xref: /openbmc/qemu/hw/i386/pc.c (revision 503224f4c8d1469ea9c00a2017334a455044d822)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77 
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80 
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...)                                       \
83     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87 
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93 
94 #define E820_NR_ENTRIES		16
95 
96 struct e820_entry {
97     uint64_t address;
98     uint64_t length;
99     uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101 
102 struct e820_table {
103     uint32_t count;
104     struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106 
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111 
112 GlobalProperty pc_compat_3_1[] = {
113     {
114         .driver   = "intel-iommu",
115         .property = "dma-drain",
116         .value    = "off",
117     },
118 };
119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
120 
121 GlobalProperty pc_compat_3_0[] = {
122     {
123         .driver   = TYPE_X86_CPU,
124         .property = "x-hv-synic-kvm-only",
125         .value    = "on",
126     },{
127         .driver   = "Skylake-Server" "-" TYPE_X86_CPU,
128         .property = "pku",
129         .value    = "off",
130     },{
131         .driver   = "Skylake-Server-IBRS" "-" TYPE_X86_CPU,
132         .property = "pku",
133         .value    = "off",
134     },
135 };
136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
137 
138 GlobalProperty pc_compat_2_12[] = {
139     {
140         .driver   = TYPE_X86_CPU,
141         .property = "legacy-cache",
142         .value    = "on",
143     },{
144         .driver   = TYPE_X86_CPU,
145         .property = "topoext",
146         .value    = "off",
147     },{
148         .driver   = "EPYC-" TYPE_X86_CPU,
149         .property = "xlevel",
150         .value    = stringify(0x8000000a),
151     },{
152         .driver   = "EPYC-IBPB-" TYPE_X86_CPU,
153         .property = "xlevel",
154         .value    = stringify(0x8000000a),
155     },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158 
159 GlobalProperty pc_compat_2_11[] = {
160     {
161         .driver   = TYPE_X86_CPU,
162         .property = "x-migrate-smi-count",
163         .value    = "off",
164     },{
165         .driver   = "Skylake-Server" "-" TYPE_X86_CPU,
166         .property = "clflushopt",
167         .value    = "off",
168     },
169 };
170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
171 
172 GlobalProperty pc_compat_2_10[] = {
173     {
174         .driver   = TYPE_X86_CPU,
175         .property = "x-hv-max-vps",
176         .value    = "0x40",
177     },{
178         .driver   = "i440FX-pcihost",
179         .property = "x-pci-hole64-fix",
180         .value    = "off",
181     },{
182         .driver   = "q35-pcihost",
183         .property = "x-pci-hole64-fix",
184         .value    = "off",
185     },
186 };
187 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
188 
189 void gsi_handler(void *opaque, int n, int level)
190 {
191     GSIState *s = opaque;
192 
193     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
194     if (n < ISA_NUM_IRQS) {
195         qemu_set_irq(s->i8259_irq[n], level);
196     }
197     qemu_set_irq(s->ioapic_irq[n], level);
198 }
199 
200 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
201                            unsigned size)
202 {
203 }
204 
205 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
206 {
207     return 0xffffffffffffffffULL;
208 }
209 
210 /* MSDOS compatibility mode FPU exception support */
211 static qemu_irq ferr_irq;
212 
213 void pc_register_ferr_irq(qemu_irq irq)
214 {
215     ferr_irq = irq;
216 }
217 
218 /* XXX: add IGNNE support */
219 void cpu_set_ferr(CPUX86State *s)
220 {
221     qemu_irq_raise(ferr_irq);
222 }
223 
224 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
225                            unsigned size)
226 {
227     qemu_irq_lower(ferr_irq);
228 }
229 
230 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
231 {
232     return 0xffffffffffffffffULL;
233 }
234 
235 /* TSC handling */
236 uint64_t cpu_get_tsc(CPUX86State *env)
237 {
238     return cpu_get_ticks();
239 }
240 
241 /* IRQ handling */
242 int cpu_get_pic_interrupt(CPUX86State *env)
243 {
244     X86CPU *cpu = x86_env_get_cpu(env);
245     int intno;
246 
247     if (!kvm_irqchip_in_kernel()) {
248         intno = apic_get_interrupt(cpu->apic_state);
249         if (intno >= 0) {
250             return intno;
251         }
252         /* read the irq from the PIC */
253         if (!apic_accept_pic_intr(cpu->apic_state)) {
254             return -1;
255         }
256     }
257 
258     intno = pic_read_irq(isa_pic);
259     return intno;
260 }
261 
262 static void pic_irq_request(void *opaque, int irq, int level)
263 {
264     CPUState *cs = first_cpu;
265     X86CPU *cpu = X86_CPU(cs);
266 
267     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
268     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
269         CPU_FOREACH(cs) {
270             cpu = X86_CPU(cs);
271             if (apic_accept_pic_intr(cpu->apic_state)) {
272                 apic_deliver_pic_intr(cpu->apic_state, level);
273             }
274         }
275     } else {
276         if (level) {
277             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
278         } else {
279             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
280         }
281     }
282 }
283 
284 /* PC cmos mappings */
285 
286 #define REG_EQUIPMENT_BYTE          0x14
287 
288 int cmos_get_fd_drive_type(FloppyDriveType fd0)
289 {
290     int val;
291 
292     switch (fd0) {
293     case FLOPPY_DRIVE_TYPE_144:
294         /* 1.44 Mb 3"5 drive */
295         val = 4;
296         break;
297     case FLOPPY_DRIVE_TYPE_288:
298         /* 2.88 Mb 3"5 drive */
299         val = 5;
300         break;
301     case FLOPPY_DRIVE_TYPE_120:
302         /* 1.2 Mb 5"5 drive */
303         val = 2;
304         break;
305     case FLOPPY_DRIVE_TYPE_NONE:
306     default:
307         val = 0;
308         break;
309     }
310     return val;
311 }
312 
313 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
314                          int16_t cylinders, int8_t heads, int8_t sectors)
315 {
316     rtc_set_memory(s, type_ofs, 47);
317     rtc_set_memory(s, info_ofs, cylinders);
318     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
319     rtc_set_memory(s, info_ofs + 2, heads);
320     rtc_set_memory(s, info_ofs + 3, 0xff);
321     rtc_set_memory(s, info_ofs + 4, 0xff);
322     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
323     rtc_set_memory(s, info_ofs + 6, cylinders);
324     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
325     rtc_set_memory(s, info_ofs + 8, sectors);
326 }
327 
328 /* convert boot_device letter to something recognizable by the bios */
329 static int boot_device2nibble(char boot_device)
330 {
331     switch(boot_device) {
332     case 'a':
333     case 'b':
334         return 0x01; /* floppy boot */
335     case 'c':
336         return 0x02; /* hard drive boot */
337     case 'd':
338         return 0x03; /* CD-ROM boot */
339     case 'n':
340         return 0x04; /* Network boot */
341     }
342     return 0;
343 }
344 
345 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
346 {
347 #define PC_MAX_BOOT_DEVICES 3
348     int nbds, bds[3] = { 0, };
349     int i;
350 
351     nbds = strlen(boot_device);
352     if (nbds > PC_MAX_BOOT_DEVICES) {
353         error_setg(errp, "Too many boot devices for PC");
354         return;
355     }
356     for (i = 0; i < nbds; i++) {
357         bds[i] = boot_device2nibble(boot_device[i]);
358         if (bds[i] == 0) {
359             error_setg(errp, "Invalid boot device for PC: '%c'",
360                        boot_device[i]);
361             return;
362         }
363     }
364     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
365     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
366 }
367 
368 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
369 {
370     set_boot_dev(opaque, boot_device, errp);
371 }
372 
373 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
374 {
375     int val, nb, i;
376     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
377                                    FLOPPY_DRIVE_TYPE_NONE };
378 
379     /* floppy type */
380     if (floppy) {
381         for (i = 0; i < 2; i++) {
382             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
383         }
384     }
385     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
386         cmos_get_fd_drive_type(fd_type[1]);
387     rtc_set_memory(rtc_state, 0x10, val);
388 
389     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
390     nb = 0;
391     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
392         nb++;
393     }
394     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
395         nb++;
396     }
397     switch (nb) {
398     case 0:
399         break;
400     case 1:
401         val |= 0x01; /* 1 drive, ready for boot */
402         break;
403     case 2:
404         val |= 0x41; /* 2 drives, ready for boot */
405         break;
406     }
407     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
408 }
409 
410 typedef struct pc_cmos_init_late_arg {
411     ISADevice *rtc_state;
412     BusState *idebus[2];
413 } pc_cmos_init_late_arg;
414 
415 typedef struct check_fdc_state {
416     ISADevice *floppy;
417     bool multiple;
418 } CheckFdcState;
419 
420 static int check_fdc(Object *obj, void *opaque)
421 {
422     CheckFdcState *state = opaque;
423     Object *fdc;
424     uint32_t iobase;
425     Error *local_err = NULL;
426 
427     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
428     if (!fdc) {
429         return 0;
430     }
431 
432     iobase = object_property_get_uint(obj, "iobase", &local_err);
433     if (local_err || iobase != 0x3f0) {
434         error_free(local_err);
435         return 0;
436     }
437 
438     if (state->floppy) {
439         state->multiple = true;
440     } else {
441         state->floppy = ISA_DEVICE(obj);
442     }
443     return 0;
444 }
445 
446 static const char * const fdc_container_path[] = {
447     "/unattached", "/peripheral", "/peripheral-anon"
448 };
449 
450 /*
451  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
452  * and ACPI objects.
