1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/firmware/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 GlobalProperty pc_compat_3_1[] = { 113 { 114 .driver = "intel-iommu", 115 .property = "dma-drain", 116 .value = "off", 117 }, 118 }; 119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); 120 121 GlobalProperty pc_compat_3_0[] = { 122 { 123 .driver = TYPE_X86_CPU, 124 .property = "x-hv-synic-kvm-only", 125 .value = "on", 126 },{ 127 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 128 .property = "pku", 129 .value = "off", 130 },{ 131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU, 132 .property = "pku", 133 .value = "off", 134 }, 135 }; 136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0); 137 138 GlobalProperty pc_compat_2_12[] = { 139 { 140 .driver = TYPE_X86_CPU, 141 .property = "legacy-cache", 142 .value = "on", 143 },{ 144 .driver = TYPE_X86_CPU, 145 .property = "topoext", 146 .value = "off", 147 },{ 148 .driver = "EPYC-" TYPE_X86_CPU, 149 .property = "xlevel", 150 .value = stringify(0x8000000a), 151 },{ 152 .driver = "EPYC-IBPB-" TYPE_X86_CPU, 153 .property = "xlevel", 154 .value = stringify(0x8000000a), 155 }, 156 }; 157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12); 158 159 GlobalProperty pc_compat_2_11[] = { 160 { 161 .driver = TYPE_X86_CPU, 162 .property = "x-migrate-smi-count", 163 .value = "off", 164 },{ 165 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 166 .property = "clflushopt", 167 .value = "off", 168 }, 169 }; 170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11); 171 172 GlobalProperty pc_compat_2_10[] = { 173 { 174 .driver = TYPE_X86_CPU, 175 .property = "x-hv-max-vps", 176 .value = "0x40", 177 },{ 178 .driver = "i440FX-pcihost", 179 .property = "x-pci-hole64-fix", 180 .value = "off", 181 },{ 182 .driver = "q35-pcihost", 183 .property = "x-pci-hole64-fix", 184 .value = "off", 185 }, 186 }; 187 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10); 188 189 GlobalProperty pc_compat_2_9[] = { 190 { 191 .driver = "mch", 192 .property = "extended-tseg-mbytes", 193 .value = stringify(0), 194 }, 195 }; 196 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9); 197 198 GlobalProperty pc_compat_2_8[] = { 199 { 200 .driver = TYPE_X86_CPU, 201 .property = "tcg-cpuid", 202 .value = "off", 203 }, 204 { 205 .driver = "kvmclock", 206 .property = "x-mach-use-reliable-get-clock", 207 .value = "off", 208 }, 209 { 210 .driver = "ICH9-LPC", 211 .property = "x-smi-broadcast", 212 .value = "off", 213 }, 214 { 215 .driver = TYPE_X86_CPU, 216 .property = "vmware-cpuid-freq", 217 .value = "off", 218 }, 219 { 220 .driver = "Haswell-" TYPE_X86_CPU, 221 .property = "stepping", 222 .value = "1", 223 }, 224 }; 225 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8); 226 227 GlobalProperty pc_compat_2_7[] = { 228 { 229 .driver = TYPE_X86_CPU, 230 .property = "l3-cache", 231 .value = "off", 232 }, 233 { 234 .driver = TYPE_X86_CPU, 235 .property = "full-cpuid-auto-level", 236 .value = "off", 237 }, 238 { 239 .driver = "Opteron_G3" "-" TYPE_X86_CPU, 240 .property = "family", 241 .value = "15", 242 }, 243 { 244 .driver = "Opteron_G3" "-" TYPE_X86_CPU, 245 .property = "model", 246 .value = "6", 247 }, 248 { 249 .driver = "Opteron_G3" "-" TYPE_X86_CPU, 250 .property = "stepping", 251 .value = "1", 252 }, 253 { 254 .driver = "isa-pcspk", 255 .property = "migrate", 256 .value = "off", 257 }, 258 }; 259 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7); 260 261 void gsi_handler(void *opaque, int n, int level) 262 { 263 GSIState *s = opaque; 264 265 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 266 if (n < ISA_NUM_IRQS) { 267 qemu_set_irq(s->i8259_irq[n], level); 268 } 269 qemu_set_irq(s->ioapic_irq[n], level); 270 } 271 272 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 273 unsigned size) 274 { 275 } 276 277 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 278 { 279 return 0xffffffffffffffffULL; 280 } 281 282 /* MSDOS compatibility mode FPU exception support */ 283 static qemu_irq ferr_irq; 284 285 void pc_register_ferr_irq(qemu_irq irq) 286 { 287 ferr_irq = irq; 288 } 289 290 /* XXX: add IGNNE support */ 291 void cpu_set_ferr(CPUX86State *s) 292 { 293 qemu_irq_raise(ferr_irq); 294 } 295 296 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 297 unsigned size) 298 { 299 qemu_irq_lower(ferr_irq); 300 } 301 302 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 303 { 304 return 0xffffffffffffffffULL; 305 } 306 307 /* TSC handling */ 308 uint64_t cpu_get_tsc(CPUX86State *env) 309 { 310 return cpu_get_ticks(); 311 } 312 313 /* IRQ handling */ 314 int cpu_get_pic_interrupt(CPUX86State *env) 315 { 316 X86CPU *cpu = x86_env_get_cpu(env); 317 int intno; 318 319 if (!kvm_irqchip_in_kernel()) { 320 intno = apic_get_interrupt(cpu->apic_state); 321 if (intno >= 0) { 322 return intno; 323 } 324 /* read the irq from the PIC */ 325 if (!apic_accept_pic_intr(cpu->apic_state)) { 326 return -1; 327 } 328 } 329 330 intno = pic_read_irq(isa_pic); 331 return intno; 332 } 333 334 static void pic_irq_request(void *opaque, int irq, int level) 335 { 336 CPUState *cs = first_cpu; 337 X86CPU *cpu = X86_CPU(cs); 338 339 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 340 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 341 CPU_FOREACH(cs) { 342 cpu = X86_CPU(cs); 343 if (apic_accept_pic_intr(cpu->apic_state)) { 344 apic_deliver_pic_intr(cpu->apic_state, level); 345 } 346 } 347 } else { 348 if (level) { 349 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 350 } else { 351 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 352 } 353 } 354 } 355 356 /* PC cmos mappings */ 357 358 #define REG_EQUIPMENT_BYTE 0x14 359 360 int cmos_get_fd_drive_type(FloppyDriveType fd0) 361 { 362 int val; 363 364 switch (fd0) { 365 case FLOPPY_DRIVE_TYPE_144: 366 /* 1.44 Mb 3"5 drive */ 367 val = 4; 368 break; 369 case FLOPPY_DRIVE_TYPE_288: 370 /* 2.88 Mb 3"5 drive */ 371 val = 5; 372 break; 373 case FLOPPY_DRIVE_TYPE_120: 374 /* 1.2 Mb 5"5 drive */ 375 val = 2; 376 break; 377 case FLOPPY_DRIVE_TYPE_NONE: 378 default: 379 val = 0; 380 break; 381 } 382 return val; 383 } 384 385 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 386 int16_t cylinders, int8_t heads, int8_t sectors) 387 { 388 rtc_set_memory(s, type_ofs, 47); 389 rtc_set_memory(s, info_ofs, cylinders); 390 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 391 rtc_set_memory(s, info_ofs + 2, heads); 392 rtc_set_memory(s, info_ofs + 3, 0xff); 393 rtc_set_memory(s, info_ofs + 4, 0xff); 394 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 395 rtc_set_memory(s, info_ofs + 6, cylinders); 396 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 397 rtc_set_memory(s, info_ofs + 8, sectors); 398 } 399 400 /* convert boot_device letter to something recognizable by the bios */ 401 static int boot_device2nibble(char boot_device) 402 { 403 switch(boot_device) { 404 case 'a': 405 case 'b': 406 return 0x01; /* floppy boot */ 407 case 'c': 408 return 0x02; /* hard drive boot */ 409 case 'd': 410 return 0x03; /* CD-ROM boot */ 411 case 'n': 412 return 0x04; /* Network boot */ 413 } 414 return 0; 415 } 416 417 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 418 { 419 #define PC_MAX_BOOT_DEVICES 3 420 int nbds, bds[3] = { 0, }; 421 int i; 422 423 nbds = strlen(boot_device); 424 if (nbds > PC_MAX_BOOT_DEVICES) { 425 error_setg(errp, "Too many boot devices for PC"); 426 return; 427 } 428 for (i = 0; i < nbds; i++) { 429 bds[i] = boot_device2nibble(boot_device[i]); 430 if (bds[i] == 0) { 431 error_setg(errp, "Invalid boot device for PC: '%c'", 432 boot_device[i]); 433 return; 434 } 435 } 436 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 437 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 438 } 439 440 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 441 { 442 set_boot_dev(opaque, boot_device, errp); 443 } 444 445 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 446 { 447 int val, nb, i; 448 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 449 FLOPPY_DRIVE_TYPE_NONE }; 450 451 /* floppy type */ 452 if (floppy) { 453 for (i = 0; i < 2; i++) { 454 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 455 } 456 } 457 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 458 cmos_get_fd_drive_type(fd_type[1]); 459 rtc_set_memory(rtc_state, 0x10, val); 460 461 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 462 nb = 0; 463 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 464 nb++; 465 } 466 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 467 nb++; 468 } 469 switch (nb) { 470 case 0: 471 break; 472 case 1: 473 val |= 0x01; /* 1 drive, ready for boot */ 474 break; 475 case 2: 476 val |= 0x41; /* 2 drives, ready for boot */ 477 break; 478 } 479 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 480 } 481 482 typedef struct pc_cmos_init_late_arg { 483 ISADevice *rtc_state; 484 BusState *idebus[2]; 485 } pc_cmos_init_late_arg; 486 487 typedef struct check_fdc_state { 488 ISADevice *floppy; 489 bool multiple; 490 } CheckFdcState; 491 492 static int check_fdc(Object *obj, void *opaque) 493 { 494 CheckFdcState *state = opaque; 495 Object *fdc; 496 uint32_t iobase; 497 Error *local_err = NULL; 498 499 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 500 if (!fdc) { 501 return 0; 502 } 503 504 iobase = object_property_get_uint(obj, "iobase", &local_err); 505 if (local_err || iobase != 0x3f0) { 506 error_free(local_err); 507 return 0; 508 } 509 510 if (state->floppy) { 511 state->multiple = true; 512 } else { 513 state->floppy = ISA_DEVICE(obj); 514 } 515 return 0; 516 } 517 518 static const char * const fdc_container_path[] = { 519 "/unattached", "/peripheral", "/peripheral-anon" 520 }; 521 522 /* 523 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 524 * and ACPI objects. 