1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "hw/i386/pc.h" 27 #include "hw/char/serial.h" 28 #include "hw/i386/apic.h" 29 #include "hw/i386/topology.h" 30 #include "sysemu/cpus.h" 31 #include "hw/block/fdc.h" 32 #include "hw/ide.h" 33 #include "hw/pci/pci.h" 34 #include "hw/pci/pci_bus.h" 35 #include "hw/nvram/fw_cfg.h" 36 #include "hw/timer/hpet.h" 37 #include "hw/smbios/smbios.h" 38 #include "hw/loader.h" 39 #include "elf.h" 40 #include "multiboot.h" 41 #include "hw/timer/mc146818rtc.h" 42 #include "hw/timer/i8254.h" 43 #include "hw/audio/pcspk.h" 44 #include "hw/pci/msi.h" 45 #include "hw/sysbus.h" 46 #include "sysemu/sysemu.h" 47 #include "sysemu/numa.h" 48 #include "sysemu/kvm.h" 49 #include "sysemu/qtest.h" 50 #include "kvm_i386.h" 51 #include "hw/xen/xen.h" 52 #include "sysemu/block-backend.h" 53 #include "hw/block/block.h" 54 #include "ui/qemu-spice.h" 55 #include "exec/memory.h" 56 #include "exec/address-spaces.h" 57 #include "sysemu/arch_init.h" 58 #include "qemu/bitmap.h" 59 #include "qemu/config-file.h" 60 #include "qemu/error-report.h" 61 #include "hw/acpi/acpi.h" 62 #include "hw/acpi/cpu_hotplug.h" 63 #include "hw/boards.h" 64 #include "hw/pci/pci_host.h" 65 #include "acpi-build.h" 66 #include "hw/mem/pc-dimm.h" 67 #include "qapi/visitor.h" 68 #include "qapi-visit.h" 69 #include "qom/cpu.h" 70 #include "hw/nmi.h" 71 #include "hw/i386/intel_iommu.h" 72 73 /* debug PC/ISA interrupts */ 74 //#define DEBUG_IRQ 75 76 #ifdef DEBUG_IRQ 77 #define DPRINTF(fmt, ...) \ 78 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 79 #else 80 #define DPRINTF(fmt, ...) 81 #endif 82 83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 88 89 #define E820_NR_ENTRIES 16 90 91 struct e820_entry { 92 uint64_t address; 93 uint64_t length; 94 uint32_t type; 95 } QEMU_PACKED __attribute((__aligned__(4))); 96 97 struct e820_table { 98 uint32_t count; 99 struct e820_entry entry[E820_NR_ENTRIES]; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 static struct e820_table e820_reserve; 103 static struct e820_entry *e820_table; 104 static unsigned e820_entries; 105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 106 107 void gsi_handler(void *opaque, int n, int level) 108 { 109 GSIState *s = opaque; 110 111 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 112 if (n < ISA_NUM_IRQS) { 113 qemu_set_irq(s->i8259_irq[n], level); 114 } 115 qemu_set_irq(s->ioapic_irq[n], level); 116 } 117 118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 119 unsigned size) 120 { 121 } 122 123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 124 { 125 return 0xffffffffffffffffULL; 126 } 127 128 /* MSDOS compatibility mode FPU exception support */ 129 static qemu_irq ferr_irq; 130 131 void pc_register_ferr_irq(qemu_irq irq) 132 { 133 ferr_irq = irq; 134 } 135 136 /* XXX: add IGNNE support */ 137 void cpu_set_ferr(CPUX86State *s) 138 { 139 qemu_irq_raise(ferr_irq); 140 } 141 142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 143 unsigned size) 144 { 145 qemu_irq_lower(ferr_irq); 146 } 147 148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 149 { 150 return 0xffffffffffffffffULL; 151 } 152 153 /* TSC handling */ 154 uint64_t cpu_get_tsc(CPUX86State *env) 155 { 156 return cpu_get_ticks(); 157 } 158 159 /* IRQ handling */ 160 int cpu_get_pic_interrupt(CPUX86State *env) 161 { 162 X86CPU *cpu = x86_env_get_cpu(env); 163 int intno; 164 165 if (!kvm_irqchip_in_kernel()) { 166 intno = apic_get_interrupt(cpu->apic_state); 167 if (intno >= 0) { 168 return intno; 169 } 170 /* read the irq from the PIC */ 171 if (!apic_accept_pic_intr(cpu->apic_state)) { 172 return -1; 173 } 174 } 175 176 intno = pic_read_irq(isa_pic); 177 return intno; 178 } 179 180 static void pic_irq_request(void *opaque, int irq, int level) 181 { 182 CPUState *cs = first_cpu; 183 X86CPU *cpu = X86_CPU(cs); 184 185 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 186 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 187 CPU_FOREACH(cs) { 188 cpu = X86_CPU(cs); 189 if (apic_accept_pic_intr(cpu->apic_state)) { 190 apic_deliver_pic_intr(cpu->apic_state, level); 191 } 192 } 193 } else { 194 if (level) { 195 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 196 } else { 197 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 198 } 199 } 200 } 201 202 /* PC cmos mappings */ 203 204 #define REG_EQUIPMENT_BYTE 0x14 205 206 int cmos_get_fd_drive_type(FloppyDriveType fd0) 207 { 208 int val; 209 210 switch (fd0) { 211 case FLOPPY_DRIVE_TYPE_144: 212 /* 1.44 Mb 3"5 drive */ 213 val = 4; 214 break; 215 case FLOPPY_DRIVE_TYPE_288: 216 /* 2.88 Mb 3"5 drive */ 217 val = 5; 218 break; 219 case FLOPPY_DRIVE_TYPE_120: 220 /* 1.2 Mb 5"5 drive */ 221 val = 2; 222 break; 223 case FLOPPY_DRIVE_TYPE_NONE: 224 default: 225 val = 0; 226 break; 227 } 228 return val; 229 } 230 231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 232 int16_t cylinders, int8_t heads, int8_t sectors) 233 { 234 rtc_set_memory(s, type_ofs, 47); 235 rtc_set_memory(s, info_ofs, cylinders); 236 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 237 rtc_set_memory(s, info_ofs + 2, heads); 238 rtc_set_memory(s, info_ofs + 3, 0xff); 239 rtc_set_memory(s, info_ofs + 4, 0xff); 240 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 241 rtc_set_memory(s, info_ofs + 6, cylinders); 242 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 243 rtc_set_memory(s, info_ofs + 8, sectors); 244 } 245 246 /* convert boot_device letter to something recognizable by the bios */ 247 static int boot_device2nibble(char boot_device) 248 { 249 switch(boot_device) { 250 case 'a': 251 case 'b': 252 return 0x01; /* floppy boot */ 253 case 'c': 254 return 0x02; /* hard drive boot */ 255 case 'd': 256 return 0x03; /* CD-ROM boot */ 257 case 'n': 258 return 0x04; /* Network boot */ 259 } 260 return 0; 261 } 262 263 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 264 { 265 #define PC_MAX_BOOT_DEVICES 3 266 int nbds, bds[3] = { 0, }; 267 int i; 268 269 nbds = strlen(boot_device); 270 if (nbds > PC_MAX_BOOT_DEVICES) { 271 error_setg(errp, "Too many boot devices for PC"); 272 return; 273 } 274 for (i = 0; i < nbds; i++) { 275 bds[i] = boot_device2nibble(boot_device[i]); 276 if (bds[i] == 0) { 277 error_setg(errp, "Invalid boot device for PC: '%c'", 278 boot_device[i]); 279 return; 280 } 281 } 282 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 283 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 284 } 285 286 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 287 { 288 set_boot_dev(opaque, boot_device, errp); 289 } 290 291 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 292 { 293 int val, nb, i; 294 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 295 FLOPPY_DRIVE_TYPE_NONE }; 296 297 /* floppy type */ 298 if (floppy) { 299 for (i = 0; i < 2; i++) { 300 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 301 } 302 } 303 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 304 cmos_get_fd_drive_type(fd_type[1]); 305 rtc_set_memory(rtc_state, 0x10, val); 306 307 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 308 nb = 0; 309 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 310 nb++; 311 } 312 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 313 nb++; 314 } 315 switch (nb) { 316 case 0: 317 break; 318 case 1: 319 val |= 0x01; /* 1 drive, ready for boot */ 320 break; 321 case 2: 322 val |= 0x41; /* 2 drives, ready for boot */ 323 break; 324 } 325 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 326 } 327 328 typedef struct pc_cmos_init_late_arg { 329 ISADevice *rtc_state; 330 BusState *idebus[2]; 331 } pc_cmos_init_late_arg; 332 333 typedef struct check_fdc_state { 334 ISADevice *floppy; 335 bool multiple; 336 } CheckFdcState; 337 338 static int check_fdc(Object *obj, void *opaque) 339 { 340 CheckFdcState *state = opaque; 341 Object *fdc; 342 uint32_t iobase; 343 Error *local_err = NULL; 344 345 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 346 if (!fdc) { 347 return 0; 348 } 349 350 iobase = object_property_get_int(obj, "iobase", &local_err); 351 if (local_err || iobase != 0x3f0) { 352 error_free(local_err); 353 return 0; 354 } 355 356 if (state->floppy) { 357 state->multiple = true; 358 } else { 359 state->floppy = ISA_DEVICE(obj); 360 } 361 return 0; 362 } 363 364 static const char * const fdc_container_path[] = { 365 "/unattached", "/peripheral", "/peripheral-anon" 366 }; 367 368 /* 369 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 370 * and ACPI objects. 