1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/firmware/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 GlobalProperty pc_compat_3_1[] = { 113 { 114 .driver = "intel-iommu", 115 .property = "dma-drain", 116 .value = "off", 117 }, 118 }; 119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); 120 121 GlobalProperty pc_compat_3_0[] = { 122 { 123 .driver = TYPE_X86_CPU, 124 .property = "x-hv-synic-kvm-only", 125 .value = "on", 126 },{ 127 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 128 .property = "pku", 129 .value = "off", 130 },{ 131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU, 132 .property = "pku", 133 .value = "off", 134 }, 135 }; 136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0); 137 138 GlobalProperty pc_compat_2_12[] = { 139 { 140 .driver = TYPE_X86_CPU, 141 .property = "legacy-cache", 142 .value = "on", 143 },{ 144 .driver = TYPE_X86_CPU, 145 .property = "topoext", 146 .value = "off", 147 },{ 148 .driver = "EPYC-" TYPE_X86_CPU, 149 .property = "xlevel", 150 .value = stringify(0x8000000a), 151 },{ 152 .driver = "EPYC-IBPB-" TYPE_X86_CPU, 153 .property = "xlevel", 154 .value = stringify(0x8000000a), 155 }, 156 }; 157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12); 158 159 GlobalProperty pc_compat_2_11[] = { 160 { 161 .driver = TYPE_X86_CPU, 162 .property = "x-migrate-smi-count", 163 .value = "off", 164 },{ 165 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 166 .property = "clflushopt", 167 .value = "off", 168 }, 169 }; 170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11); 171 172 GlobalProperty pc_compat_2_10[] = { 173 { 174 .driver = TYPE_X86_CPU, 175 .property = "x-hv-max-vps", 176 .value = "0x40", 177 },{ 178 .driver = "i440FX-pcihost", 179 .property = "x-pci-hole64-fix", 180 .value = "off", 181 },{ 182 .driver = "q35-pcihost", 183 .property = "x-pci-hole64-fix", 184 .value = "off", 185 }, 186 }; 187 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10); 188 189 void gsi_handler(void *opaque, int n, int level) 190 { 191 GSIState *s = opaque; 192 193 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 194 if (n < ISA_NUM_IRQS) { 195 qemu_set_irq(s->i8259_irq[n], level); 196 } 197 qemu_set_irq(s->ioapic_irq[n], level); 198 } 199 200 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 201 unsigned size) 202 { 203 } 204 205 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 206 { 207 return 0xffffffffffffffffULL; 208 } 209 210 /* MSDOS compatibility mode FPU exception support */ 211 static qemu_irq ferr_irq; 212 213 void pc_register_ferr_irq(qemu_irq irq) 214 { 215 ferr_irq = irq; 216 } 217 218 /* XXX: add IGNNE support */ 219 void cpu_set_ferr(CPUX86State *s) 220 { 221 qemu_irq_raise(ferr_irq); 222 } 223 224 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 225 unsigned size) 226 { 227 qemu_irq_lower(ferr_irq); 228 } 229 230 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 231 { 232 return 0xffffffffffffffffULL; 233 } 234 235 /* TSC handling */ 236 uint64_t cpu_get_tsc(CPUX86State *env) 237 { 238 return cpu_get_ticks(); 239 } 240 241 /* IRQ handling */ 242 int cpu_get_pic_interrupt(CPUX86State *env) 243 { 244 X86CPU *cpu = x86_env_get_cpu(env); 245 int intno; 246 247 if (!kvm_irqchip_in_kernel()) { 248 intno = apic_get_interrupt(cpu->apic_state); 249 if (intno >= 0) { 250 return intno; 251 } 252 /* read the irq from the PIC */ 253 if (!apic_accept_pic_intr(cpu->apic_state)) { 254 return -1; 255 } 256 } 257 258 intno = pic_read_irq(isa_pic); 259 return intno; 260 } 261 262 static void pic_irq_request(void *opaque, int irq, int level) 263 { 264 CPUState *cs = first_cpu; 265 X86CPU *cpu = X86_CPU(cs); 266 267 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 268 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 269 CPU_FOREACH(cs) { 270 cpu = X86_CPU(cs); 271 if (apic_accept_pic_intr(cpu->apic_state)) { 272 apic_deliver_pic_intr(cpu->apic_state, level); 273 } 274 } 