453  */
454 ISADevice *pc_find_fdc0(void)
455 {
456     int i;
457     Object *container;
458     CheckFdcState state = { 0 };
459 
460     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
461         container = container_get(qdev_get_machine(), fdc_container_path[i]);
462         object_child_foreach(container, check_fdc, &state);
463     }
464 
465     if (state.multiple) {
466         warn_report("multiple floppy disk controllers with "
467                     "iobase=0x3f0 have been found");
468         error_printf("the one being picked for CMOS setup might not reflect "
469                      "your intent");
470     }
471 
472     return state.floppy;
473 }
474 
475 static void pc_cmos_init_late(void *opaque)
476 {
477     pc_cmos_init_late_arg *arg = opaque;
478     ISADevice *s = arg->rtc_state;
479     int16_t cylinders;
480     int8_t heads, sectors;
481     int val;
482     int i, trans;
483 
484     val = 0;
485     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
486                                            &cylinders, &heads, &sectors) >= 0) {
487         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
488         val |= 0xf0;
489     }
490     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
491                                            &cylinders, &heads, &sectors) >= 0) {
492         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
493         val |= 0x0f;
494     }
495     rtc_set_memory(s, 0x12, val);
496 
497     val = 0;
498     for (i = 0; i < 4; i++) {
499         /* NOTE: ide_get_geometry() returns the physical
500            geometry.  It is always such that: 1 <= sects <= 63, 1
501            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
502            geometry can be different if a translation is done. */
503         if (arg->idebus[i / 2] &&
504             ide_get_geometry(arg->idebus[i / 2], i % 2,
505                              &cylinders, &heads, &sectors) >= 0) {
506             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
507             assert((trans & ~3) == 0);
508             val |= trans << (i * 2);
509         }
510     }
511     rtc_set_memory(s, 0x39, val);
512 
513     pc_cmos_init_floppy(s, pc_find_fdc0());
514 
515     qemu_unregister_reset(pc_cmos_init_late, opaque);
516 }
517 
518 void pc_cmos_init(PCMachineState *pcms,
519                   BusState *idebus0, BusState *idebus1,
520                   ISADevice *s)
521 {
522     int val;
523     static pc_cmos_init_late_arg arg;
524 
525     /* various important CMOS locations needed by PC/Bochs bios */
526 
527     /* memory size */
528     /* base memory (first MiB) */
529     val = MIN(pcms->below_4g_mem_size / KiB, 640);
530     rtc_set_memory(s, 0x15, val);
531     rtc_set_memory(s, 0x16, val >> 8);
532     /* extended memory (next 64MiB) */
533     if (pcms->below_4g_mem_size > 1 * MiB) {
534         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
535     } else {
536         val = 0;
537     }
538     if (val > 65535)
539         val = 65535;
540     rtc_set_memory(s, 0x17, val);
541     rtc_set_memory(s, 0x18, val >> 8);
542     rtc_set_memory(s, 0x30, val);
543     rtc_set_memory(s, 0x31, val >> 8);
544     /* memory between 16MiB and 4GiB */
545     if (pcms->below_4g_mem_size > 16 * MiB) {
546         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
547     } else {
548         val = 0;
549     }
550     if (val > 65535)
551         val = 65535;
552     rtc_set_memory(s, 0x34, val);
553     rtc_set_memory(s, 0x35, val >> 8);
554     /* memory above 4GiB */
555     val = pcms->above_4g_mem_size / 65536;
556     rtc_set_memory(s, 0x5b, val);
557     rtc_set_memory(s, 0x5c, val >> 8);
558     rtc_set_memory(s, 0x5d, val >> 16);
559 
560     object_property_add_link(OBJECT(pcms), "rtc_state",
561                              TYPE_ISA_DEVICE,
562                              (Object **)&pcms->rtc,
563                              object_property_allow_set_link,
564                              OBJ_PROP_LINK_STRONG, &error_abort);
565     object_property_set_link(OBJECT(pcms), OBJECT(s),
566                              "rtc_state", &error_abort);
567 
568     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
569 
570     val = 0;
571     val |= 0x02; /* FPU is there */
572     val |= 0x04; /* PS/2 mouse installed */
573     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
574 
575     /* hard drives and FDC */
576     arg.rtc_state = s;
577     arg.idebus[0] = idebus0;
578     arg.idebus[1] = idebus1;
579     qemu_register_reset(pc_cmos_init_late, &arg);
580 }
581 
582 #define TYPE_PORT92 "port92"
583 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
584 
585 /* port 92 stuff: could be split off */
586 typedef struct Port92State {
587     ISADevice parent_obj;
588 
589     MemoryRegion io;
590     uint8_t outport;
591     qemu_irq a20_out;
592 } Port92State;
593 
594 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
595                          unsigned size)
596 {
597     Port92State *s = opaque;
598     int oldval = s->outport;
599 
600     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
601     s->outport = val;
602     qemu_set_irq(s->a20_out, (val >> 1) & 1);
603     if ((val & 1) && !(oldval & 1)) {
604         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
605     }
606 }
607 
608 static uint64_t port92_read(void *opaque, hwaddr addr,
609                             unsigned size)
610 {
611     Port92State *s = opaque;
612     uint32_t ret;
613 
614     ret = s->outport;
615     DPRINTF("port92: read 0x%02x\n", ret);
616     return ret;
617 }
618 
619 static void port92_init(ISADevice *dev, qemu_irq a20_out)
620 {
621     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
622 }
623 
624 static const VMStateDescription vmstate_port92_isa = {
625     .name = "port92",
626     .version_id = 1,
627     .minimum_version_id = 1,
628     .fields = (VMStateField[]) {
629         VMSTATE_UINT8(outport, Port92State),
630         VMSTATE_END_OF_LIST()
631     }
632 };
633 
634 static void port92_reset(DeviceState *d)
635 {
636     Port92State *s = PORT92(d);
637 
638     s->outport &= ~1;
639 }
640 
641 static const MemoryRegionOps port92_ops = {
642     .read = port92_read,
643     .write = port92_write,
644     .impl = {
645         .min_access_size = 1,
646         .max_access_size = 1,
647     },
648     .endianness = DEVICE_LITTLE_ENDIAN,
649 };
650 
651 static void port92_initfn(Object *obj)
652 {
653     Port92State *s = PORT92(obj);
654 
655     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
656 
657     s->outport = 0;
658 
659     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
660 }
661 
662 static void port92_realizefn(DeviceState *dev, Error **errp)
663 {
664     ISADevice *isadev = ISA_DEVICE(dev);
665     Port92State *s = PORT92(dev);
666 
667     isa_register_ioport(isadev, &s->io, 0x92);
668 }
669 
670 static void port92_class_initfn(ObjectClass *klass, void *data)
671 {
672     DeviceClass *dc = DEVICE_CLASS(klass);
673 
674     dc->realize = port92_realizefn;
675     dc->reset = port92_reset;
676     dc->vmsd = &vmstate_port92_isa;
677     /*
678      * Reason: unlike ordinary ISA devices, this one needs additional
679      * wiring: its A20 output line needs to be wired up by
680      * port92_init().
