xref: /openbmc/qemu/hw/i386/pc.c (revision 5836d16812cda6b93380632802d56411972e3148)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 #include "hw/i386/intel_iommu.h"
72 
73 /* debug PC/ISA interrupts */
74 //#define DEBUG_IRQ
75 
76 #ifdef DEBUG_IRQ
77 #define DPRINTF(fmt, ...)                                       \
78     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...)
81 #endif
82 
83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88 
89 #define E820_NR_ENTRIES		16
90 
91 struct e820_entry {
92     uint64_t address;
93     uint64_t length;
94     uint32_t type;
95 } QEMU_PACKED __attribute((__aligned__(4)));
96 
97 struct e820_table {
98     uint32_t count;
99     struct e820_entry entry[E820_NR_ENTRIES];
100 } QEMU_PACKED __attribute((__aligned__(4)));
101 
102 static struct e820_table e820_reserve;
103 static struct e820_entry *e820_table;
104 static unsigned e820_entries;
105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106 
107 void gsi_handler(void *opaque, int n, int level)
108 {
109     GSIState *s = opaque;
110 
111     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
112     if (n < ISA_NUM_IRQS) {
113         qemu_set_irq(s->i8259_irq[n], level);
114     }
115     qemu_set_irq(s->ioapic_irq[n], level);
116 }
117 
118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
119                            unsigned size)
120 {
121 }
122 
123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 {
125     return 0xffffffffffffffffULL;
126 }
127 
128 /* MSDOS compatibility mode FPU exception support */
129 static qemu_irq ferr_irq;
130 
131 void pc_register_ferr_irq(qemu_irq irq)
132 {
133     ferr_irq = irq;
134 }
135 
136 /* XXX: add IGNNE support */
137 void cpu_set_ferr(CPUX86State *s)
138 {
139     qemu_irq_raise(ferr_irq);
140 }
141 
142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
143                            unsigned size)
144 {
145     qemu_irq_lower(ferr_irq);
146 }
147 
148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 {
150     return 0xffffffffffffffffULL;
151 }
152 
153 /* TSC handling */
154 uint64_t cpu_get_tsc(CPUX86State *env)
155 {
156     return cpu_get_ticks();
157 }
158 
159 /* IRQ handling */
160 int cpu_get_pic_interrupt(CPUX86State *env)
161 {
162     X86CPU *cpu = x86_env_get_cpu(env);
163     int intno;
164 
165     if (!kvm_irqchip_in_kernel()) {
166         intno = apic_get_interrupt(cpu->apic_state);
167         if (intno >= 0) {
168             return intno;
169         }
170         /* read the irq from the PIC */
171         if (!apic_accept_pic_intr(cpu->apic_state)) {
172             return -1;
173         }
174     }
175 
176     intno = pic_read_irq(isa_pic);
177     return intno;
178 }
179 
180 static void pic_irq_request(void *opaque, int irq, int level)
181 {
182     CPUState *cs = first_cpu;
183     X86CPU *cpu = X86_CPU(cs);
184 
185     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
186     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
187         CPU_FOREACH(cs) {
188             cpu = X86_CPU(cs);
189             if (apic_accept_pic_intr(cpu->apic_state)) {
190                 apic_deliver_pic_intr(cpu->apic_state, level);
191             }
192         }
193     } else {
194         if (level) {
195             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
196         } else {
197             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
198         }
199     }
200 }
201 
202 /* PC cmos mappings */
203 
204 #define REG_EQUIPMENT_BYTE          0x14
205 
206 int cmos_get_fd_drive_type(FloppyDriveType fd0)
207 {
208     int val;
209 
210     switch (fd0) {
211     case FLOPPY_DRIVE_TYPE_144:
212         /* 1.44 Mb 3"5 drive */
213         val = 4;
214         break;
215     case FLOPPY_DRIVE_TYPE_288:
216         /* 2.88 Mb 3"5 drive */
217         val = 5;
218         break;
219     case FLOPPY_DRIVE_TYPE_120:
220         /* 1.2 Mb 5"5 drive */
221         val = 2;
222         break;
223     case FLOPPY_DRIVE_TYPE_NONE:
224     default:
225         val = 0;
226         break;
227     }
228     return val;
229 }
230 
231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
232                          int16_t cylinders, int8_t heads, int8_t sectors)
233 {
234     rtc_set_memory(s, type_ofs, 47);
235     rtc_set_memory(s, info_ofs, cylinders);
236     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
237     rtc_set_memory(s, info_ofs + 2, heads);
238     rtc_set_memory(s, info_ofs + 3, 0xff);
239     rtc_set_memory(s, info_ofs + 4, 0xff);
240     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
241     rtc_set_memory(s, info_ofs + 6, cylinders);
242     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
243     rtc_set_memory(s, info_ofs + 8, sectors);
244 }
245 
246 /* convert boot_device letter to something recognizable by the bios */
247 static int boot_device2nibble(char boot_device)
248 {
249     switch(boot_device) {
250     case 'a':
251     case 'b':
252         return 0x01; /* floppy boot */
253     case 'c':
254         return 0x02; /* hard drive boot */
255     case 'd':
256         return 0x03; /* CD-ROM boot */
257     case 'n':
258         return 0x04; /* Network boot */
259     }
260     return 0;
261 }
262 
263 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
264 {
265 #define PC_MAX_BOOT_DEVICES 3
266     int nbds, bds[3] = { 0, };
267     int i;
268 
269     nbds = strlen(boot_device);
270     if (nbds > PC_MAX_BOOT_DEVICES) {
271         error_setg(errp, "Too many boot devices for PC");
272         return;
273     }
274     for (i = 0; i < nbds; i++) {
275         bds[i] = boot_device2nibble(boot_device[i]);
276         if (bds[i] == 0) {
277             error_setg(errp, "Invalid boot device for PC: '%c'",
278                        boot_device[i]);
279             return;
280         }
281     }
282     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
283     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
284 }
285 
286 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
287 {
288     set_boot_dev(opaque, boot_device, errp);
289 }
290 
291 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
292 {
293     int val, nb, i;
294     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
295                                    FLOPPY_DRIVE_TYPE_NONE };
296 
297     /* floppy type */
298     if (floppy) {
299         for (i = 0; i < 2; i++) {
300             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
301         }
302     }
303     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
304         cmos_get_fd_drive_type(fd_type[1]);
305     rtc_set_memory(rtc_state, 0x10, val);
306 
307     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
308     nb = 0;
309     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
310         nb++;
311     }
312     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
313         nb++;
314     }
315     switch (nb) {
316     case 0:
317         break;
318     case 1:
319         val |= 0x01; /* 1 drive, ready for boot */
320         break;
321     case 2:
322         val |= 0x41; /* 2 drives, ready for boot */
323         break;
324     }
325     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
326 }
327 
328 typedef struct pc_cmos_init_late_arg {
329     ISADevice *rtc_state;
330     BusState *idebus[2];
331 } pc_cmos_init_late_arg;
332 
333 typedef struct check_fdc_state {
334     ISADevice *floppy;
335     bool multiple;
336 } CheckFdcState;
337 
338 static int check_fdc(Object *obj, void *opaque)
339 {
340     CheckFdcState *state = opaque;
341     Object *fdc;
342     uint32_t iobase;
343     Error *local_err = NULL;
344 
345     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
346     if (!fdc) {
347         return 0;
348     }
349 
350     iobase = object_property_get_int(obj, "iobase", &local_err);
351     if (local_err || iobase != 0x3f0) {
352         error_free(local_err);
353         return 0;
354     }
355 
356     if (state->floppy) {
357         state->multiple = true;
358     } else {
359         state->floppy = ISA_DEVICE(obj);
360     }
361     return 0;
362 }
363 
364 static const char * const fdc_container_path[] = {
365     "/unattached", "/peripheral", "/peripheral-anon"
366 };
367 
368 /*
369  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
370  * and ACPI objects.
