
674             assert((trans & ~3) == 0);
675             val |= trans << (i * 2);
676         }
677     }
678     rtc_set_memory(s, 0x39, val);
679 
680     pc_cmos_init_floppy(s, pc_find_fdc0());
681 
682     qemu_unregister_reset(pc_cmos_init_late, opaque);
683 }
684 
685 void pc_cmos_init(PCMachineState *pcms,
686                   BusState *idebus0, BusState *idebus1,
687                   ISADevice *s)
688 {
689     int val;
690     static pc_cmos_init_late_arg arg;
691 
692     /* various important CMOS locations needed by PC/Bochs bios */
693 
694     /* memory size */
695     /* base memory (first MiB) */
696     val = MIN(pcms->below_4g_mem_size / KiB, 640);
697     rtc_set_memory(s, 0x15, val);
698     rtc_set_memory(s, 0x16, val >> 8);
699     /* extended memory (next 64MiB) */
700     if (pcms->below_4g_mem_size > 1 * MiB) {
701         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
702     } else {
703         val = 0;
704     }
705     if (val > 65535)
706         val = 65535;
707     rtc_set_memory(s, 0x17, val);
708     rtc_set_memory(s, 0x18, val >> 8);
709     rtc_set_memory(s, 0x30, val);
710     rtc_set_memory(s, 0x31, val >> 8);
711     /* memory between 16MiB and 4GiB */
712     if (pcms->below_4g_mem_size > 16 * MiB) {
713         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
714     } else {
715         val = 0;
716     }
717     if (val > 65535)
718         val = 65535;
719     rtc_set_memory(s, 0x34, val);
720     rtc_set_memory(s, 0x35, val >> 8);
721     /* memory above 4GiB */
722     val = pcms->above_4g_mem_size / 65536;
723     rtc_set_memory(s, 0x5b, val);
724     rtc_set_memory(s, 0x5c, val >> 8);
725     rtc_set_memory(s, 0x5d, val >> 16);
726 
727     object_property_add_link(OBJECT(pcms), "rtc_state",
728                              TYPE_ISA_DEVICE,
729                              (Object **)&pcms->rtc,
730                              object_property_allow_set_link,
731                              OBJ_PROP_LINK_STRONG, &error_abort);
732     object_property_set_link(OBJECT(pcms), OBJECT(s),
733                              "rtc_state", &error_abort);
734 
735     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
736 
737     val = 0;
738     val |= 0x02; /* FPU is there */
739     val |= 0x04; /* PS/2 mouse installed */
740     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
741 
742     /* hard drives and FDC */
743     arg.rtc_state = s;
744     arg.idebus[0] = idebus0;
745     arg.idebus[1] = idebus1;
746     qemu_register_reset(pc_cmos_init_late, &arg);
747 }
748 
749 #define TYPE_PORT92 "port92"
750 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
751 
752 /* port 92 stuff: could be split off */
753 typedef struct Port92State {
754     ISADevice parent_obj;
755 
756     MemoryRegion io;
757     uint8_t outport;
758     qemu_irq a20_out;
759 } Port92State;
760 
761 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
762                          unsigned size)
763 {
764     Port92State *s = opaque;
765     int oldval = s->outport;
766 
767     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
768     s->outport = val;
769     qemu_set_irq(s->a20_out, (val >> 1) & 1);
770     if ((val & 1) && !(oldval & 1)) {
771         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
772     }
773 }
774 
775 static uint64_t port92_read(void *opaque, hwaddr addr,
776                             unsigned size)
777 {
778     Port92State *s = opaque;
779     uint32_t ret;
780 
781     ret = s->outport;
782     DPRINTF("port92: read 0x%02x\n", ret);
783     return ret;
784 }
785 
786 static void port92_init(ISADevice *dev, qemu_irq a20_out)
787 {
788     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
789 }
790 
791 static const VMStateDescription vmstate_port92_isa = {
792     .name = "port92",
793     .version_id = 1,
794     .minimum_version_id = 1,
795     .fields = (VMStateField[]) {
796         VMSTATE_UINT8(outport, Port92State),
797         VMSTATE_END_OF_LIST()
798     }
799 };
800 
801 static void port92_reset(DeviceState *d)
802 {
803     Port92State *s = PORT92(d);
804 
805     s->outport &= ~1;
806 }
807 
808 static const MemoryRegionOps port92_ops = {
809     .read = port92_read,
810     .write = port92_write,
811     .impl = {
812         .min_access_size = 1,
813         .max_access_size = 1,
814     },
815     .endianness = DEVICE_LITTLE_ENDIAN,
816 };
817 
818 static void port92_initfn(Object *obj)
819 {
820     Port92State *s = PORT92(obj);
821 
822     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
823 
824     s->outport = 0;
825 
826     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
827 }
828 
829 static void port92_realizefn(DeviceState *dev, Error **errp)
830 {
831     ISADevice *isadev = ISA_DEVICE(dev);
832     Port92State *s = PORT92(dev);
833 
834     isa_register_ioport(isadev, &s->io, 0x92);
835 }
836 
837 static void port92_class_initfn(ObjectClass *klass, void *data)
838 {
839     DeviceClass *dc = DEVICE_CLASS(klass);
840 
841     dc->realize = port92_realizefn;
842     dc->reset = port92_reset;
843     dc->vmsd = &vmstate_port92_isa;
844     /*
845      * Reason: unlike ordinary ISA devices, this one needs additional
846      * wiring: its A20 output line needs to be wired up by
847      * port92_init().
848      */
849     dc->user_creatable = false;
850 }
851 
852 static const TypeInfo port92_info = {
853     .name          = TYPE_PORT92,
854     .parent        = TYPE_ISA_DEVICE,
855     .instance_size = sizeof(Port92State),
856     .instance_init = port92_initfn,
857     .class_init    = port92_class_initfn,
858 };
859 
860 static void port92_register_types(void)
861 {
862     type_register_static(&port92_info);
863 }
864 
865 type_init(port92_register_types)
866 
867 static void handle_a20_line_change(void *opaque, int irq, int level)
868 {
869     X86CPU *cpu = opaque;
870 
871     /* XXX: send to all CPUs ? */
872     /* XXX: add logic to handle multiple A20 line sources */
873     x86_cpu_set_a20(cpu, level);
874 }
875 
876 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
877 {
878     int index = le32_to_cpu(e820_reserve.count);
879     struct e820_entry *entry;
880 
881     if (type != E820_RAM) {
882         /* old FW_CFG_E820_TABLE entry -- reservations only */
883         if (index >= E820_NR_ENTRIES) {
884             return -EBUSY;
885         }
886         entry = &e820_reserve.entry[index++];
887 
888         entry->address = cpu_to_le64(address);
889         entry->length = cpu_to_le64(length);
890         entry->type = cpu_to_le32(type);
891 
892         e820_reserve.count = cpu_to_le32(index);
893     }
894 
895     /* new "etc/e820" file -- include ram too */
896     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
897     e820_table[e820_entries].address = cpu_to_le64(address);
898     e820_table[e820_entries].length = cpu_to_le64(length);
899     e820_table[e820_entries].type = cpu_to_le32(type);
900     e820_entries++;
901 
902     return e820_entries;
903 }
904 
905 int e820_get_num_entries(void)
906 {
907     return e820_entries;
908 }
909 
910 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
911 {
912     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
913         *address = le64_to_cpu(e820_table[idx].address);
914         *length = le64_to_cpu(e820_table[idx].length);
915         return true;
916     }
917     return false;
918 }
919 
920 /* Calculates initial APIC ID for a specific CPU index
921  *
922  * Currently we need to be able to calculate the APIC ID from the CPU index
923  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
924  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
925  * all CPUs up to max_cpus.