275 } else { 276 if (level) { 277 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 278 } else { 279 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 280 } 281 } 282 } 283 284 /* PC cmos mappings */ 285 286 #define REG_EQUIPMENT_BYTE 0x14 287 288 int cmos_get_fd_drive_type(FloppyDriveType fd0) 289 { 290 int val; 291 292 switch (fd0) { 293 case FLOPPY_DRIVE_TYPE_144: 294 /* 1.44 Mb 3"5 drive */ 295 val = 4; 296 break; 297 case FLOPPY_DRIVE_TYPE_288: 298 /* 2.88 Mb 3"5 drive */ 299 val = 5; 300 break; 301 case FLOPPY_DRIVE_TYPE_120: 302 /* 1.2 Mb 5"5 drive */ 303 val = 2; 304 break; 305 case FLOPPY_DRIVE_TYPE_NONE: 306 default: 307 val = 0; 308 break; 309 } 310 return val; 311 } 312 313 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 314 int16_t cylinders, int8_t heads, int8_t sectors) 315 { 316 rtc_set_memory(s, type_ofs, 47); 317 rtc_set_memory(s, info_ofs, cylinders); 318 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 319 rtc_set_memory(s, info_ofs + 2, heads); 320 rtc_set_memory(s, info_ofs + 3, 0xff); 321 rtc_set_memory(s, info_ofs + 4, 0xff); 322 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 323 rtc_set_memory(s, info_ofs + 6, cylinders); 324 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 325 rtc_set_memory(s, info_ofs + 8, sectors); 326 } 327 328 /* convert boot_device letter to something recognizable by the bios */ 329 static int boot_device2nibble(char boot_device) 330 { 331 switch(boot_device) { 332 case 'a': 333 case 'b': 334 return 0x01; /* floppy boot */ 335 case 'c': 336 return 0x02; /* hard drive boot */ 337 case 'd': 338 return 0x03; /* CD-ROM boot */ 339 case 'n': 340 return 0x04; /* Network boot */ 341 } 342 return 0; 343 } 344 345 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 346 { 347 #define PC_MAX_BOOT_DEVICES 3 348 int nbds, bds[3] = { 0, }; 349 int i; 350 351 nbds = strlen(boot_device); 352 if (nbds > PC_MAX_BOOT_DEVICES) { 353 error_setg(errp, "Too many boot devices for PC"); 354 return; 355 } 356 for (i = 0; i < nbds; i++) { 357 bds[i] = boot_device2nibble(boot_device[i]); 358 if (bds[i] == 0) { 359 error_setg(errp, "Invalid boot device for PC: '%c'", 360 boot_device[i]); 361 return; 362 } 363 } 364 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 365 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 366 } 367 368 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 369 { 370 set_boot_dev(opaque, boot_device, errp); 371 } 372 373 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 374 { 375 int val, nb, i; 376 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 377 FLOPPY_DRIVE_TYPE_NONE }; 378 379 /* floppy type */ 380 if (floppy) { 381 for (i = 0; i < 2; i++) { 382 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 383 } 384 } 385 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 386 cmos_get_fd_drive_type(fd_type[1]); 387 rtc_set_memory(rtc_state, 0x10, val); 388 389 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 390 nb = 0; 391 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 392 nb++; 393 } 394 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 395 nb++; 396 } 397 switch (nb) { 398 case 0: 399 break; 400 case 1: 401 val |= 0x01; /* 1 drive, ready for boot */ 402 break; 403 case 2: 404 val |= 0x41; /* 2 drives, ready for boot */ 405 break; 406 } 407 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 408 } 409 410 typedef struct pc_cmos_init_late_arg { 411 ISADevice *rtc_state; 412 BusState *idebus[2]; 413 } pc_cmos_init_late_arg; 414 415 typedef struct check_fdc_state { 416 ISADevice *floppy; 417 bool multiple; 418 } CheckFdcState; 419 420 static int check_fdc(Object *obj, void *opaque) 421 { 422 CheckFdcState *state = opaque; 423 Object *fdc; 424 uint32_t iobase; 425 Error *local_err = NULL; 426 427 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 428 if (!fdc) { 429 return 0; 430 } 431 432 iobase = object_property_get_uint(obj, "iobase", &local_err); 433 if (local_err || iobase != 0x3f0) { 434 error_free(local_err); 435 return 0; 436 } 437 438 if (state->floppy) { 439 state->multiple = true; 440 } else { 441 state->floppy = ISA_DEVICE(obj); 442 } 443 return 0; 444 } 445 446 static const char * const fdc_container_path[] = { 447 "/unattached", "/peripheral", "/peripheral-anon" 448 }; 449 450 /* 451 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 452 * and ACPI objects. 