681      */
682     dc->user_creatable = false;
683 }
684 
685 static const TypeInfo port92_info = {
686     .name          = TYPE_PORT92,
687     .parent        = TYPE_ISA_DEVICE,
688     .instance_size = sizeof(Port92State),
689     .instance_init = port92_initfn,
690     .class_init    = port92_class_initfn,
691 };
692 
693 static void port92_register_types(void)
694 {
695     type_register_static(&port92_info);
696 }
697 
698 type_init(port92_register_types)
699 
700 static void handle_a20_line_change(void *opaque, int irq, int level)
701 {
702     X86CPU *cpu = opaque;
703 
704     /* XXX: send to all CPUs ? */
705     /* XXX: add logic to handle multiple A20 line sources */
706     x86_cpu_set_a20(cpu, level);
707 }
708 
709 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
710 {
711     int index = le32_to_cpu(e820_reserve.count);
712     struct e820_entry *entry;
713 
714     if (type != E820_RAM) {
715         /* old FW_CFG_E820_TABLE entry -- reservations only */
716         if (index >= E820_NR_ENTRIES) {
717             return -EBUSY;
718         }
719         entry = &e820_reserve.entry[index++];
720 
721         entry->address = cpu_to_le64(address);
722         entry->length = cpu_to_le64(length);
723         entry->type = cpu_to_le32(type);
724 
725         e820_reserve.count = cpu_to_le32(index);
726     }
727 
728     /* new "etc/e820" file -- include ram too */
729     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
730     e820_table[e820_entries].address = cpu_to_le64(address);
731     e820_table[e820_entries].length = cpu_to_le64(length);
732     e820_table[e820_entries].type = cpu_to_le32(type);
733     e820_entries++;
734 
735     return e820_entries;
736 }
737 
738 int e820_get_num_entries(void)
739 {
740     return e820_entries;
741 }
742 
743 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
744 {
745     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
746         *address = le64_to_cpu(e820_table[idx].address);
747         *length = le64_to_cpu(e820_table[idx].length);
748         return true;
749     }
750     return false;
751 }
752 
753 /* Enables contiguous-apic-ID mode, for compatibility */
754 static bool compat_apic_id_mode;
755 
756 void enable_compat_apic_id_mode(void)
757 {
758     compat_apic_id_mode = true;
759 }
760 
761 /* Calculates initial APIC ID for a specific CPU index
762  *
763  * Currently we need to be able to calculate the APIC ID from the CPU index
764  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
765  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
766  * all CPUs up to max_cpus.
767  */
768 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
769 {
770     uint32_t correct_id;
771     static bool warned;
772 
773     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
774     if (compat_apic_id_mode) {
775         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
776             error_report("APIC IDs set in compatibility mode, "
777                          "CPU topology won't match the configuration");
778             warned = true;
779         }
780         return cpu_index;
781     } else {
782         return correct_id;
783     }
784 }
785 
786 static void pc_build_smbios(PCMachineState *pcms)
787 {
788     uint8_t *smbios_tables, *smbios_anchor;
789     size_t smbios_tables_len, smbios_anchor_len;
790     struct smbios_phys_mem_area *mem_array;
791     unsigned i, array_count;
792     MachineState *ms = MACHINE(pcms);
793     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
794 
795     /* tell smbios about cpuid version and features */
796     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
797 
798     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
799     if (smbios_tables) {
800         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
801                          smbios_tables, smbios_tables_len);
802     }
803 
804     /* build the array of physical mem area from e820 table */
805     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
806     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
807         uint64_t addr, len;
808 
809         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
810             mem_array[array_count].address = addr;
811             mem_array[array_count].length = len;
812             array_count++;
813         }
814     }
815     smbios_get_tables(mem_array, array_count,
816                       &smbios_tables, &smbios_tables_len,
817                       &smbios_anchor, &smbios_anchor_len);
818     g_free(mem_array);
819 
820     if (smbios_anchor) {
821         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
822                         smbios_tables, smbios_tables_len);
823         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
824                         smbios_anchor, smbios_anchor_len);
825     }
826 }
827 
828 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
829 {
830     FWCfgState *fw_cfg;
831     uint64_t *numa_fw_cfg;
832     int i;
833     const CPUArchIdList *cpus;
834     MachineClass *mc = MACHINE_GET_CLASS(pcms);
835 
836     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
837     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
838 
839     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
840      *
841      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
842      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
843      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
844      * for CPU hotplug also uses APIC ID and not "CPU index".
845      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
846      * but the "limit to the APIC ID values SeaBIOS may see".
847      *
848      * So for compatibility reasons with old BIOSes we are stuck with
849      * "etc/max-cpus" actually being apic_id_limit
850      */
851     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
852     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
853     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
854                      acpi_tables, acpi_tables_len);
855     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
856 
857     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
858                      &e820_reserve, sizeof(e820_reserve));
859     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
860                     sizeof(struct e820_entry) * e820_entries);
861 
862     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
863     /* allocate memory for the NUMA channel: one (64bit) word for the number
864      * of nodes, one word for each VCPU->node and one word for each node to
865      * hold the amount of memory.
866      */
867     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
868     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
869     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
870     for (i = 0; i < cpus->len; i++) {
871         unsigned int apic_id = cpus->cpus[i].arch_id;
872         assert(apic_id < pcms->apic_id_limit);
873         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
874     }
875     for (i = 0; i < nb_numa_nodes; i++) {
876         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
877             cpu_to_le64(numa_info[i].node_mem);
878     }
879     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
880                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
881                      sizeof(*numa_fw_cfg));
882 
883     return fw_cfg;
884 }
885 
886 static long get_file_size(FILE *f)
887 {
888     long where, size;
889 
890     /* XXX: on Unix systems, using fstat() probably makes more sense */
891 
892     where = ftell(f);
893     fseek(f, 0, SEEK_END);
894     size = ftell(f);
895     fseek(f, where, SEEK_SET);
896 
897     return size;
898 }
899 
900 /* setup_data types */
901 #define SETUP_NONE     0
902 #define SETUP_E820_EXT 1
903 #define SETUP_DTB      2
904 #define SETUP_PCI      3
905 #define SETUP_EFI      4
906 
907 struct setup_data {
908     uint64_t next;
909     uint32_t type;
910     uint32_t len;
911     uint8_t data[0];
912 } __attribute__((packed));
913 
914 static void load_linux(PCMachineState *pcms,
915                        FWCfgState *fw_cfg)
916 {
917     uint16_t protocol;
918     int setup_size, kernel_size, cmdline_size;
919     int dtb_size, setup_data_offset;
920     uint32_t initrd_max;
921     uint8_t header[8192], *setup, *kernel;
922     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
923     FILE *f;
924     char *vmode;
925     MachineState *machine = MACHINE(pcms);
926     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
927     struct setup_data *setup_data;
928     const char *kernel_filename = machine->kernel_filename;
929     const char *initrd_filename = machine->initrd_filename;
930     const char *dtb_filename = machine->dtb;
931     const char *kernel_cmdline = machine->kernel_cmdline;
932 
933     /* Align to 16 bytes as a paranoia measure */
934     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
935 
936     /* load the kernel header */
937     f = fopen(kernel_filename, "rb");
938     if (!f || !(kernel_size = get_file_size(f)) ||
939         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
940         MIN(ARRAY_SIZE(header), kernel_size)) {
941         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
942                 kernel_filename, strerror(errno));
943         exit(1);
944     }
945 
946     /* kernel protocol version */
947 #if 0
948     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
949 #endif
950     if (ldl_p(header+0x202) == 0x53726448) {
951         protocol = lduw_p(header+0x206);
952     } else {
953         /* This looks like a multiboot kernel. If it is, let's stop
954            treating it like a Linux kernel. */
955         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
956                            kernel_cmdline, kernel_size, header)) {
957             return;
958         }
959         protocol = 0;
960     }
961 
962     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
963         /* Low kernel */
964         real_addr    = 0x90000;
965         cmdline_addr = 0x9a000 - cmdline_size;
966         prot_addr    = 0x10000;
967     } else if (protocol < 0x202) {
968         /* High but ancient kernel */
969         real_addr    = 0x90000;
970         cmdline_addr = 0x9a000 - cmdline_size;
971         prot_addr    = 0x100000;
972     } else {
973         /* High and recent kernel */
974         real_addr    = 0x10000;
975         cmdline_addr = 0x20000;
976         prot_addr    = 0x100000;
977     }
978 
979 #if 0
980     fprintf(stderr,
981             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
982             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
983             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
984             real_addr,
985             cmdline_addr,
986             prot_addr);
987 #endif
988 
989     /* highest address for loading the initrd */
990     if (protocol >= 0x203) {
991         initrd_max = ldl_p(header+0x22c);
992     } else {
993         initrd_max = 0x37ffffff;
994     }
995 
996     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
997         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
998     }
999 
1000     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1001     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1002     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1003 
1004     if (protocol >= 0x202) {
1005         stl_p(header+0x228, cmdline_addr);
1006     } else {
1007         stw_p(header+0x20, 0xA33F);
1008         stw_p(header+0x22, cmdline_addr-real_addr);
1009     }
1010 
1011     /* handle vga= parameter */
1012     vmode = strstr(kernel_cmdline, "vga=");
1013     if (vmode) {
1014         unsigned int video_mode;
1015         /* skip "vga=" */
1016         vmode += 4;
1017         if (!strncmp(vmode, "normal", 6)) {
1018             video_mode = 0xffff;
1019         } else if (!strncmp(vmode, "ext", 3)) {
1020             video_mode = 0xfffe;
1021         } else if (!strncmp(vmode, "ask", 3)) {
1022             video_mode = 0xfffd;
1023         } else {
1024             video_mode = strtol(vmode, NULL, 0);
1025         }
1026         stw_p(header+0x1fa, video_mode);
1027     }
1028 
1029     /* loader type */
1030     /* High nybble = B reserved for QEMU; low nybble is revision number.