371  */
372 ISADevice *pc_find_fdc0(void)
373 {
374     int i;
375     Object *container;
376     CheckFdcState state = { 0 };
377 
378     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
379         container = container_get(qdev_get_machine(), fdc_container_path[i]);
380         object_child_foreach(container, check_fdc, &state);
381     }
382 
383     if (state.multiple) {
384         error_report("warning: multiple floppy disk controllers with "
385                      "iobase=0x3f0 have been found");
386         error_printf("the one being picked for CMOS setup might not reflect "
387                      "your intent\n");
388     }
389 
390     return state.floppy;
391 }
392 
393 static void pc_cmos_init_late(void *opaque)
394 {
395     pc_cmos_init_late_arg *arg = opaque;
396     ISADevice *s = arg->rtc_state;
397     int16_t cylinders;
398     int8_t heads, sectors;
399     int val;
400     int i, trans;
401 
402     val = 0;
403     if (ide_get_geometry(arg->idebus[0], 0,
404                          &cylinders, &heads, &sectors) >= 0) {
405         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
406         val |= 0xf0;
407     }
408     if (ide_get_geometry(arg->idebus[0], 1,
409                          &cylinders, &heads, &sectors) >= 0) {
410         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
411         val |= 0x0f;
412     }
413     rtc_set_memory(s, 0x12, val);
414 
415     val = 0;
416     for (i = 0; i < 4; i++) {
417         /* NOTE: ide_get_geometry() returns the physical
418            geometry.  It is always such that: 1 <= sects <= 63, 1
419            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
420            geometry can be different if a translation is done. */
421         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
422                              &cylinders, &heads, &sectors) >= 0) {
423             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
424             assert((trans & ~3) == 0);
425             val |= trans << (i * 2);
426         }
427     }
428     rtc_set_memory(s, 0x39, val);
429 
430     pc_cmos_init_floppy(s, pc_find_fdc0());
431 
432     qemu_unregister_reset(pc_cmos_init_late, opaque);
433 }
434 
435 void pc_cmos_init(PCMachineState *pcms,
436                   BusState *idebus0, BusState *idebus1,
437                   ISADevice *s)
438 {
439     int val;
440     static pc_cmos_init_late_arg arg;
441 
442     /* various important CMOS locations needed by PC/Bochs bios */
443 
444     /* memory size */
445     /* base memory (first MiB) */
446     val = MIN(pcms->below_4g_mem_size / 1024, 640);
447     rtc_set_memory(s, 0x15, val);
448     rtc_set_memory(s, 0x16, val >> 8);
449     /* extended memory (next 64MiB) */
450     if (pcms->below_4g_mem_size > 1024 * 1024) {
451         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
452     } else {
453         val = 0;
454     }
455     if (val > 65535)
456         val = 65535;
457     rtc_set_memory(s, 0x17, val);
458     rtc_set_memory(s, 0x18, val >> 8);
459     rtc_set_memory(s, 0x30, val);
460     rtc_set_memory(s, 0x31, val >> 8);
461     /* memory between 16MiB and 4GiB */
462     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
463         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
464     } else {
465         val = 0;
466     }
467     if (val > 65535)
468         val = 65535;
469     rtc_set_memory(s, 0x34, val);
470     rtc_set_memory(s, 0x35, val >> 8);
471     /* memory above 4GiB */
472     val = pcms->above_4g_mem_size / 65536;
473     rtc_set_memory(s, 0x5b, val);
474     rtc_set_memory(s, 0x5c, val >> 8);
475     rtc_set_memory(s, 0x5d, val >> 16);
476 
477     object_property_add_link(OBJECT(pcms), "rtc_state",
478                              TYPE_ISA_DEVICE,
479                              (Object **)&pcms->rtc,
480                              object_property_allow_set_link,
481                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
482     object_property_set_link(OBJECT(pcms), OBJECT(s),
483                              "rtc_state", &error_abort);
484 
485     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
486 
487     val = 0;
488     val |= 0x02; /* FPU is there */
489     val |= 0x04; /* PS/2 mouse installed */
490     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
491 
492     /* hard drives and FDC */
493     arg.rtc_state = s;
494     arg.idebus[0] = idebus0;
495     arg.idebus[1] = idebus1;
496     qemu_register_reset(pc_cmos_init_late, &arg);
497 }
498 
499 #define TYPE_PORT92 "port92"
500 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
501 
502 /* port 92 stuff: could be split off */
503 typedef struct Port92State {
504     ISADevice parent_obj;
505 
506     MemoryRegion io;
507     uint8_t outport;
508     qemu_irq a20_out;
509 } Port92State;
510 
511 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
512                          unsigned size)
513 {
514     Port92State *s = opaque;
515     int oldval = s->outport;
516 
517     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
518     s->outport = val;
519     qemu_set_irq(s->a20_out, (val >> 1) & 1);
520     if ((val & 1) && !(oldval & 1)) {
521         qemu_system_reset_request();
522     }
523 }
524 
525 static uint64_t port92_read(void *opaque, hwaddr addr,
526                             unsigned size)
527 {
528     Port92State *s = opaque;
529     uint32_t ret;
530 
531     ret = s->outport;
532     DPRINTF("port92: read 0x%02x\n", ret);
533     return ret;
534 }
535 
536 static void port92_init(ISADevice *dev, qemu_irq a20_out)
537 {
538     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
539 }
540 
541 static const VMStateDescription vmstate_port92_isa = {
542     .name = "port92",
543     .version_id = 1,
544     .minimum_version_id = 1,
545     .fields = (VMStateField[]) {
546         VMSTATE_UINT8(outport, Port92State),
547         VMSTATE_END_OF_LIST()
548     }
549 };
550 
551 static void port92_reset(DeviceState *d)
552 {
553     Port92State *s = PORT92(d);
554 
555     s->outport &= ~1;
556 }
557 
558 static const MemoryRegionOps port92_ops = {
559     .read = port92_read,
560     .write = port92_write,
561     .impl = {
562         .min_access_size = 1,
563         .max_access_size = 1,
564     },
565     .endianness = DEVICE_LITTLE_ENDIAN,
566 };
567 
568 static void port92_initfn(Object *obj)
569 {
570     Port92State *s = PORT92(obj);
571 
572     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
573 
574     s->outport = 0;
575 
576     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
577 }
578 
579 static void port92_realizefn(DeviceState *dev, Error **errp)
580 {
581     ISADevice *isadev = ISA_DEVICE(dev);
582     Port92State *s = PORT92(dev);
583 
584     isa_register_ioport(isadev, &s->io, 0x92);
585 }
586 
587 static void port92_class_initfn(ObjectClass *klass, void *data)
588 {
589     DeviceClass *dc = DEVICE_CLASS(klass);
590 
591     dc->realize = port92_realizefn;
592     dc->reset = port92_reset;
593     dc->vmsd = &vmstate_port92_isa;
594     /*
595      * Reason: unlike ordinary ISA devices, this one needs additional
596      * wiring: its A20 output line needs to be wired up by
597      * port92_init().
598      */
599     dc->cannot_instantiate_with_device_add_yet = true;
600 }
601 
602 static const TypeInfo port92_info = {
603     .name          = TYPE_PORT92,
604     .parent        = TYPE_ISA_DEVICE,
605     .instance_size = sizeof(Port92State),
606     .instance_init = port92_initfn,
607     .class_init    = port92_class_initfn,
608 };
609 
610 static void port92_register_types(void)
611 {
612     type_register_static(&port92_info);
613 }
614 
615 type_init(port92_register_types)
616 
617 static void handle_a20_line_change(void *opaque, int irq, int level)
618 {
619     X86CPU *cpu = opaque;
620 
621     /* XXX: send to all CPUs ? */
622     /* XXX: add logic to handle multiple A20 line sources */
623     x86_cpu_set_a20(cpu, level);
624 }
625 
626 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
627 {
628     int index = le32_to_cpu(e820_reserve.count);
629     struct e820_entry *entry;
630 
631     if (type != E820_RAM) {
632         /* old FW_CFG_E820_TABLE entry -- reservations only */
633         if (index >= E820_NR_ENTRIES) {
634             return -EBUSY;
635         }
636         entry = &e820_reserve.entry[index++];
637 
638         entry->address = cpu_to_le64(address);
639         entry->length = cpu_to_le64(length);
640         entry->type = cpu_to_le32(type);
641 
642         e820_reserve.count = cpu_to_le32(index);
643     }
644 
645     /* new "etc/e820" file -- include ram too */
646     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
647     e820_table[e820_entries].address = cpu_to_le64(address);
648     e820_table[e820_entries].length = cpu_to_le64(length);
649     e820_table[e820_entries].type = cpu_to_le32(type);
650     e820_entries++;
651 
652     return e820_entries;
653 }
654 
655 int e820_get_num_entries(void)
656 {
657     return e820_entries;
658 }
659 
660 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
661 {
662     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
663         *address = le64_to_cpu(e820_table[idx].address);
664         *length = le64_to_cpu(e820_table[idx].length);
665         return true;
666     }
667     return false;
668 }
669 
670 /* Enables contiguous-apic-ID mode, for compatibility */
671 static bool compat_apic_id_mode;
672 
673 void enable_compat_apic_id_mode(void)
674 {
675     compat_apic_id_mode = true;
676 }
677 
678 /* Calculates initial APIC ID for a specific CPU index
679  *
680  * Currently we need to be able to calculate the APIC ID from the CPU index
681  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
682  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
683  * all CPUs up to max_cpus.