525 */ 526 ISADevice *pc_find_fdc0(void) 527 { 528 int i; 529 Object *container; 530 CheckFdcState state = { 0 }; 531 532 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 533 container = container_get(qdev_get_machine(), fdc_container_path[i]); 534 object_child_foreach(container, check_fdc, &state); 535 } 536 537 if (state.multiple) { 538 warn_report("multiple floppy disk controllers with " 539 "iobase=0x3f0 have been found"); 540 error_printf("the one being picked for CMOS setup might not reflect " 541 "your intent"); 542 } 543 544 return state.floppy; 545 } 546 547 static void pc_cmos_init_late(void *opaque) 548 { 549 pc_cmos_init_late_arg *arg = opaque; 550 ISADevice *s = arg->rtc_state; 551 int16_t cylinders; 552 int8_t heads, sectors; 553 int val; 554 int i, trans; 555 556 val = 0; 557 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 558 &cylinders, &heads, §ors) >= 0) { 559 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 560 val |= 0xf0; 561 } 562 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 563 &cylinders, &heads, §ors) >= 0) { 564 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 565 val |= 0x0f; 566 } 567 rtc_set_memory(s, 0x12, val); 568 569 val = 0; 570 for (i = 0; i < 4; i++) { 571 /* NOTE: ide_get_geometry() returns the physical 572 geometry. It is always such that: 1 <= sects <= 63, 1 573 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 574 geometry can be different if a translation is done. */ 575 if (arg->idebus[i / 2] && 576 ide_get_geometry(arg->idebus[i / 2], i % 2, 577 &cylinders, &heads, §ors) >= 0) { 578 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 579 assert((trans & ~3) == 0); 580 val |= trans << (i * 2); 581 } 582 } 583 rtc_set_memory(s, 0x39, val); 584 585 pc_cmos_init_floppy(s, pc_find_fdc0()); 586 587 qemu_unregister_reset(pc_cmos_init_late, opaque); 588 } 589 590 void pc_cmos_init(PCMachineState *pcms, 591 BusState *idebus0, BusState *idebus1, 592 ISADevice *s) 593 { 594 int val; 595 static pc_cmos_init_late_arg arg; 596 597 /* various important CMOS locations needed by PC/Bochs bios */ 598 599 /* memory size */ 600 /* base memory (first MiB) */ 601 val = MIN(pcms->below_4g_mem_size / KiB, 640); 602 rtc_set_memory(s, 0x15, val); 603 rtc_set_memory(s, 0x16, val >> 8); 604 /* extended memory (next 64MiB) */ 605 if (pcms->below_4g_mem_size > 1 * MiB) { 606 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 607 } else { 608 val = 0; 609 } 610 if (val > 65535) 611 val = 65535; 612 rtc_set_memory(s, 0x17, val); 613 rtc_set_memory(s, 0x18, val >> 8); 614 rtc_set_memory(s, 0x30, val); 615 rtc_set_memory(s, 0x31, val >> 8); 616 /* memory between 16MiB and 4GiB */ 617 if (pcms->below_4g_mem_size > 16 * MiB) { 618 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 619 } else { 620 val = 0; 621 } 622 if (val > 65535) 623 val = 65535; 624 rtc_set_memory(s, 0x34, val); 625 rtc_set_memory(s, 0x35, val >> 8); 626 /* memory above 4GiB */ 627 val = pcms->above_4g_mem_size / 65536; 628 rtc_set_memory(s, 0x5b, val); 629 rtc_set_memory(s, 0x5c, val >> 8); 630 rtc_set_memory(s, 0x5d, val >> 16); 631 632 object_property_add_link(OBJECT(pcms), "rtc_state", 633 TYPE_ISA_DEVICE, 634 (Object **)&pcms->rtc, 635 object_property_allow_set_link, 636 OBJ_PROP_LINK_STRONG, &error_abort); 637 object_property_set_link(OBJECT(pcms), OBJECT(s), 638 "rtc_state", &error_abort); 639 640 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 641 642 val = 0; 643 val |= 0x02; /* FPU is there */ 644 val |= 0x04; /* PS/2 mouse installed */ 645 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 646 647 /* hard drives and FDC */ 648 arg.rtc_state = s; 649 arg.idebus[0] = idebus0; 650 arg.idebus[1] = idebus1; 651 qemu_register_reset(pc_cmos_init_late, &arg); 652 } 653 654 #define TYPE_PORT92 "port92" 655 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 656 657 /* port 92 stuff: could be split off */ 658 typedef struct Port92State { 659 ISADevice parent_obj; 660 661 MemoryRegion io; 662 uint8_t outport; 663 qemu_irq a20_out; 664 } Port92State; 665 666 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 667 unsigned size) 668 { 669 Port92State *s = opaque; 670 int oldval = s->outport; 671 672 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 673 s->outport = val; 674 qemu_set_irq(s->a20_out, (val >> 1) & 1); 675 if ((val & 1) && !(oldval & 1)) { 676 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 677 } 678 } 679 680 static uint64_t port92_read(void *opaque, hwaddr addr, 681 unsigned size) 682 { 683 Port92State *s = opaque; 684 uint32_t ret; 685 686 ret = s->outport; 687 DPRINTF("port92: read 0x%02x\n", ret); 688 return ret; 689 } 690 691 static void port92_init(ISADevice *dev, qemu_irq a20_out) 692 { 693 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 694 } 695 696 static const VMStateDescription vmstate_port92_isa = { 697 .name = "port92", 698 .version_id = 1, 699 .minimum_version_id = 1, 700 .fields = (VMStateField[]) { 701 VMSTATE_UINT8(outport, Port92State), 702 VMSTATE_END_OF_LIST() 703 } 704 }; 705 706 static void port92_reset(DeviceState *d) 707 { 708 Port92State *s = PORT92(d); 709 710 s->outport &= ~1; 711 } 712 713 static const MemoryRegionOps port92_ops = { 714 .read = port92_read, 715 .write = port92_write, 716 .impl = { 717 .min_access_size = 1, 718 .max_access_size = 1, 719 }, 720 .endianness = DEVICE_LITTLE_ENDIAN, 721 }; 722 723 static void port92_initfn(Object *obj) 724 { 725 Port92State *s = PORT92(obj); 726 727 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 728 729 s->outport = 0; 730 731 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 732 } 733 734 static void port92_realizefn(DeviceState *dev, Error **errp) 735 { 736 ISADevice *isadev = ISA_DEVICE(dev); 737 Port92State *s = PORT92(dev); 738 739 isa_register_ioport(isadev, &s->io, 0x92); 740 } 741 742 static void port92_class_initfn(ObjectClass *klass, void *data) 743 { 744 DeviceClass *dc = DEVICE_CLASS(klass); 745 746 dc->realize = port92_realizefn; 747 dc->reset = port92_reset; 748 dc->vmsd = &vmstate_port92_isa; 749 /* 750 * Reason: unlike ordinary ISA devices, this one needs additional 751 * wiring: its A20 output line needs to be wired up by 752 * port92_init(). 753 */ 754 dc->user_creatable = false; 755 } 756 757 static const TypeInfo port92_info = { 758 .name = TYPE_PORT92, 759 .parent = TYPE_ISA_DEVICE, 760 .instance_size = sizeof(Port92State), 761 .instance_init = port92_initfn, 762 .class_init = port92_class_initfn, 763 }; 764 765 static void port92_register_types(void) 766 { 767 type_register_static(&port92_info); 768 } 769 770 type_init(port92_register_types) 771 772 static void handle_a20_line_change(void *opaque, int irq, int level) 773 { 774 X86CPU *cpu = opaque; 775 776 /* XXX: send to all CPUs ? */ 777 /* XXX: add logic to handle multiple A20 line sources */ 778 x86_cpu_set_a20(cpu, level); 779 } 780 781 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 782 { 783 int index = le32_to_cpu(e820_reserve.count); 784 struct e820_entry *entry; 785 786 if (type != E820_RAM) { 787 /* old FW_CFG_E820_TABLE entry -- reservations only */ 788 if (index >= E820_NR_ENTRIES) { 789 return -EBUSY; 790 } 791 entry = &e820_reserve.entry[index++]; 792 793 entry->address = cpu_to_le64(address); 794 entry->length = cpu_to_le64(length); 795 entry->type = cpu_to_le32(type); 796 797 e820_reserve.count = cpu_to_le32(index); 798 } 799 800 /* new "etc/e820" file -- include ram too */ 801 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 802 e820_table[e820_entries].address = cpu_to_le64(address); 803 e820_table[e820_entries].length = cpu_to_le64(length); 804 e820_table[e820_entries].type = cpu_to_le32(type); 805 e820_entries++; 806 807 return e820_entries; 808 } 809 810 int e820_get_num_entries(void) 811 { 812 return e820_entries; 813 } 814 815 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 816 { 817 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 818 *address = le64_to_cpu(e820_table[idx].address); 819 *length = le64_to_cpu(e820_table[idx].length); 820 return true; 821 } 822 return false; 823 } 824 825 /* Enables contiguous-apic-ID mode, for compatibility */ 826 static bool compat_apic_id_mode; 827 828 void enable_compat_apic_id_mode(void) 829 { 830 compat_apic_id_mode = true; 831 } 832 