371 */ 372 ISADevice *pc_find_fdc0(void) 373 { 374 int i; 375 Object *container; 376 CheckFdcState state = { 0 }; 377 378 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 379 container = container_get(qdev_get_machine(), fdc_container_path[i]); 380 object_child_foreach(container, check_fdc, &state); 381 } 382 383 if (state.multiple) { 384 error_report("warning: multiple floppy disk controllers with " 385 "iobase=0x3f0 have been found"); 386 error_printf("the one being picked for CMOS setup might not reflect " 387 "your intent\n"); 388 } 389 390 return state.floppy; 391 } 392 393 static void pc_cmos_init_late(void *opaque) 394 { 395 pc_cmos_init_late_arg *arg = opaque; 396 ISADevice *s = arg->rtc_state; 397 int16_t cylinders; 398 int8_t heads, sectors; 399 int val; 400 int i, trans; 401 402 val = 0; 403 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 404 &cylinders, &heads, §ors) >= 0) { 405 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 406 val |= 0xf0; 407 } 408 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 409 &cylinders, &heads, §ors) >= 0) { 410 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 411 val |= 0x0f; 412 } 413 rtc_set_memory(s, 0x12, val); 414 415 val = 0; 416 for (i = 0; i < 4; i++) { 417 /* NOTE: ide_get_geometry() returns the physical 418 geometry. It is always such that: 1 <= sects <= 63, 1 419 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 420 geometry can be different if a translation is done. */ 421 if (arg->idebus[i / 2] && 422 ide_get_geometry(arg->idebus[i / 2], i % 2, 423 &cylinders, &heads, §ors) >= 0) { 424 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 425 assert((trans & ~3) == 0); 426 val |= trans << (i * 2); 427 } 428 } 429 rtc_set_memory(s, 0x39, val); 430 431 pc_cmos_init_floppy(s, pc_find_fdc0()); 432 433 qemu_unregister_reset(pc_cmos_init_late, opaque); 434 } 435 436 void pc_cmos_init(PCMachineState *pcms, 437 BusState *idebus0, BusState *idebus1, 438 ISADevice *s) 439 { 440 int val; 441 static pc_cmos_init_late_arg arg; 442 443 /* various important CMOS locations needed by PC/Bochs bios */ 444 445 /* memory size */ 446 /* base memory (first MiB) */ 447 val = MIN(pcms->below_4g_mem_size / 1024, 640); 448 rtc_set_memory(s, 0x15, val); 449 rtc_set_memory(s, 0x16, val >> 8); 450 /* extended memory (next 64MiB) */ 451 if (pcms->below_4g_mem_size > 1024 * 1024) { 452 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024; 453 } else { 454 val = 0; 455 } 456 if (val > 65535) 457 val = 65535; 458 rtc_set_memory(s, 0x17, val); 459 rtc_set_memory(s, 0x18, val >> 8); 460 rtc_set_memory(s, 0x30, val); 461 rtc_set_memory(s, 0x31, val >> 8); 462 /* memory between 16MiB and 4GiB */ 463 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) { 464 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536; 465 } else { 466 val = 0; 467 } 468 if (val > 65535) 469 val = 65535; 470 rtc_set_memory(s, 0x34, val); 471 rtc_set_memory(s, 0x35, val >> 8); 472 /* memory above 4GiB */ 473 val = pcms->above_4g_mem_size / 65536; 474 rtc_set_memory(s, 0x5b, val); 475 rtc_set_memory(s, 0x5c, val >> 8); 476 rtc_set_memory(s, 0x5d, val >> 16); 477 478 object_property_add_link(OBJECT(pcms), "rtc_state", 479 TYPE_ISA_DEVICE, 480 (Object **)&pcms->rtc, 481 object_property_allow_set_link, 482 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); 483 object_property_set_link(OBJECT(pcms), OBJECT(s), 484 "rtc_state", &error_abort); 485 486 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 487 488 val = 0; 489 val |= 0x02; /* FPU is there */ 490 val |= 0x04; /* PS/2 mouse installed */ 491 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 492 493 /* hard drives and FDC */ 494 arg.rtc_state = s; 495 arg.idebus[0] = idebus0; 496 arg.idebus[1] = idebus1; 497 qemu_register_reset(pc_cmos_init_late, &arg); 498 } 499 500 #define TYPE_PORT92 "port92" 501 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 502 503 /* port 92 stuff: could be split off */ 504 typedef struct Port92State { 505 ISADevice parent_obj; 506 507 MemoryRegion io; 508 uint8_t outport; 509 qemu_irq a20_out; 510 } Port92State; 511 512 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 513 unsigned size) 514 { 515 Port92State *s = opaque; 516 int oldval = s->outport; 517 518 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 519 s->outport = val; 520 qemu_set_irq(s->a20_out, (val >> 1) & 1); 521 if ((val & 1) && !(oldval & 1)) { 522 qemu_system_reset_request(); 523 } 524 } 525 526 static uint64_t port92_read(void *opaque, hwaddr addr, 527 unsigned size) 528 { 529 Port92State *s = opaque; 530 uint32_t ret; 531 532 ret = s->outport; 533 DPRINTF("port92: read 0x%02x\n", ret); 534 return ret; 535 } 536 537 static void port92_init(ISADevice *dev, qemu_irq a20_out) 538 { 539 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 540 } 541 542 static const VMStateDescription vmstate_port92_isa = { 543 .name = "port92", 544 .version_id = 1, 545 .minimum_version_id = 1, 546 .fields = (VMStateField[]) { 547 VMSTATE_UINT8(outport, Port92State), 548 VMSTATE_END_OF_LIST() 549 } 550 }; 551 552 static void port92_reset(DeviceState *d) 553 { 554 Port92State *s = PORT92(d); 555 556 s->outport &= ~1; 557 } 558 559 static const MemoryRegionOps port92_ops = { 560 .read = port92_read, 561 .write = port92_write, 562 .impl = { 563 .min_access_size = 1, 564 .max_access_size = 1, 565 }, 566 .endianness = DEVICE_LITTLE_ENDIAN, 567 }; 568 569 static void port92_initfn(Object *obj) 570 { 571 Port92State *s = PORT92(obj); 572 573 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 574 575 s->outport = 0; 576 577 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 578 } 579 580 static void port92_realizefn(DeviceState *dev, Error **errp) 581 { 582 ISADevice *isadev = ISA_DEVICE(dev); 583 Port92State *s = PORT92(dev); 584 585 isa_register_ioport(isadev, &s->io, 0x92); 586 } 587 588 static void port92_class_initfn(ObjectClass *klass, void *data) 589 { 590 DeviceClass *dc = DEVICE_CLASS(klass); 591 592 dc->realize = port92_realizefn; 593 dc->reset = port92_reset; 594 dc->vmsd = &vmstate_port92_isa; 595 /* 596 * Reason: unlike ordinary ISA devices, this one needs additional 597 * wiring: its A20 output line needs to be wired up by 598 * port92_init(). 599 */ 600 dc->cannot_instantiate_with_device_add_yet = true; 601 } 602 603 static const TypeInfo port92_info = { 604 .name = TYPE_PORT92, 605 .parent = TYPE_ISA_DEVICE, 606 .instance_size = sizeof(Port92State), 607 .instance_init = port92_initfn, 608 .class_init = port92_class_initfn, 609 }; 610 611 static void port92_register_types(void) 612 { 613 type_register_static(&port92_info); 614 } 615 616 type_init(port92_register_types) 617 618 static void handle_a20_line_change(void *opaque, int irq, int level) 619 { 620 X86CPU *cpu = opaque; 621 622 /* XXX: send to all CPUs ? */ 623 /* XXX: add logic to handle multiple A20 line sources */ 624 x86_cpu_set_a20(cpu, level); 625 } 626 627 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 628 { 629 int index = le32_to_cpu(e820_reserve.count); 630 struct e820_entry *entry; 631 632 if (type != E820_RAM) { 633 /* old FW_CFG_E820_TABLE entry -- reservations only */ 634 if (index >= E820_NR_ENTRIES) { 635 return -EBUSY; 636 } 637 entry = &e820_reserve.entry[index++]; 638 639 entry->address = cpu_to_le64(address); 640 entry->length = cpu_to_le64(length); 641 entry->type = cpu_to_le32(type); 642 643 e820_reserve.count = cpu_to_le32(index); 644 } 645 646 /* new "etc/e820" file -- include ram too */ 647 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 648 e820_table[e820_entries].address = cpu_to_le64(address); 649 e820_table[e820_entries].length = cpu_to_le64(length); 650 e820_table[e820_entries].type = cpu_to_le32(type); 651 e820_entries++; 652 653 return e820_entries; 654 } 655 656 int e820_get_num_entries(void) 657 { 658 return e820_entries; 659 } 660 661 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 662 { 663 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 664 *address = le64_to_cpu(e820_table[idx].address); 665 *length = le64_to_cpu(e820_table[idx].length); 666 return true; 667 } 668 return false; 669 } 670 671 /* Enables contiguous-apic-ID mode, for compatibility */ 672 static bool compat_apic_id_mode; 673 674 void enable_compat_apic_id_mode(void) 675 { 676 compat_apic_id_mode = true; 677 } 678 679 /* Calculates initial APIC ID for a specific CPU index 680 * 681 * Currently we need to be able to calculate the APIC ID from the CPU index 682 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 683 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 684 * all CPUs up to max_cpus. 685 */ 686 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 687 { 688 uint32_t correct_id; 689 static bool warned; 690 691 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 692 if (compat_apic_id_mode) { 693 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 694 error_report("APIC IDs set in compatibility mode, " 695 "CPU topology won't match