453 */ 454 ISADevice *pc_find_fdc0(void) 455 { 456 int i; 457 Object *container; 458 CheckFdcState state = { 0 }; 459 460 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 461 container = container_get(qdev_get_machine(), fdc_container_path[i]); 462 object_child_foreach(container, check_fdc, &state); 463 } 464 465 if (state.multiple) { 466 warn_report("multiple floppy disk controllers with " 467 "iobase=0x3f0 have been found"); 468 error_printf("the one being picked for CMOS setup might not reflect " 469 "your intent"); 470 } 471 472 return state.floppy; 473 } 474 475 static void pc_cmos_init_late(void *opaque) 476 { 477 pc_cmos_init_late_arg *arg = opaque; 478 ISADevice *s = arg->rtc_state; 479 int16_t cylinders; 480 int8_t heads, sectors; 481 int val; 482 int i, trans; 483 484 val = 0; 485 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 486 &cylinders, &heads, §ors) >= 0) { 487 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 488 val |= 0xf0; 489 } 490 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 491 &cylinders, &heads, §ors) >= 0) { 492 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 493 val |= 0x0f; 494 } 495 rtc_set_memory(s, 0x12, val); 496 497 val = 0; 498 for (i = 0; i < 4; i++) { 499 /* NOTE: ide_get_geometry() returns the physical 500 geometry. It is always such that: 1 <= sects <= 63, 1 501 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 502 geometry can be different if a translation is done. */ 503 if (arg->idebus[i / 2] && 504 ide_get_geometry(arg->idebus[i / 2], i % 2, 505 &cylinders, &heads, §ors) >= 0) { 506 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 507 assert((trans & ~3) == 0); 508 val |= trans << (i * 2); 509 } 510 } 511 rtc_set_memory(s, 0x39, val); 512 513 pc_cmos_init_floppy(s, pc_find_fdc0()); 514 515 qemu_unregister_reset(pc_cmos_init_late, opaque); 516 } 517 518 void pc_cmos_init(PCMachineState *pcms, 519 BusState *idebus0, BusState *idebus1, 520 ISADevice *s) 521 { 522 int val; 523 static pc_cmos_init_late_arg arg; 524 525 /* various important CMOS locations needed by PC/Bochs bios */ 526 527 /* memory size */ 528 /* base memory (first MiB) */ 529 val = MIN(pcms->below_4g_mem_size / KiB, 640); 530 rtc_set_memory(s, 0x15, val); 531 rtc_set_memory(s, 0x16, val >> 8); 532 /* extended memory (next 64MiB) */ 533 if (pcms->below_4g_mem_size > 1 * MiB) { 534 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 535 } else { 536 val = 0; 537 } 538 if (val > 65535) 539 val = 65535; 540 rtc_set_memory(s, 0x17, val); 541 rtc_set_memory(s, 0x18, val >> 8); 542 rtc_set_memory(s, 0x30, val); 543 rtc_set_memory(s, 0x31, val >> 8); 544 /* memory between 16MiB and 4GiB */ 545 if (pcms->below_4g_mem_size > 16 * MiB) { 546 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 547 } else { 548 val = 0; 549 } 550 if (val > 65535) 551 val = 65535; 552 rtc_set_memory(s, 0x34, val); 553 rtc_set_memory(s, 0x35, val >> 8); 554 /* memory above 4GiB */ 555 val = pcms->above_4g_mem_size / 65536; 556 rtc_set_memory(s, 0x5b, val); 557 rtc_set_memory(s, 0x5c, val >> 8); 558 rtc_set_memory(s, 0x5d, val >> 16); 559 560 object_property_add_link(OBJECT(pcms), "rtc_state", 561 TYPE_ISA_DEVICE, 562 (Object **)&pcms->rtc, 563 object_property_allow_set_link, 564 OBJ_PROP_LINK_STRONG, &error_abort); 565 object_property_set_link(OBJECT(pcms), OBJECT(s), 566 "rtc_state", &error_abort); 567 568 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 569 570 val = 0; 571 val |= 0x02; /* FPU is there */ 