833 /* Calculates initial APIC ID for a specific CPU index 834 * 835 * Currently we need to be able to calculate the APIC ID from the CPU index 836 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 837 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 838 * all CPUs up to max_cpus. 839 */ 840 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 841 { 842 uint32_t correct_id; 843 static bool warned; 844 845 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 846 if (compat_apic_id_mode) { 847 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 848 error_report("APIC IDs set in compatibility mode, " 849 "CPU topology won't match the configuration"); 850 warned = true; 851 } 852 return cpu_index; 853 } else { 854 return correct_id; 855 } 856 } 857 858 static void pc_build_smbios(PCMachineState *pcms) 859 { 860 uint8_t *smbios_tables, *smbios_anchor; 861 size_t smbios_tables_len, smbios_anchor_len; 862 struct smbios_phys_mem_area *mem_array; 863 unsigned i, array_count; 864 MachineState *ms = MACHINE(pcms); 865 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 866 867 /* tell smbios about cpuid version and features */ 868 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 869 870 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 871 if (smbios_tables) { 872 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 873 smbios_tables, smbios_tables_len); 874 } 875 876 /* build the array of physical mem area from e820 table */ 877 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 878 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 879 uint64_t addr, len; 880 881 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 882 mem_array[array_count].address = addr; 883 mem_array[array_count].length = len; 884 array_count++; 885 } 886 } 887 smbios_get_tables(mem_array, array_count, 888 &smbios_tables, &smbios_tables_len, 889 &smbios_anchor, &smbios_anchor_len); 890 g_free(mem_array); 891 892 if (smbios_anchor) { 893 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 894 smbios_tables, smbios_tables_len); 895 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 896 smbios_anchor, smbios_anchor_len); 897 } 898 } 899 900 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 901 { 902 FWCfgState *fw_cfg; 903 uint64_t *numa_fw_cfg; 904 int i; 905 const CPUArchIdList *cpus; 906 MachineClass *mc = MACHINE_GET_CLASS(pcms); 907 908 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 909 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 910 911 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 912 * 913 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 914 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 915 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 916 * for CPU hotplug also uses APIC ID and not "CPU index". 917 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 918 * but the "limit to the APIC ID values SeaBIOS may see". 919 * 920 * So for compatibility reasons with old BIOSes we are stuck with 921 * "etc/max-cpus" actually being apic_id_limit 922 */ 923 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 924 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 925 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 926 acpi_tables, acpi_tables_len); 927 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 928 929 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 930 &e820_reserve, sizeof(e820_reserve)); 931 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 932 sizeof(struct e820_entry) * e820_entries); 933 934 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 935 /* allocate memory for the NUMA channel: one (64bit) word for the number 936 * of nodes, one word for each VCPU->node and one word for each node to 937 * hold the amount of memory. 938 */ 939 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 940 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 941 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 942 for (i = 0; i < cpus->len; i++) { 943 unsigned int apic_id = cpus->cpus[i].arch_id; 944 assert(apic_id < pcms->apic_id_limit); 945 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 946 } 947 for (i = 0; i < nb_numa_nodes; i++) { 948 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 949 cpu_to_le64(numa_info[i].node_mem); 950 } 951 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 952 (1 + pcms->apic_id_limit + nb_numa_nodes) * 953 sizeof(*numa_fw_cfg)); 954 955 return fw_cfg; 956 } 957 958 static long get_file_size(FILE *f) 959 { 960 long where, size; 961 962 /* XXX: on Unix systems, using fstat() probably makes more sense */ 963 964 where = ftell(f); 965 fseek(f, 0, SEEK_END); 966 size = ftell(f); 967 fseek(f, where, SEEK_SET); 968 969 return size; 970 } 971 972 /* setup_data types */ 973 #define SETUP_NONE 0 974 #define SETUP_E820_EXT 1 975 #define SETUP_DTB 2 976 #define SETUP_PCI 3 977 #define SETUP_EFI 4 978 979 struct setup_data { 980 uint64_t next; 981 uint32_t type; 982 uint32_t len; 983 uint8_t data[0]; 984 } __attribute__((packed)); 985 986 static void load_linux(PCMachineState *pcms, 987 FWCfgState *fw_cfg) 988 { 989 uint16_t protocol; 990 int setup_size, kernel_size, cmdline_size; 991 int dtb_size, setup_data_offset; 992 uint32_t initrd_max; 993 uint8_t header[8192], *setup, *kernel; 994 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 995 FILE *f; 996 char *vmode; 997 MachineState *machine = MACHINE(pcms); 998 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 999 struct setup_data *setup_data; 1000 const char *kernel_filename = machine->kernel_filename; 1001 const char *initrd_filename = machine->initrd_filename; 1002 const char *dtb_filename = machine->dtb; 1003 const char *kernel_cmdline = machine->kernel_cmdline; 1004 1005 /* Align to 16 bytes as a paranoia measure */ 1006 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 1007 1008 /* load the kernel header */ 1009 f = fopen(kernel_filename, "rb"); 1010 if (!f || !(kernel_size = get_file_size(f)) || 1011 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 1012 MIN(ARRAY_SIZE(header), kernel_size)) { 1013 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 1014 kernel_filename, strerror(errno)); 1015 exit(1); 1016 } 1017 1018 /* kernel protocol version */ 1019 #if 0 1020 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 1021 #endif 1022 if (ldl_p(header+0x202) == 0x53726448) { 1023 protocol = lduw_p(header+0x206); 1024 } else { 1025 /* This looks like a multiboot kernel. If it is, let's stop 1026 treating it like a Linux kernel. */ 1027 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 1028 kernel_cmdline, kernel_size, header)) { 1029 return; 1030 } 1031 protocol = 0; 1032 } 1033 1034 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 1035 /* Low kernel */ 1036 real_addr = 0x90000; 1037 cmdline_addr = 0x9a000 - cmdline_size; 1038 prot_addr = 0x10000; 1039 } else if (protocol < 0x202) { 1040 /* High but ancient kernel */ 1041 real_addr = 0x90000; 1042 cmdline_addr = 0x9a000 - cmdline_size; 1043 prot_addr = 0x100000; 1044 } else { 1045 /* High and recent kernel */ 1046 real_addr = 0x10000; 1047 cmdline_addr = 0x20000; 1048 prot_addr = 0x100000; 1049 } 1050 1051 #if 0 1052 fprintf(stderr, 1053 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 1054 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 1055 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 1056 real_addr, 1057 cmdline_addr, 1058 prot_addr); 1059 #endif 1060 1061 /* highest address for loading the initrd */ 1062 if (protocol >= 0x203) { 1063 initrd_max = ldl_p(header+0x22c); 1064 } else { 1065 initrd_max = 0x37ffffff; 1066 } 1067 1068 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 1069 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 1070 } 1071 1072 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 1073 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 1074 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 1075 1076 if (protocol >= 0x202) { 1077 stl_p(header+0x228, cmdline_addr); 1078 } else { 1079 stw_p(header+0x20, 0xA33F); 1080 stw_p(header+0x22, cmdline_addr-real_addr); 1081 } 1082 1083 /* handle vga= parameter */ 1084 vmode = strstr(kernel_cmdline, "vga="); 1085 if (vmode) { 1086 unsigned int video_mode; 1087 /* skip "vga=" */ 1088 vmode += 4; 1089 if (!strncmp(vmode, "normal", 6)) { 1090 video_mode = 0xffff; 1091 } else if (!strncmp(vmode, "ext", 3)) { 1092 video_mode = 0xfffe; 1093 } else if (!strncmp(vmode, "ask", 3)) { 1094 video_mode = 0xfffd; 1095 } else { 1096 video_mode = strtol(vmode, NULL, 0); 1097 } 1098 stw_p(header+0x1fa, video_mode); 1099 } 1100 1101 /* loader type */ 1102 /* High nybble = B reserved for QEMU; low nybble is revision number. 