926  */
927 static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
928                                            unsigned int cpu_index)
929 {
930     MachineState *ms = MACHINE(pcms);
931     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
932     uint32_t correct_id;
933     static bool warned;
934 
935     correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores,
936                                          ms->smp.threads, cpu_index);
937     if (pcmc->compat_apic_id_mode) {
938         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
939             error_report("APIC IDs set in compatibility mode, "
940                          "CPU topology won't match the configuration");
941             warned = true;
942         }
943         return cpu_index;
944     } else {
945         return correct_id;
946     }
947 }
948 
949 static void pc_build_smbios(PCMachineState *pcms)
950 {
951     uint8_t *smbios_tables, *smbios_anchor;
952     size_t smbios_tables_len, smbios_anchor_len;
953     struct smbios_phys_mem_area *mem_array;
954     unsigned i, array_count;
955     MachineState *ms = MACHINE(pcms);
956     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
957 
958     /* tell smbios about cpuid version and features */
959     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
960 
961     smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
962     if (smbios_tables) {
963         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
964                          smbios_tables, smbios_tables_len);
965     }
966 
967     /* build the array of physical mem area from e820 table */
968     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
969     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
970         uint64_t addr, len;
971 
972         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
973             mem_array[array_count].address = addr;
974             mem_array[array_count].length = len;
975             array_count++;
976         }
977     }
978     smbios_get_tables(ms, mem_array, array_count,
979                       &smbios_tables, &smbios_tables_len,
980                       &smbios_anchor, &smbios_anchor_len);
981     g_free(mem_array);
982 
983     if (smbios_anchor) {
984         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
985                         smbios_tables, smbios_tables_len);
986         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
987                         smbios_anchor, smbios_anchor_len);
988     }
989 }
990 
991 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
992 {
993     FWCfgState *fw_cfg;
994     uint64_t *numa_fw_cfg;
995     int i;
996     const CPUArchIdList *cpus;
997     MachineClass *mc = MACHINE_GET_CLASS(pcms);
998 
999     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1000     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1001 
1002     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1003      *
1004      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1005      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1006      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1007      * for CPU hotplug also uses APIC ID and not "CPU index".
1008      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1009      * but the "limit to the APIC ID values SeaBIOS may see".
1010      *
1011      * So for compatibility reasons with old BIOSes we are stuck with
1012      * "etc/max-cpus" actually being apic_id_limit
1013      */
1014     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1015     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1016     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1017                      acpi_tables, acpi_tables_len);
1018     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1019 
1020     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1021                      &e820_reserve, sizeof(e820_reserve));
1022     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1023                     sizeof(struct e820_entry) * e820_entries);
1024 
1025     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1026     /* allocate memory for the NUMA channel: one (64bit) word for the number
1027      * of nodes, one word for each VCPU->node and one word for each node to
1028      * hold the amount of memory.
1029      */
1030     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1031     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1032     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1033     for (i = 0; i < cpus->len; i++) {
1034         unsigned int apic_id = cpus->cpus[i].arch_id;
1035         assert(apic_id < pcms->apic_id_limit);
1036         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1037     }
1038     for (i = 0; i < nb_numa_nodes; i++) {
1039         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1040             cpu_to_le64(numa_info[i].node_mem);
1041     }
1042     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1043                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
1044                      sizeof(*numa_fw_cfg));
1045 
1046     return fw_cfg;
1047 }
1048 
1049 static long get_file_size(FILE *f)
1050 {
1051     long where, size;
1052 
1053     /* XXX: on Unix systems, using fstat() probably makes more sense */
1054 
1055     where = ftell(f);
1056     fseek(f, 0, SEEK_END);
1057     size = ftell(f);
1058     fseek(f, where, SEEK_SET);
1059 
1060     return size;
1061 }
1062 
1063 struct setup_data {
1064     uint64_t next;
1065     uint32_t type;
1066     uint32_t len;
1067     uint8_t data[0];
1068 } __attribute__((packed));
1069 
1070 
1071 /*
1072  * The entry point into the kernel for PVH boot is different from
1073  * the native entry point.  The PVH entry is defined by the x86/HVM
1074  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1075  *
1076  * This function is passed to load_elf() when it is called from
1077  * load_elfboot() which then additionally checks for an ELF Note of
1078  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1079  * parse the PVH entry address from the ELF Note.
1080  *
1081  * Due to trickery in elf_opts.h, load_elf() is actually available as
1082  * load_elf32() or load_elf64() and this routine needs to be able
1083  * to deal with being called as 32 or 64 bit.
1084  *
1085  * The address of the PVH entry point is saved to the 'pvh_start_addr'
1086  * global variable.  (although the entry point is 32-bit, the kernel
1087  * binary can be either 32-bit or 64-bit).
1088  */
1089 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1090 {
1091     size_t *elf_note_data_addr;
1092 
1093     /* Check if ELF Note header passed in is valid */
1094     if (arg1 == NULL) {
1095         return 0;
1096     }
1097 
1098     if (is64) {
1099         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1100         uint64_t nhdr_size64 = sizeof(struct elf64_note);
1101         uint64_t phdr_align = *(uint64_t *)arg2;
1102         uint64_t nhdr_namesz = nhdr64->n_namesz;
1103 
1104         elf_note_data_addr =
1105             ((void *)nhdr64) + nhdr_size64 +
1106             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1107     } else {
1108         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1109         uint32_t nhdr_size32 = sizeof(struct elf32_note);
1110         uint32_t phdr_align = *(uint32_t *)arg2;
1111         uint32_t nhdr_namesz = nhdr32->n_namesz;
1112 
1113         elf_note_data_addr =
1114             ((void *)nhdr32) + nhdr_size32 +
1115             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1116     }
1117 
1118     pvh_start_addr = *elf_note_data_addr;
1119 
1120     return pvh_start_addr;
1121 }
1122 
1123 static bool load_elfboot(const char *kernel_filename,
1124                    int kernel_file_size,
1125                    uint8_t *header,
1126                    size_t pvh_xen_start_addr,
1127                    FWCfgState *fw_cfg)
1128 {
1129     uint32_t flags = 0;
1130     uint32_t mh_load_addr = 0;
1131     uint32_t elf_kernel_size = 0;
1132     uint64_t elf_entry;
1133     uint64_t elf_low, elf_high;
1134     int kernel_size;
1135 
1136     if (ldl_p(header) != 0x464c457f) {
1137         return false; /* no elfboot */
1138     }
1139 
1140     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1141     flags = elf_is64 ?
1142         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1143 
1144     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1145         error_report("elfboot unsupported flags = %x", flags);
1146         exit(1);
1147     }
1148 
1149     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1150     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1151                            NULL, &elf_note_type, &elf_entry,
1152                            &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1153                            0, 0);
1154 
1155     if (kernel_size < 0) {
1156         error_report("Error while loading elf kernel");
1157         exit(1);
1158     }
1159     mh_load_addr = elf_low;
1160     elf_kernel_size = elf_high - elf_low;
1161 
1162     if (pvh_start_addr == 0) {
1163         error_report("Error loading uncompressed kernel without PVH ELF Note");
1164         exit(1);
1165     }
1166     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1167     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1168     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1169 
1170     return true;
1171 }
1172 
1173 static void load_linux(PCMachineState *pcms,
1174                        FWCfgState *fw_cfg)
1175 {
1176     uint16_t protocol;
1177     int setup_size, kernel_size, cmdline_size;
1178     int dtb_size, setup_data_offset;
1179     uint32_t initrd_max;
1180     uint8_t header[8192], *setup, *kernel;
1181     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1182     FILE *f;
1183     char *vmode;
1184     MachineState *machine = MACHINE(pcms);
1185     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1186     struct setup_data *setup_data;
1187     const char *kernel_filename = machine->kernel_filename;
1188     const char *initrd_filename = machine->initrd_filename;
1189     const char *dtb_filename = machine->dtb;
1190     const char *kernel_cmdline = machine->kernel_cmdline;
1191 
1192     /* Align to 16 bytes as a paranoia measure */
1193     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1194 
1195     /* load the kernel header */
1196     f = fopen(kernel_filename, "rb");
1197     if (!f || !(kernel_size = get_file_size(f)) ||
1198         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1199         MIN(ARRAY_SIZE(header), kernel_size)) {
1200         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1201                 kernel_filename, strerror(errno));
1202         exit(1);
1203     }
1204 
1205     /* kernel protocol version */
1206 #if 0
1207     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1208 #endif
1209     if (ldl_p(header+0x202) == 0x53726448) {
1210         protocol = lduw_p(header+0x206);
1211     } else {
1212         /*
1213          * This could be a multiboot kernel. If it is, let's stop treating it
1214          * like a Linux kernel.
1215          * Note: some multiboot images could be in the ELF format (the same of
1216          * PVH), so we try multiboot first since we check the multiboot magic
1217          * header before to load it.
1218          */
1219         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1220                            kernel_cmdline, kernel_size, header)) {
1221             return;
1222         }
1223         /*
1224          * Check if the file is an uncompressed kernel file (ELF) and load it,
1225          * saving the PVH entry point used by the x86/HVM direct boot ABI.
1226          * If load_elfboot() is successful, populate the fw_cfg info.