1031        If this code is substantially changed, you may want to consider
1032        incrementing the revision. */
1033     if (protocol >= 0x200) {
1034         header[0x210] = 0xB0;
1035     }
1036     /* heap */
1037     if (protocol >= 0x201) {
1038         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
1039         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1040     }
1041 
1042     /* load initrd */
1043     if (initrd_filename) {
1044         gsize initrd_size;
1045         gchar *initrd_data;
1046         GError *gerr = NULL;
1047 
1048         if (protocol < 0x200) {
1049             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1050             exit(1);
1051         }
1052 
1053         if (!g_file_get_contents(initrd_filename, &initrd_data,
1054                                  &initrd_size, &gerr)) {
1055             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1056                     initrd_filename, gerr->message);
1057             exit(1);
1058         }
1059         if (initrd_size >= initrd_max) {
1060             fprintf(stderr, "qemu: initrd is too large, cannot support."
1061                     "(max: %"PRIu32", need %"PRId64")\n",
1062                     initrd_max, (uint64_t)initrd_size);
1063             exit(1);
1064         }
1065 
1066         initrd_addr = (initrd_max-initrd_size) & ~4095;
1067 
1068         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1069         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1070         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1071 
1072         stl_p(header+0x218, initrd_addr);
1073         stl_p(header+0x21c, initrd_size);
1074     }
1075 
1076     /* load kernel and setup */
1077     setup_size = header[0x1f1];
1078     if (setup_size == 0) {
1079         setup_size = 4;
1080     }
1081     setup_size = (setup_size+1)*512;
1082     if (setup_size > kernel_size) {
1083         fprintf(stderr, "qemu: invalid kernel header\n");
1084         exit(1);
1085     }
1086     kernel_size -= setup_size;
1087 
1088     setup  = g_malloc(setup_size);
1089     kernel = g_malloc(kernel_size);
1090     fseek(f, 0, SEEK_SET);
1091     if (fread(setup, 1, setup_size, f) != setup_size) {
1092         fprintf(stderr, "fread() failed\n");
1093         exit(1);
1094     }
1095     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1096         fprintf(stderr, "fread() failed\n");
1097         exit(1);
1098     }
1099     fclose(f);
1100 
1101     /* append dtb to kernel */
1102     if (dtb_filename) {
1103         if (protocol < 0x209) {
1104             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1105             exit(1);
1106         }
1107 
1108         dtb_size = get_image_size(dtb_filename);
1109         if (dtb_size <= 0) {
1110             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1111                     dtb_filename, strerror(errno));
1112             exit(1);
1113         }
1114 
1115         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1116         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1117         kernel = g_realloc(kernel, kernel_size);
1118 
1119         stq_p(header+0x250, prot_addr + setup_data_offset);
1120 
1121         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1122         setup_data->next = 0;
1123         setup_data->type = cpu_to_le32(SETUP_DTB);
1124         setup_data->len = cpu_to_le32(dtb_size);
1125 
1126         load_image_size(dtb_filename, setup_data->data, dtb_size);
1127     }
1128 
1129     memcpy(setup, header, MIN(sizeof(header), setup_size));
1130 
1131     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1132     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1133     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1134 
1135     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1136     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1137     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1138 
1139     option_rom[nb_option_roms].bootindex = 0;
1140     option_rom[nb_option_roms].name = "linuxboot.bin";
1141     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1142         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1143     }
1144     nb_option_roms++;
1145 }
1146 
1147 #define NE2000_NB_MAX 6
1148 
1149 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1150                                               0x280, 0x380 };
1151 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1152 
1153 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1154 {
1155     static int nb_ne2k = 0;
1156 
1157     if (nb_ne2k == NE2000_NB_MAX)
1158         return;
1159     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1160                     ne2000_irq[nb_ne2k], nd);
1161     nb_ne2k++;
1162 }
1163 
1164 DeviceState *cpu_get_current_apic(void)
1165 {
1166     if (current_cpu) {
1167         X86CPU *cpu = X86_CPU(current_cpu);
1168         return cpu->apic_state;
1169     } else {
1170         return NULL;
1171     }
1172 }
1173 
1174 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1175 {
1176     X86CPU *cpu = opaque;
1177 
1178     if (level) {
1179         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1180     }
1181 }
1182 
1183 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1184 {
1185     Object *cpu = NULL;
1186     Error *local_err = NULL;
1187 
1188     cpu = object_new(typename);
1189 
1190     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1191     object_property_set_bool(cpu, true, "realized", &local_err);
1192 
1193     object_unref(cpu);
1194     error_propagate(errp, local_err);
1195 }
1196 
1197 void pc_hot_add_cpu(const int64_t id, Error **errp)
1198 {
1199     MachineState *ms = MACHINE(qdev_get_machine());
1200     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1201     Error *local_err = NULL;
1202 
1203     if (id < 0) {
1204         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1205         return;
1206     }
1207 
1208     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1209         error_setg(errp, "Unable to add CPU: %" PRIi64
1210                    ", resulting APIC ID (%" PRIi64 ") is too large",
1211                    id, apic_id);
1212         return;
1213     }
1214 
1215     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1216     if (local_err) {
1217         error_propagate(errp, local_err);
1218         return;
1219     }
1220 }
1221 
1222 void pc_cpus_init(PCMachineState *pcms)
1223 {
1224     int i;
1225     const CPUArchIdList *possible_cpus;
1226     MachineState *ms = MACHINE(pcms);
1227     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1228 
1229     /* Calculates the limit to CPU APIC ID values
1230      *
1231      * Limit for the APIC ID value, so that all
1232      * CPU APIC IDs are < pcms->apic_id_limit.
1233      *
1234      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1235      */
1236     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1237     possible_cpus = mc->possible_cpu_arch_ids(ms);
1238     for (i = 0; i < smp_cpus; i++) {
1239         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1240                    &error_fatal);
1241     }
1242 }
1243 
1244 static void pc_build_feature_control_file(PCMachineState *pcms)
1245 {
1246     MachineState *ms = MACHINE(pcms);
1247     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1248     CPUX86State *env = &cpu->env;
1249     uint32_t unused, ecx, edx;
1250     uint64_t feature_control_bits = 0;
1251     uint64_t *val;
1252 
1253     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1254     if (ecx & CPUID_EXT_VMX) {
1255         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1256     }
1257 
1258     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1259         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1260         (env->mcg_cap & MCG_LMCE_P)) {
1261         feature_control_bits |= FEATURE_CONTROL_LMCE;
1262     }
1263 
1264     if (!feature_control_bits) {
1265         return;
1266     }
1267 
1268     val = g_malloc(sizeof(*val));
1269     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1270     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1271 }
1272 
1273 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1274 {
1275     if (cpus_count > 0xff) {
1276         /* If the number of CPUs can't be represented in 8 bits, the
1277          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1278          * to make old BIOSes fail more predictably.