1103 If this code is substantially changed, you may want to consider 1104 incrementing the revision. */ 1105 if (protocol >= 0x200) { 1106 header[0x210] = 0xB0; 1107 } 1108 /* heap */ 1109 if (protocol >= 0x201) { 1110 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 1111 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 1112 } 1113 1114 /* load initrd */ 1115 if (initrd_filename) { 1116 gsize initrd_size; 1117 gchar *initrd_data; 1118 GError *gerr = NULL; 1119 1120 if (protocol < 0x200) { 1121 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 1122 exit(1); 1123 } 1124 1125 if (!g_file_get_contents(initrd_filename, &initrd_data, 1126 &initrd_size, &gerr)) { 1127 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1128 initrd_filename, gerr->message); 1129 exit(1); 1130 } 1131 if (initrd_size >= initrd_max) { 1132 fprintf(stderr, "qemu: initrd is too large, cannot support." 1133 "(max: %"PRIu32", need %"PRId64")\n", 1134 initrd_max, (uint64_t)initrd_size); 1135 exit(1); 1136 } 1137 1138 initrd_addr = (initrd_max-initrd_size) & ~4095; 1139 1140 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1141 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1142 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1143 1144 stl_p(header+0x218, initrd_addr); 1145 stl_p(header+0x21c, initrd_size); 1146 } 1147 1148 /* load kernel and setup */ 1149 setup_size = header[0x1f1]; 1150 if (setup_size == 0) { 1151 setup_size = 4; 1152 } 1153 setup_size = (setup_size+1)*512; 1154 if (setup_size > kernel_size) { 1155 fprintf(stderr, "qemu: invalid kernel header\n"); 1156 exit(1); 1157 } 1158 kernel_size -= setup_size; 1159 1160 setup = g_malloc(setup_size); 1161 kernel = g_malloc(kernel_size); 1162 fseek(f, 0, SEEK_SET); 1163 if (fread(setup, 1, setup_size, f) != setup_size) { 1164 fprintf(stderr, "fread() failed\n"); 1165 exit(1); 1166 } 1167 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1168 fprintf(stderr, "fread() failed\n"); 1169 exit(1); 1170 } 1171 fclose(f); 1172 1173 /* append dtb to kernel */ 1174 if (dtb_filename) { 1175 if (protocol < 0x209) { 1176 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1177 exit(1); 1178 } 1179 1180 dtb_size = get_image_size(dtb_filename); 1181 if (dtb_size <= 0) { 1182 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1183 dtb_filename, strerror(errno)); 1184 exit(1); 1185 } 1186 1187 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1188 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1189 kernel = g_realloc(kernel, kernel_size); 1190 1191 stq_p(header+0x250, prot_addr + setup_data_offset); 1192 1193 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1194 setup_data->next = 0; 1195 setup_data->type = cpu_to_le32(SETUP_DTB); 1196 setup_data->len = cpu_to_le32(dtb_size); 1197 1198 load_image_size(dtb_filename, setup_data->data, dtb_size); 1199 } 1200 1201 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1202 1203 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1204 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1205 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1206 1207 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1208 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1209 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1210 1211 option_rom[nb_option_roms].bootindex = 0; 1212 option_rom[nb_option_roms].name = "linuxboot.bin"; 1213 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1214 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1215 } 1216 nb_option_roms++; 1217 } 1218 1219 #define NE2000_NB_MAX 6 1220 1221 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1222 0x280, 0x380 }; 1223 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1224 1225 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1226 { 1227 static int nb_ne2k = 0; 1228 1229 if (nb_ne2k == NE2000_NB_MAX) 1230 return; 1231 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1232 ne2000_irq[nb_ne2k], nd); 1233 nb_ne2k++; 1234 } 1235 1236 DeviceState *cpu_get_current_apic(void) 1237 { 1238 if (current_cpu) { 1239 X86CPU *cpu = X86_CPU(current_cpu); 1240 return cpu->apic_state; 1241 } else { 1242 return NULL; 1243 } 1244 } 1245 1246 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1247 { 1248 X86CPU *cpu = opaque; 1249 1250 if (level) { 1251 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1252 } 1253 } 1254 1255 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1256 { 1257 Object *cpu = NULL; 1258 Error *local_err = NULL; 1259 1260 cpu = object_new(typename); 1261 1262 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1263 object_property_set_bool(cpu, true, "realized", &local_err); 1264 1265 object_unref(cpu); 1266 error_propagate(errp, local_err); 1267 } 1268 1269 void pc_hot_add_cpu(const int64_t id, Error **errp) 1270 { 1271 MachineState *ms = MACHINE(qdev_get_machine()); 1272 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1273 Error *local_err = NULL; 1274 1275 if (id < 0) { 1276 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1277 return; 1278 } 1279 1280 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1281 error_setg(errp, "Unable to add CPU: %" PRIi64 1282 ", resulting APIC ID (%" PRIi64 ") is too large", 1283 id, apic_id); 1284 return; 1285 } 1286 1287 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1288 if (local_err) { 1289 error_propagate(errp, local_err); 1290 return; 1291 } 1292 } 1293 1294 void pc_cpus_init(PCMachineState *pcms) 1295 { 1296 int i; 1297 const CPUArchIdList *possible_cpus; 1298 MachineState *ms = MACHINE(pcms); 1299 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1300 1301 /* Calculates the limit to CPU APIC ID values 1302 * 1303 * Limit for the APIC ID value, so that all 1304 * CPU APIC IDs are < pcms->apic_id_limit. 1305 * 1306 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1307 */ 1308 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1309 possible_cpus = mc->possible_cpu_arch_ids(ms); 1310 for (i = 0; i < smp_cpus; i++) { 1311 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1312 &error_fatal); 1313 } 1314 } 1315 1316 static void pc_build_feature_control_file(PCMachineState *pcms) 1317 { 1318 MachineState *ms = MACHINE(pcms); 1319 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1320 CPUX86State *env = &cpu->env; 1321 uint32_t unused, ecx, edx; 1322 uint64_t feature_control_bits = 0; 1323 uint64_t *val; 1324 1325 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1326 if (ecx & CPUID_EXT_VMX) { 1327 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1328 } 1329 1330 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1331 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1332 (env->mcg_cap & MCG_LMCE_P)) { 1333 feature_control_bits |= FEATURE_CONTROL_LMCE; 1334 } 1335 1336 if (!feature_control_bits) { 1337 return; 1338 } 1339 1340 val = g_malloc(sizeof(*val)); 1341 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1342 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1343 } 1344 1345 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1346 { 1347 if (cpus_count > 0xff) { 1348 /* If the number of CPUs can't be represented in 8 bits, the 1349 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1350 * to make old BIOSes fail more predictably. 1351 */ 1352 rtc_set_memory(rtc, 0x5f, 0); 1353 } else { 1354 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1355 } 1356 } 1357 1358 static 1359 void pc_machine_done(Notifier *notifier, void *data) 1360 { 1361 PCMachineState *pcms = container_of(notifier, 1362 PCMachineState, machine_done); 1363 PCIBus *bus = pcms->bus; 1364 1365 /* set the number of CPUs */ 1366 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1367 1368 if (bus) { 1369 int extra_hosts = 0; 1370 1371 QLIST_FOREACH(bus, &bus->child, sibling) { 1372 /* look for expander root buses */ 1373 if (pci_bus_is_root(bus)) { 1374 extra_hosts++; 1375 } 1376 } 1377 if (extra_hosts && pcms->fw_cfg) { 1378 uint64_t *val = g_malloc(sizeof(*val)); 1379 *val = cpu_to_le64(extra_hosts); 1380 fw_cfg_add_file(pcms->fw_cfg, 1381 "etc/extra-pci-roots", val, sizeof(*val)); 1382 } 1383 } 1384 1385 acpi_setup(); 1386 if (pcms->fw_cfg) { 1387 pc_build_smbios(pcms); 1388 pc_build_feature_control_file(pcms); 1389 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1390 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1391 } 1392 1393 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1394 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1395 1396 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) || 1397 iommu->intr_eim != ON_OFF_AUTO_ON) { 1398 error_report("current -smp configuration requires " 1399 "Extended Interrupt Mode enabled. " 1400 "You can add an IOMMU using: " 1401 "-device intel-iommu,intremap=on,eim=on"); 1402 exit(EXIT_FAILURE); 1403 } 1404 } 1405 } 1406 1407 void pc_guest_info_init(PCMachineState *pcms) 1408 { 1409 int i; 1410 1411 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1412 pcms->numa_nodes = nb_numa_nodes; 1413 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1414 sizeof *pcms->node_mem); 1415 for (i = 0; i < nb_numa_nodes; i++) { 1416 pcms->node_mem[i] = numa_info[i].node_mem; 1417 } 1418 1419 pcms->machine_done.notify = pc_machine_done; 1420 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1421 } 1422 1423 /* setup pci memory address space mapping into system address space */ 1424 