the configuration"); 696 warned = true; 697 } 698 return cpu_index; 699 } else { 700 return correct_id; 701 } 702 } 703 704 static void pc_build_smbios(PCMachineState *pcms) 705 { 706 uint8_t *smbios_tables, *smbios_anchor; 707 size_t smbios_tables_len, smbios_anchor_len; 708 struct smbios_phys_mem_area *mem_array; 709 unsigned i, array_count; 710 MachineState *ms = MACHINE(pcms); 711 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 712 713 /* tell smbios about cpuid version and features */ 714 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 715 716 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 717 if (smbios_tables) { 718 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 719 smbios_tables, smbios_tables_len); 720 } 721 722 /* build the array of physical mem area from e820 table */ 723 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 724 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 725 uint64_t addr, len; 726 727 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 728 mem_array[array_count].address = addr; 729 mem_array[array_count].length = len; 730 array_count++; 731 } 732 } 733 smbios_get_tables(mem_array, array_count, 734 &smbios_tables, &smbios_tables_len, 735 &smbios_anchor, &smbios_anchor_len); 736 g_free(mem_array); 737 738 if (smbios_anchor) { 739 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 740 smbios_tables, smbios_tables_len); 741 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 742 smbios_anchor, smbios_anchor_len); 743 } 744 } 745 746 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 747 { 748 FWCfgState *fw_cfg; 749 uint64_t *numa_fw_cfg; 750 int i; 751 const CPUArchIdList *cpus; 752 MachineClass *mc = MACHINE_GET_CLASS(pcms); 753 754 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 755 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 756 757 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 758 * 759 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 760 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 761 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 762 * for CPU hotplug also uses APIC ID and not "CPU index". 763 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 764 * but the "limit to the APIC ID values SeaBIOS may see". 765 * 766 * So for compatibility reasons with old BIOSes we are stuck with 767 * "etc/max-cpus" actually being apic_id_limit 768 */ 769 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 770 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 771 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 772 acpi_tables, acpi_tables_len); 773 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 774 775 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 776 &e820_reserve, sizeof(e820_reserve)); 777 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 778 sizeof(struct e820_entry) * e820_entries); 779 780 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 781 /* allocate memory for the NUMA channel: one (64bit) word for the number 782 * of nodes, one word for each VCPU->node and one word for each node to 783 * hold the amount of memory. 784 */ 785 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 786 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 787 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 788 for (i = 0; i < cpus->len; i++) { 789 unsigned int apic_id = cpus->cpus[i].arch_id; 790 assert(apic_id < pcms->apic_id_limit); 791 if (cpus->cpus[i].props.has_node_id) { 792 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 793 } 794 } 795 for (i = 0; i < nb_numa_nodes; i++) { 796 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 797 cpu_to_le64(numa_info[i].node_mem); 798 } 799 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 800 (1 + pcms->apic_id_limit + nb_numa_nodes) * 801 sizeof(*numa_fw_cfg)); 802 803 return fw_cfg; 804 } 805 806 static long get_file_size(FILE *f) 807 { 808 long where, size; 809 810 /* XXX: on Unix systems, using fstat() probably makes more sense */ 811 812 where = ftell(f); 813 fseek(f, 0, SEEK_END); 814 size = ftell(f); 815 fseek(f, where, SEEK_SET); 816 817 return size; 818 } 819 820 /* setup_data types */ 821 #define SETUP_NONE 0 822 #define SETUP_E820_EXT 1 823 #define SETUP_DTB 2 824 #define SETUP_PCI 3 825 #define SETUP_EFI 4 826 827 struct setup_data { 828 uint64_t next; 829 uint32_t type; 830 uint32_t len; 831 uint8_t data[0]; 832 } __attribute__((packed)); 833 834 static void load_linux(PCMachineState *pcms, 835 FWCfgState *fw_cfg) 836 { 837 uint16_t protocol; 838 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 839 int dtb_size, setup_data_offset; 840 uint32_t initrd_max; 841 uint8_t header[8192], *setup, *kernel, *initrd_data; 842 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 843 FILE *f; 844 char *vmode; 845 MachineState *machine = MACHINE(pcms); 846 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 847 struct setup_data *setup_data; 848 const char *kernel_filename = machine->kernel_filename; 849 const char *initrd_filename = machine->initrd_filename; 850 const char *dtb_filename = machine->dtb; 851 const char *kernel_cmdline = machine->kernel_cmdline; 852 853 /* Align to 16 bytes as a paranoia measure */ 854 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 855 856 /* load the kernel header */ 857 f = fopen(kernel_filename, "rb"); 858 if (!f || !(kernel_size = get_file_size(f)) || 859 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 860 MIN(ARRAY_SIZE(header), kernel_size)) { 861 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 862 kernel_filename, strerror(errno)); 863 exit(1); 864 } 865 866 /* kernel protocol version */ 867 #if 0 868 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 869 #endif 870 if (ldl_p(header+0x202) == 0x53726448) { 871 protocol = lduw_p(header+0x206); 872 } else { 873 /* This looks like a multiboot kernel. If it is, let's stop 874 treating it like a Linux kernel. */ 875 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 876 kernel_cmdline, kernel_size, header)) { 877 return; 878 } 879 protocol = 0; 880 } 881 882 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 883 /* Low kernel */ 884 real_addr = 0x90000; 885 cmdline_addr = 0x9a000 - cmdline_size; 886 prot_addr = 0x10000; 887 } else if (protocol < 0x202) { 888 /* High but ancient kernel */ 889 real_addr = 0x90000; 890 cmdline_addr = 0x9a000 - cmdline_size; 891 prot_addr = 0x100000; 892 } else { 893 /* High and recent kernel */ 894 real_addr = 0x10000; 895 cmdline_addr = 0x20000; 896 prot_addr = 0x100000; 897 } 898 899 #if 0 900 fprintf(stderr, 901 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 902 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 903 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 904 real_addr, 905 cmdline_addr, 906 prot_addr); 907 #endif 908 909 /* highest address for loading the initrd */ 910 if (protocol >= 0x203) { 911 initrd_max = ldl_p(header+0x22c); 912 } else { 913 initrd_max = 0x37ffffff; 914 } 915 916 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 917 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 918 } 919 920 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 921 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 922 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 923 924 if (protocol >= 0x202) { 925 stl_p(header+0x228, cmdline_addr); 926 } else { 927 stw_p(header+0x20, 0xA33F); 928 stw_p(header+0x22, cmdline_addr-real_addr); 929 } 930 931 /* handle vga= parameter */ 932 vmode = strstr(kernel_cmdline, "vga="); 933 if (vmode) { 934 unsigned int video_mode; 935 /* skip "vga=" */ 936 vmode += 4; 937 if (!strncmp(vmode, "normal", 6)) { 938 video_mode = 0xffff; 939 } else if (!strncmp(vmode, "ext", 3)) { 940 video_mode = 0xfffe; 941 } else if (!strncmp(vmode, "ask", 3)) { 942 video_mode = 0xfffd; 943 } else { 944 video_mode = strtol(vmode, NULL, 0); 945 } 946 stw_p(header+0x1fa, video_mode); 947 } 948 949 /* loader type */ 950 /* High nybble = B reserved for QEMU; low nybble is revision number. 