684  */
685 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
686 {
687     uint32_t correct_id;
688     static bool warned;
689 
690     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
691     if (compat_apic_id_mode) {
692         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
693             error_report("APIC IDs set in compatibility mode, "
694                          "CPU topology won't match the configuration");
695             warned = true;
696         }
697         return cpu_index;
698     } else {
699         return correct_id;
700     }
701 }
702 
703 static void pc_build_smbios(FWCfgState *fw_cfg)
704 {
705     uint8_t *smbios_tables, *smbios_anchor;
706     size_t smbios_tables_len, smbios_anchor_len;
707     struct smbios_phys_mem_area *mem_array;
708     unsigned i, array_count;
709 
710     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
711     if (smbios_tables) {
712         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
713                          smbios_tables, smbios_tables_len);
714     }
715 
716     /* build the array of physical mem area from e820 table */
717     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
718     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
719         uint64_t addr, len;
720 
721         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
722             mem_array[array_count].address = addr;
723             mem_array[array_count].length = len;
724             array_count++;
725         }
726     }
727     smbios_get_tables(mem_array, array_count,
728                       &smbios_tables, &smbios_tables_len,
729                       &smbios_anchor, &smbios_anchor_len);
730     g_free(mem_array);
731 
732     if (smbios_anchor) {
733         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
734                         smbios_tables, smbios_tables_len);
735         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
736                         smbios_anchor, smbios_anchor_len);
737     }
738 }
739 
740 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
741 {
742     FWCfgState *fw_cfg;
743     uint64_t *numa_fw_cfg;
744     int i, j;
745 
746     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
747     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
748 
749     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
750      *
751      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
752      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
753      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
754      * for CPU hotplug also uses APIC ID and not "CPU index".
755      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
756      * but the "limit to the APIC ID values SeaBIOS may see".
757      *
758      * So for compatibility reasons with old BIOSes we are stuck with
759      * "etc/max-cpus" actually being apic_id_limit
760      */
761     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
762     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
763     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
764                      acpi_tables, acpi_tables_len);
765     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
766 
767     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
768                      &e820_reserve, sizeof(e820_reserve));
769     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
770                     sizeof(struct e820_entry) * e820_entries);
771 
772     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
773     /* allocate memory for the NUMA channel: one (64bit) word for the number
774      * of nodes, one word for each VCPU->node and one word for each node to
775      * hold the amount of memory.
776      */
777     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
778     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
779     for (i = 0; i < max_cpus; i++) {
780         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
781         assert(apic_id < pcms->apic_id_limit);
782         j = numa_get_node_for_cpu(i);
783         if (j < nb_numa_nodes) {
784             numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
785         }
786     }
787     for (i = 0; i < nb_numa_nodes; i++) {
788         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
789             cpu_to_le64(numa_info[i].node_mem);
790     }
791     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
792                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
793                      sizeof(*numa_fw_cfg));
794 
795     return fw_cfg;
796 }
797 
798 static long get_file_size(FILE *f)
799 {
800     long where, size;
801 
802     /* XXX: on Unix systems, using fstat() probably makes more sense */
803 
804     where = ftell(f);
805     fseek(f, 0, SEEK_END);
806     size = ftell(f);
807     fseek(f, where, SEEK_SET);
808 
809     return size;
810 }
811 
812 /* setup_data types */
813 #define SETUP_NONE     0
814 #define SETUP_E820_EXT 1
815 #define SETUP_DTB      2
816 #define SETUP_PCI      3
817 #define SETUP_EFI      4
818 
819 struct setup_data {
820     uint64_t next;
821     uint32_t type;
822     uint32_t len;
823     uint8_t data[0];
824 } __attribute__((packed));
825 
826 static void load_linux(PCMachineState *pcms,
827                        FWCfgState *fw_cfg)
828 {
829     uint16_t protocol;
830     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
831     int dtb_size, setup_data_offset;
832     uint32_t initrd_max;
833     uint8_t header[8192], *setup, *kernel, *initrd_data;
834     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
835     FILE *f;
836     char *vmode;
837     MachineState *machine = MACHINE(pcms);
838     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
839     struct setup_data *setup_data;
840     const char *kernel_filename = machine->kernel_filename;
841     const char *initrd_filename = machine->initrd_filename;
842     const char *dtb_filename = machine->dtb;
843     const char *kernel_cmdline = machine->kernel_cmdline;
844 
845     /* Align to 16 bytes as a paranoia measure */
846     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
847 
848     /* load the kernel header */
849     f = fopen(kernel_filename, "rb");
850     if (!f || !(kernel_size = get_file_size(f)) ||
851         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
852         MIN(ARRAY_SIZE(header), kernel_size)) {
853         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
854                 kernel_filename, strerror(errno));
855         exit(1);
856     }
857 
858     /* kernel protocol version */
859 #if 0
860     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
861 #endif
862     if (ldl_p(header+0x202) == 0x53726448) {
863         protocol = lduw_p(header+0x206);
864     } else {
865         /* This looks like a multiboot kernel. If it is, let's stop
866            treating it like a Linux kernel. */
867         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
868                            kernel_cmdline, kernel_size, header)) {
869             return;
870         }
871         protocol = 0;
872     }
873 
874     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
875         /* Low kernel */
876         real_addr    = 0x90000;
877         cmdline_addr = 0x9a000 - cmdline_size;
878         prot_addr    = 0x10000;
879     } else if (protocol < 0x202) {
880         /* High but ancient kernel */
881         real_addr    = 0x90000;
882         cmdline_addr = 0x9a000 - cmdline_size;
883         prot_addr    = 0x100000;
884     } else {
885         /* High and recent kernel */
886         real_addr    = 0x10000;
887         cmdline_addr = 0x20000;
888         prot_addr    = 0x100000;
889     }
890 
891 #if 0
892     fprintf(stderr,
893             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
894             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
895             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
896             real_addr,
897             cmdline_addr,
898             prot_addr);
899 #endif
900 
901     /* highest address for loading the initrd */
902     if (protocol >= 0x203) {
903         initrd_max = ldl_p(header+0x22c);
904     } else {
905         initrd_max = 0x37ffffff;
906     }
907 
908     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
909         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
910     }
911 
912     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
913     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
914     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
915 
916     if (protocol >= 0x202) {
917         stl_p(header+0x228, cmdline_addr);
918     } else {
919         stw_p(header+0x20, 0xA33F);
920         stw_p(header+0x22, cmdline_addr-real_addr);
921     }
922 
923     /* handle vga= parameter */
924     vmode = strstr(kernel_cmdline, "vga=");
925     if (vmode) {
926         unsigned int video_mode;
927         /* skip "vga=" */
928         vmode += 4;
929         if (!strncmp(vmode, "normal", 6)) {
930             video_mode = 0xffff;
931         } else if (!strncmp(vmode, "ext", 3)) {
932             video_mode = 0xfffe;
933         } else if (!strncmp(vmode, "ask", 3)) {
934             video_mode = 0xfffd;
935         } else {
936             video_mode = strtol(vmode, NULL, 0);
937         }
938         stw_p(header+0x1fa, video_mode);
939     }
940 
941     /* loader type */
942     /* High nybble = B reserved for QEMU; low nybble is revision number.