1227          */
1228         if (pcmc->pvh_enabled &&
1229             load_elfboot(kernel_filename, kernel_size,
1230                          header, pvh_start_addr, fw_cfg)) {
1231             fclose(f);
1232 
1233             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1234                 strlen(kernel_cmdline) + 1);
1235             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1236 
1237             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1238             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1239                              header, sizeof(header));
1240 
1241             /* load initrd */
1242             if (initrd_filename) {
1243                 gsize initrd_size;
1244                 gchar *initrd_data;
1245                 GError *gerr = NULL;
1246 
1247                 if (!g_file_get_contents(initrd_filename, &initrd_data,
1248                             &initrd_size, &gerr)) {
1249                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1250                             initrd_filename, gerr->message);
1251                     exit(1);
1252                 }
1253 
1254                 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1255                 if (initrd_size >= initrd_max) {
1256                     fprintf(stderr, "qemu: initrd is too large, cannot support."
1257                             "(max: %"PRIu32", need %"PRId64")\n",
1258                             initrd_max, (uint64_t)initrd_size);
1259                     exit(1);
1260                 }
1261 
1262                 initrd_addr = (initrd_max - initrd_size) & ~4095;
1263 
1264                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1265                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1266                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1267                                  initrd_size);
1268             }
1269 
1270             option_rom[nb_option_roms].bootindex = 0;
1271             option_rom[nb_option_roms].name = "pvh.bin";
1272             nb_option_roms++;
1273 
1274             return;
1275         }
1276         protocol = 0;
1277     }
1278 
1279     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1280         /* Low kernel */
1281         real_addr    = 0x90000;
1282         cmdline_addr = 0x9a000 - cmdline_size;
1283         prot_addr    = 0x10000;
1284     } else if (protocol < 0x202) {
1285         /* High but ancient kernel */
1286         real_addr    = 0x90000;
1287         cmdline_addr = 0x9a000 - cmdline_size;
1288         prot_addr    = 0x100000;
1289     } else {
1290         /* High and recent kernel */
1291         real_addr    = 0x10000;
1292         cmdline_addr = 0x20000;
1293         prot_addr    = 0x100000;
1294     }
1295 
1296 #if 0
1297     fprintf(stderr,
1298             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
1299             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
1300             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
1301             real_addr,
1302             cmdline_addr,
1303             prot_addr);
1304 #endif
1305 
1306     /* highest address for loading the initrd */
1307     if (protocol >= 0x20c &&
1308         lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1309         /*
1310          * Linux has supported initrd up to 4 GB for a very long time (2007,
1311          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1312          * though it only sets initrd_max to 2 GB to "work around bootloader
1313          * bugs". Luckily, QEMU firmware(which does something like bootloader)
1314          * has supported this.
1315          *
1316          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1317          * be loaded into any address.
1318          *
1319          * In addition, initrd_max is uint32_t simply because QEMU doesn't
1320          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1321          * field).
1322          *
1323          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1324          */
1325         initrd_max = UINT32_MAX;
1326     } else if (protocol >= 0x203) {
1327         initrd_max = ldl_p(header+0x22c);
1328     } else {
1329         initrd_max = 0x37ffffff;
1330     }
1331 
1332     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1333         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1334     }
1335 
1336     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1337     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1338     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1339 
1340     if (protocol >= 0x202) {
1341         stl_p(header+0x228, cmdline_addr);
1342     } else {
1343         stw_p(header+0x20, 0xA33F);
1344         stw_p(header+0x22, cmdline_addr-real_addr);
1345     }
1346 
1347     /* handle vga= parameter */
1348     vmode = strstr(kernel_cmdline, "vga=");
1349     if (vmode) {
1350         unsigned int video_mode;
1351         /* skip "vga=" */
1352         vmode += 4;
1353         if (!strncmp(vmode, "normal", 6)) {
1354             video_mode = 0xffff;
1355         } else if (!strncmp(vmode, "ext", 3)) {
1356             video_mode = 0xfffe;
1357         } else if (!strncmp(vmode, "ask", 3)) {
1358             video_mode = 0xfffd;
1359         } else {
1360             video_mode = strtol(vmode, NULL, 0);
1361         }
1362         stw_p(header+0x1fa, video_mode);
1363     }
1364 
1365     /* loader type */
1366     /* High nybble = B reserved for QEMU; low nybble is revision number.
1367        If this code is substantially changed, you may want to consider
1368        incrementing the revision. */
1369     if (protocol >= 0x200) {
1370         header[0x210] = 0xB0;
1371     }
1372     /* heap */
1373     if (protocol >= 0x201) {
1374         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
1375         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1376     }
1377 
1378     /* load initrd */
1379     if (initrd_filename) {
1380         gsize initrd_size;
1381         gchar *initrd_data;
1382         GError *gerr = NULL;
1383 
1384         if (protocol < 0x200) {
1385             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1386             exit(1);
1387         }
1388 
1389         if (!g_file_get_contents(initrd_filename, &initrd_data,
1390                                  &initrd_size, &gerr)) {
1391             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1392                     initrd_filename, gerr->message);
1393             exit(1);
1394         }
1395         if (initrd_size >= initrd_max) {
1396             fprintf(stderr, "qemu: initrd is too large, cannot support."
1397                     "(max: %"PRIu32", need %"PRId64")\n",
1398                     initrd_max, (uint64_t)initrd_size);
1399             exit(1);
1400         }
1401 
1402         initrd_addr = (initrd_max-initrd_size) & ~4095;
1403 
1404         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1405         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1406         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1407 
1408         stl_p(header+0x218, initrd_addr);
1409         stl_p(header+0x21c, initrd_size);
1410     }
1411 
1412     /* load kernel and setup */
1413     setup_size = header[0x1f1];
1414     if (setup_size == 0) {
1415         setup_size = 4;
1416     }
1417     setup_size = (setup_size+1)*512;
1418     if (setup_size > kernel_size) {
1419         fprintf(stderr, "qemu: invalid kernel header\n");
1420         exit(1);
1421     }
1422     kernel_size -= setup_size;
1423 
1424     setup  = g_malloc(setup_size);
1425     kernel = g_malloc(kernel_size);
1426     fseek(f, 0, SEEK_SET);
1427     if (fread(setup, 1, setup_size, f) != setup_size) {
1428         fprintf(stderr, "fread() failed\n");
1429         exit(1);
1430     }
1431     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1432         fprintf(stderr, "fread() failed\n");
1433         exit(1);
1434     }
1435     fclose(f);
1436 
1437     /* append dtb to kernel */
1438     if (dtb_filename) {
1439         if (protocol < 0x209) {
1440             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1441             exit(1);
1442         }
1443 
1444         dtb_size = get_image_size(dtb_filename);
1445         if (dtb_size <= 0) {
1446             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1447                     dtb_filename, strerror(errno));
1448             exit(1);
1449         }
1450 
1451         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1452         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1453         kernel = g_realloc(kernel, kernel_size);
1454 
1455         stq_p(header+0x250, prot_addr + setup_data_offset);
1456 
1457         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1458         setup_data->next = 0;
1459         setup_data->type = cpu_to_le32(SETUP_DTB);
1460         setup_data->len = cpu_to_le32(dtb_size);
1461 
1462         load_image_size(dtb_filename, setup_data->data, dtb_size);
1463     }
1464 
1465     memcpy(setup, header, MIN(sizeof(header), setup_size));
1466 
1467     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1468     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1469     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1470 
1471     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1472     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1473     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1474 
1475     option_rom[nb_option_roms].bootindex = 0;
1476     option_rom[nb_option_roms].name = "linuxboot.bin";
1477     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1478         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1479     }
1480     nb_option_roms++;
1481 }
1482 
1483 #define NE2000_NB_MAX 6
1484 
1485 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1486                                               0x280, 0x380 };
1487 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1488 
1489 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1490 {
1491     static int nb_ne2k = 0;
1492 
1493     if (nb_ne2k == NE2000_NB_MAX)
1494         return;
1495     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1496                     ne2000_irq[nb_ne2k], nd);
1497     nb_ne2k++;
1498 }
1499 
1500 DeviceState *cpu_get_current_apic(void)
1501 {
1502     if (current_cpu) {
1503         X86CPU *cpu = X86_CPU(current_cpu);
1504         return cpu->apic_state;
1505     } else {
1506         return NULL;
1507     }
1508 }
1509 
1510 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1511 {
1512     X86CPU *cpu = opaque;
1513 
1514     if (level) {
1515         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1516     }
1517 }
1518 
1519 static void pc_new_cpu(PCMachineState *pcms, int64_t apic_id, Error **errp)
1520 {
1521     Object *cpu = NULL;
1522     Error *local_err = NULL;
1523     CPUX86State *env = NULL;
1524 
1525     cpu = object_new(MACHINE(pcms)->cpu_type);
1526 
1527     env = &X86_CPU(cpu)->env;
1528     env->nr_dies = pcms->smp_dies;
1529 
1530     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1531     object_property_set_bool(cpu, true, "realized", &local_err);
1532 
1533     object_unref(cpu);
1534     error_propagate(errp, local_err);
1535 }
1536 
1537 /*
1538  * This function is very similar to smp_parse()
1539  * in hw/core/machine.c but includes CPU die support.