1279          */
1280         rtc_set_memory(rtc, 0x5f, 0);
1281     } else {
1282         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1283     }
1284 }
1285 
1286 static
1287 void pc_machine_done(Notifier *notifier, void *data)
1288 {
1289     PCMachineState *pcms = container_of(notifier,
1290                                         PCMachineState, machine_done);
1291     PCIBus *bus = pcms->bus;
1292 
1293     /* set the number of CPUs */
1294     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1295 
1296     if (bus) {
1297         int extra_hosts = 0;
1298 
1299         QLIST_FOREACH(bus, &bus->child, sibling) {
1300             /* look for expander root buses */
1301             if (pci_bus_is_root(bus)) {
1302                 extra_hosts++;
1303             }
1304         }
1305         if (extra_hosts && pcms->fw_cfg) {
1306             uint64_t *val = g_malloc(sizeof(*val));
1307             *val = cpu_to_le64(extra_hosts);
1308             fw_cfg_add_file(pcms->fw_cfg,
1309                     "etc/extra-pci-roots", val, sizeof(*val));
1310         }
1311     }
1312 
1313     acpi_setup();
1314     if (pcms->fw_cfg) {
1315         pc_build_smbios(pcms);
1316         pc_build_feature_control_file(pcms);
1317         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1318         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1319     }
1320 
1321     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1322         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1323 
1324         if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1325             iommu->intr_eim != ON_OFF_AUTO_ON) {
1326             error_report("current -smp configuration requires "
1327                          "Extended Interrupt Mode enabled. "
1328                          "You can add an IOMMU using: "
1329                          "-device intel-iommu,intremap=on,eim=on");
1330             exit(EXIT_FAILURE);
1331         }
1332     }
1333 }
1334 
1335 void pc_guest_info_init(PCMachineState *pcms)
1336 {
1337     int i;
1338 
1339     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1340     pcms->numa_nodes = nb_numa_nodes;
1341     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1342                                     sizeof *pcms->node_mem);
1343     for (i = 0; i < nb_numa_nodes; i++) {
1344         pcms->node_mem[i] = numa_info[i].node_mem;
1345     }
1346 
1347     pcms->machine_done.notify = pc_machine_done;
1348     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1349 }
1350 
1351 /* setup pci memory address space mapping into system address space */
1352 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1353                             MemoryRegion *pci_address_space)
1354 {
1355     /* Set to lower priority than RAM */
1356     memory_region_add_subregion_overlap(system_memory, 0x0,
1357                                         pci_address_space, -1);
1358 }
1359 
1360 void pc_acpi_init(const char *default_dsdt)
1361 {
1362     char *filename;
1363 
1364     if (acpi_tables != NULL) {
1365         /* manually set via -acpitable, leave it alone */
1366         return;
1367     }
1368 
1369     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1370     if (filename == NULL) {
1371         warn_report("failed to find %s", default_dsdt);
1372     } else {
1373         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1374                                           &error_abort);
1375         Error *err = NULL;
1376 
1377         qemu_opt_set(opts, "file", filename, &error_abort);
1378 
1379         acpi_table_add_builtin(opts, &err);
1380         if (err) {
1381             warn_reportf_err(err, "failed to load %s: ", filename);
1382         }
1383         g_free(filename);
1384     }
1385 }
1386 
1387 void xen_load_linux(PCMachineState *pcms)
1388 {
1389     int i;
1390     FWCfgState *fw_cfg;
1391 
1392     assert(MACHINE(pcms)->kernel_filename != NULL);
1393 
1394     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1395     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1396     rom_set_fw(fw_cfg);
1397 
1398     load_linux(pcms, fw_cfg);
1399     for (i = 0; i < nb_option_roms; i++) {
1400         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1401                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1402                !strcmp(option_rom[i].name, "multiboot.bin"));
1403         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1404     }
1405     pcms->fw_cfg = fw_cfg;
1406 }
1407 
1408 void pc_memory_init(PCMachineState *pcms,
1409                     MemoryRegion *system_memory,
1410                     MemoryRegion *rom_memory,
1411                     MemoryRegion **ram_memory)
1412 {
1413     int linux_boot, i;
1414     MemoryRegion *ram, *option_rom_mr;
1415     MemoryRegion *ram_below_4g, *ram_above_4g;
1416     FWCfgState *fw_cfg;
1417     MachineState *machine = MACHINE(pcms);
1418     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1419 
1420     assert(machine->ram_size == pcms->below_4g_mem_size +
1421                                 pcms->above_4g_mem_size);
1422 
1423     linux_boot = (machine->kernel_filename != NULL);
1424 
1425     /* Allocate RAM.  We allocate it as a single memory region and use
1426      * aliases to address portions of it, mostly for backwards compatibility
1427      * with older qemus that used qemu_ram_alloc().
1428      */
1429     ram = g_malloc(sizeof(*ram));
1430     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1431                                          machine->ram_size);
1432     *ram_memory = ram;
1433     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1434     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1435                              0, pcms->below_4g_mem_size);
1436     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1437     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1438     if (pcms->above_4g_mem_size > 0) {
1439         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1440         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1441                                  pcms->below_4g_mem_size,
1442                                  pcms->above_4g_mem_size);
1443         memory_region_add_subregion(system_memory, 0x100000000ULL,
1444                                     ram_above_4g);
1445         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1446     }
1447 
1448     if (!pcmc->has_reserved_memory &&
1449         (machine->ram_slots ||
1450          (machine->maxram_size > machine->ram_size))) {
1451         MachineClass *mc = MACHINE_GET_CLASS(machine);
1452 
1453         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1454                      mc->name);
1455         exit(EXIT_FAILURE);
1456     }
1457 
1458     /* always allocate the device memory information */
1459     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1460 
1461     /* initialize device memory address space */
1462     if (pcmc->has_reserved_memory &&
1463         (machine->ram_size < machine->maxram_size)) {
1464         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1465 
1466         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1467             error_report("unsupported amount of memory slots: %"PRIu64,
1468                          machine->ram_slots);
1469             exit(EXIT_FAILURE);
1470         }
1471 
1472         if (QEMU_ALIGN_UP(machine->maxram_size,
1473                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1474             error_report("maximum memory size must by aligned to multiple of "
1475                          "%d bytes", TARGET_PAGE_SIZE);
1476             exit(EXIT_FAILURE);
1477         }
1478 
1479         machine->device_memory->base =
1480             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1481 
1482         if (pcmc->enforce_aligned_dimm) {
1483             /* size device region assuming 1G page max alignment per slot */
1484             device_mem_size += (1 * GiB) * machine->ram_slots;
1485         }
1486 
1487         if ((machine->device_memory->base + device_mem_size) <
1488             device_mem_size) {
1489             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1490                          machine->maxram_size);
1491             exit(EXIT_FAILURE);
1492         }
1493 
1494         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1495                            "device-memory", device_mem_size);
1496         memory_region_add_subregion(system_memory, machine->device_memory->base,
1497                                     &machine->device_memory->mr);
1498     }
1499 
1500     /* Initialize PC system firmware */
1501     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1502 
1503     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1504     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1505                            &error_fatal);
1506     if (pcmc->pci_enabled) {
1507         memory_region_set_readonly(option_rom_mr, true);
1508     }
1509     memory_region_add_subregion_overlap(rom_memory,
1510                                         PC_ROM_MIN_VGA,
1511                                         option_rom_mr,
1512                                         1);
1513 
1514     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1515 
1516     rom_set_fw(fw_cfg);
1517 
1518     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1519         uint64_t *val = g_malloc(sizeof(*val));
1520         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1521         uint64_t res_mem_end = machine->device_memory->base;
1522 
1523         if (!pcmc->broken_reserved_end) {
1524             res_mem_end += memory_region_size(&machine->device_memory->mr);
1525         }
1526         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1527         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1528     }
1529 
1530     if (linux_boot) {
1531         load_linux(pcms, fw_cfg);
1532     }
1533 
1534     for (i = 0; i < nb_option_roms; i++) {
1535         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1536     }
1537     pcms->fw_cfg = fw_cfg;
1538 
1539     /* Init default IOAPIC address space */
1540     pcms->ioapic_as = &address_space_memory;
1541 }
1542 
1543 /*
1544  * The 64bit pci hole starts after "above 4G RAM" and
1545  * potentially the space reserved for memory hotplug.