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1425 MemoryRegion *pci_address_space) 1426 { 1427 /* Set to lower priority than RAM */ 1428 memory_region_add_subregion_overlap(system_memory, 0x0, 1429 pci_address_space, -1); 1430 } 1431 1432 void pc_acpi_init(const char *default_dsdt) 1433 { 1434 char *filename; 1435 1436 if (acpi_tables != NULL) { 1437 /* manually set via -acpitable, leave it alone */ 1438 return; 1439 } 1440 1441 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1442 if (filename == NULL) { 1443 warn_report("failed to find %s", default_dsdt); 1444 } else { 1445 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1446 &error_abort); 1447 Error *err = NULL; 1448 1449 qemu_opt_set(opts, "file", filename, &error_abort); 1450 1451 acpi_table_add_builtin(opts, &err); 1452 if (err) { 1453 warn_reportf_err(err, "failed to load %s: ", filename); 1454 } 1455 g_free(filename); 1456 } 1457 } 1458 1459 void xen_load_linux(PCMachineState *pcms) 1460 { 1461 int i; 1462 FWCfgState *fw_cfg; 1463 1464 assert(MACHINE(pcms)->kernel_filename != NULL); 1465 1466 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1467 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1468 rom_set_fw(fw_cfg); 1469 1470 load_linux(pcms, fw_cfg); 1471 for (i = 0; i < nb_option_roms; i++) { 1472 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1473 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1474 !strcmp(option_rom[i].name, "multiboot.bin")); 1475 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1476 } 1477 pcms->fw_cfg = fw_cfg; 1478 } 1479 1480 void pc_memory_init(PCMachineState *pcms, 1481 MemoryRegion *system_memory, 1482 MemoryRegion *rom_memory, 1483 MemoryRegion **ram_memory) 1484 { 1485 int linux_boot, i; 1486 MemoryRegion *ram, *option_rom_mr; 1487 MemoryRegion *ram_below_4g, *ram_above_4g; 1488 FWCfgState *fw_cfg; 1489 MachineState *machine = MACHINE(pcms); 1490 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1491 1492 assert(machine->ram_size == pcms->below_4g_mem_size + 1493 pcms->above_4g_mem_size); 1494 1495 linux_boot = (machine->kernel_filename != NULL); 1496 1497 /* Allocate RAM. We allocate it as a single memory region and use 1498 * aliases to address portions of it, mostly for backwards compatibility 1499 * with older qemus that used qemu_ram_alloc(). 1500 */ 1501 ram = g_malloc(sizeof(*ram)); 1502 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1503 machine->ram_size); 1504 *ram_memory = ram; 1505 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1506 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1507 0, pcms->below_4g_mem_size); 1508 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1509 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1510 if (pcms->above_4g_mem_size > 0) { 1511 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1512 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1513 pcms->below_4g_mem_size, 1514 pcms->above_4g_mem_size); 1515 memory_region_add_subregion(system_memory, 0x100000000ULL, 1516 ram_above_4g); 1517 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1518 } 1519 1520 if (!pcmc->has_reserved_memory && 1521 (machine->ram_slots || 1522 (machine->maxram_size > machine->ram_size))) { 1523 MachineClass *mc = MACHINE_GET_CLASS(machine); 1524 1525 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1526 mc->name); 1527 exit(EXIT_FAILURE); 1528 } 1529 1530 /* always allocate the device memory information */ 1531 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1532 1533 /* initialize device memory address space */ 1534 if (pcmc->has_reserved_memory && 1535 (machine->ram_size < machine->maxram_size)) { 1536 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1537 1538 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1539 error_report("unsupported amount of memory slots: %"PRIu64, 1540 machine->ram_slots); 1541 exit(EXIT_FAILURE); 1542 } 1543 1544 if (QEMU_ALIGN_UP(machine->maxram_size, 1545 TARGET_PAGE_SIZE) != machine->maxram_size) { 1546 error_report("maximum memory size must by aligned to multiple of " 1547 "%d bytes", TARGET_PAGE_SIZE); 1548 exit(EXIT_FAILURE); 1549 } 1550 1551 machine->device_memory->base = 1552 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1553 1554 if (pcmc->enforce_aligned_dimm) { 1555 /* size device region assuming 1G page max alignment per slot */ 1556 device_mem_size += (1 * GiB) * machine->ram_slots; 1557 } 1558 1559 if ((machine->device_memory->base + device_mem_size) < 1560 device_mem_size) { 1561 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1562 machine->maxram_size); 1563 exit(EXIT_FAILURE); 1564 } 1565 1566 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1567 "device-memory", device_mem_size); 1568 memory_region_add_subregion(system_memory, machine->device_memory->base, 1569 &machine->device_memory->mr); 1570 } 1571 1572 /* Initialize PC system firmware */ 1573 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1574 1575 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1576 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1577 &error_fatal); 1578 if (pcmc->pci_enabled) { 1579 memory_region_set_readonly(option_rom_mr, true); 1580 } 1581 memory_region_add_subregion_overlap(rom_memory, 1582 PC_ROM_MIN_VGA, 1583 option_rom_mr, 1584 1); 1585 1586 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1587 1588 rom_set_fw(fw_cfg); 1589 1590 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1591 uint64_t *val = g_malloc(sizeof(*val)); 1592 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1593 uint64_t res_mem_end = machine->device_memory->base; 1594 1595 if (!pcmc->broken_reserved_end) { 1596 res_mem_end += memory_region_size(&machine->device_memory->mr); 1597 } 1598 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1599 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1600 } 1601 1602 if (linux_boot) { 1603 load_linux(pcms, fw_cfg); 1604 } 1605 1606 for (i = 0; i < nb_option_roms; i++) { 1607 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1608 } 1609 pcms->fw_cfg = fw_cfg; 1610 1611 /* Init default IOAPIC address space */ 1612 pcms->ioapic_as = &address_space_memory; 1613 } 1614 1615 /* 1616 * The 64bit pci hole starts after "above 4G RAM" and 1617 * potentially the space reserved for memory hotplug. 1618 */ 1619 uint64_t pc_pci_hole64_start(void) 1620 { 1621 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1622 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1623 MachineState *ms = MACHINE(pcms); 1624 uint64_t hole64_start = 0; 1625 1626 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1627 hole64_start = ms->device_memory->base; 1628 if (!pcmc->broken_reserved_end) { 1629 hole64_start += memory_region_size(&ms->device_memory->mr); 1630 } 1631 } else { 1632 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1633 } 1634 1635 return ROUND_UP(hole64_start, 1 * GiB); 1636 } 1637 1638 qemu_irq pc_allocate_cpu_irq(void) 1639 { 1640 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1641 } 1642 1643 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1644 { 1645 DeviceState *dev = NULL; 1646 1647 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1648 if (pci_bus) { 1649 PCIDevice *pcidev = pci_vga_init(pci_bus); 1650 dev = pcidev ? &pcidev->qdev : NULL; 1651 } else if (isa_bus) { 1652 ISADevice *isadev = isa_vga_init(isa_bus); 1653 dev = isadev ? DEVICE(isadev) : NULL; 1654 } 1655 rom_reset_order_override(); 1656 return dev; 1657 } 1658 1659 static const MemoryRegionOps ioport80_io_ops = { 1660 .write = ioport80_write, 1661 .read = ioport80_read, 1662 .endianness = DEVICE_NATIVE_ENDIAN, 1663 .impl = { 1664 .min_access_size = 1, 1665 .max_access_size = 1, 1666 }, 1667 }; 1668 1669 static const MemoryRegionOps ioportF0_io_ops = { 1670 .write = ioportF0_write, 1671 .read = ioportF0_read, 1672 .endianness = DEVICE_NATIVE_ENDIAN, 1673 .impl = { 1674 .min_access_size = 1, 1675 .max_access_size = 1, 1676 }, 1677 }; 1678 1679 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1680 { 1681 int i; 1682 DriveInfo *fd[MAX_FD]; 1683 qemu_irq *a20_line; 1684 ISADevice *i8042, *port92, *vmmouse; 1685 1686 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1687 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1688 1689 for (i = 0; i < MAX_FD; i++) { 1690 fd[i] = drive_get(IF_FLOPPY, 0, i); 1691 create_fdctrl |= !!fd[i]; 1692 } 1693 if (create_fdctrl) { 1694 fdctrl_init_isa(isa_bus, fd); 1695 } 1696 1697 i8042 = isa_create_simple(isa_bus, "i8042"); 1698 if (!no_vmport) { 1699 vmport_init(isa_bus); 1700 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1701 } else { 1702 vmmouse = NULL; 1703 } 1704 if (vmmouse) { 1705 DeviceState *dev = DEVICE(vmmouse); 1706 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1707 qdev_init_nofail(dev); 1708 } 1709 port92 = isa_create_simple(isa_bus, "port92"); 1710 1711 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1712 i8042_setup_a20_line(i8042, a20_line[0]); 1713 port92_init(port92, a20_line[1]); 1714 g_free(a20_line); 1715 } 1716 1717 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1718 ISADevice **rtc_state, 1719 bool create_fdctrl, 1720 bool no_vmport, 1721 bool has_pit, 1722 uint32_t hpet_irqs) 1723 { 1724 int i; 1725 DeviceState *hpet = NULL; 1726 int pit_isa_irq = 0; 1727 qemu_irq pit_alt_irq = NULL; 1728 qemu_irq rtc_irq = NULL; 1729 ISADevice *pit = NULL; 1730 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1731 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1732 1733 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1734 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1735 1736 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1737 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1738 1739 /* 1740 * Check if an HPET shall be created. 