943        If this code is substantially changed, you may want to consider
944        incrementing the revision. */
945     if (protocol >= 0x200) {
946         header[0x210] = 0xB0;
947     }
948     /* heap */
949     if (protocol >= 0x201) {
950         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
951         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
952     }
953 
954     /* load initrd */
955     if (initrd_filename) {
956         if (protocol < 0x200) {
957             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
958             exit(1);
959         }
960 
961         initrd_size = get_image_size(initrd_filename);
962         if (initrd_size < 0) {
963             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
964                     initrd_filename, strerror(errno));
965             exit(1);
966         }
967 
968         initrd_addr = (initrd_max-initrd_size) & ~4095;
969 
970         initrd_data = g_malloc(initrd_size);
971         load_image(initrd_filename, initrd_data);
972 
973         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
974         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
975         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
976 
977         stl_p(header+0x218, initrd_addr);
978         stl_p(header+0x21c, initrd_size);
979     }
980 
981     /* load kernel and setup */
982     setup_size = header[0x1f1];
983     if (setup_size == 0) {
984         setup_size = 4;
985     }
986     setup_size = (setup_size+1)*512;
987     if (setup_size > kernel_size) {
988         fprintf(stderr, "qemu: invalid kernel header\n");
989         exit(1);
990     }
991     kernel_size -= setup_size;
992 
993     setup  = g_malloc(setup_size);
994     kernel = g_malloc(kernel_size);
995     fseek(f, 0, SEEK_SET);
996     if (fread(setup, 1, setup_size, f) != setup_size) {
997         fprintf(stderr, "fread() failed\n");
998         exit(1);
999     }
1000     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1001         fprintf(stderr, "fread() failed\n");
1002         exit(1);
1003     }
1004     fclose(f);
1005 
1006     /* append dtb to kernel */
1007     if (dtb_filename) {
1008         if (protocol < 0x209) {
1009             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1010             exit(1);
1011         }
1012 
1013         dtb_size = get_image_size(dtb_filename);
1014         if (dtb_size <= 0) {
1015             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1016                     dtb_filename, strerror(errno));
1017             exit(1);
1018         }
1019 
1020         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1021         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1022         kernel = g_realloc(kernel, kernel_size);
1023 
1024         stq_p(header+0x250, prot_addr + setup_data_offset);
1025 
1026         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1027         setup_data->next = 0;
1028         setup_data->type = cpu_to_le32(SETUP_DTB);
1029         setup_data->len = cpu_to_le32(dtb_size);
1030 
1031         load_image_size(dtb_filename, setup_data->data, dtb_size);
1032     }
1033 
1034     memcpy(setup, header, MIN(sizeof(header), setup_size));
1035 
1036     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1037     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1038     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1039 
1040     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1041     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1042     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1043 
1044     if (fw_cfg_dma_enabled(fw_cfg)) {
1045         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1046         option_rom[nb_option_roms].bootindex = 0;
1047     } else {
1048         option_rom[nb_option_roms].name = "linuxboot.bin";
1049         option_rom[nb_option_roms].bootindex = 0;
1050     }
1051     nb_option_roms++;
1052 }
1053 
1054 #define NE2000_NB_MAX 6
1055 
1056 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1057                                               0x280, 0x380 };
1058 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1059 
1060 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1061 {
1062     static int nb_ne2k = 0;
1063 
1064     if (nb_ne2k == NE2000_NB_MAX)
1065         return;
1066     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1067                     ne2000_irq[nb_ne2k], nd);
1068     nb_ne2k++;
1069 }
1070 
1071 DeviceState *cpu_get_current_apic(void)
1072 {
1073     if (current_cpu) {
1074         X86CPU *cpu = X86_CPU(current_cpu);
1075         return cpu->apic_state;
1076     } else {
1077         return NULL;
1078     }
1079 }
1080 
1081 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1082 {
1083     X86CPU *cpu = opaque;
1084 
1085     if (level) {
1086         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1087     }
1088 }
1089 
1090 static int pc_present_cpus_count(PCMachineState *pcms)
1091 {
1092     int i, boot_cpus = 0;
1093     for (i = 0; i < pcms->possible_cpus->len; i++) {
1094         if (pcms->possible_cpus->cpus[i].cpu) {
1095             boot_cpus++;
1096         }
1097     }
1098     return boot_cpus;
1099 }
1100 
1101 static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id,
1102                           Error **errp)
1103 {
1104     X86CPU *cpu = NULL;
1105     Error *local_err = NULL;
1106 
1107     cpu = X86_CPU(object_new(typename));
1108 
1109     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1110     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1111 
1112     if (local_err) {
1113         error_propagate(errp, local_err);
1114         object_unref(OBJECT(cpu));
1115         cpu = NULL;
1116     }
1117     return cpu;
1118 }
1119 
1120 void pc_hot_add_cpu(const int64_t id, Error **errp)
1121 {
1122     X86CPU *cpu;
1123     ObjectClass *oc;
1124     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1125     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1126     Error *local_err = NULL;
1127 
1128     if (id < 0) {
1129         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1130         return;
1131     }
1132 
1133     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1134         error_setg(errp, "Unable to add CPU: %" PRIi64
1135                    ", resulting APIC ID (%" PRIi64 ") is too large",
1136                    id, apic_id);
1137         return;
1138     }
1139 
1140     assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1141     oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu));
1142     cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1143     if (local_err) {
1144         error_propagate(errp, local_err);
1145         return;
1146     }
1147     object_unref(OBJECT(cpu));
1148 }
1149 
1150 void pc_cpus_init(PCMachineState *pcms)
1151 {
1152     int i;
1153     CPUClass *cc;
1154     ObjectClass *oc;
1155     const char *typename;
1156     gchar **model_pieces;
1157     X86CPU *cpu = NULL;
1158     MachineState *machine = MACHINE(pcms);
1159 
1160     /* init CPUs */
1161     if (machine->cpu_model == NULL) {
1162 #ifdef TARGET_X86_64
1163         machine->cpu_model = "qemu64";
1164 #else
1165         machine->cpu_model = "qemu32";
1166 #endif
1167     }
1168 
1169     model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1170     if (!model_pieces[0]) {
1171         error_report("Invalid/empty CPU model name");
1172         exit(1);
1173     }
1174 
1175     oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1176     if (oc == NULL) {
1177         error_report("Unable to find CPU definition: %s", model_pieces[0]);
1178         exit(1);
1179     }
1180     typename = object_class_get_name(oc);
1181     cc = CPU_CLASS(oc);
1182     cc->parse_features(typename, model_pieces[1], &error_fatal);
1183     g_strfreev(model_pieces);
1184 
1185     /* Calculates the limit to CPU APIC ID values
1186      *
1187      * Limit for the APIC ID value, so that all
1188      * CPU APIC IDs are < pcms->apic_id_limit.