1540  */
1541 void pc_smp_parse(MachineState *ms, QemuOpts *opts)
1542 {
1543     PCMachineState *pcms = PC_MACHINE(ms);
1544 
1545     if (opts) {
1546         unsigned cpus    = qemu_opt_get_number(opts, "cpus", 0);
1547         unsigned sockets = qemu_opt_get_number(opts, "sockets", 0);
1548         unsigned dies = qemu_opt_get_number(opts, "dies", 1);
1549         unsigned cores   = qemu_opt_get_number(opts, "cores", 0);
1550         unsigned threads = qemu_opt_get_number(opts, "threads", 0);
1551 
1552         /* compute missing values, prefer sockets over cores over threads */
1553         if (cpus == 0 || sockets == 0) {
1554             cores = cores > 0 ? cores : 1;
1555             threads = threads > 0 ? threads : 1;
1556             if (cpus == 0) {
1557                 sockets = sockets > 0 ? sockets : 1;
1558                 cpus = cores * threads * dies * sockets;
1559             } else {
1560                 ms->smp.max_cpus =
1561                         qemu_opt_get_number(opts, "maxcpus", cpus);
1562                 sockets = ms->smp.max_cpus / (cores * threads * dies);
1563             }
1564         } else if (cores == 0) {
1565             threads = threads > 0 ? threads : 1;
1566             cores = cpus / (sockets * dies * threads);
1567             cores = cores > 0 ? cores : 1;
1568         } else if (threads == 0) {
1569             threads = cpus / (cores * dies * sockets);
1570             threads = threads > 0 ? threads : 1;
1571         } else if (sockets * dies * cores * threads < cpus) {
1572             error_report("cpu topology: "
1573                          "sockets (%u) * dies (%u) * cores (%u) * threads (%u) < "
1574                          "smp_cpus (%u)",
1575                          sockets, dies, cores, threads, cpus);
1576             exit(1);
1577         }
1578 
1579         ms->smp.max_cpus =
1580                 qemu_opt_get_number(opts, "maxcpus", cpus);
1581 
1582         if (ms->smp.max_cpus < cpus) {
1583             error_report("maxcpus must be equal to or greater than smp");
1584             exit(1);
1585         }
1586 
1587         if (sockets * dies * cores * threads > ms->smp.max_cpus) {
1588             error_report("cpu topology: "
1589                          "sockets (%u) * dies (%u) * cores (%u) * threads (%u) > "
1590                          "maxcpus (%u)",
1591                          sockets, dies, cores, threads,
1592                          ms->smp.max_cpus);
1593             exit(1);
1594         }
1595 
1596         if (sockets * dies * cores * threads != ms->smp.max_cpus) {
1597             warn_report("Invalid CPU topology deprecated: "
1598                         "sockets (%u) * dies (%u) * cores (%u) * threads (%u) "
1599                         "!= maxcpus (%u)",
1600                         sockets, dies, cores, threads,
1601                         ms->smp.max_cpus);
1602         }
1603 
1604         ms->smp.cpus = cpus;
1605         ms->smp.cores = cores;
1606         ms->smp.threads = threads;
1607         pcms->smp_dies = dies;
1608     }
1609 
1610     if (ms->smp.cpus > 1) {
1611         Error *blocker = NULL;
1612         error_setg(&blocker, QERR_REPLAY_NOT_SUPPORTED, "smp");
1613         replay_add_blocker(blocker);
1614     }
1615 }
1616 
1617 void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp)
1618 {
1619     PCMachineState *pcms = PC_MACHINE(ms);
1620     int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
1621     Error *local_err = NULL;
1622 
1623     if (id < 0) {
1624         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1625         return;
1626     }
1627 
1628     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1629         error_setg(errp, "Unable to add CPU: %" PRIi64
1630                    ", resulting APIC ID (%" PRIi64 ") is too large",
1631                    id, apic_id);
1632         return;
1633     }
1634 
1635     pc_new_cpu(PC_MACHINE(ms), apic_id, &local_err);
1636     if (local_err) {
1637         error_propagate(errp, local_err);
1638         return;
1639     }
1640 }
1641 
1642 void pc_cpus_init(PCMachineState *pcms)
1643 {
1644     int i;
1645     const CPUArchIdList *possible_cpus;
1646     MachineState *ms = MACHINE(pcms);
1647     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1648 
1649     /* Calculates the limit to CPU APIC ID values
1650      *
1651      * Limit for the APIC ID value, so that all
1652      * CPU APIC IDs are < pcms->apic_id_limit.
1653      *
1654      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1655      */
1656     pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
1657                                                      ms->smp.max_cpus - 1) + 1;
1658     possible_cpus = mc->possible_cpu_arch_ids(ms);
1659     for (i = 0; i < ms->smp.cpus; i++) {
1660         pc_new_cpu(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
1661     }
1662 }
1663 
1664 static void pc_build_feature_control_file(PCMachineState *pcms)
1665 {
1666     MachineState *ms = MACHINE(pcms);
1667     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1668     CPUX86State *env = &cpu->env;
1669     uint32_t unused, ecx, edx;
1670     uint64_t feature_control_bits = 0;
1671     uint64_t *val;
1672 
1673     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1674     if (ecx & CPUID_EXT_VMX) {
1675         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1676     }
1677 
1678     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1679         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1680         (env->mcg_cap & MCG_LMCE_P)) {
1681         feature_control_bits |= FEATURE_CONTROL_LMCE;
1682     }
1683 
1684     if (!feature_control_bits) {
1685         return;
1686     }
1687 
1688     val = g_malloc(sizeof(*val));
1689     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1690     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1691 }
1692 
1693 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1694 {
1695     if (cpus_count > 0xff) {
1696         /* If the number of CPUs can't be represented in 8 bits, the
1697          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1698          * to make old BIOSes fail more predictably.
1699          */
1700         rtc_set_memory(rtc, 0x5f, 0);
1701     } else {
1702         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1703     }
1704 }
1705 
1706 static
1707 void pc_machine_done(Notifier *notifier, void *data)
1708 {
1709     PCMachineState *pcms = container_of(notifier,
1710                                         PCMachineState, machine_done);
1711     PCIBus *bus = pcms->bus;
1712 
1713     /* set the number of CPUs */
1714     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1715 
1716     if (bus) {
1717         int extra_hosts = 0;
1718 
1719         QLIST_FOREACH(bus, &bus->child, sibling) {
1720             /* look for expander root buses */
1721             if (pci_bus_is_root(bus)) {
1722                 extra_hosts++;
1723             }
1724         }
1725         if (extra_hosts && pcms->fw_cfg) {
1726             uint64_t *val = g_malloc(sizeof(*val));
1727             *val = cpu_to_le64(extra_hosts);
1728             fw_cfg_add_file(pcms->fw_cfg,
1729                     "etc/extra-pci-roots", val, sizeof(*val));
1730         }
1731     }
1732 
1733     acpi_setup();
1734     if (pcms->fw_cfg) {
1735         pc_build_smbios(pcms);
1736         pc_build_feature_control_file(pcms);
1737         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1738         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1739     }
1740 
1741     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1742         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1743 
1744         if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1745             iommu->intr_eim != ON_OFF_AUTO_ON) {
1746             error_report("current -smp configuration requires "
1747                          "Extended Interrupt Mode enabled. "
1748                          "You can add an IOMMU using: "
1749                          "-device intel-iommu,intremap=on,eim=on");
1750             exit(EXIT_FAILURE);
1751         }
1752     }
1753 }
1754 
1755 void pc_guest_info_init(PCMachineState *pcms)
1756 {
1757     int i;
1758 
1759     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1760     pcms->numa_nodes = nb_numa_nodes;
1761     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1762                                     sizeof *pcms->node_mem);
1763     for (i = 0; i < nb_numa_nodes; i++) {
1764         pcms->node_mem[i] = numa_info[i].node_mem;
1765     }
1766 
1767     pcms->machine_done.notify = pc_machine_done;
1768     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1769 }
1770 
1771 /* setup pci memory address space mapping into system address space */
1772 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1773                             MemoryRegion *pci_address_space)
1774 {
1775     /* Set to lower priority than RAM */
1776     memory_region_add_subregion_overlap(system_memory, 0x0,
1777                                         pci_address_space, -1);
1778 }
1779 
1780 void xen_load_linux(PCMachineState *pcms)
1781 {
1782     int i;
1783     FWCfgState *fw_cfg;
1784 
1785     assert(MACHINE(pcms)->kernel_filename != NULL);
1786 
1787     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1788     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1789     rom_set_fw(fw_cfg);
1790 
1791     load_linux(pcms, fw_cfg);
1792     for (i = 0; i < nb_option_roms; i++) {
1793         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1794                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1795                !strcmp(option_rom[i].name, "pvh.bin") ||
1796                !strcmp(option_rom[i].name, "multiboot.bin"));
1797         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1798     }
1799     pcms->fw_cfg = fw_cfg;
1800 }
1801 
1802 void pc_memory_init(PCMachineState *pcms,
1803                     MemoryRegion *system_memory,
1804                     MemoryRegion *rom_memory,
1805                     MemoryRegion **ram_memory)
1806 {
1807     int linux_boot, i;
1808     MemoryRegion *ram, *option_rom_mr;
1809     MemoryRegion *ram_below_4g, *ram_above_4g;
1810     FWCfgState *fw_cfg;
1811     MachineState *machine = MACHINE(pcms);
1812     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1813 
1814     assert(machine->ram_size == pcms->below_4g_mem_size +
1815                                 pcms->above_4g_mem_size);
1816 
1817     linux_boot = (machine->kernel_filename != NULL);
1818 
1819     /* Allocate RAM.  We allocate it as a single memory region and use
1820      * aliases to address portions of it, mostly for backwards compatibility
1821      * with older qemus that used qemu_ram_alloc().