951 If this code is substantially changed, you may want to consider 952 incrementing the revision. */ 953 if (protocol >= 0x200) { 954 header[0x210] = 0xB0; 955 } 956 /* heap */ 957 if (protocol >= 0x201) { 958 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 959 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 960 } 961 962 /* load initrd */ 963 if (initrd_filename) { 964 if (protocol < 0x200) { 965 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 966 exit(1); 967 } 968 969 initrd_size = get_image_size(initrd_filename); 970 if (initrd_size < 0) { 971 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 972 initrd_filename, strerror(errno)); 973 exit(1); 974 } 975 976 initrd_addr = (initrd_max-initrd_size) & ~4095; 977 978 initrd_data = g_malloc(initrd_size); 979 load_image(initrd_filename, initrd_data); 980 981 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 982 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 983 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 984 985 stl_p(header+0x218, initrd_addr); 986 stl_p(header+0x21c, initrd_size); 987 } 988 989 /* load kernel and setup */ 990 setup_size = header[0x1f1]; 991 if (setup_size == 0) { 992 setup_size = 4; 993 } 994 setup_size = (setup_size+1)*512; 995 if (setup_size > kernel_size) { 996 fprintf(stderr, "qemu: invalid kernel header\n"); 997 exit(1); 998 } 999 kernel_size -= setup_size; 1000 1001 setup = g_malloc(setup_size); 1002 kernel = g_malloc(kernel_size); 1003 fseek(f, 0, SEEK_SET); 1004 if (fread(setup, 1, setup_size, f) != setup_size) { 1005 fprintf(stderr, "fread() failed\n"); 1006 exit(1); 1007 } 1008 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1009 fprintf(stderr, "fread() failed\n"); 1010 exit(1); 1011 } 1012 fclose(f); 1013 1014 /* append dtb to kernel */ 1015 if (dtb_filename) { 1016 if (protocol < 0x209) { 1017 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1018 exit(1); 1019 } 1020 1021 dtb_size = get_image_size(dtb_filename); 1022 if (dtb_size <= 0) { 1023 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1024 dtb_filename, strerror(errno)); 1025 exit(1); 1026 } 1027 1028 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1029 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1030 kernel = g_realloc(kernel, kernel_size); 1031 1032 stq_p(header+0x250, prot_addr + setup_data_offset); 1033 1034 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1035 setup_data->next = 0; 1036 setup_data->type = cpu_to_le32(SETUP_DTB); 1037 setup_data->len = cpu_to_le32(dtb_size); 1038 1039 load_image_size(dtb_filename, setup_data->data, dtb_size); 1040 } 1041 1042 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1043 1044 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1045 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1046 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1047 1048 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1049 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1050 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1051 1052 if (fw_cfg_dma_enabled(fw_cfg)) { 1053 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1054 option_rom[nb_option_roms].bootindex = 0; 1055 } else { 1056 option_rom[nb_option_roms].name = "linuxboot.bin"; 1057 option_rom[nb_option_roms].bootindex = 0; 1058 } 1059 nb_option_roms++; 1060 } 1061 1062 #define NE2000_NB_MAX 6 1063 1064 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1065 0x280, 0x380 }; 1066 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1067 1068 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1069 { 1070 static int nb_ne2k = 0; 1071 1072 if (nb_ne2k == NE2000_NB_MAX) 1073 return; 1074 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1075 ne2000_irq[nb_ne2k], nd); 1076 nb_ne2k++; 1077 } 1078 1079 DeviceState *cpu_get_current_apic(void) 1080 { 1081 if (current_cpu) { 1082 X86CPU *cpu = X86_CPU(current_cpu); 1083 return cpu->apic_state; 1084 } else { 1085 return NULL; 1086 } 1087 } 1088 1089 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1090 { 1091 X86CPU *cpu = opaque; 1092 1093 if (level) { 1094 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1095 } 1096 } 1097 1098 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1099 { 1100 Object *cpu = NULL; 1101 Error *local_err = NULL; 1102 1103 cpu = object_new(typename); 1104 1105 object_property_set_int(cpu, apic_id, "apic-id", &local_err); 1106 object_property_set_bool(cpu, true, "realized", &local_err); 1107 1108 object_unref(cpu); 1109 error_propagate(errp, local_err); 1110 } 1111 1112 void pc_hot_add_cpu(const int64_t id, Error **errp) 1113 { 1114 ObjectClass *oc; 1115 MachineState *ms = MACHINE(qdev_get_machine()); 1116 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1117 Error *local_err = NULL; 1118 1119 if (id < 0) { 1120 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1121 return; 1122 } 1123 1124 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1125 error_setg(errp, "Unable to add CPU: %" PRIi64 1126 ", resulting APIC ID (%" PRIi64 ") is too large", 1127 id, apic_id); 1128 return; 1129 } 1130 1131 assert(ms->possible_cpus->cpus[0].cpu); /* BSP is always present */ 1132 oc = OBJECT_CLASS(CPU_GET_CLASS(ms->possible_cpus->cpus[0].cpu)); 1133 pc_new_cpu(object_class_get_name(oc), apic_id, &local_err); 1134 if (local_err) { 1135 error_propagate(errp, local_err); 1136 return; 1137 } 1138 } 1139 1140 void pc_cpus_init(PCMachineState *pcms) 1141 { 1142 int i; 1143 CPUClass *cc; 1144 ObjectClass *oc; 1145 const char *typename; 1146 gchar **model_pieces; 1147 const CPUArchIdList *possible_cpus; 1148 MachineState *machine = MACHINE(pcms); 1149 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1150 1151 /* init CPUs */ 1152 if (machine->cpu_model == NULL) { 1153 #ifdef TARGET_X86_64 1154 machine->cpu_model = "qemu64"; 1155 #else 1156 machine->cpu_model = "qemu32"; 1157 #endif 1158 } 1159 1160 model_pieces = g_strsplit(machine->cpu_model, ",", 2); 1161 if (!model_pieces[0]) { 1162 error_report("Invalid/empty CPU model name"); 1163 exit(1); 1164 } 1165 1166 oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]); 1167 if (oc == NULL) { 1168 error_report("Unable to find CPU definition: %s", model_pieces[0]); 1169 exit(1); 1170 } 1171 typename = object_class_get_name(oc); 1172 cc = CPU_CLASS(oc); 1173 cc->parse_features(typename, model_pieces[1], &error_fatal); 1174 g_strfreev(model_pieces); 1175 1176 /* Calculates the limit to CPU APIC ID values 1177 * 1178 * Limit for the APIC ID value, so that all 1179 * CPU APIC IDs are < pcms->apic_id_limit. 1180 * 1181 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1182 */ 1183 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1184 possible_cpus = mc->possible_cpu_arch_ids(machine); 1185 for (i = 0; i < smp_cpus; i++) { 1186 pc_new_cpu(typename, possible_cpus->cpus[i].arch_id, &error_fatal); 1187 } 1188 } 1189 1190 static void pc_build_feature_control_file(PCMachineState *pcms) 1191 { 1192 MachineState *ms = MACHINE(pcms); 1193 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1194 CPUX86State *env = &cpu->env; 1195 uint32_t unused, ecx, edx; 1196 uint64_t feature_control_bits = 0; 1197 uint64_t *val; 1198 1199 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1200 if (ecx & CPUID_EXT_VMX) { 1201 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1202 } 1203 1204 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1205 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1206 (env->mcg_cap & MCG_LMCE_P)) { 1207 feature_control_bits |= FEATURE_CONTROL_LMCE; 1208 } 1209 1210 if (!feature_control_bits) { 1211 return; 1212 } 1213 1214 val = g_malloc(sizeof(*val)); 1215 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1216 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1217 } 1218 1219 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1220 { 1221 if (cpus_count > 0xff) { 1222 /* If the number of CPUs can't be represented in 8 bits, the 1223 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1224 * to make old BIOSes fail more predictably. 1225 */ 1226 rtc_set_memory(rtc, 0x5f, 0); 1227 } else { 1228 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1229 } 1230 } 1231 1232 static 1233 void pc_machine_done(Notifier *notifier, void *data) 1234 { 1235 PCMachineState *pcms = container_of(notifier, 1236 PCMachineState, machine_done); 1237 PCIBus *bus = pcms->bus; 1238 1239 /* set the number of CPUs */ 1240 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1241 1242 if (bus) { 1243 int extra_hosts = 0; 1244 1245 QLIST_FOREACH(bus, &bus->child, sibling) { 1246 /* look for expander root buses */ 1247 if (pci_bus_is_root(bus)) { 1248 extra_hosts++; 1249 } 1250 } 1251 if (extra_hosts && pcms->fw_cfg) { 1252 uint64_t *val = g_malloc(sizeof(*val)); 1253 *val = cpu_to_le64(extra_hosts); 1254 fw_cfg_add_file(pcms->fw_cfg, 1255 "etc/extra-pci-roots", val, sizeof(*val)); 1256 } 1257 } 1258 1259 acpi_setup(); 1260 if (pcms->fw_cfg) { 1261 pc_build_smbios(pcms); 1262 pc_build_feature_control_file(pcms); 1263 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1264 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1265 } 1266 1267 if (pcms->apic_id_limit > 255) { 1268 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1269 1270 if (!iommu || !iommu->x86_iommu.intr_supported || 1271 iommu->intr_eim != ON_OFF_AUTO_ON) { 1272 error_report("current -smp configuration requires " 1273 "Extended Interrupt Mode enabled. " 1274 "You can add