1189      *
1190      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1191      */
1192     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1193     pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1194                                     sizeof(CPUArchId) * max_cpus);
1195     for (i = 0; i < max_cpus; i++) {
1196         pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1197         pcms->possible_cpus->len++;
1198         if (i < smp_cpus) {
1199             cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i),
1200                              &error_fatal);
1201             object_unref(OBJECT(cpu));
1202         }
1203     }
1204 
1205     /* tell smbios about cpuid version and features */
1206     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1207 }
1208 
1209 static void pc_build_feature_control_file(PCMachineState *pcms)
1210 {
1211     X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
1212     CPUX86State *env = &cpu->env;
1213     uint32_t unused, ecx, edx;
1214     uint64_t feature_control_bits = 0;
1215     uint64_t *val;
1216 
1217     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1218     if (ecx & CPUID_EXT_VMX) {
1219         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1220     }
1221 
1222     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1223         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1224         (env->mcg_cap & MCG_LMCE_P)) {
1225         feature_control_bits |= FEATURE_CONTROL_LMCE;
1226     }
1227 
1228     if (!feature_control_bits) {
1229         return;
1230     }
1231 
1232     val = g_malloc(sizeof(*val));
1233     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1234     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1235 }
1236 
1237 static
1238 void pc_machine_done(Notifier *notifier, void *data)
1239 {
1240     PCMachineState *pcms = container_of(notifier,
1241                                         PCMachineState, machine_done);
1242     PCIBus *bus = pcms->bus;
1243 
1244     /* set the number of CPUs */
1245     rtc_set_memory(pcms->rtc, 0x5f, pc_present_cpus_count(pcms) - 1);
1246 
1247     if (bus) {
1248         int extra_hosts = 0;
1249 
1250         QLIST_FOREACH(bus, &bus->child, sibling) {
1251             /* look for expander root buses */
1252             if (pci_bus_is_root(bus)) {
1253                 extra_hosts++;
1254             }
1255         }
1256         if (extra_hosts && pcms->fw_cfg) {
1257             uint64_t *val = g_malloc(sizeof(*val));
1258             *val = cpu_to_le64(extra_hosts);
1259             fw_cfg_add_file(pcms->fw_cfg,
1260                     "etc/extra-pci-roots", val, sizeof(*val));
1261         }
1262     }
1263 
1264     acpi_setup();
1265     if (pcms->fw_cfg) {
1266         pc_build_smbios(pcms->fw_cfg);
1267         pc_build_feature_control_file(pcms);
1268     }
1269 
1270     if (pcms->apic_id_limit > 255) {
1271         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1272 
1273         if (!iommu || !iommu->x86_iommu.intr_supported ||
1274             iommu->intr_eim != ON_OFF_AUTO_ON) {
1275             error_report("current -smp configuration requires "
1276                          "Extended Interrupt Mode enabled. "
1277                          "You can add an IOMMU using: "
1278                          "-device intel-iommu,intremap=on,eim=on");
1279             exit(EXIT_FAILURE);
1280         }
1281     }
1282 }
1283 
1284 void pc_guest_info_init(PCMachineState *pcms)
1285 {
1286     int i;
1287 
1288     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1289     pcms->numa_nodes = nb_numa_nodes;
1290     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1291                                     sizeof *pcms->node_mem);
1292     for (i = 0; i < nb_numa_nodes; i++) {
1293         pcms->node_mem[i] = numa_info[i].node_mem;
1294     }
1295 
1296     pcms->machine_done.notify = pc_machine_done;
1297     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1298 }
1299 
1300 /* setup pci memory address space mapping into system address space */
1301 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1302                             MemoryRegion *pci_address_space)
1303 {
1304     /* Set to lower priority than RAM */
1305     memory_region_add_subregion_overlap(system_memory, 0x0,
1306                                         pci_address_space, -1);
1307 }
1308 
1309 void pc_acpi_init(const char *default_dsdt)
1310 {
1311     char *filename;
1312 
1313     if (acpi_tables != NULL) {
1314         /* manually set via -acpitable, leave it alone */
1315         return;
1316     }
1317 
1318     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1319     if (filename == NULL) {
1320         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1321     } else {
1322         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1323                                           &error_abort);
1324         Error *err = NULL;
1325 
1326         qemu_opt_set(opts, "file", filename, &error_abort);
1327 
1328         acpi_table_add_builtin(opts, &err);
1329         if (err) {
1330             error_reportf_err(err, "WARNING: failed to load %s: ",
1331                               filename);
1332         }
1333         g_free(filename);
1334     }
1335 }
1336 
1337 void xen_load_linux(PCMachineState *pcms)
1338 {
1339     int i;
1340     FWCfgState *fw_cfg;
1341 
1342     assert(MACHINE(pcms)->kernel_filename != NULL);
1343 
1344     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1345     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1346     rom_set_fw(fw_cfg);
1347 
1348     load_linux(pcms, fw_cfg);
1349     for (i = 0; i < nb_option_roms; i++) {
1350         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1351                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1352                !strcmp(option_rom[i].name, "multiboot.bin"));
1353         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1354     }
1355     pcms->fw_cfg = fw_cfg;
1356 }
1357 
1358 void pc_memory_init(PCMachineState *pcms,
1359                     MemoryRegion *system_memory,
1360                     MemoryRegion *rom_memory,
1361                     MemoryRegion **ram_memory)
1362 {
1363     int linux_boot, i;
1364     MemoryRegion *ram, *option_rom_mr;
1365     MemoryRegion *ram_below_4g, *ram_above_4g;
1366     FWCfgState *fw_cfg;
1367     MachineState *machine = MACHINE(pcms);
1368     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1369 
1370     assert(machine->ram_size == pcms->below_4g_mem_size +
1371                                 pcms->above_4g_mem_size);
1372 
1373     linux_boot = (machine->kernel_filename != NULL);
1374 
1375     /* Allocate RAM.  We allocate it as a single memory region and use
1376      * aliases to address portions of it, mostly for backwards compatibility
1377      * with older qemus that used qemu_ram_alloc().
1378      */
1379     ram = g_malloc(sizeof(*ram));
1380     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1381                                          machine->ram_size);
1382     *ram_memory = ram;
1383     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1384     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1385                              0, pcms->below_4g_mem_size);
1386     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1387     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1388     if (pcms->above_4g_mem_size > 0) {
1389         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1390         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1391                                  pcms->below_4g_mem_size,
1392                                  pcms->above_4g_mem_size);
1393         memory_region_add_subregion(system_memory, 0x100000000ULL,
1394                                     ram_above_4g);
1395         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1396     }
1397 
1398     if (!pcmc->has_reserved_memory &&
1399         (machine->ram_slots ||
1400          (machine->maxram_size > machine->ram_size))) {
1401         MachineClass *mc = MACHINE_GET_CLASS(machine);
1402 
1403         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1404                      mc->name);
1405         exit(EXIT_FAILURE);
1406     }
1407 
1408     /* initialize hotplug memory address space */
1409     if (pcmc->has_reserved_memory &&
1410         (machine->ram_size < machine->maxram_size)) {
1411         ram_addr_t hotplug_mem_size =
1412             machine->maxram_size - machine->ram_size;
1413 
1414         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1415             error_report("unsupported amount of memory slots: %"PRIu64,
1416                          machine->ram_slots);
1417             exit(EXIT_FAILURE);
1418         }
1419 
1420         if (QEMU_ALIGN_UP(machine->maxram_size,
1421                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1422             error_report("maximum memory size must by aligned to multiple of "
1423                          "%d bytes", TARGET_PAGE_SIZE);
1424             exit(EXIT_FAILURE);
1425         }
1426 
1427         pcms->hotplug_memory.base =
1428             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1429 
1430         if (pcmc->enforce_aligned_dimm) {
1431             /* size hotplug region assuming 1G page max alignment per slot */
1432             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1433         }
1434 
1435         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1436             hotplug_mem_size) {
1437             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1438                          machine->maxram_size);
1439             exit(EXIT_FAILURE);
1440         }
1441 
1442         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1443                            "hotplug-memory", hotplug_mem_size);
1444         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1445                                     &pcms->hotplug_memory.mr);
1446     }
1447 
1448     /* Initialize PC system firmware */
1449     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1450 
1451     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1452     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1453                            &error_fatal);
1454     vmstate_register_ram_global(option_rom_mr);
1455     memory_region_add_subregion_overlap(rom_memory,
1456                                         PC_ROM_MIN_VGA,
1457                                         option_rom_mr,
1458                                         1);
1459 
1460     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1461 
1462     rom_set_fw(fw_cfg);
1463 
1464     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1465         uint64_t *val = g_malloc(sizeof(*val));
1466         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1467         uint64_t res_mem_end = pcms->hotplug_memory.base;
1468 
1469         if (!pcmc->broken_reserved_end) {
1470             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1471         }
1472         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1473         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1474     }
1475 
1476     if (linux_boot) {
1477         load_linux(pcms, fw_cfg);
1478     }
1479 
1480     for (i = 0; i < nb_option_roms; i++) {
1481         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1482     }
1483     pcms->fw_cfg = fw_cfg;
1484 
1485     /* Init default IOAPIC address space */
1486     pcms->ioapic_as = &address_space_memory;
1487 }
1488 
1489 qemu_irq pc_allocate_cpu_irq(void)
1490 {
1491     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1492 }
1493 
1494 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1495 {
1496     DeviceState *dev = NULL;
1497 
1498     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1499     if (pci_bus) {
1500         PCIDevice *pcidev = pci_vga_init(pci_bus);
1501         dev = pcidev ? &pcidev->qdev : NULL;
1502     } else if (isa_bus) {
1503         ISADevice *isadev = isa_vga_init(isa_bus);
1504         dev = isadev ? DEVICE(isadev) : NULL;
1505     }
1506     rom_reset_order_override();
1507     return dev;
1508 }
1509 
1510 static const MemoryRegionOps ioport80_io_ops = {
1511     .write = ioport80_write,
1512     .read = ioport80_read,
1513     .endianness = DEVICE_NATIVE_ENDIAN,
1514     .impl = {
1515         .min_access_size = 1,
1516         .max_access_size = 1,
1517     },
1518 };
1519 
1520 static const MemoryRegionOps ioportF0_io_ops = {
1521     .write = ioportF0_write,
1522     .read = ioportF0_read,
1523     .endianness = DEVICE_NATIVE_ENDIAN,
1524     .impl = {
1525         .min_access_size = 1,
1526         .max_access_size = 1,
1527     },
1528 };
1529 
1530 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1531                           ISADevice **rtc_state,
1532                           bool create_fdctrl,
1533                           bool no_vmport,
1534                           uint32_t hpet_irqs)
1535 {
1536     int i;
1537     DriveInfo *fd[MAX_FD];
1538     DeviceState *hpet = NULL;
1539     int pit_isa_irq = 0;
1540     qemu_irq pit_alt_irq = NULL;
1541     qemu_irq rtc_irq = NULL;
1542     qemu_irq *a20_line;
1543     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1544     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1545     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1546 
1547     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1548     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1549 
1550     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1551     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1552 
1553     /*
1554      * Check if an HPET shall be created.