1741 * 1742 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1743 * when the HPET wants to take over. Thus we have to disable the latter. 1744 */ 1745 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1746 /* In order to set property, here not using sysbus_try_create_simple */ 1747 hpet = qdev_try_create(NULL, TYPE_HPET); 1748 if (hpet) { 1749 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1750 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1751 * IRQ8 and IRQ2. 1752 */ 1753 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1754 HPET_INTCAP, NULL); 1755 if (!compat) { 1756 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1757 } 1758 qdev_init_nofail(hpet); 1759 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1760 1761 for (i = 0; i < GSI_NUM_PINS; i++) { 1762 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1763 } 1764 pit_isa_irq = -1; 1765 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1766 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1767 } 1768 } 1769 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1770 1771 qemu_register_boot_set(pc_boot_set, *rtc_state); 1772 1773 if (!xen_enabled() && has_pit) { 1774 if (kvm_pit_in_kernel()) { 1775 pit = kvm_pit_init(isa_bus, 0x40); 1776 } else { 1777 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1778 } 1779 if (hpet) { 1780 /* connect PIT to output control line of the HPET */ 1781 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1782 } 1783 pcspk_init(isa_bus, pit); 1784 } 1785 1786 i8257_dma_init(isa_bus, 0); 1787 1788 /* Super I/O */ 1789 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1790 } 1791 1792 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1793 { 1794 int i; 1795 1796 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1797 for (i = 0; i < nb_nics; i++) { 1798 NICInfo *nd = &nd_table[i]; 1799 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1800 1801 if (g_str_equal(model, "ne2k_isa")) { 1802 pc_init_ne2k_isa(isa_bus, nd); 1803 } else { 1804 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1805 } 1806 } 1807 rom_reset_order_override(); 1808 } 1809 1810 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1811 { 1812 DeviceState *dev; 1813 SysBusDevice *d; 1814 unsigned int i; 1815 1816 if (kvm_ioapic_in_kernel()) { 1817 dev = qdev_create(NULL, "kvm-ioapic"); 1818 } else { 1819 dev = qdev_create(NULL, "ioapic"); 1820 } 1821 if (parent_name) { 1822 object_property_add_child(object_resolve_path(parent_name, NULL), 1823 "ioapic", OBJECT(dev), NULL); 1824 } 1825 qdev_init_nofail(dev); 1826 d = SYS_BUS_DEVICE(dev); 1827 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1828 1829 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1830 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1831 } 1832 } 1833 1834 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1835 Error **errp) 1836 { 1837 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1838 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1839 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1840 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1841 1842 /* 1843 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1844 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1845 * addition to cover this case. 1846 */ 1847 if (!pcms->acpi_dev || !acpi_enabled) { 1848 error_setg(errp, 1849 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1850 return; 1851 } 1852 1853 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1854 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1855 return; 1856 } 1857 1858 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), 1859 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1860 } 1861 1862 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1863 DeviceState *dev, Error **errp) 1864 { 1865 HotplugHandlerClass *hhc; 1866 Error *local_err = NULL; 1867 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1868 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1869 1870 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); 1871 if (local_err) { 1872 goto out; 1873 } 1874 1875 if (is_nvdimm) { 1876 nvdimm_plug(&pcms->acpi_nvdimm_state); 1877 } 1878 1879 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1880 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1881 out: 1882 error_propagate(errp, local_err); 1883 } 1884 1885 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1886 DeviceState *dev, Error **errp) 1887 { 1888 HotplugHandlerClass *hhc; 1889 Error *local_err = NULL; 1890 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1891 1892 /* 1893 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1894 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1895 * addition to cover this case. 1896 */ 1897 if (!pcms->acpi_dev || !acpi_enabled) { 1898 error_setg(&local_err, 1899 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1900 goto out; 1901 } 1902 1903 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1904 error_setg(&local_err, 1905 "nvdimm device hot unplug is not supported yet."); 1906 goto out; 1907 } 1908 1909 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1910 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1911 1912 out: 1913 error_propagate(errp, local_err); 1914 } 1915 1916 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1917 DeviceState *dev, Error **errp) 1918 { 1919 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1920 HotplugHandlerClass *hhc; 1921 Error *local_err = NULL; 1922 1923 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1924 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1925 1926 if (local_err) { 1927 goto out; 1928 } 1929 1930 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); 1931 object_unparent(OBJECT(dev)); 1932 1933 out: 1934 error_propagate(errp, local_err); 1935 } 1936 1937 static int pc_apic_cmp(const void *a, const void *b) 1938 { 1939 CPUArchId *apic_a = (CPUArchId *)a; 1940 CPUArchId *apic_b = (CPUArchId *)b; 1941 1942 return apic_a->arch_id - apic_b->arch_id; 1943 } 1944 1945 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1946 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1947 * entry corresponding to CPU's apic_id returns NULL. 1948 */ 1949 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1950 { 1951 CPUArchId apic_id, *found_cpu; 1952 1953 apic_id.arch_id = id; 1954 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1955 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1956 pc_apic_cmp); 1957 if (found_cpu && idx) { 1958 *idx = found_cpu - ms->possible_cpus->cpus; 1959 } 1960 return found_cpu; 1961 } 1962 1963 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1964 DeviceState *dev, Error **errp) 1965 { 1966 CPUArchId *found_cpu; 1967 HotplugHandlerClass *hhc; 1968 Error *local_err = NULL; 1969 X86CPU *cpu = X86_CPU(dev); 1970 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1971 1972 if (pcms->acpi_dev) { 1973 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1974 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1975 if (local_err) { 1976 goto out; 1977 } 1978 } 1979 1980 /* increment the number of CPUs */ 1981 pcms->boot_cpus++; 1982 if (pcms->rtc) { 1983 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1984 } 1985 if (pcms->fw_cfg) { 1986 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1987 } 1988 1989 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1990 found_cpu->cpu = OBJECT(dev); 1991 out: 1992 error_propagate(errp, local_err); 1993 } 1994 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1995 DeviceState *dev, Error **errp) 1996 { 1997 int idx = -1; 1998 HotplugHandlerClass *hhc; 1999 Error *local_err = NULL; 2000 X86CPU *cpu = X86_CPU(dev); 2001 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2002 2003 if (!pcms->acpi_dev) { 2004 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 2005 goto out; 2006 } 2007 2008 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 2009 assert(idx != -1); 2010 if (idx == 0) { 2011 error_setg(&local_err, "Boot CPU is unpluggable"); 2012 goto out; 2013 } 2014 2015 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 2016 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 2017 2018 if (local_err) { 2019 goto out; 2020 } 2021 2022 out: 2023 error_propagate(errp, local_err); 2024 2025 } 2026 2027 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 