1822      */
1823     ram = g_malloc(sizeof(*ram));
1824     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1825                                          machine->ram_size);
1826     *ram_memory = ram;
1827     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1828     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1829                              0, pcms->below_4g_mem_size);
1830     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1831     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1832     if (pcms->above_4g_mem_size > 0) {
1833         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1834         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1835                                  pcms->below_4g_mem_size,
1836                                  pcms->above_4g_mem_size);
1837         memory_region_add_subregion(system_memory, 0x100000000ULL,
1838                                     ram_above_4g);
1839         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1840     }
1841 
1842     if (!pcmc->has_reserved_memory &&
1843         (machine->ram_slots ||
1844          (machine->maxram_size > machine->ram_size))) {
1845         MachineClass *mc = MACHINE_GET_CLASS(machine);
1846 
1847         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1848                      mc->name);
1849         exit(EXIT_FAILURE);
1850     }
1851 
1852     /* always allocate the device memory information */
1853     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1854 
1855     /* initialize device memory address space */
1856     if (pcmc->has_reserved_memory &&
1857         (machine->ram_size < machine->maxram_size)) {
1858         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1859 
1860         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1861             error_report("unsupported amount of memory slots: %"PRIu64,
1862                          machine->ram_slots);
1863             exit(EXIT_FAILURE);
1864         }
1865 
1866         if (QEMU_ALIGN_UP(machine->maxram_size,
1867                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1868             error_report("maximum memory size must by aligned to multiple of "
1869                          "%d bytes", TARGET_PAGE_SIZE);
1870             exit(EXIT_FAILURE);
1871         }
1872 
1873         machine->device_memory->base =
1874             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1875 
1876         if (pcmc->enforce_aligned_dimm) {
1877             /* size device region assuming 1G page max alignment per slot */
1878             device_mem_size += (1 * GiB) * machine->ram_slots;
1879         }
1880 
1881         if ((machine->device_memory->base + device_mem_size) <
1882             device_mem_size) {
1883             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1884                          machine->maxram_size);
1885             exit(EXIT_FAILURE);
1886         }
1887 
1888         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1889                            "device-memory", device_mem_size);
1890         memory_region_add_subregion(system_memory, machine->device_memory->base,
1891                                     &machine->device_memory->mr);
1892     }
1893 
1894     /* Initialize PC system firmware */
1895     pc_system_firmware_init(pcms, rom_memory);
1896 
1897     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1898     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1899                            &error_fatal);
1900     if (pcmc->pci_enabled) {
1901         memory_region_set_readonly(option_rom_mr, true);
1902     }
1903     memory_region_add_subregion_overlap(rom_memory,
1904                                         PC_ROM_MIN_VGA,
1905                                         option_rom_mr,
1906                                         1);
1907 
1908     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1909 
1910     rom_set_fw(fw_cfg);
1911 
1912     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1913         uint64_t *val = g_malloc(sizeof(*val));
1914         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1915         uint64_t res_mem_end = machine->device_memory->base;
1916 
1917         if (!pcmc->broken_reserved_end) {
1918             res_mem_end += memory_region_size(&machine->device_memory->mr);
1919         }
1920         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1921         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1922     }
1923 
1924     if (linux_boot) {
1925         load_linux(pcms, fw_cfg);
1926     }
1927 
1928     for (i = 0; i < nb_option_roms; i++) {
1929         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1930     }
1931     pcms->fw_cfg = fw_cfg;
1932 
1933     /* Init default IOAPIC address space */
1934     pcms->ioapic_as = &address_space_memory;
1935 }
1936 
1937 /*
1938  * The 64bit pci hole starts after "above 4G RAM" and
1939  * potentially the space reserved for memory hotplug.
1940  */
1941 uint64_t pc_pci_hole64_start(void)
1942 {
1943     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1944     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1945     MachineState *ms = MACHINE(pcms);
1946     uint64_t hole64_start = 0;
1947 
1948     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1949         hole64_start = ms->device_memory->base;
1950         if (!pcmc->broken_reserved_end) {
1951             hole64_start += memory_region_size(&ms->device_memory->mr);
1952         }
1953     } else {
1954         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1955     }
1956 
1957     return ROUND_UP(hole64_start, 1 * GiB);
1958 }
1959 
1960 qemu_irq pc_allocate_cpu_irq(void)
1961 {
1962     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1963 }
1964 
1965 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1966 {
1967     DeviceState *dev = NULL;
1968 
1969     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1970     if (pci_bus) {
1971         PCIDevice *pcidev = pci_vga_init(pci_bus);
1972         dev = pcidev ? &pcidev->qdev : NULL;
1973     } else if (isa_bus) {
1974         ISADevice *isadev = isa_vga_init(isa_bus);
1975         dev = isadev ? DEVICE(isadev) : NULL;
1976     }
1977     rom_reset_order_override();
1978     return dev;
1979 }
1980 
1981 static const MemoryRegionOps ioport80_io_ops = {
1982     .write = ioport80_write,
1983     .read = ioport80_read,
1984     .endianness = DEVICE_NATIVE_ENDIAN,
1985     .impl = {
1986         .min_access_size = 1,
1987         .max_access_size = 1,
1988     },
1989 };
1990 
1991 static const MemoryRegionOps ioportF0_io_ops = {
1992     .write = ioportF0_write,
1993     .read = ioportF0_read,
1994     .endianness = DEVICE_NATIVE_ENDIAN,
1995     .impl = {
1996         .min_access_size = 1,
1997         .max_access_size = 1,
1998     },
1999 };
2000 
2001 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
2002 {
2003     int i;
2004     DriveInfo *fd[MAX_FD];
2005     qemu_irq *a20_line;
2006     ISADevice *i8042, *port92, *vmmouse;
2007 
2008     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
2009     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
2010 
2011     for (i = 0; i < MAX_FD; i++) {
2012         fd[i] = drive_get(IF_FLOPPY, 0, i);
2013         create_fdctrl |= !!fd[i];
2014     }
2015     if (create_fdctrl) {
2016         fdctrl_init_isa(isa_bus, fd);
2017     }
2018 
2019     i8042 = isa_create_simple(isa_bus, "i8042");
2020     if (!no_vmport) {
2021         vmport_init(isa_bus);
2022         vmmouse = isa_try_create(isa_bus, "vmmouse");
2023     } else {
2024         vmmouse = NULL;
2025     }
2026     if (vmmouse) {
2027         DeviceState *dev = DEVICE(vmmouse);
2028         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
2029         qdev_init_nofail(dev);
2030     }
2031     port92 = isa_create_simple(isa_bus, "port92");
2032 
2033     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
2034     i8042_setup_a20_line(i8042, a20_line[0]);
2035     port92_init(port92, a20_line[1]);
2036     g_free(a20_line);
2037 }
2038 
2039 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
2040                           ISADevice **rtc_state,
2041                           bool create_fdctrl,
2042                           bool no_vmport,
2043                           bool has_pit,
2044                           uint32_t hpet_irqs)
2045 {
2046     int i;
2047     DeviceState *hpet = NULL;
2048     int pit_isa_irq = 0;
2049     qemu_irq pit_alt_irq = NULL;
2050     qemu_irq rtc_irq = NULL;
2051     ISADevice *pit = NULL;
2052     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
2053     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
2054 
2055     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
2056     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
2057 
2058     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
2059     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
2060 
2061     /*
2062      * Check if an HPET shall be created.