1555      *
1556      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1557      * when the HPET wants to take over. Thus we have to disable the latter.
1558      */
1559     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1560         /* In order to set property, here not using sysbus_try_create_simple */
1561         hpet = qdev_try_create(NULL, TYPE_HPET);
1562         if (hpet) {
1563             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1564              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1565              * IRQ8 and IRQ2.
1566              */
1567             uint8_t compat = object_property_get_int(OBJECT(hpet),
1568                     HPET_INTCAP, NULL);
1569             if (!compat) {
1570                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1571             }
1572             qdev_init_nofail(hpet);
1573             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1574 
1575             for (i = 0; i < GSI_NUM_PINS; i++) {
1576                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1577             }
1578             pit_isa_irq = -1;
1579             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1580             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1581         }
1582     }
1583     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1584 
1585     qemu_register_boot_set(pc_boot_set, *rtc_state);
1586 
1587     if (!xen_enabled()) {
1588         if (kvm_pit_in_kernel()) {
1589             pit = kvm_pit_init(isa_bus, 0x40);
1590         } else {
1591             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1592         }
1593         if (hpet) {
1594             /* connect PIT to output control line of the HPET */
1595             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1596         }
1597         pcspk_init(isa_bus, pit);
1598     }
1599 
1600     serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1601     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1602 
1603     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1604     i8042 = isa_create_simple(isa_bus, "i8042");
1605     i8042_setup_a20_line(i8042, a20_line[0]);
1606     if (!no_vmport) {
1607         vmport_init(isa_bus);
1608         vmmouse = isa_try_create(isa_bus, "vmmouse");
1609     } else {
1610         vmmouse = NULL;
1611     }
1612     if (vmmouse) {
1613         DeviceState *dev = DEVICE(vmmouse);
1614         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1615         qdev_init_nofail(dev);
1616     }
1617     port92 = isa_create_simple(isa_bus, "port92");
1618     port92_init(port92, a20_line[1]);
1619     g_free(a20_line);
1620 
1621     DMA_init(isa_bus, 0);
1622 
1623     for(i = 0; i < MAX_FD; i++) {
1624         fd[i] = drive_get(IF_FLOPPY, 0, i);
1625         create_fdctrl |= !!fd[i];
1626     }
1627     if (create_fdctrl) {
1628         fdctrl_init_isa(isa_bus, fd);
1629     }
1630 }
1631 
1632 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1633 {
1634     int i;
1635 
1636     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1637     for (i = 0; i < nb_nics; i++) {
1638         NICInfo *nd = &nd_table[i];
1639 
1640         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1641             pc_init_ne2k_isa(isa_bus, nd);
1642         } else {
1643             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1644         }
1645     }
1646     rom_reset_order_override();
1647 }
1648 
1649 void pc_pci_device_init(PCIBus *pci_bus)
1650 {
1651     int max_bus;
1652     int bus;
1653 
1654     max_bus = drive_get_max_bus(IF_SCSI);
1655     for (bus = 0; bus <= max_bus; bus++) {
1656         pci_create_simple(pci_bus, -1, "lsi53c895a");
1657     }
1658 }
1659 
1660 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1661 {
1662     DeviceState *dev;
1663     SysBusDevice *d;
1664     unsigned int i;
1665 
1666     if (kvm_ioapic_in_kernel()) {
1667         dev = qdev_create(NULL, "kvm-ioapic");
1668     } else {
1669         dev = qdev_create(NULL, "ioapic");
1670     }
1671     if (parent_name) {
1672         object_property_add_child(object_resolve_path(parent_name, NULL),
1673                                   "ioapic", OBJECT(dev), NULL);
1674     }
1675     qdev_init_nofail(dev);
1676     d = SYS_BUS_DEVICE(dev);
1677     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1678 
1679     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1680         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1681     }
1682 }
1683 
1684 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1685                          DeviceState *dev, Error **errp)
1686 {
1687     HotplugHandlerClass *hhc;
1688     Error *local_err = NULL;
1689     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1690     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1691     PCDIMMDevice *dimm = PC_DIMM(dev);
1692     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1693     MemoryRegion *mr = ddc->get_memory_region(dimm);
1694     uint64_t align = TARGET_PAGE_SIZE;
1695 
1696     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1697         align = memory_region_get_alignment(mr);
1698     }
1699 
1700     if (!pcms->acpi_dev) {
1701         error_setg(&local_err,
1702                    "memory hotplug is not enabled: missing acpi device");
1703         goto out;
1704     }
1705 
1706     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1707     if (local_err) {
1708         goto out;
1709     }
1710 
1711     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1712         nvdimm_plug(&pcms->acpi_nvdimm_state);
1713     }
1714 
1715     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1716     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1717 out:
1718     error_propagate(errp, local_err);
1719 }
1720 
1721 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1722                                    DeviceState *dev, Error **errp)
1723 {
1724     HotplugHandlerClass *hhc;
1725     Error *local_err = NULL;
1726     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1727 
1728     if (!pcms->acpi_dev) {
1729         error_setg(&local_err,
1730                    "memory hotplug is not enabled: missing acpi device");
1731         goto out;
1732     }
1733 
1734     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1735         error_setg(&local_err,
1736                    "nvdimm device hot unplug is not supported yet.");
1737         goto out;
1738     }
1739 
1740     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1741     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1742 
1743 out:
1744     error_propagate(errp, local_err);
1745 }
1746 
1747 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1748                            DeviceState *dev, Error **errp)
1749 {
1750     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1751     PCDIMMDevice *dimm = PC_DIMM(dev);
1752     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1753     MemoryRegion *mr = ddc->get_memory_region(dimm);
1754     HotplugHandlerClass *hhc;
1755     Error *local_err = NULL;
1756 
1757     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1758     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1759 
1760     if (local_err) {
1761         goto out;
1762     }
1763 
1764     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1765     object_unparent(OBJECT(dev));
1766 
1767  out:
1768     error_propagate(errp, local_err);
1769 }
1770 
1771 static int pc_apic_cmp(const void *a, const void *b)
1772 {
1773    CPUArchId *apic_a = (CPUArchId *)a;
1774    CPUArchId *apic_b = (CPUArchId *)b;
1775 
1776    return apic_a->arch_id - apic_b->arch_id;
1777 }
1778 
1779 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1780  * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no
1781  * entry correponding to CPU's apic_id returns NULL.