2028 DeviceState *dev, Error **errp) 2029 { 2030 CPUArchId *found_cpu; 2031 HotplugHandlerClass *hhc; 2032 Error *local_err = NULL; 2033 X86CPU *cpu = X86_CPU(dev); 2034 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2035 2036 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 2037 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 2038 2039 if (local_err) { 2040 goto out; 2041 } 2042 2043 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 2044 found_cpu->cpu = NULL; 2045 object_unparent(OBJECT(dev)); 2046 2047 /* decrement the number of CPUs */ 2048 pcms->boot_cpus--; 2049 /* Update the number of CPUs in CMOS */ 2050 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 2051 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 2052 out: 2053 error_propagate(errp, local_err); 2054 } 2055 2056 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 2057 DeviceState *dev, Error **errp) 2058 { 2059 int idx; 2060 CPUState *cs; 2061 CPUArchId *cpu_slot; 2062 X86CPUTopoInfo topo; 2063 X86CPU *cpu = X86_CPU(dev); 2064 MachineState *ms = MACHINE(hotplug_dev); 2065 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2066 2067 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 2068 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 2069 ms->cpu_type); 2070 return; 2071 } 2072 2073 /* if APIC ID is not set, set it based on socket/core/thread properties */ 2074 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 2075 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 2076 2077 if (cpu->socket_id < 0) { 2078 error_setg(errp, "CPU socket-id is not set"); 2079 return; 2080 } else if (cpu->socket_id > max_socket) { 2081 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 2082 cpu->socket_id, max_socket); 2083 return; 2084 } 2085 if (cpu->core_id < 0) { 2086 error_setg(errp, "CPU core-id is not set"); 2087 return; 2088 } else if (cpu->core_id > (smp_cores - 1)) { 2089 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 2090 cpu->core_id, smp_cores - 1); 2091 return; 2092 } 2093 if (cpu->thread_id < 0) { 2094 error_setg(errp, "CPU thread-id is not set"); 2095 return; 2096 } else if (cpu->thread_id > (smp_threads - 1)) { 2097 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 2098 cpu->thread_id, smp_threads - 1); 2099 return; 2100 } 2101 2102 topo.pkg_id = cpu->socket_id; 2103 topo.core_id = cpu->core_id; 2104 topo.smt_id = cpu->thread_id; 2105 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 2106 } 2107 2108 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 2109 if (!cpu_slot) { 2110 MachineState *ms = MACHINE(pcms); 2111 2112 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2113 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 2114 " APIC ID %" PRIu32 ", valid index range 0:%d", 2115 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 2116 ms->possible_cpus->len - 1); 2117 return; 2118 } 2119 2120 if (cpu_slot->cpu) { 2121 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 2122 idx, cpu->apic_id); 2123 return; 2124 } 2125 2126 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 2127 * so that machine_query_hotpluggable_cpus would show correct values 2128 */ 2129 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 2130 * once -smp refactoring is complete and there will be CPU private 2131 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 2132 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2133 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 2134 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 2135 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 2136 return; 2137 } 2138 cpu->socket_id = topo.pkg_id; 2139 2140 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 2141 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 2142 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 2143 return; 2144 } 2145 cpu->core_id = topo.core_id; 2146 2147 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2148 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2149 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2150 return; 2151 } 2152 cpu->thread_id = topo.smt_id; 2153 2154 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2155 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2156 return; 2157 } 2158 2159 cs = CPU(cpu); 2160 cs->cpu_index = idx; 2161 2162 numa_cpu_pre_plug(cpu_slot, dev, errp); 2163 } 2164 2165 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2166 DeviceState *dev, Error **errp) 2167 { 2168 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2169 pc_memory_pre_plug(hotplug_dev, dev, errp); 2170 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2171 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2172 } 2173 } 2174 2175 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2176 DeviceState *dev, Error **errp) 2177 { 2178 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2179 pc_memory_plug(hotplug_dev, dev, errp); 2180 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2181 pc_cpu_plug(hotplug_dev, dev, errp); 2182 } 2183 } 2184 2185 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2186 DeviceState *dev, Error **errp) 2187 { 2188 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2189 pc_memory_unplug_request(hotplug_dev, dev, errp); 2190 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2191 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2192 } else { 2193 error_setg(errp, "acpi: device unplug request for not supported device" 2194 " type: %s", object_get_typename(OBJECT(dev))); 2195 } 2196 } 2197 2198 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2199 DeviceState *dev, Error **errp) 2200 { 2201 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2202 pc_memory_unplug(hotplug_dev, dev, errp); 2203 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2204 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2205 } else { 2206 error_setg(errp, "acpi: device unplug for not supported device" 2207 " type: %s", object_get_typename(OBJECT(dev))); 2208 } 2209 } 2210 2211 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2212 DeviceState *dev) 2213 { 2214 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2215 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2216 return HOTPLUG_HANDLER(machine); 2217 } 2218 2219 return NULL; 2220 } 2221 2222 static void 2223 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2224 const char *name, void *opaque, 2225 Error **errp) 2226 { 2227 MachineState *ms = MACHINE(obj); 2228 int64_t value = memory_region_size(&ms->device_memory->mr); 2229 2230 visit_type_int(v, name, &value, errp); 2231 } 2232 2233 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2234 const char *name, void *opaque, 2235 Error **errp) 2236 { 2237 PCMachineState *pcms = PC_MACHINE(obj); 2238 uint64_t value = pcms->max_ram_below_4g; 2239 2240 visit_type_size(v, name, &value, errp); 2241 } 2242 2243 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2244 const char *name, void *opaque, 2245 Error **errp) 2246 { 2247 PCMachineState *pcms = PC_MACHINE(obj); 2248 Error *error = NULL; 2249 uint64_t value; 2250 2251 visit_type_size(v, name, &value, &error); 2252 if (error) { 2253 error_propagate(errp, error); 2254 return; 2255 } 2256 if (value > 4 * GiB) { 2257 error_setg(&error, 2258 "Machine option 'max-ram-below-4g=%"PRIu64 2259 "' expects size less than or equal to 4G", value); 2260 error_propagate(errp, error); 2261 return; 2262 } 2263 2264 if (value < 1 * MiB) { 2265 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2266 "BIOS may not work with less than 1MiB", value); 2267 } 2268 2269 pcms->max_ram_below_4g = value; 2270 } 2271 2272 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2273 void *opaque, Error **errp) 2274 { 2275 PCMachineState *pcms = PC_MACHINE(obj); 2276 OnOffAuto vmport = pcms->vmport; 2277 2278 visit_type_OnOffAuto(v, name, &vmport, errp); 2279 } 2280 2281 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2282 void *opaque, Error **errp) 2283 { 2284 PCMachineState *pcms = PC_MACHINE(obj); 2285 2286 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2287 } 2288 2289 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2290 { 2291 bool smm_available = false; 2292 2293 if (pcms->smm == ON_OFF_AUTO_OFF) { 2294 return false; 2295 } 2296 2297 if (tcg_enabled() || qtest_enabled()) { 2298 smm_available = true; 2299 } else if (kvm_enabled()) { 2300 smm_available = kvm_has_smm(); 2301 } 2302 2303 if (smm_available) { 2304 return true; 2305 } 2306 2307 if (pcms->smm == ON_OFF_AUTO_ON) { 2308 error_report("System Management Mode not supported by this hypervisor."); 2309 exit(1); 2310 } 2311 return false; 2312 } 2313 2314 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2315 void *opaque, Error **errp) 2316 { 2317 PCMachineState *pcms = PC_MACHINE(obj); 2318 OnOffAuto smm = pcms->smm; 2319 2320 visit_type_OnOffAuto(v, name, &smm, errp); 2321 } 2322 2323 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2324 void *opaque, Error **errp) 2325 { 2326 PCMachineState *pcms = PC_MACHINE(obj); 2327 2328 