572 val |= 0x04; /* PS/2 mouse installed */ 573 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 574 575 /* hard drives and FDC */ 576 arg.rtc_state = s; 577 arg.idebus[0] = idebus0; 578 arg.idebus[1] = idebus1; 579 qemu_register_reset(pc_cmos_init_late, &arg); 580 } 581 582 #define TYPE_PORT92 "port92" 583 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 584 585 /* port 92 stuff: could be split off */ 586 typedef struct Port92State { 587 ISADevice parent_obj; 588 589 MemoryRegion io; 590 uint8_t outport; 591 qemu_irq a20_out; 592 } Port92State; 593 594 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 595 unsigned size) 596 { 597 Port92State *s = opaque; 598 int oldval = s->outport; 599 600 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 601 s->outport = val; 602 qemu_set_irq(s->a20_out, (val >> 1) & 1); 603 if ((val & 1) && !(oldval & 1)) { 604 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 605 } 606 } 607 608 static uint64_t port92_read(void *opaque, hwaddr addr, 609 unsigned size) 610 { 611 Port92State *s = opaque; 612 uint32_t ret; 613 614 ret = s->outport; 615 DPRINTF("port92: read 0x%02x\n", ret); 616 return ret; 617 } 618 619 static void port92_init(ISADevice *dev, qemu_irq a20_out) 620 { 621 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 622 } 623 624 static const VMStateDescription vmstate_port92_isa = { 625 .name = "port92", 626 .version_id = 1, 627 .minimum_version_id = 1, 628 .fields = (VMStateField[]) { 629 VMSTATE_UINT8(outport, Port92State), 630 VMSTATE_END_OF_LIST() 631 } 632 }; 633 634 static void port92_reset(DeviceState *d) 635 { 636 Port92State *s = PORT92(d); 637 638 s->outport &= ~1; 639 } 640 641 static const MemoryRegionOps port92_ops = { 642 .read = port92_read, 643 .write = port92_write, 644 .impl = { 645 .min_access_size = 1, 646 .max_access_size = 1, 647 }, 648 .endianness = DEVICE_LITTLE_ENDIAN, 649 }; 650 651 static void port92_initfn(Object *obj) 652 { 653 Port92State *s = PORT92(obj); 654 655 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 656 657 s->outport = 0; 658 659 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 660 } 661 662 static void port92_realizefn(DeviceState *dev, Error **errp) 663 { 664 ISADevice *isadev = ISA_DEVICE(dev); 665 Port92State *s = PORT92(dev); 666 667 isa_register_ioport(isadev, &s->io, 0x92); 668 } 669 670 static void port92_class_initfn(ObjectClass *klass, void *data) 671 { 672 DeviceClass *dc = DEVICE_CLASS(klass); 673 674 dc->realize = port92_realizefn; 675 dc->reset = port92_reset; 676 dc->vmsd = &vmstate_port92_isa; 677 /* 678 * Reason: unlike ordinary ISA devices, this one needs additional 679 * wiring: its A20 output line needs to be wired up by 680 * port92_init(). 681 */ 682 dc->user_creatable = false; 683 } 684 685 static const TypeInfo port92_info = { 686 .name = TYPE_PORT92, 687 .parent = TYPE_ISA_DEVICE, 688 .instance_size = sizeof(Port92State), 689 .instance_init = port92_initfn, 690 .class_init = port92_class_initfn, 691 }; 692 693 static void port92_register_types(void) 694 { 695 type_register_static(&port92_info); 696 } 697 698 type_init(port92_register_types) 699 700 static void handle_a20_line_change(void *opaque, int irq, int level) 701 { 702 X86CPU *cpu = opaque; 703 704 /* XXX: send to all CPUs ? */ 705 /* XXX: add logic to handle multiple A20 line sources */ 706 x86_cpu_set_a20(cpu, level); 707 } 708 709 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 710 { 711 int index = le32_to_cpu(e820_reserve.count); 712 struct e820_entry *entry; 713 714 if (type != E820_RAM) { 715 /* old FW_CFG_E820_TABLE entry -- reservations only */ 716 if (index >= E820_NR_ENTRIES) { 717 return -EBUSY; 718 } 719 entry = &e820_reserve.entry[index++]; 720 721 entry->address = cpu_to_le64(address); 722 entry->length = cpu_to_le64(length); 723 entry->type = cpu_to_le32(type); 724 725 e820_reserve.count = cpu_to_le32(index); 726 } 727 728 /* new "etc/e820" file -- include ram too */ 729 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 730 e820_table[e820_entries].address = cpu_to_le64(address); 731 e820_table[e820_entries].length = cpu_to_le64(length); 732 e820_table[e820_entries].type = cpu_to_le32(type); 733 e820_entries++; 734 735 return e820_entries; 736 } 737 738 int e820_get_num_entries(void) 739 { 740 return e820_entries; 741 } 742 743 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 744 { 745 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 746 *address = le64_to_cpu(e820_table[idx].address); 747 *length = le64_to_cpu(e820_table[idx].length); 748 return true; 749 } 750 return false; 751 } 752 753 /* Enables contiguous-apic-ID mode, for compatibility */ 754 static bool compat_apic_id_mode; 755 756 void enable_compat_apic_id_mode(void) 757 { 758 compat_apic_id_mode = true; 759 } 760 761 /* Calculates initial APIC ID for a specific CPU index 762 * 763 * Currently we need to be able to calculate the APIC ID from the CPU index 764 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 765 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 766 * all CPUs up to max_cpus. 767 */ 768 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 769 { 770 uint32_t correct_id; 771 static bool warned; 772 773 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 774 if (compat_apic_id_mode) { 775 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 776 error_report("APIC IDs set in compatibility mode, " 777 "CPU topology won't match the configuration"); 778 warned = true; 779 } 780 return cpu_index; 781 } else { 782 return correct_id; 783 } 784 } 785 786 static void pc_build_smbios(PCMachineState *pcms) 787 { 788 uint8_t *smbios_tables, *smbios_anchor; 789 size_t smbios_tables_len, smbios_anchor_len; 790 struct smbios_phys_mem_area *mem_array; 791 unsigned i, array_count; 792 MachineState *ms = MACHINE(pcms); 793 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 794 795 /* tell smbios about cpuid version and features */ 796 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 797 798 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 799 if (smbios_tables) { 800 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 801 smbios_tables, smbios_tables_len); 802 } 803 804 /* build the array of physical mem area from e820 table */ 805 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 806 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 807 uint64_t addr, len; 808 809 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 810 mem_array[array_count].address = addr; 811 mem_array[array_count].length = len; 812 array_count++; 813 } 814 } 815 smbios_get_tables(mem_array, array_count, 816 &smbios_tables, &smbios_tables_len, 817 &smbios_anchor, &smbios_anchor_len); 818 g_free(mem_array); 819 820 if (smbios_anchor) { 821 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 822 smbios_tables, smbios_tables_len); 823 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 824 smbios_anchor, smbios_anchor_len); 825 } 826 } 827 828 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 829 { 830 FWCfgState *fw_cfg; 831 uint64_t *numa_fw_cfg; 832 int i; 833 const CPUArchIdList *cpus; 834 MachineClass *mc = MACHINE_GET_CLASS(pcms); 835 836 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 837 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 838 839 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 840 * 841 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 842 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 843 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 844 * for CPU hotplug also uses APIC ID and not "CPU index". 845 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 846 * but the "limit to the APIC ID values SeaBIOS may see". 