1782  */
1783 static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu,
1784                                    int *idx)
1785 {
1786     CPUClass *cc = CPU_GET_CLASS(cpu);
1787     CPUArchId apic_id, *found_cpu;
1788 
1789     apic_id.arch_id = cc->get_arch_id(CPU(cpu));
1790     found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1791         pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1792         pc_apic_cmp);
1793     if (found_cpu && idx) {
1794         *idx = found_cpu - pcms->possible_cpus->cpus;
1795     }
1796     return found_cpu;
1797 }
1798 
1799 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1800                         DeviceState *dev, Error **errp)
1801 {
1802     CPUArchId *found_cpu;
1803     HotplugHandlerClass *hhc;
1804     Error *local_err = NULL;
1805     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1806 
1807     if (pcms->acpi_dev) {
1808         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1809         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1810         if (local_err) {
1811             goto out;
1812         }
1813     }
1814 
1815     if (dev->hotplugged) {
1816         /* increment the number of CPUs */
1817         rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1818     }
1819 
1820     found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1821     found_cpu->cpu = CPU(dev);
1822 out:
1823     error_propagate(errp, local_err);
1824 }
1825 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1826                                      DeviceState *dev, Error **errp)
1827 {
1828     int idx = -1;
1829     HotplugHandlerClass *hhc;
1830     Error *local_err = NULL;
1831     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1832 
1833     pc_find_cpu_slot(pcms, CPU(dev), &idx);
1834     assert(idx != -1);
1835     if (idx == 0) {
1836         error_setg(&local_err, "Boot CPU is unpluggable");
1837         goto out;
1838     }
1839 
1840     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1841     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1842 
1843     if (local_err) {
1844         goto out;
1845     }
1846 
1847  out:
1848     error_propagate(errp, local_err);
1849 
1850 }
1851 
1852 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1853                              DeviceState *dev, Error **errp)
1854 {
1855     CPUArchId *found_cpu;
1856     HotplugHandlerClass *hhc;
1857     Error *local_err = NULL;
1858     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1859 
1860     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1861     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1862 
1863     if (local_err) {
1864         goto out;
1865     }
1866 
1867     found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1868     found_cpu->cpu = NULL;
1869     object_unparent(OBJECT(dev));
1870 
1871     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) - 1);
1872  out:
1873     error_propagate(errp, local_err);
1874 }
1875 
1876 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1877                             DeviceState *dev, Error **errp)
1878 {
1879     int idx;
1880     CPUState *cs;
1881     CPUArchId *cpu_slot;
1882     X86CPUTopoInfo topo;
1883     X86CPU *cpu = X86_CPU(dev);
1884     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1885 
1886     /* if APIC ID is not set, set it based on socket/core/thread properties */
1887     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1888         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1889 
1890         if (cpu->socket_id < 0) {
1891             error_setg(errp, "CPU socket-id is not set");
1892             return;
1893         } else if (cpu->socket_id > max_socket) {
1894             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1895                        cpu->socket_id, max_socket);
1896             return;
1897         }
1898         if (cpu->core_id < 0) {
1899             error_setg(errp, "CPU core-id is not set");
1900             return;
1901         } else if (cpu->core_id > (smp_cores - 1)) {
1902             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1903                        cpu->core_id, smp_cores - 1);
1904             return;
1905         }
1906         if (cpu->thread_id < 0) {
1907             error_setg(errp, "CPU thread-id is not set");
1908             return;
1909         } else if (cpu->thread_id > (smp_threads - 1)) {
1910             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1911                        cpu->thread_id, smp_threads - 1);
1912             return;
1913         }
1914 
1915         topo.pkg_id = cpu->socket_id;
1916         topo.core_id = cpu->core_id;
1917         topo.smt_id = cpu->thread_id;
1918         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1919     }
1920 
1921     cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx);
1922     if (!cpu_slot) {
1923         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1924         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1925                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1926                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1927                    pcms->possible_cpus->len - 1);
1928         return;
1929     }
1930 
1931     if (cpu_slot->cpu) {
1932         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1933                    idx, cpu->apic_id);
1934         return;
1935     }
1936 
1937     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1938      * so that query_hotpluggable_cpus would show correct values
1939      */
1940     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1941      * once -smp refactoring is complete and there will be CPU private
1942      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1943     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1944     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1945         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1946             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1947         return;
1948     }
1949     cpu->socket_id = topo.pkg_id;
1950 
1951     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1952         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1953             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1954         return;
1955     }
1956     cpu->core_id = topo.core_id;
1957 
1958     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1959         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1960             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1961         return;
1962     }
1963     cpu->thread_id = topo.smt_id;
1964 
1965     cs = CPU(cpu);
1966     cs->cpu_index = idx;
1967 }
1968 
1969 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1970                                           DeviceState *dev, Error **errp)
1971 {
1972     if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1973         pc_cpu_pre_plug(hotplug_dev, dev, errp);
1974     }
1975 }
1976 
1977 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1978                                       DeviceState *dev, Error **errp)
1979 {
1980     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1981         pc_dimm_plug(hotplug_dev, dev, errp);
1982     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1983         pc_cpu_plug(hotplug_dev, dev, errp);
1984     }
1985 }
1986 
1987 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1988                                                 DeviceState *dev, Error **errp)
1989 {
1990     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1991         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1992     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1993         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
1994     } else {
1995         error_setg(errp, "acpi: device unplug request for not supported device"
1996                    " type: %s", object_get_typename(OBJECT(dev)));
1997     }
1998 }
1999 
2000 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2001                                         DeviceState *dev, Error **errp)
2002 {
2003     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2004         pc_dimm_unplug(hotplug_dev, dev, errp);
2005     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2006         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2007     } else {
2008         error_setg(errp, "acpi: device unplug for not supported device"
2009                    " type: %s", object_get_typename(OBJECT(dev)));
2010     }
2011 }
2012 
2013 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2014                                              DeviceState *dev)
2015 {
2016     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2017 
2018     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2019         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2020         return HOTPLUG_HANDLER(machine);
2021     }
2022 
2023     return pcmc->get_hotplug_handler ?