an IOMMU using: " 1275 "-device intel-iommu,intremap=on,eim=on"); 1276 exit(EXIT_FAILURE); 1277 } 1278 } 1279 } 1280 1281 void pc_guest_info_init(PCMachineState *pcms) 1282 { 1283 int i; 1284 1285 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1286 pcms->numa_nodes = nb_numa_nodes; 1287 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1288 sizeof *pcms->node_mem); 1289 for (i = 0; i < nb_numa_nodes; i++) { 1290 pcms->node_mem[i] = numa_info[i].node_mem; 1291 } 1292 1293 pcms->machine_done.notify = pc_machine_done; 1294 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1295 } 1296 1297 /* setup pci memory address space mapping into system address space */ 1298 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1299 MemoryRegion *pci_address_space) 1300 { 1301 /* Set to lower priority than RAM */ 1302 memory_region_add_subregion_overlap(system_memory, 0x0, 1303 pci_address_space, -1); 1304 } 1305 1306 void pc_acpi_init(const char *default_dsdt) 1307 { 1308 char *filename; 1309 1310 if (acpi_tables != NULL) { 1311 /* manually set via -acpitable, leave it alone */ 1312 return; 1313 } 1314 1315 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1316 if (filename == NULL) { 1317 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 1318 } else { 1319 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1320 &error_abort); 1321 Error *err = NULL; 1322 1323 qemu_opt_set(opts, "file", filename, &error_abort); 1324 1325 acpi_table_add_builtin(opts, &err); 1326 if (err) { 1327 error_reportf_err(err, "WARNING: failed to load %s: ", 1328 filename); 1329 } 1330 g_free(filename); 1331 } 1332 } 1333 1334 void xen_load_linux(PCMachineState *pcms) 1335 { 1336 int i; 1337 FWCfgState *fw_cfg; 1338 1339 assert(MACHINE(pcms)->kernel_filename != NULL); 1340 1341 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1342 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1343 rom_set_fw(fw_cfg); 1344 1345 load_linux(pcms, fw_cfg); 1346 for (i = 0; i < nb_option_roms; i++) { 1347 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1348 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1349 !strcmp(option_rom[i].name, "multiboot.bin")); 1350 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1351 } 1352 pcms->fw_cfg = fw_cfg; 1353 } 1354 1355 void pc_memory_init(PCMachineState *pcms, 1356 MemoryRegion *system_memory, 1357 MemoryRegion *rom_memory, 1358 MemoryRegion **ram_memory) 1359 { 1360 int linux_boot, i; 1361 MemoryRegion *ram, *option_rom_mr; 1362 MemoryRegion *ram_below_4g, *ram_above_4g; 1363 FWCfgState *fw_cfg; 1364 MachineState *machine = MACHINE(pcms); 1365 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1366 1367 assert(machine->ram_size == pcms->below_4g_mem_size + 1368 pcms->above_4g_mem_size); 1369 1370 linux_boot = (machine->kernel_filename != NULL); 1371 1372 /* Allocate RAM. We allocate it as a single memory region and use 1373 * aliases to address portions of it, mostly for backwards compatibility 1374 * with older qemus that used qemu_ram_alloc(). 1375 */ 1376 ram = g_malloc(sizeof(*ram)); 1377 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1378 machine->ram_size); 1379 *ram_memory = ram; 1380 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1381 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1382 0, pcms->below_4g_mem_size); 1383 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1384 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1385 if (pcms->above_4g_mem_size > 0) { 1386 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1387 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1388 pcms->below_4g_mem_size, 1389 pcms->above_4g_mem_size); 1390 memory_region_add_subregion(system_memory, 0x100000000ULL, 1391 ram_above_4g); 1392 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1393 } 1394 1395 if (!pcmc->has_reserved_memory && 1396 (machine->ram_slots || 1397 (machine->maxram_size > machine->ram_size))) { 1398 MachineClass *mc = MACHINE_GET_CLASS(machine); 1399 1400 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1401 mc->name); 1402 exit(EXIT_FAILURE); 1403 } 1404 1405 /* initialize hotplug memory address space */ 1406 if (pcmc->has_reserved_memory && 1407 (machine->ram_size < machine->maxram_size)) { 1408 ram_addr_t hotplug_mem_size = 1409 machine->maxram_size - machine->ram_size; 1410 1411 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1412 error_report("unsupported amount of memory slots: %"PRIu64, 1413 machine->ram_slots); 1414 exit(EXIT_FAILURE); 1415 } 1416 1417 if (QEMU_ALIGN_UP(machine->maxram_size, 1418 TARGET_PAGE_SIZE) != machine->maxram_size) { 1419 error_report("maximum memory size must by aligned to multiple of " 1420 "%d bytes", TARGET_PAGE_SIZE); 1421 exit(EXIT_FAILURE); 1422 } 1423 1424 pcms->hotplug_memory.base = 1425 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30); 1426 1427 if (pcmc->enforce_aligned_dimm) { 1428 /* size hotplug region assuming 1G page max alignment per slot */ 1429 hotplug_mem_size += (1ULL << 30) * machine->ram_slots; 1430 } 1431 1432 if ((pcms->hotplug_memory.base + hotplug_mem_size) < 1433 hotplug_mem_size) { 1434 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1435 machine->maxram_size); 1436 exit(EXIT_FAILURE); 1437 } 1438 1439 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms), 1440 "hotplug-memory", hotplug_mem_size); 1441 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base, 1442 &pcms->hotplug_memory.mr); 1443 } 1444 1445 /* Initialize PC system firmware */ 1446 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1447 1448 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1449 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1450 &error_fatal); 1451 vmstate_register_ram_global(option_rom_mr); 1452 memory_region_add_subregion_overlap(rom_memory, 1453 PC_ROM_MIN_VGA, 1454 option_rom_mr, 1455 1); 1456 1457 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1458 1459 rom_set_fw(fw_cfg); 1460 1461 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1462 uint64_t *val = g_malloc(sizeof(*val)); 1463 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1464 uint64_t res_mem_end = pcms->hotplug_memory.base; 1465 1466 if (!pcmc->broken_reserved_end) { 1467 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr); 1468 } 1469 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30)); 1470 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1471 } 1472 1473 if (linux_boot) { 1474 load_linux(pcms, fw_cfg); 1475 } 1476 1477 for (i = 0; i < nb_option_roms; i++) { 1478 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1479 } 1480 pcms->fw_cfg = fw_cfg; 1481 1482 /* Init default IOAPIC address space */ 1483 pcms->ioapic_as = &address_space_memory; 1484 } 1485 1486 qemu_irq pc_allocate_cpu_irq(void) 1487 { 1488 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1489 } 1490 1491 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1492 { 1493 DeviceState *dev = NULL; 1494 1495 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1496 if (pci_bus) { 1497 PCIDevice *pcidev = pci_vga_init(pci_bus); 1498 dev = pcidev ? &pcidev->qdev : NULL; 1499 } else if (isa_bus) { 1500 ISADevice *isadev = isa_vga_init(isa_bus); 1501 dev = isadev ? DEVICE(isadev) : NULL; 1502 } 1503 rom_reset_order_override(); 1504 return dev; 1505 } 1506 1507 static const MemoryRegionOps ioport80_io_ops = { 1508 .write = ioport80_write, 1509 .read = ioport80_read, 1510 .endianness = DEVICE_NATIVE_ENDIAN, 1511 .impl = { 1512 .min_access_size = 1, 1513 .max_access_size = 1, 1514 }, 1515 }; 1516 1517 static const MemoryRegionOps ioportF0_io_ops = { 1518 .write = ioportF0_write, 1519 .read = ioportF0_read, 1520 .endianness = DEVICE_NATIVE_ENDIAN, 1521 .impl = { 1522 .min_access_size = 1, 1523 .max_access_size = 1, 1524 }, 1525 }; 1526 1527 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1528 ISADevice **rtc_state, 1529 bool create_fdctrl, 1530 bool no_vmport, 1531 bool has_pit, 1532 uint32_t hpet_irqs) 1533 { 1534 int i; 1535 DriveInfo *fd[MAX_FD]; 1536 DeviceState *hpet = NULL; 1537 int pit_isa_irq = 0; 1538 qemu_irq pit_alt_irq = NULL; 1539 qemu_irq rtc_irq = NULL; 1540 qemu_irq *a20_line; 1541 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1542 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1543 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1544 1545 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1546 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1547 1548 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1549 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1550 1551 /* 1552 * Check if an HPET shall be created. 1553 * 1554 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1555 * when the HPET wants to take over. Thus we have to disable the latter. 