1546  */
1547 uint64_t pc_pci_hole64_start(void)
1548 {
1549     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1550     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1551     MachineState *ms = MACHINE(pcms);
1552     uint64_t hole64_start = 0;
1553 
1554     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1555         hole64_start = ms->device_memory->base;
1556         if (!pcmc->broken_reserved_end) {
1557             hole64_start += memory_region_size(&ms->device_memory->mr);
1558         }
1559     } else {
1560         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1561     }
1562 
1563     return ROUND_UP(hole64_start, 1 * GiB);
1564 }
1565 
1566 qemu_irq pc_allocate_cpu_irq(void)
1567 {
1568     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1569 }
1570 
1571 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1572 {
1573     DeviceState *dev = NULL;
1574 
1575     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1576     if (pci_bus) {
1577         PCIDevice *pcidev = pci_vga_init(pci_bus);
1578         dev = pcidev ? &pcidev->qdev : NULL;
1579     } else if (isa_bus) {
1580         ISADevice *isadev = isa_vga_init(isa_bus);
1581         dev = isadev ? DEVICE(isadev) : NULL;
1582     }
1583     rom_reset_order_override();
1584     return dev;
1585 }
1586 
1587 static const MemoryRegionOps ioport80_io_ops = {
1588     .write = ioport80_write,
1589     .read = ioport80_read,
1590     .endianness = DEVICE_NATIVE_ENDIAN,
1591     .impl = {
1592         .min_access_size = 1,
1593         .max_access_size = 1,
1594     },
1595 };
1596 
1597 static const MemoryRegionOps ioportF0_io_ops = {
1598     .write = ioportF0_write,
1599     .read = ioportF0_read,
1600     .endianness = DEVICE_NATIVE_ENDIAN,
1601     .impl = {
1602         .min_access_size = 1,
1603         .max_access_size = 1,
1604     },
1605 };
1606 
1607 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1608 {
1609     int i;
1610     DriveInfo *fd[MAX_FD];
1611     qemu_irq *a20_line;
1612     ISADevice *i8042, *port92, *vmmouse;
1613 
1614     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1615     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1616 
1617     for (i = 0; i < MAX_FD; i++) {
1618         fd[i] = drive_get(IF_FLOPPY, 0, i);
1619         create_fdctrl |= !!fd[i];
1620     }
1621     if (create_fdctrl) {
1622         fdctrl_init_isa(isa_bus, fd);
1623     }
1624 
1625     i8042 = isa_create_simple(isa_bus, "i8042");
1626     if (!no_vmport) {
1627         vmport_init(isa_bus);
1628         vmmouse = isa_try_create(isa_bus, "vmmouse");
1629     } else {
1630         vmmouse = NULL;
1631     }
1632     if (vmmouse) {
1633         DeviceState *dev = DEVICE(vmmouse);
1634         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1635         qdev_init_nofail(dev);
1636     }
1637     port92 = isa_create_simple(isa_bus, "port92");
1638 
1639     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1640     i8042_setup_a20_line(i8042, a20_line[0]);
1641     port92_init(port92, a20_line[1]);
1642     g_free(a20_line);
1643 }
1644 
1645 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1646                           ISADevice **rtc_state,
1647                           bool create_fdctrl,
1648                           bool no_vmport,
1649                           bool has_pit,
1650                           uint32_t hpet_irqs)
1651 {
1652     int i;
1653     DeviceState *hpet = NULL;
1654     int pit_isa_irq = 0;
1655     qemu_irq pit_alt_irq = NULL;
1656     qemu_irq rtc_irq = NULL;
1657     ISADevice *pit = NULL;
1658     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1659     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1660 
1661     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1662     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1663 
1664     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1665     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1666 
1667     /*
1668      * Check if an HPET shall be created.
1669      *
1670      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1671      * when the HPET wants to take over. Thus we have to disable the latter.
1672      */
1673     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1674         /* In order to set property, here not using sysbus_try_create_simple */
1675         hpet = qdev_try_create(NULL, TYPE_HPET);
1676         if (hpet) {
1677             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1678              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1679              * IRQ8 and IRQ2.
1680              */
1681             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1682                     HPET_INTCAP, NULL);
1683             if (!compat) {
1684                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1685             }
1686             qdev_init_nofail(hpet);
1687             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1688 
1689             for (i = 0; i < GSI_NUM_PINS; i++) {
1690                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1691             }
1692             pit_isa_irq = -1;
1693             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1694             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1695         }
1696     }
1697     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1698 
1699     qemu_register_boot_set(pc_boot_set, *rtc_state);
1700 
1701     if (!xen_enabled() && has_pit) {
1702         if (kvm_pit_in_kernel()) {
1703             pit = kvm_pit_init(isa_bus, 0x40);
1704         } else {
1705             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1706         }
1707         if (hpet) {
1708             /* connect PIT to output control line of the HPET */
1709             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1710         }
1711         pcspk_init(isa_bus, pit);
1712     }
1713 
1714     i8257_dma_init(isa_bus, 0);
1715 
1716     /* Super I/O */
1717     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1718 }
1719 
1720 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1721 {
1722     int i;
1723 
1724     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1725     for (i = 0; i < nb_nics; i++) {
1726         NICInfo *nd = &nd_table[i];
1727         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1728 
1729         if (g_str_equal(model, "ne2k_isa")) {
1730             pc_init_ne2k_isa(isa_bus, nd);
1731         } else {
1732             pci_nic_init_nofail(nd, pci_bus, model, NULL);
1733         }
1734     }
1735     rom_reset_order_override();
1736 }
1737 
1738 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1739 {
1740     DeviceState *dev;
1741     SysBusDevice *d;
1742     unsigned int i;
1743 
1744     if (kvm_ioapic_in_kernel()) {
1745         dev = qdev_create(NULL, "kvm-ioapic");
1746     } else {
1747         dev = qdev_create(NULL, "ioapic");
1748     }
1749     if (parent_name) {
1750         object_property_add_child(object_resolve_path(parent_name, NULL),
1751                                   "ioapic", OBJECT(dev), NULL);
1752     }
1753     qdev_init_nofail(dev);
1754     d = SYS_BUS_DEVICE(dev);
1755     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1756 
1757     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1758         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1759     }
1760 }
1761 
1762 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1763                                Error **errp)
1764 {
1765     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1766     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1767     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1768     const uint64_t legacy_align = TARGET_PAGE_SIZE;
1769 
1770     /*
1771      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1772      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1773      * addition to cover this case.
1774      */
1775     if (!pcms->acpi_dev || !acpi_enabled) {
1776         error_setg(errp,
1777                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1778         return;
1779     }
1780 
1781     if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1782         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1783         return;
1784     }
1785 
1786     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1787                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1788 }
1789 
1790 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1791                            DeviceState *dev, Error **errp)
1792 {
1793     HotplugHandlerClass *hhc;
1794     Error *local_err = NULL;
1795     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1796     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1797 
1798     pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1799     if (local_err) {
1800         goto out;
1801     }
1802 
1803     if (is_nvdimm) {
1804         nvdimm_plug(&pcms->acpi_nvdimm_state);
1805     }
1806 
1807     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1808     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1809 out:
1810     error_propagate(errp, local_err);
1811 }
1812 
1813 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1814                                      DeviceState *dev, Error **errp)
1815 {
1816     HotplugHandlerClass *hhc;
1817     Error *local_err = NULL;
1818     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1819 
1820     /*
1821      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1822      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1823      * addition to cover this case.
1824      */
1825     if (!pcms->acpi_dev || !acpi_enabled) {
1826         error_setg(&local_err,
1827                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1828         goto out;
1829     }
1830 
1831     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1832         error_setg(&local_err,
1833                    "nvdimm device hot unplug is not supported yet.");
1834         goto out;
1835     }
1836 
1837     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1838     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1839 
1840 out:
1841     error_propagate(errp, local_err);
1842 }
1843 
1844 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1845                              DeviceState *dev, Error **errp)
1846 {
1847     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1848     HotplugHandlerClass *hhc;
1849     Error *local_err = NULL;
1850 
1851     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1852     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1853 
1854     if (local_err) {
1855         goto out;
1856     }
1857 
1858     pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
1859     object_unparent(OBJECT(dev));
1860 
1861  out:
1862     error_propagate(errp, local_err);
1863 }
1864 
1865 static int pc_apic_cmp(const void *a, const void *b)
1866 {
1867    CPUArchId *apic_a = (CPUArchId *)a;
1868    CPUArchId *apic_b = (CPUArchId *)b;
1869 
1870    return apic_a->arch_id - apic_b->arch_id;
1871 }
1872 
1873 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1874  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1875  * entry corresponding to CPU's apic_id returns NULL.