2063      *
2064      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
2065      * when the HPET wants to take over. Thus we have to disable the latter.
2066      */
2067     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
2068         /* In order to set property, here not using sysbus_try_create_simple */
2069         hpet = qdev_try_create(NULL, TYPE_HPET);
2070         if (hpet) {
2071             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
2072              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
2073              * IRQ8 and IRQ2.
2074              */
2075             uint8_t compat = object_property_get_uint(OBJECT(hpet),
2076                     HPET_INTCAP, NULL);
2077             if (!compat) {
2078                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
2079             }
2080             qdev_init_nofail(hpet);
2081             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2082 
2083             for (i = 0; i < GSI_NUM_PINS; i++) {
2084                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2085             }
2086             pit_isa_irq = -1;
2087             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2088             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2089         }
2090     }
2091     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2092 
2093     qemu_register_boot_set(pc_boot_set, *rtc_state);
2094 
2095     if (!xen_enabled() && has_pit) {
2096         if (kvm_pit_in_kernel()) {
2097             pit = kvm_pit_init(isa_bus, 0x40);
2098         } else {
2099             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2100         }
2101         if (hpet) {
2102             /* connect PIT to output control line of the HPET */
2103             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2104         }
2105         pcspk_init(isa_bus, pit);
2106     }
2107 
2108     i8257_dma_init(isa_bus, 0);
2109 
2110     /* Super I/O */
2111     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2112 }
2113 
2114 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2115 {
2116     int i;
2117 
2118     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2119     for (i = 0; i < nb_nics; i++) {
2120         NICInfo *nd = &nd_table[i];
2121         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2122 
2123         if (g_str_equal(model, "ne2k_isa")) {
2124             pc_init_ne2k_isa(isa_bus, nd);
2125         } else {
2126             pci_nic_init_nofail(nd, pci_bus, model, NULL);
2127         }
2128     }
2129     rom_reset_order_override();
2130 }
2131 
2132 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2133 {
2134     DeviceState *dev;
2135     SysBusDevice *d;
2136     unsigned int i;
2137 
2138     if (kvm_ioapic_in_kernel()) {
2139         dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2140     } else {
2141         dev = qdev_create(NULL, TYPE_IOAPIC);
2142     }
2143     if (parent_name) {
2144         object_property_add_child(object_resolve_path(parent_name, NULL),
2145                                   "ioapic", OBJECT(dev), NULL);
2146     }
2147     qdev_init_nofail(dev);
2148     d = SYS_BUS_DEVICE(dev);
2149     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2150 
2151     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2152         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2153     }
2154 }
2155 
2156 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2157                                Error **errp)
2158 {
2159     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2160     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2161     const MachineState *ms = MACHINE(hotplug_dev);
2162     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2163     const uint64_t legacy_align = TARGET_PAGE_SIZE;
2164     Error *local_err = NULL;
2165 
2166     /*
2167      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2168      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2169      * addition to cover this case.
2170      */
2171     if (!pcms->acpi_dev || !acpi_enabled) {
2172         error_setg(errp,
2173                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2174         return;
2175     }
2176 
2177     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2178         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2179         return;
2180     }
2181 
2182     hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2183     if (local_err) {
2184         error_propagate(errp, local_err);
2185         return;
2186     }
2187 
2188     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2189                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2190 }
2191 
2192 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2193                            DeviceState *dev, Error **errp)
2194 {
2195     Error *local_err = NULL;
2196     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2197     MachineState *ms = MACHINE(hotplug_dev);
2198     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2199 
2200     pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2201     if (local_err) {
2202         goto out;
2203     }
2204 
2205     if (is_nvdimm) {
2206         nvdimm_plug(ms->nvdimms_state);
2207     }
2208 
2209     hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2210 out:
2211     error_propagate(errp, local_err);
2212 }
2213 
2214 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2215                                      DeviceState *dev, Error **errp)
2216 {
2217     Error *local_err = NULL;
2218     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2219 
2220     /*
2221      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2222      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2223      * addition to cover this case.
2224      */
2225     if (!pcms->acpi_dev || !acpi_enabled) {
2226         error_setg(&local_err,
2227                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2228         goto out;
2229     }
2230 
2231     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2232         error_setg(&local_err,
2233                    "nvdimm device hot unplug is not supported yet.");
2234         goto out;
2235     }
2236 
2237     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2238                                    &local_err);
2239 out:
2240     error_propagate(errp, local_err);
2241 }
2242 
2243 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2244                              DeviceState *dev, Error **errp)
2245 {
2246     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2247     Error *local_err = NULL;
2248 
2249     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2250     if (local_err) {
2251         goto out;
2252     }
2253 
2254     pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2255     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2256  out:
2257     error_propagate(errp, local_err);
2258 }
2259 
2260 static int pc_apic_cmp(const void *a, const void *b)
2261 {
2262    CPUArchId *apic_a = (CPUArchId *)a;
2263    CPUArchId *apic_b = (CPUArchId *)b;
2264 
2265    return apic_a->arch_id - apic_b->arch_id;
2266 }
2267 
2268 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2269  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2270  * entry corresponding to CPU's apic_id returns NULL.
2271  */
2272 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2273 {
2274     CPUArchId apic_id, *found_cpu;
2275 
2276     apic_id.arch_id = id;
2277     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2278         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2279         pc_apic_cmp);
2280     if (found_cpu && idx) {
2281         *idx = found_cpu - ms->possible_cpus->cpus;
2282     }
2283     return found_cpu;
2284 }
2285 
2286 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2287                         DeviceState *dev, Error **errp)
2288 {
2289     CPUArchId *found_cpu;
2290     Error *local_err = NULL;
2291     X86CPU *cpu = X86_CPU(dev);
2292     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2293 
2294     if (pcms->acpi_dev) {
2295         hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2296         if (local_err) {
2297             goto out;
2298         }
2299     }
2300 
2301     /* increment the number of CPUs */
2302     pcms->boot_cpus++;
2303     if (pcms->rtc) {
2304         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2305     }
2306     if (pcms->fw_cfg) {
2307         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2308     }
2309 
2310     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2311     found_cpu->cpu = OBJECT(dev);
2312 out:
2313     error_propagate(errp, local_err);
2314 }
2315 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2316                                      DeviceState *dev, Error **errp)
2317 {
2318     int idx = -1;
2319     Error *local_err = NULL;
2320     X86CPU *cpu = X86_CPU(dev);
2321     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2322 
2323     if (!pcms->acpi_dev) {
2324         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2325         goto out;
2326     }
2327 
2328     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2329     assert(idx != -1);
2330     if (idx == 0) {
2331         error_setg(&local_err, "Boot CPU is unpluggable");
2332         goto out;
2333     }
2334 
2335     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2336                                    &local_err);
2337     if (local_err) {
2338         goto out;
2339     }
2340 
2341  out:
2342     error_propagate(errp, local_err);
2343 
2344 }
2345 
2346 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2347                              DeviceState *dev, Error **errp)
2348 {
2349     CPUArchId *found_cpu;
2350     Error *local_err = NULL;
2351     X86CPU *cpu = X86_CPU(dev);
2352     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2353 
2354     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2355     if (local_err) {
2356         goto out;
2357     }
2358 
2359     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2360     found_cpu->cpu = NULL;
2361     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2362 
2363     /* decrement the number of CPUs */
2364     pcms->boot_cpus--;
2365     /* Update the number of CPUs in CMOS */
2366     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2367     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2368  out:
2369     error_propagate(errp, local_err);
2370 }
2371 
2372 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2373                             DeviceState *dev, Error **errp)
2374 {
2375     int idx;
2376     CPUState *cs;
2377     CPUArchId *cpu_slot;
2378     X86CPUTopoInfo topo;
2379     X86CPU *cpu = X86_CPU(dev);
2380     CPUX86State *env = &cpu->env;
2381     MachineState *ms = MACHINE(hotplug_dev);
2382     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2383     unsigned int smp_cores = ms->smp.cores;
2384     unsigned int smp_threads = ms->smp.threads;
2385 
2386     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2387         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2388                    ms->cpu_type);
2389         return;
2390     }
2391 
2392     env->nr_dies = pcms->smp_dies;
2393 
2394     /*
2395      * If APIC ID is not set,
2396      * set it based on socket/die/core/thread properties.