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2329 } 2330 2331 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2332 { 2333 PCMachineState *pcms = PC_MACHINE(obj); 2334 2335 return pcms->acpi_nvdimm_state.is_enabled; 2336 } 2337 2338 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2339 { 2340 PCMachineState *pcms = PC_MACHINE(obj); 2341 2342 pcms->acpi_nvdimm_state.is_enabled = value; 2343 } 2344 2345 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2346 { 2347 PCMachineState *pcms = PC_MACHINE(obj); 2348 2349 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2350 } 2351 2352 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2353 Error **errp) 2354 { 2355 PCMachineState *pcms = PC_MACHINE(obj); 2356 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2357 2358 if (strcmp(value, "cpu") == 0) 2359 nvdimm_state->persistence = 3; 2360 else if (strcmp(value, "mem-ctrl") == 0) 2361 nvdimm_state->persistence = 2; 2362 else { 2363 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option", 2364 value); 2365 return; 2366 } 2367 2368 g_free(nvdimm_state->persistence_string); 2369 nvdimm_state->persistence_string = g_strdup(value); 2370 } 2371 2372 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2373 { 2374 PCMachineState *pcms = PC_MACHINE(obj); 2375 2376 return pcms->smbus_enabled; 2377 } 2378 2379 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2380 { 2381 PCMachineState *pcms = PC_MACHINE(obj); 2382 2383 pcms->smbus_enabled = value; 2384 } 2385 2386 static bool pc_machine_get_sata(Object *obj, Error **errp) 2387 { 2388 PCMachineState *pcms = PC_MACHINE(obj); 2389 2390 return pcms->sata_enabled; 2391 } 2392 2393 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2394 { 2395 PCMachineState *pcms = PC_MACHINE(obj); 2396 2397 pcms->sata_enabled = value; 2398 } 2399 2400 static bool pc_machine_get_pit(Object *obj, Error **errp) 2401 { 2402 PCMachineState *pcms = PC_MACHINE(obj); 2403 2404 return pcms->pit_enabled; 2405 } 2406 2407 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2408 { 2409 PCMachineState *pcms = PC_MACHINE(obj); 2410 2411 pcms->pit_enabled = value; 2412 } 2413 2414 static void pc_machine_initfn(Object *obj) 2415 { 2416 PCMachineState *pcms = PC_MACHINE(obj); 2417 2418 pcms->max_ram_below_4g = 0; /* use default */ 2419 pcms->smm = ON_OFF_AUTO_AUTO; 2420 pcms->vmport = ON_OFF_AUTO_AUTO; 2421 /* nvdimm is disabled on default. */ 2422 pcms->acpi_nvdimm_state.is_enabled = false; 2423 /* acpi build is enabled by default if machine supports it */ 2424 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2425 pcms->smbus_enabled = true; 2426 pcms->sata_enabled = true; 2427 pcms->pit_enabled = true; 2428 } 2429 2430 static void pc_machine_reset(void) 2431 { 2432 CPUState *cs; 2433 X86CPU *cpu; 2434 2435 qemu_devices_reset(); 2436 2437 /* Reset APIC after devices have been reset to cancel 2438 * any changes that qemu_devices_reset() might have done. 2439 */ 2440 CPU_FOREACH(cs) { 2441 cpu = X86_CPU(cs); 2442 2443 if (cpu->apic_state) { 2444 device_reset(cpu->apic_state); 2445 } 2446 } 2447 } 2448 2449 static CpuInstanceProperties 2450 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2451 { 2452 MachineClass *mc = MACHINE_GET_CLASS(ms); 2453 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2454 2455 assert(cpu_index < possible_cpus->len); 2456 return possible_cpus->cpus[cpu_index].props; 2457 } 2458 2459 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2460 { 2461 X86CPUTopoInfo topo; 2462 2463 assert(idx < ms->possible_cpus->len); 2464 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2465 smp_cores, smp_threads, &topo); 2466 return topo.pkg_id % nb_numa_nodes; 2467 } 2468 2469 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2470 { 2471 int i; 2472 2473 if (ms->possible_cpus) { 2474 /* 2475 * make sure that max_cpus hasn't changed since the first use, i.e. 2476 * -smp hasn't been parsed after it 2477 */ 2478 assert(ms->possible_cpus->len == max_cpus); 2479 return ms->possible_cpus; 2480 } 2481 2482 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2483 sizeof(CPUArchId) * max_cpus); 2484 ms->possible_cpus->len = max_cpus; 2485 for (i = 0; i < ms->possible_cpus->len; i++) { 2486 X86CPUTopoInfo topo; 2487 2488 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2489 ms->possible_cpus->cpus[i].vcpus_count = 1; 2490 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2491 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2492 smp_cores, smp_threads, &topo); 2493 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2494 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2495 ms->possible_cpus->cpus[i].props.has_core_id = true; 2496 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2497 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2498 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2499 } 2500 return ms->possible_cpus; 2501 } 2502 2503 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2504 { 2505 /* cpu index isn't used */ 2506 CPUState *cs; 2507 2508 CPU_FOREACH(cs) { 2509 X86CPU *cpu = X86_CPU(cs); 2510 2511 if (!cpu->apic_state) { 2512 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2513 } else { 2514 apic_deliver_nmi(cpu->apic_state); 2515 } 2516 } 2517 } 2518 2519 static void pc_machine_class_init(ObjectClass *oc, void *data) 2520 { 2521 MachineClass *mc = MACHINE_CLASS(oc); 2522 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2523 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2524 NMIClass *nc = NMI_CLASS(oc); 2525 2526 pcmc->pci_enabled = true; 2527 pcmc->has_acpi_build = true; 2528 pcmc->rsdp_in_ram = true; 2529 pcmc->smbios_defaults = true; 2530 pcmc->smbios_uuid_encoded = true; 2531 pcmc->gigabyte_align = true; 2532 pcmc->has_reserved_memory = true; 2533 pcmc->kvmclock_enabled = true; 2534 pcmc->enforce_aligned_dimm = true; 2535 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2536 * to be used at the moment, 32K should be enough for a while. */ 2537 pcmc->acpi_data_size = 0x20000 + 0x8000; 2538 pcmc->save_tsc_khz = true; 2539 pcmc->linuxboot_dma_enabled = true; 2540 assert(!mc->get_hotplug_handler); 2541 mc->get_hotplug_handler = pc_get_hotpug_handler; 2542 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2543 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2544 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2545 mc->auto_enable_numa_with_memhp = true; 2546 mc->has_hotpluggable_cpus = true; 2547 mc->default_boot_order = "cad"; 2548 mc->hot_add_cpu = pc_hot_add_cpu; 2549 mc->block_default_type = IF_IDE; 2550 mc->max_cpus = 255; 2551 mc->reset = pc_machine_reset; 2552 hc->pre_plug = pc_machine_device_pre_plug_cb; 2553 hc->plug = pc_machine_device_plug_cb; 2554 hc->unplug_request = pc_machine_device_unplug_request_cb; 2555 hc->unplug = pc_machine_device_unplug_cb; 2556 nc->nmi_monitor_handler = x86_nmi; 2557 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2558 2559 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2560 pc_machine_get_device_memory_region_size, NULL, 2561 NULL, NULL, &error_abort); 2562 2563 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2564 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2565 NULL, NULL, &error_abort); 2566 2567 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2568 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2569 2570 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2571 pc_machine_get_smm, pc_machine_set_smm, 2572 NULL, NULL, &error_abort); 2573 object_class_property_set_description(oc, PC_MACHINE_SMM, 2574 "Enable SMM (pc & q35)", &error_abort); 2575 2576 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2577 pc_machine_get_vmport, pc_machine_set_vmport, 2578 NULL, NULL, &error_abort); 2579 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2580 "Enable vmport (pc & q35)", &error_abort); 2581 2582 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2583 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2584 2585 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2586 pc_machine_get_nvdimm_persistence, 2587 pc_machine_set_nvdimm_persistence, &error_abort); 2588 2589 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2590 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2591 2592 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2593 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2594 2595 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2596 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2597 } 2598 2599 static const TypeInfo pc_machine_info = { 2600 .name = TYPE_PC_MACHINE, 2601 .parent = TYPE_MACHINE, 2602 .abstract = true, 2603 .instance_size = sizeof(PCMachineState), 2604 .instance_init = pc_machine_initfn, 2605 .class_size = sizeof(PCMachineClass), 2606 .class_init = pc_machine_class_init, 2607 .interfaces = (InterfaceInfo[]) { 2608 { TYPE_HOTPLUG_HANDLER }, 2609 { TYPE_NMI }, 2610 { } 2611 }, 2612 }; 2613 2614 static void pc_machine_register_types(void) 2615 { 2616 type_register_static(&pc_machine_info); 2617 } 2618 2619 type_init(pc_machine_register_types) 2620