1876  */
1877 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1878 {
1879     CPUArchId apic_id, *found_cpu;
1880 
1881     apic_id.arch_id = id;
1882     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1883         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1884         pc_apic_cmp);
1885     if (found_cpu && idx) {
1886         *idx = found_cpu - ms->possible_cpus->cpus;
1887     }
1888     return found_cpu;
1889 }
1890 
1891 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1892                         DeviceState *dev, Error **errp)
1893 {
1894     CPUArchId *found_cpu;
1895     HotplugHandlerClass *hhc;
1896     Error *local_err = NULL;
1897     X86CPU *cpu = X86_CPU(dev);
1898     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1899 
1900     if (pcms->acpi_dev) {
1901         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1902         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1903         if (local_err) {
1904             goto out;
1905         }
1906     }
1907 
1908     /* increment the number of CPUs */
1909     pcms->boot_cpus++;
1910     if (pcms->rtc) {
1911         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1912     }
1913     if (pcms->fw_cfg) {
1914         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1915     }
1916 
1917     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1918     found_cpu->cpu = OBJECT(dev);
1919 out:
1920     error_propagate(errp, local_err);
1921 }
1922 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1923                                      DeviceState *dev, Error **errp)
1924 {
1925     int idx = -1;
1926     HotplugHandlerClass *hhc;
1927     Error *local_err = NULL;
1928     X86CPU *cpu = X86_CPU(dev);
1929     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1930 
1931     if (!pcms->acpi_dev) {
1932         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1933         goto out;
1934     }
1935 
1936     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1937     assert(idx != -1);
1938     if (idx == 0) {
1939         error_setg(&local_err, "Boot CPU is unpluggable");
1940         goto out;
1941     }
1942 
1943     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1944     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1945 
1946     if (local_err) {
1947         goto out;
1948     }
1949 
1950  out:
1951     error_propagate(errp, local_err);
1952 
1953 }
1954 
1955 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1956                              DeviceState *dev, Error **errp)
1957 {
1958     CPUArchId *found_cpu;
1959     HotplugHandlerClass *hhc;
1960     Error *local_err = NULL;
1961     X86CPU *cpu = X86_CPU(dev);
1962     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1963 
1964     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1965     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1966 
1967     if (local_err) {
1968         goto out;
1969     }
1970 
1971     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1972     found_cpu->cpu = NULL;
1973     object_unparent(OBJECT(dev));
1974 
1975     /* decrement the number of CPUs */
1976     pcms->boot_cpus--;
1977     /* Update the number of CPUs in CMOS */
1978     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1979     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1980  out:
1981     error_propagate(errp, local_err);
1982 }
1983 
1984 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1985                             DeviceState *dev, Error **errp)
1986 {
1987     int idx;
1988     CPUState *cs;
1989     CPUArchId *cpu_slot;
1990     X86CPUTopoInfo topo;
1991     X86CPU *cpu = X86_CPU(dev);
1992     MachineState *ms = MACHINE(hotplug_dev);
1993     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1994 
1995     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1996         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1997                    ms->cpu_type);
1998         return;
1999     }
2000 
2001     /* if APIC ID is not set, set it based on socket/core/thread properties */
2002     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2003         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2004 
2005         if (cpu->socket_id < 0) {
2006             error_setg(errp, "CPU socket-id is not set");
2007             return;
2008         } else if (cpu->socket_id > max_socket) {
2009             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2010                        cpu->socket_id, max_socket);
2011             return;
2012         }
2013         if (cpu->core_id < 0) {
2014             error_setg(errp, "CPU core-id is not set");
2015             return;
2016         } else if (cpu->core_id > (smp_cores - 1)) {
2017             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2018                        cpu->core_id, smp_cores - 1);
2019             return;
2020         }
2021         if (cpu->thread_id < 0) {
2022             error_setg(errp, "CPU thread-id is not set");
2023             return;
2024         } else if (cpu->thread_id > (smp_threads - 1)) {
2025             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2026                        cpu->thread_id, smp_threads - 1);
2027             return;
2028         }
2029 
2030         topo.pkg_id = cpu->socket_id;
2031         topo.core_id = cpu->core_id;
2032         topo.smt_id = cpu->thread_id;
2033         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2034     }
2035 
2036     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2037     if (!cpu_slot) {
2038         MachineState *ms = MACHINE(pcms);
2039 
2040         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2041         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2042                   " APIC ID %" PRIu32 ", valid index range 0:%d",
2043                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2044                    ms->possible_cpus->len - 1);
2045         return;
2046     }
2047 
2048     if (cpu_slot->cpu) {
2049         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2050                    idx, cpu->apic_id);
2051         return;
2052     }
2053 
2054     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2055      * so that machine_query_hotpluggable_cpus would show correct values
2056      */
2057     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2058      * once -smp refactoring is complete and there will be CPU private
2059      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2060     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2061     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2062         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2063             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2064         return;
2065     }
2066     cpu->socket_id = topo.pkg_id;
2067 
2068     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2069         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2070             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2071         return;
2072     }
2073     cpu->core_id = topo.core_id;
2074 
2075     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2076         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2077             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2078         return;
2079     }
2080     cpu->thread_id = topo.smt_id;
2081 
2082     if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2083         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2084         return;
2085     }
2086 
2087     cs = CPU(cpu);
2088     cs->cpu_index = idx;
2089 
2090     numa_cpu_pre_plug(cpu_slot, dev, errp);
2091 }
2092 
2093 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2094                                           DeviceState *dev, Error **errp)
2095 {
2096     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2097         pc_memory_pre_plug(hotplug_dev, dev, errp);
2098     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2099         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2100     }
2101 }
2102 
2103 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2104                                       DeviceState *dev, Error **errp)
2105 {
2106     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2107         pc_memory_plug(hotplug_dev, dev, errp);
2108     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2109         pc_cpu_plug(hotplug_dev, dev, errp);
2110     }
2111 }
2112 
2113 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2114                                                 DeviceState *dev, Error **errp)
2115 {
2116     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2117         pc_memory_unplug_request(hotplug_dev, dev, errp);
2118     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2119         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2120     } else {
2121         error_setg(errp, "acpi: device unplug request for not supported device"
2122                    " type: %s", object_get_typename(OBJECT(dev)));
2123     }
2124 }
2125 
2126 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2127                                         DeviceState *dev, Error **errp)
2128 {
2129     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2130         pc_memory_unplug(hotplug_dev, dev, errp);
2131     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2132         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2133     } else {
2134         error_setg(errp, "acpi: device unplug for not supported device"
2135                    " type: %s", object_get_typename(OBJECT(dev)));
2136     }
2137 }
2138 
2139 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2140                                              DeviceState *dev)
2141 {
2142     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2143         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2144         return HOTPLUG_HANDLER(machine);
2145     }
2146 
2147     return NULL;
2148 }
2149 
2150 static void
2151 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2152                                          const char *name, void *opaque,
2153                                          Error **errp)
2154 {
2155     MachineState *ms = MACHINE(obj);
2156     int64_t value = memory_region_size(&ms->device_memory->mr);
2157 
2158     visit_type_int(v, name, &value, errp);
2159 }
2160 
2161 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2162                                             const char *name, void *opaque,
2163                                             Error **errp)
2164 {
2165     PCMachineState *pcms = PC_MACHINE(obj);
2166     uint64_t value = pcms->max_ram_below_4g;
2167 
2168     visit_type_size(v, name, &value, errp);
2169 }
2170 
2171 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2172                                             const char *name, void *opaque,
2173                                             Error **errp)
2174 {
2175     PCMachineState *pcms = PC_MACHINE(obj);
2176     Error *error = NULL;
2177     uint64_t value;
2178 
2179     visit_type_size(v, name, &value, &error);
2180     if (error) {
2181         error_propagate(errp, error);
2182         return;
2183     }
2184     if (value > 4 * GiB) {
2185         error_setg(&error,
2186                    "Machine option 'max-ram-below-4g=%"PRIu64
2187                    "' expects size less than or equal to 4G", value);
2188         error_propagate(errp, error);
2189         return;
2190     }
2191 
2192     if (value < 1 * MiB) {
2193         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2194                     "BIOS may not work with less than 1MiB", value);
2195     }
2196 
2197     pcms->max_ram_below_4g = value;
2198 }
2199 