2397      */
2398     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2399         int max_socket = (ms->smp.max_cpus - 1) /
2400                                 smp_threads / smp_cores / pcms->smp_dies;
2401 
2402         if (cpu->socket_id < 0) {
2403             error_setg(errp, "CPU socket-id is not set");
2404             return;
2405         } else if (cpu->socket_id > max_socket) {
2406             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2407                        cpu->socket_id, max_socket);
2408             return;
2409         } else if (cpu->die_id > pcms->smp_dies - 1) {
2410             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
2411                        cpu->die_id, max_socket);
2412             return;
2413         }
2414         if (cpu->core_id < 0) {
2415             error_setg(errp, "CPU core-id is not set");
2416             return;
2417         } else if (cpu->core_id > (smp_cores - 1)) {
2418             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2419                        cpu->core_id, smp_cores - 1);
2420             return;
2421         }
2422         if (cpu->thread_id < 0) {
2423             error_setg(errp, "CPU thread-id is not set");
2424             return;
2425         } else if (cpu->thread_id > (smp_threads - 1)) {
2426             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2427                        cpu->thread_id, smp_threads - 1);
2428             return;
2429         }
2430 
2431         topo.pkg_id = cpu->socket_id;
2432         topo.die_id = cpu->die_id;
2433         topo.core_id = cpu->core_id;
2434         topo.smt_id = cpu->thread_id;
2435         cpu->apic_id = apicid_from_topo_ids(pcms->smp_dies, smp_cores,
2436                                             smp_threads, &topo);
2437     }
2438 
2439     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2440     if (!cpu_slot) {
2441         MachineState *ms = MACHINE(pcms);
2442 
2443         x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2444                                  smp_cores, smp_threads, &topo);
2445         error_setg(errp,
2446             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
2447             " APIC ID %" PRIu32 ", valid index range 0:%d",
2448             topo.pkg_id, topo.die_id, topo.core_id, topo.smt_id,
2449             cpu->apic_id, ms->possible_cpus->len - 1);
2450         return;
2451     }
2452 
2453     if (cpu_slot->cpu) {
2454         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2455                    idx, cpu->apic_id);
2456         return;
2457     }
2458 
2459     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2460      * so that machine_query_hotpluggable_cpus would show correct values
2461      */
2462     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2463      * once -smp refactoring is complete and there will be CPU private
2464      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2465     x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2466                              smp_cores, smp_threads, &topo);
2467     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2468         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2469             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2470         return;
2471     }
2472     cpu->socket_id = topo.pkg_id;
2473 
2474     if (cpu->die_id != -1 && cpu->die_id != topo.die_id) {
2475         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
2476             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo.die_id);
2477         return;
2478     }
2479     cpu->die_id = topo.die_id;
2480 
2481     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2482         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2483             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2484         return;
2485     }
2486     cpu->core_id = topo.core_id;
2487 
2488     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2489         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2490             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2491         return;
2492     }
2493     cpu->thread_id = topo.smt_id;
2494 
2495     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
2496         !kvm_hv_vpindex_settable()) {
2497         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2498         return;
2499     }
2500 
2501     cs = CPU(cpu);
2502     cs->cpu_index = idx;
2503 
2504     numa_cpu_pre_plug(cpu_slot, dev, errp);
2505 }
2506 
2507 static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
2508                                         DeviceState *dev, Error **errp)
2509 {
2510     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2511     Error *local_err = NULL;
2512 
2513     if (!hotplug_dev2) {
2514         /*
2515          * Without a bus hotplug handler, we cannot control the plug/unplug
2516          * order. This should never be the case on x86, however better add
2517          * a safety net.
2518          */
2519         error_setg(errp, "virtio-pmem-pci not supported on this bus.");
2520         return;
2521     }
2522     /*
2523      * First, see if we can plug this memory device at all. If that
2524      * succeeds, branch of to the actual hotplug handler.
2525      */
2526     memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2527                            &local_err);
2528     if (!local_err) {
2529         hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2530     }
2531     error_propagate(errp, local_err);
2532 }
2533 
2534 static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
2535                                     DeviceState *dev, Error **errp)
2536 {
2537     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2538     Error *local_err = NULL;
2539 
2540     /*
2541      * Plug the memory device first and then branch off to the actual
2542      * hotplug handler. If that one fails, we can easily undo the memory
2543      * device bits.
2544      */
2545     memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2546     hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2547     if (local_err) {
2548         memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2549     }
2550     error_propagate(errp, local_err);
2551 }
2552 
2553 static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
2554                                               DeviceState *dev, Error **errp)
2555 {
2556     /* We don't support virtio pmem hot unplug */
2557     error_setg(errp, "virtio pmem device unplug not supported.");
2558 }
2559 
2560 static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
2561                                       DeviceState *dev, Error **errp)
2562 {
2563     /* We don't support virtio pmem hot unplug */
2564 }
2565 
2566 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2567                                           DeviceState *dev, Error **errp)
2568 {
2569     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2570         pc_memory_pre_plug(hotplug_dev, dev, errp);
2571     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2572         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2573     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2574         pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
2575     }
2576 }
2577 
2578 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2579                                       DeviceState *dev, Error **errp)
2580 {
2581     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2582         pc_memory_plug(hotplug_dev, dev, errp);
2583     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2584         pc_cpu_plug(hotplug_dev, dev, errp);
2585     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2586         pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
2587     }
2588 }
2589 
2590 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2591                                                 DeviceState *dev, Error **errp)
2592 {
2593     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2594         pc_memory_unplug_request(hotplug_dev, dev, errp);
2595     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2596         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2597     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2598         pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
2599     } else {
2600         error_setg(errp, "acpi: device unplug request for not supported device"
2601                    " type: %s", object_get_typename(OBJECT(dev)));
2602     }
2603 }
2604 
2605 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2606                                         DeviceState *dev, Error **errp)
2607 {
2608     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2609         pc_memory_unplug(hotplug_dev, dev, errp);
2610     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2611         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2612     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2613         pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
2614     } else {
2615         error_setg(errp, "acpi: device unplug for not supported device"
2616                    " type: %s", object_get_typename(OBJECT(dev)));
2617     }
2618 }
2619 
2620 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2621                                              DeviceState *dev)
2622 {
2623     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2624         object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
2625         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2626         return HOTPLUG_HANDLER(machine);
2627     }
2628 
2629     return NULL;
2630 }
2631 
2632 static void
2633 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2634                                          const char *name, void *opaque,
2635                                          Error **errp)
2636 {
2637     MachineState *ms = MACHINE(obj);
2638     int64_t value = 0;
2639 
2640     if (ms->device_memory) {
2641         value = memory_region_size(&ms->device_memory->mr);
2642     }
2643 
2644     visit_type_int(v, name, &value, errp);
2645 }
2646 
2647 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2648                                             const char *name, void *opaque,
2649                                             Error **errp)
2650 {
2651     PCMachineState *pcms = PC_MACHINE(obj);
2652     uint64_t value = pcms->max_ram_below_4g;
2653 
2654     visit_type_size(v, name, &value, errp);
2655 }
2656 
2657 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2658                                             const char *name, void *opaque,
2659                                             Error **errp)
2660 {
2661     PCMachineState *pcms = PC_MACHINE(obj);
2662     Error *error = NULL;
2663     uint64_t value;
2664 
2665     visit_type_size(v, name, &value, &error);
2666     if (error) {
2667         error_propagate(errp, error);
2668         return;
2669     }
2670     if (value > 4 * GiB) {
2671         error_setg(&error,
2672                    "Machine option 'max-ram-below-4g=%"PRIu64
2673                    "' expects size less than or equal to 4G", value);
2674         error_propagate(errp, error);
2675         return;
2676     }
2677 
2678     if (value < 1 * MiB) {
2679         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2680                     "BIOS may not work with less than 1MiB", value);
2681     }
2682 
2683     pcms->max_ram_below_4g = value;
2684 }
2685 
2686 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2687                                   void *opaque, Error **errp)
2688 {
2689     PCMachineState *pcms = PC_MACHINE(obj);
2690     OnOffAuto vmport = pcms->vmport;
2691 
2692     visit_type_OnOffAuto(v, name, &vmport, errp);
2693 }
2694 
2695 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2696                                   void *opaque, Error **errp)
2697 {
2698     PCMachineState *pcms = PC_MACHINE(obj);
2699 
2700     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2701 }
2702 
2703 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2704 {
2705     bool smm_available = false;
2706 
2707     if (pcms->smm == ON_OFF_AUTO_OFF) {
2708         return false;
2709     }
2710 
2711     if (tcg_enabled() || qtest_enabled()) {
2712         smm_available = true;
2713     } else if (kvm_enabled()) {
2714         smm_available = kvm_has_smm();
2715     }
2716 
2717     if (smm_available) {
2718         return true;
2719     }
2720 
2721     if (pcms->smm == ON_OFF_AUTO_ON) {
2722         error_report("System Management Mode not supported by this hypervisor.");
2723         exit(1);
2724     }
2725     return false;
2726 }
2727 
2728 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2729                                void *opaque, Error **errp)
2730 {
2731     PCMachineState *pcms = PC_MACHINE(obj);
2732     OnOffAuto smm = pcms->smm;
2733 
2734     visit_type_OnOffAuto(v, name, &smm, errp);
2735 }
2736 
2737 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2738                                void *opaque, Error **errp)
2739 {
2740     PCMachineState *pcms = PC_MACHINE(obj);
2741 
2742     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2743 }
2744 
2745 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2746 {
2747     PCMachineState *pcms = PC_MACHINE(obj);
2748 
2749     return pcms->smbus_enabled;
2750 }
2751 
2752 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2753 {
2754     PCMachineState *pcms = PC_MACHINE(obj);
2755 
2756     pcms->smbus_enabled = value;
2757 }
2758 
2759 static bool pc_machine_get_sata(Object *obj, Error **errp)
2760 {
2761     PCMachineState *pcms = PC_MACHINE(obj);
2762 
2763     return pcms->sata_enabled;
2764 }
2765 
2766 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2767 {
2768     PCMachineState *pcms = PC_MACHINE(obj);
2769 
2770     pcms->sata_enabled = value;
2771 }
2772 
2773 static bool pc_machine_get_pit(Object *obj, Error **errp)
2774 {
2775     PCMachineState *pcms = PC_MACHINE(obj);
2776 
2777     return pcms->pit_enabled;
2778 }
2779 
2780 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2781 {
2782     PCMachineState *pcms = PC_MACHINE(obj);
2783 
2784     pcms->pit_enabled = value;
2785 }
2786 
2787 static void pc_machine_initfn(Object *obj)
2788 {
2789     PCMachineState *pcms = PC_MACHINE(obj);
2790 
2791     pcms->max_ram_below_4g = 0; /* use default */
2792     pcms->smm = ON_OFF_AUTO_AUTO;
2793     pcms->vmport = ON_OFF_AUTO_AUTO;
2794     /* acpi build is enabled by default if machine supports it */
2795     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2796     pcms->smbus_enabled = true;
2797     pcms->sata_enabled = true;
2798     pcms->pit_enabled = true;
2799     pcms->smp_dies = 1;
2800 
2801     pc_system_flash_create(pcms);
2802 }
2803 
2804 static void pc_machine_reset(MachineState *machine)
2805 {
2806     CPUState *cs;
2807     X86CPU *cpu;
2808 
2809     qemu_devices_reset();
2810 
2811     /* Reset APIC after devices have been reset to cancel
2812      * any changes that qemu_devices_reset() might have done.