1556 */ 1557 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1558 /* In order to set property, here not using sysbus_try_create_simple */ 1559 hpet = qdev_try_create(NULL, TYPE_HPET); 1560 if (hpet) { 1561 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1562 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1563 * IRQ8 and IRQ2. 1564 */ 1565 uint8_t compat = object_property_get_int(OBJECT(hpet), 1566 HPET_INTCAP, NULL); 1567 if (!compat) { 1568 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1569 } 1570 qdev_init_nofail(hpet); 1571 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1572 1573 for (i = 0; i < GSI_NUM_PINS; i++) { 1574 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1575 } 1576 pit_isa_irq = -1; 1577 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1578 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1579 } 1580 } 1581 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1582 1583 qemu_register_boot_set(pc_boot_set, *rtc_state); 1584 1585 if (!xen_enabled() && has_pit) { 1586 if (kvm_pit_in_kernel()) { 1587 pit = kvm_pit_init(isa_bus, 0x40); 1588 } else { 1589 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1590 } 1591 if (hpet) { 1592 /* connect PIT to output control line of the HPET */ 1593 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1594 } 1595 pcspk_init(isa_bus, pit); 1596 } 1597 1598 serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS); 1599 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1600 1601 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1602 i8042 = isa_create_simple(isa_bus, "i8042"); 1603 i8042_setup_a20_line(i8042, a20_line[0]); 1604 if (!no_vmport) { 1605 vmport_init(isa_bus); 1606 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1607 } else { 1608 vmmouse = NULL; 1609 } 1610 if (vmmouse) { 1611 DeviceState *dev = DEVICE(vmmouse); 1612 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1613 qdev_init_nofail(dev); 1614 } 1615 port92 = isa_create_simple(isa_bus, "port92"); 1616 port92_init(port92, a20_line[1]); 1617 g_free(a20_line); 1618 1619 DMA_init(isa_bus, 0); 1620 1621 for(i = 0; i < MAX_FD; i++) { 1622 fd[i] = drive_get(IF_FLOPPY, 0, i); 1623 create_fdctrl |= !!fd[i]; 1624 } 1625 if (create_fdctrl) { 1626 fdctrl_init_isa(isa_bus, fd); 1627 } 1628 } 1629 1630 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1631 { 1632 int i; 1633 1634 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1635 for (i = 0; i < nb_nics; i++) { 1636 NICInfo *nd = &nd_table[i]; 1637 1638 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1639 pc_init_ne2k_isa(isa_bus, nd); 1640 } else { 1641 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1642 } 1643 } 1644 rom_reset_order_override(); 1645 } 1646 1647 void pc_pci_device_init(PCIBus *pci_bus) 1648 { 1649 int max_bus; 1650 int bus; 1651 1652 /* Note: if=scsi is deprecated with PC machine types */ 1653 max_bus = drive_get_max_bus(IF_SCSI); 1654 for (bus = 0; bus <= max_bus; bus++) { 1655 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1656 /* 1657 * By not creating frontends here, we make 1658 * scsi_legacy_handle_cmdline() create them, and warn that 1659 * this usage is deprecated. 1660 */ 1661 } 1662 } 1663 1664 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1665 { 1666 DeviceState *dev; 1667 SysBusDevice *d; 1668 unsigned int i; 1669 1670 if (kvm_ioapic_in_kernel()) { 1671 dev = qdev_create(NULL, "kvm-ioapic"); 1672 } else { 1673 dev = qdev_create(NULL, "ioapic"); 1674 } 1675 if (parent_name) { 1676 object_property_add_child(object_resolve_path(parent_name, NULL), 1677 "ioapic", OBJECT(dev), NULL); 1678 } 1679 qdev_init_nofail(dev); 1680 d = SYS_BUS_DEVICE(dev); 1681 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1682 1683 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1684 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1685 } 1686 } 1687 1688 static void pc_dimm_plug(HotplugHandler *hotplug_dev, 1689 DeviceState *dev, Error **errp) 1690 { 1691 HotplugHandlerClass *hhc; 1692 Error *local_err = NULL; 1693 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1694 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1695 PCDIMMDevice *dimm = PC_DIMM(dev); 1696 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1697 MemoryRegion *mr = ddc->get_memory_region(dimm); 1698 uint64_t align = TARGET_PAGE_SIZE; 1699 1700 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) { 1701 align = memory_region_get_alignment(mr); 1702 } 1703 1704 if (!pcms->acpi_dev) { 1705 error_setg(&local_err, 1706 "memory hotplug is not enabled: missing acpi device"); 1707 goto out; 1708 } 1709 1710 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err); 1711 if (local_err) { 1712 goto out; 1713 } 1714 1715 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1716 if (!pcms->acpi_nvdimm_state.is_enabled) { 1717 error_setg(&local_err, 1718 "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1719 goto out; 1720 } 1721 nvdimm_plug(&pcms->acpi_nvdimm_state); 1722 } 1723 1724 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1725 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1726 out: 1727 error_propagate(errp, local_err); 1728 } 1729 1730 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev, 1731 DeviceState *dev, Error **errp) 1732 { 1733 HotplugHandlerClass *hhc; 1734 Error *local_err = NULL; 1735 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1736 1737 if (!pcms->acpi_dev) { 1738 error_setg(&local_err, 1739 "memory hotplug is not enabled: missing acpi device"); 1740 goto out; 1741 } 1742 1743 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1744 error_setg(&local_err, 1745 "nvdimm device hot unplug is not supported yet."); 1746 goto out; 1747 } 1748 1749 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1750 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1751 1752 out: 1753 error_propagate(errp, local_err); 1754 } 1755 1756 static void pc_dimm_unplug(HotplugHandler *hotplug_dev, 1757 DeviceState *dev, Error **errp) 1758 { 1759 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1760 PCDIMMDevice *dimm = PC_DIMM(dev); 1761 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1762 MemoryRegion *mr = ddc->get_memory_region(dimm); 1763 HotplugHandlerClass *hhc; 1764 Error *local_err = NULL; 1765 1766 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1767 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1768 1769 if (local_err) { 1770 goto out; 1771 } 1772 1773 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr); 1774 object_unparent(OBJECT(dev)); 1775 1776 out: 1777 error_propagate(errp, local_err); 1778 } 1779 1780 static int pc_apic_cmp(const void *a, const void *b) 1781 { 1782 CPUArchId *apic_a = (CPUArchId *)a; 1783 CPUArchId *apic_b = (CPUArchId *)b; 1784 1785 return apic_a->arch_id - apic_b->arch_id; 1786 } 1787 1788 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1789 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1790 * entry corresponding to CPU's apic_id returns NULL. 1791 */ 1792 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1793 { 1794 CPUArchId apic_id, *found_cpu; 1795 1796 apic_id.arch_id = id; 1797 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1798 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1799 pc_apic_cmp); 1800 if (found_cpu && idx) { 1801 *idx = found_cpu - ms->possible_cpus->cpus; 1802 } 1803 return found_cpu; 1804 } 1805 1806 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1807 DeviceState *dev, Error **errp) 1808 { 1809 CPUArchId *found_cpu; 1810 HotplugHandlerClass *hhc; 1811 Error *local_err = NULL; 1812 X86CPU *cpu = X86_CPU(dev); 1813 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1814 1815 if (pcms->acpi_dev) { 1816 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1817 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1818 if (local_err) { 1819 goto out; 1820 } 1821 } 1822 1823 /* increment the number of CPUs */ 1824 pcms->boot_cpus++; 1825 if (pcms->rtc) { 1826 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1827 } 1828 if (pcms->fw_cfg) { 1829 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1830 } 1831 1832 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1833 found_cpu->cpu = OBJECT(dev); 1834 out: 1835 error_propagate(errp, local_err); 1836 } 1837 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1838 DeviceState *dev, Error **errp) 1839 { 1840 int idx = -1; 1841 HotplugHandlerClass *hhc; 1842 Error *local_err = NULL; 1843 X86CPU *cpu = X86_CPU(dev); 1844 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1845 1846 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1847 assert(idx != -1); 1848 if (idx == 0) { 1849 error_setg(&local_err, "Boot CPU is unpluggable"); 