2200 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2201                                   void *opaque, Error **errp)
2202 {
2203     PCMachineState *pcms = PC_MACHINE(obj);
2204     OnOffAuto vmport = pcms->vmport;
2205 
2206     visit_type_OnOffAuto(v, name, &vmport, errp);
2207 }
2208 
2209 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2210                                   void *opaque, Error **errp)
2211 {
2212     PCMachineState *pcms = PC_MACHINE(obj);
2213 
2214     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2215 }
2216 
2217 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2218 {
2219     bool smm_available = false;
2220 
2221     if (pcms->smm == ON_OFF_AUTO_OFF) {
2222         return false;
2223     }
2224 
2225     if (tcg_enabled() || qtest_enabled()) {
2226         smm_available = true;
2227     } else if (kvm_enabled()) {
2228         smm_available = kvm_has_smm();
2229     }
2230 
2231     if (smm_available) {
2232         return true;
2233     }
2234 
2235     if (pcms->smm == ON_OFF_AUTO_ON) {
2236         error_report("System Management Mode not supported by this hypervisor.");
2237         exit(1);
2238     }
2239     return false;
2240 }
2241 
2242 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2243                                void *opaque, Error **errp)
2244 {
2245     PCMachineState *pcms = PC_MACHINE(obj);
2246     OnOffAuto smm = pcms->smm;
2247 
2248     visit_type_OnOffAuto(v, name, &smm, errp);
2249 }
2250 
2251 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2252                                void *opaque, Error **errp)
2253 {
2254     PCMachineState *pcms = PC_MACHINE(obj);
2255 
2256     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2257 }
2258 
2259 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2260 {
2261     PCMachineState *pcms = PC_MACHINE(obj);
2262 
2263     return pcms->acpi_nvdimm_state.is_enabled;
2264 }
2265 
2266 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2267 {
2268     PCMachineState *pcms = PC_MACHINE(obj);
2269 
2270     pcms->acpi_nvdimm_state.is_enabled = value;
2271 }
2272 
2273 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2274 {
2275     PCMachineState *pcms = PC_MACHINE(obj);
2276 
2277     return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2278 }
2279 
2280 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2281                                                Error **errp)
2282 {
2283     PCMachineState *pcms = PC_MACHINE(obj);
2284     AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2285 
2286     if (strcmp(value, "cpu") == 0)
2287         nvdimm_state->persistence = 3;
2288     else if (strcmp(value, "mem-ctrl") == 0)
2289         nvdimm_state->persistence = 2;
2290     else {
2291         error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2292                    value);
2293         return;
2294     }
2295 
2296     g_free(nvdimm_state->persistence_string);
2297     nvdimm_state->persistence_string = g_strdup(value);
2298 }
2299 
2300 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2301 {
2302     PCMachineState *pcms = PC_MACHINE(obj);
2303 
2304     return pcms->smbus_enabled;
2305 }
2306 
2307 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2308 {
2309     PCMachineState *pcms = PC_MACHINE(obj);
2310 
2311     pcms->smbus_enabled = value;
2312 }
2313 
2314 static bool pc_machine_get_sata(Object *obj, Error **errp)
2315 {
2316     PCMachineState *pcms = PC_MACHINE(obj);
2317 
2318     return pcms->sata_enabled;
2319 }
2320 
2321 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2322 {
2323     PCMachineState *pcms = PC_MACHINE(obj);
2324 
2325     pcms->sata_enabled = value;
2326 }
2327 
2328 static bool pc_machine_get_pit(Object *obj, Error **errp)
2329 {
2330     PCMachineState *pcms = PC_MACHINE(obj);
2331 
2332     return pcms->pit_enabled;
2333 }
2334 
2335 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2336 {
2337     PCMachineState *pcms = PC_MACHINE(obj);
2338 
2339     pcms->pit_enabled = value;
2340 }
2341 
2342 static void pc_machine_initfn(Object *obj)
2343 {
2344     PCMachineState *pcms = PC_MACHINE(obj);
2345 
2346     pcms->max_ram_below_4g = 0; /* use default */
2347     pcms->smm = ON_OFF_AUTO_AUTO;
2348     pcms->vmport = ON_OFF_AUTO_AUTO;
2349     /* nvdimm is disabled on default. */
2350     pcms->acpi_nvdimm_state.is_enabled = false;
2351     /* acpi build is enabled by default if machine supports it */
2352     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2353     pcms->smbus_enabled = true;
2354     pcms->sata_enabled = true;
2355     pcms->pit_enabled = true;
2356 }
2357 
2358 static void pc_machine_reset(void)
2359 {
2360     CPUState *cs;
2361     X86CPU *cpu;
2362 
2363     qemu_devices_reset();
2364 
2365     /* Reset APIC after devices have been reset to cancel
2366      * any changes that qemu_devices_reset() might have done.
2367      */
2368     CPU_FOREACH(cs) {
2369         cpu = X86_CPU(cs);
2370 
2371         if (cpu->apic_state) {
2372             device_reset(cpu->apic_state);
2373         }
2374     }
2375 }
2376 
2377 static CpuInstanceProperties
2378 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2379 {
2380     MachineClass *mc = MACHINE_GET_CLASS(ms);
2381     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2382 
2383     assert(cpu_index < possible_cpus->len);
2384     return possible_cpus->cpus[cpu_index].props;
2385 }
2386 
2387 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2388 {
2389    X86CPUTopoInfo topo;
2390 
2391    assert(idx < ms->possible_cpus->len);
2392    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2393                             smp_cores, smp_threads, &topo);
2394    return topo.pkg_id % nb_numa_nodes;
2395 }
2396 
2397 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2398 {
2399     int i;
2400 
2401     if (ms->possible_cpus) {
2402         /*
2403          * make sure that max_cpus hasn't changed since the first use, i.e.
2404          * -smp hasn't been parsed after it
2405         */
2406         assert(ms->possible_cpus->len == max_cpus);
2407         return ms->possible_cpus;
2408     }
2409 
2410     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2411                                   sizeof(CPUArchId) * max_cpus);
2412     ms->possible_cpus->len = max_cpus;
2413     for (i = 0; i < ms->possible_cpus->len; i++) {
2414         X86CPUTopoInfo topo;
2415 
2416         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2417         ms->possible_cpus->cpus[i].vcpus_count = 1;
2418         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2419         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2420                                  smp_cores, smp_threads, &topo);
2421         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2422         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2423         ms->possible_cpus->cpus[i].props.has_core_id = true;
2424         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2425         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2426         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2427     }
2428     return ms->possible_cpus;
2429 }
2430 
2431 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2432 {
2433     /* cpu index isn't used */
2434     CPUState *cs;
2435 
2436     CPU_FOREACH(cs) {
2437         X86CPU *cpu = X86_CPU(cs);
2438 
2439         if (!cpu->apic_state) {
2440             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2441         } else {
2442             apic_deliver_nmi(cpu->apic_state);
2443         }
2444     }
2445 }
2446 
2447 static void pc_machine_class_init(ObjectClass *oc, void *data)
2448 {
2449     MachineClass *mc = MACHINE_CLASS(oc);
2450     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2451     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2452     NMIClass *nc = NMI_CLASS(oc);
2453 
2454     pcmc->pci_enabled = true;
2455     pcmc->has_acpi_build = true;
2456     pcmc->rsdp_in_ram = true;
2457     pcmc->smbios_defaults = true;
2458     pcmc->smbios_uuid_encoded = true;
2459     pcmc->gigabyte_align = true;
2460     pcmc->has_reserved_memory = true;
2461     pcmc->kvmclock_enabled = true;
2462     pcmc->enforce_aligned_dimm = true;
2463     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2464      * to be used at the moment, 32K should be enough for a while.  */
2465     pcmc->acpi_data_size = 0x20000 + 0x8000;
2466     pcmc->save_tsc_khz = true;
2467     pcmc->linuxboot_dma_enabled = true;
2468     assert(!mc->get_hotplug_handler);
2469     mc->get_hotplug_handler = pc_get_hotpug_handler;
2470     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2471     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2472     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2473     mc->auto_enable_numa_with_memhp = true;
2474     mc->has_hotpluggable_cpus = true;
2475     mc->default_boot_order = "cad";
2476     mc->hot_add_cpu = pc_hot_add_cpu;
2477     mc->block_default_type = IF_IDE;
2478     mc->max_cpus = 255;
2479     mc->reset = pc_machine_reset;
2480     hc->pre_plug = pc_machine_device_pre_plug_cb;
2481     hc->plug = pc_machine_device_plug_cb;
2482     hc->unplug_request = pc_machine_device_unplug_request_cb;
2483     hc->unplug = pc_machine_device_unplug_cb;
2484     nc->nmi_monitor_handler = x86_nmi;
2485     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2486 
2487     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2488         pc_machine_get_device_memory_region_size, NULL,
2489         NULL, NULL, &error_abort);
2490 
2491     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2492         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2493         NULL, NULL, &error_abort);
2494 
2495     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2496         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2497 
2498     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2499         pc_machine_get_smm, pc_machine_set_smm,
2500         NULL, NULL, &error_abort);
2501     object_class_property_set_description(oc, PC_MACHINE_SMM,
2502         "Enable SMM (pc & q35)", &error_abort);
2503 
2504     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2505         pc_machine_get_vmport, pc_machine_set_vmport,
2506         NULL, NULL, &error_abort);
2507     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2508         "Enable vmport (pc & q35)", &error_abort);
2509 
2510     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2511         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2512 
2513     object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2514         pc_machine_get_nvdimm_persistence,
2515         pc_machine_set_nvdimm_persistence, &error_abort);
2516 
2517     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2518         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2519 
2520     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2521         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2522 
2523     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2524         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2525 }
2526 
2527 static const TypeInfo pc_machine_info = {
2528     .name = TYPE_PC_MACHINE,
2529     .parent = TYPE_MACHINE,
2530     .abstract = true,
2531     .instance_size = sizeof(PCMachineState),
2532     .instance_init = pc_machine_initfn,
2533     .class_size = sizeof(PCMachineClass),
2534     .class_init = pc_machine_class_init,
2535     .interfaces = (InterfaceInfo[]) {
2536          { TYPE_HOTPLUG_HANDLER },
2537          { TYPE_NMI },
2538          { }
2539     },
2540 };
2541 
2542 static void pc_machine_register_types(void)
2543 {
2544     type_register_static(&pc_machine_info);
2545 }
2546 
2547 type_init(pc_machine_register_types)
2548