2813      */
2814     CPU_FOREACH(cs) {
2815         cpu = X86_CPU(cs);
2816 
2817         if (cpu->apic_state) {
2818             device_reset(cpu->apic_state);
2819         }
2820     }
2821 }
2822 
2823 static CpuInstanceProperties
2824 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2825 {
2826     MachineClass *mc = MACHINE_GET_CLASS(ms);
2827     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2828 
2829     assert(cpu_index < possible_cpus->len);
2830     return possible_cpus->cpus[cpu_index].props;
2831 }
2832 
2833 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2834 {
2835    X86CPUTopoInfo topo;
2836    PCMachineState *pcms = PC_MACHINE(ms);
2837 
2838    assert(idx < ms->possible_cpus->len);
2839    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2840                             pcms->smp_dies, ms->smp.cores,
2841                             ms->smp.threads, &topo);
2842    return topo.pkg_id % nb_numa_nodes;
2843 }
2844 
2845 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2846 {
2847     PCMachineState *pcms = PC_MACHINE(ms);
2848     int i;
2849     unsigned int max_cpus = ms->smp.max_cpus;
2850 
2851     if (ms->possible_cpus) {
2852         /*
2853          * make sure that max_cpus hasn't changed since the first use, i.e.
2854          * -smp hasn't been parsed after it
2855         */
2856         assert(ms->possible_cpus->len == max_cpus);
2857         return ms->possible_cpus;
2858     }
2859 
2860     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2861                                   sizeof(CPUArchId) * max_cpus);
2862     ms->possible_cpus->len = max_cpus;
2863     for (i = 0; i < ms->possible_cpus->len; i++) {
2864         X86CPUTopoInfo topo;
2865 
2866         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2867         ms->possible_cpus->cpus[i].vcpus_count = 1;
2868         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
2869         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2870                                  pcms->smp_dies, ms->smp.cores,
2871                                  ms->smp.threads, &topo);
2872         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2873         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2874         ms->possible_cpus->cpus[i].props.has_die_id = true;
2875         ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
2876         ms->possible_cpus->cpus[i].props.has_core_id = true;
2877         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2878         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2879         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2880     }
2881     return ms->possible_cpus;
2882 }
2883 
2884 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2885 {
2886     /* cpu index isn't used */
2887     CPUState *cs;
2888 
2889     CPU_FOREACH(cs) {
2890         X86CPU *cpu = X86_CPU(cs);
2891 
2892         if (!cpu->apic_state) {
2893             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2894         } else {
2895             apic_deliver_nmi(cpu->apic_state);
2896         }
2897     }
2898 }
2899 
2900 static void pc_machine_class_init(ObjectClass *oc, void *data)
2901 {
2902     MachineClass *mc = MACHINE_CLASS(oc);
2903     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2904     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2905     NMIClass *nc = NMI_CLASS(oc);
2906 
2907     pcmc->pci_enabled = true;
2908     pcmc->has_acpi_build = true;
2909     pcmc->rsdp_in_ram = true;
2910     pcmc->smbios_defaults = true;
2911     pcmc->smbios_uuid_encoded = true;
2912     pcmc->gigabyte_align = true;
2913     pcmc->has_reserved_memory = true;
2914     pcmc->kvmclock_enabled = true;
2915     pcmc->enforce_aligned_dimm = true;
2916     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2917      * to be used at the moment, 32K should be enough for a while.  */
2918     pcmc->acpi_data_size = 0x20000 + 0x8000;
2919     pcmc->save_tsc_khz = true;
2920     pcmc->linuxboot_dma_enabled = true;
2921     pcmc->pvh_enabled = true;
2922     assert(!mc->get_hotplug_handler);
2923     mc->get_hotplug_handler = pc_get_hotplug_handler;
2924     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2925     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2926     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2927     mc->auto_enable_numa_with_memhp = true;
2928     mc->has_hotpluggable_cpus = true;
2929     mc->default_boot_order = "cad";
2930     mc->hot_add_cpu = pc_hot_add_cpu;
2931     mc->smp_parse = pc_smp_parse;
2932     mc->block_default_type = IF_IDE;
2933     mc->max_cpus = 255;
2934     mc->reset = pc_machine_reset;
2935     hc->pre_plug = pc_machine_device_pre_plug_cb;
2936     hc->plug = pc_machine_device_plug_cb;
2937     hc->unplug_request = pc_machine_device_unplug_request_cb;
2938     hc->unplug = pc_machine_device_unplug_cb;
2939     nc->nmi_monitor_handler = x86_nmi;
2940     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2941     mc->nvdimm_supported = true;
2942     mc->numa_mem_supported = true;
2943 
2944     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2945         pc_machine_get_device_memory_region_size, NULL,
2946         NULL, NULL, &error_abort);
2947 
2948     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2949         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2950         NULL, NULL, &error_abort);
2951 
2952     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2953         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2954 
2955     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2956         pc_machine_get_smm, pc_machine_set_smm,
2957         NULL, NULL, &error_abort);
2958     object_class_property_set_description(oc, PC_MACHINE_SMM,
2959         "Enable SMM (pc & q35)", &error_abort);
2960 
2961     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2962         pc_machine_get_vmport, pc_machine_set_vmport,
2963         NULL, NULL, &error_abort);
2964     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2965         "Enable vmport (pc & q35)", &error_abort);
2966 
2967     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2968         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2969 
2970     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2971         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2972 
2973     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2974         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2975 }
2976 
2977 static const TypeInfo pc_machine_info = {
2978     .name = TYPE_PC_MACHINE,
2979     .parent = TYPE_MACHINE,
2980     .abstract = true,
2981     .instance_size = sizeof(PCMachineState),
2982     .instance_init = pc_machine_initfn,
2983     .class_size = sizeof(PCMachineClass),
2984     .class_init = pc_machine_class_init,
2985     .interfaces = (InterfaceInfo[]) {
2986          { TYPE_HOTPLUG_HANDLER },
2987          { TYPE_NMI },
2988          { }
2989     },
2990 };
2991 
2992 static void pc_machine_register_types(void)
2993 {
2994     type_register_static(&pc_machine_info);
2995 }
2996 
2997 type_init(pc_machine_register_types)
2998