1850 goto out; 1851 } 1852 1853 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1854 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1855 1856 if (local_err) { 1857 goto out; 1858 } 1859 1860 out: 1861 error_propagate(errp, local_err); 1862 1863 } 1864 1865 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1866 DeviceState *dev, Error **errp) 1867 { 1868 CPUArchId *found_cpu; 1869 HotplugHandlerClass *hhc; 1870 Error *local_err = NULL; 1871 X86CPU *cpu = X86_CPU(dev); 1872 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1873 1874 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1875 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1876 1877 if (local_err) { 1878 goto out; 1879 } 1880 1881 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1882 found_cpu->cpu = NULL; 1883 object_unparent(OBJECT(dev)); 1884 1885 /* decrement the number of CPUs */ 1886 pcms->boot_cpus--; 1887 /* Update the number of CPUs in CMOS */ 1888 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1889 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1890 out: 1891 error_propagate(errp, local_err); 1892 } 1893 1894 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1895 DeviceState *dev, Error **errp) 1896 { 1897 int idx; 1898 int node_id; 1899 CPUState *cs; 1900 CPUArchId *cpu_slot; 1901 X86CPUTopoInfo topo; 1902 X86CPU *cpu = X86_CPU(dev); 1903 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1904 1905 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1906 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1907 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1908 1909 if (cpu->socket_id < 0) { 1910 error_setg(errp, "CPU socket-id is not set"); 1911 return; 1912 } else if (cpu->socket_id > max_socket) { 1913 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1914 cpu->socket_id, max_socket); 1915 return; 1916 } 1917 if (cpu->core_id < 0) { 1918 error_setg(errp, "CPU core-id is not set"); 1919 return; 1920 } else if (cpu->core_id > (smp_cores - 1)) { 1921 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1922 cpu->core_id, smp_cores - 1); 1923 return; 1924 } 1925 if (cpu->thread_id < 0) { 1926 error_setg(errp, "CPU thread-id is not set"); 1927 return; 1928 } else if (cpu->thread_id > (smp_threads - 1)) { 1929 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1930 cpu->thread_id, smp_threads - 1); 1931 return; 1932 } 1933 1934 topo.pkg_id = cpu->socket_id; 1935 topo.core_id = cpu->core_id; 1936 topo.smt_id = cpu->thread_id; 1937 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1938 } 1939 1940 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1941 if (!cpu_slot) { 1942 MachineState *ms = MACHINE(pcms); 1943 1944 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1945 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1946 " APIC ID %" PRIu32 ", valid index range 0:%d", 1947 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1948 ms->possible_cpus->len - 1); 1949 return; 1950 } 1951 1952 if (cpu_slot->cpu) { 1953 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1954 idx, cpu->apic_id); 1955 return; 1956 } 1957 1958 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1959 * so that machine_query_hotpluggable_cpus would show correct values 1960 */ 1961 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1962 * once -smp refactoring is complete and there will be CPU private 1963 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1964 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1965 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1966 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1967 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1968 return; 1969 } 1970 cpu->socket_id = topo.pkg_id; 1971 1972 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 1973 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 1974 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 1975 return; 1976 } 1977 cpu->core_id = topo.core_id; 1978 1979 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 1980 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 1981 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 1982 return; 1983 } 1984 cpu->thread_id = topo.smt_id; 1985 1986 cs = CPU(cpu); 1987 cs->cpu_index = idx; 1988 1989 node_id = cpu_slot->props.node_id; 1990 if (!cpu_slot->props.has_node_id) { 1991 /* by default CPUState::numa_node was 0 if it's not set via CLI 1992 * keep it this way for now but in future we probably should 1993 * refuse to start up with incomplete numa mapping */ 1994 node_id = 0; 1995 } 1996 if (cs->numa_node == CPU_UNSET_NUMA_NODE_ID) { 1997 cs->numa_node = node_id; 1998 } else if (cs->numa_node != node_id) { 1999 error_setg(errp, "node-id %d must match numa node specified" 2000 "with -numa option for cpu-index %d", 2001 cs->numa_node, cs->cpu_index); 2002 return; 2003 } 2004 } 2005 2006 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2007 DeviceState *dev, Error **errp) 2008 { 2009 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2010 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2011 } 2012 } 2013 2014 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2015 DeviceState *dev, Error **errp) 2016 { 2017 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2018 pc_dimm_plug(hotplug_dev, dev, errp); 2019 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2020 pc_cpu_plug(hotplug_dev, dev, errp); 2021 } 2022 } 2023 2024 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2025 DeviceState *dev, Error **errp) 2026 { 2027 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2028 pc_dimm_unplug_request(hotplug_dev, dev, errp); 2029 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2030 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2031 } else { 2032 error_setg(errp, "acpi: device unplug request for not supported device" 2033 " type: %s", object_get_typename(OBJECT(dev))); 2034 } 2035 } 2036 2037 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2038 DeviceState *dev, Error **errp) 2039 { 2040 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2041 pc_dimm_unplug(hotplug_dev, dev, errp); 2042 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2043 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2044 } else { 2045 error_setg(errp, "acpi: device unplug for not supported device" 2046 " type: %s", object_get_typename(OBJECT(dev))); 2047 } 2048 } 2049 2050 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2051 DeviceState *dev) 2052 { 2053 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); 2054 2055 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2056 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2057 return HOTPLUG_HANDLER(machine); 2058 } 2059 2060 return pcmc->get_hotplug_handler ? 2061 pcmc->get_hotplug_handler(machine, dev) : NULL; 2062 } 2063 2064 static void 2065 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, 2066 const char *name, void *opaque, 2067 Error **errp) 2068 { 2069 PCMachineState *pcms = PC_MACHINE(obj); 2070 int64_t value = memory_region_size(&pcms->hotplug_memory.mr); 2071 2072 visit_type_int(v, name, &value, errp); 2073 } 2074 2075 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2076 const char *name, void *opaque, 2077 Error **errp) 2078 { 2079 PCMachineState *pcms = PC_MACHINE(obj); 2080 uint64_t value = pcms->max_ram_below_4g; 2081 2082 visit_type_size(v, name, &value, errp); 2083 } 2084 2085 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2086 const char *name, void *opaque, 2087 Error **errp) 2088 { 2089 PCMachineState *pcms = PC_MACHINE(obj); 2090 Error *error = NULL; 2091 uint64_t value; 2092 2093 visit_type_size(v, name, &value, &error); 2094 if (error) { 2095 error_propagate(errp, error); 2096 return; 2097 } 2098 if (value > (1ULL << 32)) { 2099 error_setg(&error, 2100 "Machine option 'max-ram-below-4g=%"PRIu64 2101 "' expects size less than or equal to 4G", value); 2102 error_propagate(errp, error); 2103 return; 2104 } 2105 2106 if (value < (1ULL << 20)) { 2107 error_report("Warning: small max_ram_below_4g(%"PRIu64 2108 ") less than 1M. BIOS may not work..", 2109 value); 2110 } 2111 2112 pcms->max_ram_below_4g = value; 2113 } 2114 2115 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2116 void *opaque, Error **errp) 2117 { 2118 PCMachineState *pcms = PC_MACHINE(obj); 2119 OnOffAuto vmport = pcms->vmport; 2120 2121 visit_type_OnOffAuto(v, name, &vmport, errp); 2122 } 2123 2124 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2125 void *opaque, Error **errp) 2126 { 2127 PCMachineState *pcms = PC_MACHINE(obj); 2128 2129 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2130 } 2131 2132 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2133 { 2134 bool smm_available = false; 2135 2136 if (pcms->smm == ON_OFF_AUTO_OFF) { 2137 return false; 2138 } 2139 2140 if (tcg_enabled() || qtest_enabled()) { 2141 smm_available = true; 2142 } else if (kvm_enabled()) { 2143 smm_available = kvm_has_smm(); 2144 } 2145 2146 if (smm_available) { 2147 return true; 2148 } 2149 2150 if (pcms->smm == ON_OFF_AUTO_ON) { 2151 error_report("System Management Mode not supported by this hypervisor."); 2152 exit(1); 2153 } 2154 return false; 2155 } 2156 2157 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2158 void *opaque, Error **errp) 2159 { 2160 PCMachineState *pcms = PC_MACHINE(obj); 2161 OnOffAuto smm = pcms->smm; 2162 2163 visit_type_OnOffAuto(v, name, &smm, errp); 2164 } 2165 2166 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2167 void *opaque, Error **errp) 2168 { 2169 PCMachineState *pcms = PC_MACHINE(obj); 2170 2171 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2172 } 2173 2174 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2175 { 2176 PCMachineState *pcms = PC_MACHINE(obj); 2177 2178 return pcms->acpi_nvdimm_state.is_enabled; 2179 } 2180 2181 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2182 { 2183 PCMachineState *pcms = PC_MACHINE(obj); 2184 2185 pcms->acpi_nvdimm_state.is_enabled = value; 2186 } 2187 2188 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2189 { 2190 PCMachineState *pcms = PC_MACHINE(obj); 2191 2192 return pcms->smbus; 2193 } 2194 2195 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2196 { 2197 PCMachineState *pcms = PC_MACHINE(obj); 2198 2199 pcms->smbus = value; 2200 } 2201 2202 static bool pc_machine_get_sata(Object *obj, Error **errp) 2203 { 2204 PCMachineState *pcms = PC_MACHINE(obj); 2205 2206 return pcms->sata; 2207 } 2208 2209 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2210 { 2211 PCMachineState *pcms = PC_MACHINE(obj); 2212 2213 pcms->sata = value; 2214 } 2215 2216 static bool pc_machine_get_pit(Object *obj, Error **errp) 2217 { 2218 PCMachineState *pcms = PC_MACHINE(obj); 2219 2220 return pcms->pit; 2221 } 2222 2223 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2224 { 2225 PCMachineState *pcms = PC_MACHINE(obj); 2226 2227 pcms->pit = value; 2228 } 2229 2230 static void pc_machine_initfn(Object *obj) 2231 { 2232 PCMachineState *pcms = PC_MACHINE(obj); 2233 2234 pcms->max_ram_below_4g = 0; /* use default */ 2235 pcms->smm = ON_OFF_AUTO_AUTO; 2236 pcms->vmport = ON_OFF_AUTO_AUTO; 2237 /* nvdimm is disabled on default. */ 2238 pcms->acpi_nvdimm_state.is_enabled = false; 2239 /* acpi build is enabled by default if machine supports it */ 2240 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2241 pcms->smbus = true; 2242 pcms->sata = true; 2243 pcms->pit = true; 2244 } 2245 2246 static void pc_machine_reset(void) 2247 { 2248 CPUState *cs; 2249 X86CPU *cpu; 2250 2251 qemu_devices_reset(); 2252 2253 /* Reset APIC after devices have been reset to cancel 2254 * any changes that qemu_devices_reset() might have done. 2255 */ 2256 CPU_FOREACH(cs) { 2257 cpu = X86_CPU(cs); 2258 2259 if (cpu->apic_state) { 2260 device_reset(cpu->apic_state); 2261 } 2262 } 2263 } 2264 2265 static CpuInstanceProperties 2266 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2267 { 2268 MachineClass *mc = MACHINE_GET_CLASS(ms); 2269 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2270 2271 assert(cpu_index < possible_cpus->len); 2272 return possible_cpus->cpus[cpu_index].props; 2273 } 2274 2275 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2276 { 2277 int i; 2278 2279 if (ms->possible_cpus) { 2280 /* 2281 * make sure that max_cpus hasn't changed since the first use, i.e. 2282 * -smp hasn't been parsed after it 2283 */ 2284 assert(ms->possible_cpus->len == max_cpus); 2285 return ms->possible_cpus; 2286 } 2287 2288 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2289 sizeof(CPUArchId) * max_cpus); 2290 ms->possible_cpus->len = max_cpus; 2291 for (i = 0; i < ms->possible_cpus->len; i++) { 2292 X86CPUTopoInfo topo; 2293 2294 ms->possible_cpus->cpus[i].vcpus_count = 1; 2295 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2296 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2297 smp_cores, smp_threads, &topo); 2298 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2299 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2300 ms->possible_cpus->cpus[i].props.has_core_id = true; 2301 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2302 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2303 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2304 2305 /* default distribution of CPUs over NUMA nodes */ 2306 if (nb_numa_nodes) { 2307 /* preset values but do not enable them i.e. 'has_node_id = false', 2308 * numa init code will enable them later if manual mapping wasn't 2309 * present on CLI */ 2310 ms->possible_cpus->cpus[i].props.node_id = 2311 topo.pkg_id % nb_numa_nodes; 2312 } 2313 } 2314 return ms->possible_cpus; 2315 } 2316 2317 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2318 { 2319 /* cpu index isn't used */ 2320 CPUState *cs; 2321 2322 CPU_FOREACH(cs) { 2323 X86CPU *cpu = X86_CPU(cs); 2324 2325 if (!cpu->apic_state) { 2326 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2327 } else { 2328 apic_deliver_nmi(cpu->apic_state); 2329 } 2330 } 2331 } 2332 2333 static void pc_machine_class_init(ObjectClass *oc, void *data) 2334 { 2335 MachineClass *mc = MACHINE_CLASS(oc); 2336 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2337 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2338 NMIClass *nc = NMI_CLASS(oc); 2339 2340 pcmc->get_hotplug_handler = mc->get_hotplug_handler; 2341 pcmc->pci_enabled = true; 2342 pcmc->has_acpi_build = true; 2343 pcmc->rsdp_in_ram = true; 2344 pcmc->smbios_defaults = true; 2345 pcmc->smbios_uuid_encoded = true; 2346 pcmc->gigabyte_align = true; 2347 pcmc->has_reserved_memory = true; 2348 pcmc->kvmclock_enabled = true; 2349 pcmc->enforce_aligned_dimm = true; 2350 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2351 * to be used at the moment, 32K should be enough for a while. */ 2352 pcmc->acpi_data_size = 0x20000 + 0x8000; 2353 pcmc->save_tsc_khz = true; 2354 mc->get_hotplug_handler = pc_get_hotpug_handler; 2355 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2356 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2357 mc->has_hotpluggable_cpus = true; 2358 mc->default_boot_order = "cad"; 2359 mc->hot_add_cpu = pc_hot_add_cpu; 2360 mc->block_default_type = IF_IDE; 2361 mc->max_cpus = 255; 2362 mc->reset = pc_machine_reset; 2363 hc->pre_plug = pc_machine_device_pre_plug_cb; 2364 hc->plug = pc_machine_device_plug_cb; 2365 hc->unplug_request = pc_machine_device_unplug_request_cb; 2366 hc->unplug = pc_machine_device_unplug_cb; 2367 nc->nmi_monitor_handler = x86_nmi; 2368 2369 object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int", 2370 pc_machine_get_hotplug_memory_region_size, NULL, 2371 NULL, NULL, &error_abort); 2372 2373 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2374 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2375 NULL, NULL, &error_abort); 2376 2377 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2378 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2379 2380 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2381 pc_machine_get_smm, pc_machine_set_smm, 2382 NULL, NULL, &error_abort); 2383 object_class_property_set_description(oc, PC_MACHINE_SMM, 2384 "Enable SMM (pc & q35)", &error_abort); 2385 2386 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2387 pc_machine_get_vmport, pc_machine_set_vmport, 2388 NULL, NULL, &error_abort); 2389 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2390 "Enable vmport (pc & q35)", &error_abort); 2391 2392 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2393 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2394 2395 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2396 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2397 2398 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2399 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2400 2401 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2402 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2403 } 2404 2405 static const TypeInfo pc_machine_info = { 2406 .name = TYPE_PC_MACHINE, 2407 .parent = TYPE_MACHINE, 2408 .abstract = true, 2409 .instance_size = sizeof(PCMachineState), 2410 .instance_init = pc_machine_initfn, 2411 .class_size = sizeof(PCMachineClass), 2412 .class_init = pc_machine_class_init, 2413 .interfaces = (InterfaceInfo[]) { 2414 { TYPE_HOTPLUG_HANDLER }, 2415 { TYPE_NMI }, 2416 { } 2417 }, 2418 }; 2419 2420 static void pc_machine_register_types(void) 2421 { 2422 type_register_static(&pc_machine_info); 2423 } 2424 2425 type_init(pc_machine_register_types) 2426