2024         pcmc->get_hotplug_handler(machine, dev) : NULL;
2025 }
2026 
2027 static void
2028 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2029                                           const char *name, void *opaque,
2030                                           Error **errp)
2031 {
2032     PCMachineState *pcms = PC_MACHINE(obj);
2033     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2034 
2035     visit_type_int(v, name, &value, errp);
2036 }
2037 
2038 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2039                                             const char *name, void *opaque,
2040                                             Error **errp)
2041 {
2042     PCMachineState *pcms = PC_MACHINE(obj);
2043     uint64_t value = pcms->max_ram_below_4g;
2044 
2045     visit_type_size(v, name, &value, errp);
2046 }
2047 
2048 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2049                                             const char *name, void *opaque,
2050                                             Error **errp)
2051 {
2052     PCMachineState *pcms = PC_MACHINE(obj);
2053     Error *error = NULL;
2054     uint64_t value;
2055 
2056     visit_type_size(v, name, &value, &error);
2057     if (error) {
2058         error_propagate(errp, error);
2059         return;
2060     }
2061     if (value > (1ULL << 32)) {
2062         error_setg(&error,
2063                    "Machine option 'max-ram-below-4g=%"PRIu64
2064                    "' expects size less than or equal to 4G", value);
2065         error_propagate(errp, error);
2066         return;
2067     }
2068 
2069     if (value < (1ULL << 20)) {
2070         error_report("Warning: small max_ram_below_4g(%"PRIu64
2071                      ") less than 1M.  BIOS may not work..",
2072                      value);
2073     }
2074 
2075     pcms->max_ram_below_4g = value;
2076 }
2077 
2078 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2079                                   void *opaque, Error **errp)
2080 {
2081     PCMachineState *pcms = PC_MACHINE(obj);
2082     OnOffAuto vmport = pcms->vmport;
2083 
2084     visit_type_OnOffAuto(v, name, &vmport, errp);
2085 }
2086 
2087 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2088                                   void *opaque, Error **errp)
2089 {
2090     PCMachineState *pcms = PC_MACHINE(obj);
2091 
2092     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2093 }
2094 
2095 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2096 {
2097     bool smm_available = false;
2098 
2099     if (pcms->smm == ON_OFF_AUTO_OFF) {
2100         return false;
2101     }
2102 
2103     if (tcg_enabled() || qtest_enabled()) {
2104         smm_available = true;
2105     } else if (kvm_enabled()) {
2106         smm_available = kvm_has_smm();
2107     }
2108 
2109     if (smm_available) {
2110         return true;
2111     }
2112 
2113     if (pcms->smm == ON_OFF_AUTO_ON) {
2114         error_report("System Management Mode not supported by this hypervisor.");
2115         exit(1);
2116     }
2117     return false;
2118 }
2119 
2120 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2121                                void *opaque, Error **errp)
2122 {
2123     PCMachineState *pcms = PC_MACHINE(obj);
2124     OnOffAuto smm = pcms->smm;
2125 
2126     visit_type_OnOffAuto(v, name, &smm, errp);
2127 }
2128 
2129 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2130                                void *opaque, Error **errp)
2131 {
2132     PCMachineState *pcms = PC_MACHINE(obj);
2133 
2134     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2135 }
2136 
2137 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2138 {
2139     PCMachineState *pcms = PC_MACHINE(obj);
2140 
2141     return pcms->acpi_nvdimm_state.is_enabled;
2142 }
2143 
2144 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2145 {
2146     PCMachineState *pcms = PC_MACHINE(obj);
2147 
2148     pcms->acpi_nvdimm_state.is_enabled = value;
2149 }
2150 
2151 static void pc_machine_initfn(Object *obj)
2152 {
2153     PCMachineState *pcms = PC_MACHINE(obj);
2154 
2155     pcms->max_ram_below_4g = 0; /* use default */
2156     pcms->smm = ON_OFF_AUTO_AUTO;
2157     pcms->vmport = ON_OFF_AUTO_AUTO;
2158     /* nvdimm is disabled on default. */
2159     pcms->acpi_nvdimm_state.is_enabled = false;
2160     /* acpi build is enabled by default if machine supports it */
2161     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2162 }
2163 
2164 static void pc_machine_reset(void)
2165 {
2166     CPUState *cs;
2167     X86CPU *cpu;
2168 
2169     qemu_devices_reset();
2170 
2171     /* Reset APIC after devices have been reset to cancel
2172      * any changes that qemu_devices_reset() might have done.
2173      */
2174     CPU_FOREACH(cs) {
2175         cpu = X86_CPU(cs);
2176 
2177         if (cpu->apic_state) {
2178             device_reset(cpu->apic_state);
2179         }
2180     }
2181 }
2182 
2183 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2184 {
2185     X86CPUTopoInfo topo;
2186     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2187                           &topo);
2188     return topo.pkg_id;
2189 }
2190 
2191 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
2192 {
2193     PCMachineState *pcms = PC_MACHINE(machine);
2194     int len = sizeof(CPUArchIdList) +
2195               sizeof(CPUArchId) * (pcms->possible_cpus->len);
2196     CPUArchIdList *list = g_malloc(len);
2197 
2198     memcpy(list, pcms->possible_cpus, len);
2199     return list;
2200 }
2201 
2202 static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine)
2203 {
2204     int i;
2205     CPUState *cpu;
2206     HotpluggableCPUList *head = NULL;
2207     PCMachineState *pcms = PC_MACHINE(machine);
2208     const char *cpu_type;
2209 
2210     cpu = pcms->possible_cpus->cpus[0].cpu;
2211     assert(cpu); /* BSP is always present */
2212     cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu)));
2213 
2214     for (i = 0; i < pcms->possible_cpus->len; i++) {
2215         X86CPUTopoInfo topo;
2216         HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2217         HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2218         CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2219         const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id;
2220 
2221         x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo);
2222 
2223         cpu_item->type = g_strdup(cpu_type);
2224         cpu_item->vcpus_count = 1;
2225         cpu_props->has_socket_id = true;
2226         cpu_props->socket_id = topo.pkg_id;
2227         cpu_props->has_core_id = true;
2228         cpu_props->core_id = topo.core_id;
2229         cpu_props->has_thread_id = true;
2230         cpu_props->thread_id = topo.smt_id;
2231         cpu_item->props = cpu_props;
2232 
2233         cpu = pcms->possible_cpus->cpus[i].cpu;
2234         if (cpu) {
2235             cpu_item->has_qom_path = true;
2236             cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu));
2237         }
2238 
2239         list_item->value = cpu_item;
2240         list_item->next = head;
2241         head = list_item;
2242     }
2243     return head;
2244 }
2245 
2246 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2247 {
2248     /* cpu index isn't used */
2249     CPUState *cs;
2250 
2251     CPU_FOREACH(cs) {
2252         X86CPU *cpu = X86_CPU(cs);
2253 
2254         if (!cpu->apic_state) {
2255             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2256         } else {
2257             apic_deliver_nmi(cpu->apic_state);
2258         }
2259     }
2260 }
2261 
2262 static void pc_machine_class_init(ObjectClass *oc, void *data)
2263 {
2264     MachineClass *mc = MACHINE_CLASS(oc);
2265     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2266     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2267     NMIClass *nc = NMI_CLASS(oc);
2268 
2269     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2270     pcmc->pci_enabled = true;
2271     pcmc->has_acpi_build = true;
2272     pcmc->rsdp_in_ram = true;
2273     pcmc->smbios_defaults = true;
2274     pcmc->smbios_uuid_encoded = true;
2275     pcmc->gigabyte_align = true;
2276     pcmc->has_reserved_memory = true;
2277     pcmc->kvmclock_enabled = true;
2278     pcmc->enforce_aligned_dimm = true;
2279     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2280      * to be used at the moment, 32K should be enough for a while.  */
2281     pcmc->acpi_data_size = 0x20000 + 0x8000;
2282     pcmc->save_tsc_khz = true;
2283     mc->get_hotplug_handler = pc_get_hotpug_handler;
2284     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2285     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2286     mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus;
2287     mc->default_boot_order = "cad";
2288     mc->hot_add_cpu = pc_hot_add_cpu;
2289     mc->max_cpus = 255;
2290     mc->reset = pc_machine_reset;
2291     hc->pre_plug = pc_machine_device_pre_plug_cb;
2292     hc->plug = pc_machine_device_plug_cb;
2293     hc->unplug_request = pc_machine_device_unplug_request_cb;
2294     hc->unplug = pc_machine_device_unplug_cb;
2295     nc->nmi_monitor_handler = x86_nmi;
2296 
2297     object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2298         pc_machine_get_hotplug_memory_region_size, NULL,
2299         NULL, NULL, &error_abort);
2300 
2301     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2302         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2303         NULL, NULL, &error_abort);
2304 
2305     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2306         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2307 
2308     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2309         pc_machine_get_smm, pc_machine_set_smm,
2310         NULL, NULL, &error_abort);
2311     object_class_property_set_description(oc, PC_MACHINE_SMM,
2312         "Enable SMM (pc & q35)", &error_abort);
2313 
2314     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2315         pc_machine_get_vmport, pc_machine_set_vmport,
2316         NULL, NULL, &error_abort);
2317     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2318         "Enable vmport (pc & q35)", &error_abort);
2319 
2320     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2321         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2322 }
2323 
2324 static const TypeInfo pc_machine_info = {
2325     .name = TYPE_PC_MACHINE,
2326     .parent = TYPE_MACHINE,
2327     .abstract = true,
2328     .instance_size = sizeof(PCMachineState),
2329     .instance_init = pc_machine_initfn,
2330     .class_size = sizeof(PCMachineClass),
2331     .class_init = pc_machine_class_init,
2332     .interfaces = (InterfaceInfo[]) {
2333          { TYPE_HOTPLUG_HANDLER },
2334          { TYPE_NMI },
2335          { }
2336     },
2337 };
2338 
2339 static void pc_machine_register_types(void)
2340 {
2341     type_register_static(&pc_machine_info);
2342 }
2343 
2344 type_init(pc_machine_register_types)
2345