847 * 848 * So for compatibility reasons with old BIOSes we are stuck with 849 * "etc/max-cpus" actually being apic_id_limit 850 */ 851 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 852 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 853 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 854 acpi_tables, acpi_tables_len); 855 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 856 857 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 858 &e820_reserve, sizeof(e820_reserve)); 859 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 860 sizeof(struct e820_entry) * e820_entries); 861 862 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 863 /* allocate memory for the NUMA channel: one (64bit) word for the number 864 * of nodes, one word for each VCPU->node and one word for each node to 865 * hold the amount of memory. 866 */ 867 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 868 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 869 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 870 for (i = 0; i < cpus->len; i++) { 871 unsigned int apic_id = cpus->cpus[i].arch_id; 872 assert(apic_id < pcms->apic_id_limit); 873 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 874 } 875 for (i = 0; i < nb_numa_nodes; i++) { 876 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 877 cpu_to_le64(numa_info[i].node_mem); 878 } 879 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 880 (1 + pcms->apic_id_limit + nb_numa_nodes) * 881 sizeof(*numa_fw_cfg)); 882 883 return fw_cfg; 884 } 885 886 static long get_file_size(FILE *f) 887 { 888 long where, size; 889 890 /* XXX: on Unix systems, using fstat() probably makes more sense */ 891 892 where = ftell(f); 893 fseek(f, 0, SEEK_END); 894 size = ftell(f); 895 fseek(f, where, SEEK_SET); 896 897 return size; 898 } 899 900 /* setup_data types */ 901 #define SETUP_NONE 0 902 #define SETUP_E820_EXT 1 903 #define SETUP_DTB 2 904 #define SETUP_PCI 3 905 #define SETUP_EFI 4 906 907 struct setup_data { 908 uint64_t next; 909 uint32_t type; 910 uint32_t len; 911 uint8_t data[0]; 912 } __attribute__((packed)); 913 914 static void load_linux(PCMachineState *pcms, 915 FWCfgState *fw_cfg) 916 { 917 uint16_t protocol; 918 int setup_size, kernel_size, cmdline_size; 919 int dtb_size, setup_data_offset; 920 uint32_t initrd_max; 921 uint8_t header[8192], *setup, *kernel; 922 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 923 FILE *f; 924 char *vmode; 925 MachineState *machine = MACHINE(pcms); 926 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 927 struct setup_data *setup_data; 928 const char *kernel_filename = machine->kernel_filename; 929 const char *initrd_filename = machine->initrd_filename; 930 const char *dtb_filename = machine->dtb; 931 const char *kernel_cmdline = machine->kernel_cmdline; 932 933 /* Align to 16 bytes as a paranoia measure */ 934 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 935 936 /* load the kernel header */ 937 f = fopen(kernel_filename, "rb"); 938 if (!f || !(kernel_size = get_file_size(f)) || 939 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 940 MIN(ARRAY_SIZE(header), kernel_size)) { 941 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 942 kernel_filename, strerror(errno)); 943 exit(1); 944 } 945 946 /* kernel protocol version */ 947 #if 0 948 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 949 #endif 950 if (ldl_p(header+0x202) == 0x53726448) { 951 protocol = lduw_p(header+0x206); 952 } else { 953 /* This looks like a multiboot kernel. If it is, let's stop 954 treating it like a Linux kernel. */ 955 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 956 kernel_cmdline, kernel_size, header)) { 957 return; 958 } 959 protocol = 0; 960 } 961 962 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 963 /* Low kernel */ 964 real_addr = 0x90000; 965 cmdline_addr = 0x9a000 - cmdline_size; 966 prot_addr = 0x10000; 967 } else if (protocol < 0x202) { 968 /* High but ancient kernel */ 969 real_addr = 0x90000; 970 cmdline_addr = 0x9a000 - cmdline_size; 971 prot_addr = 0x100000; 972 } else { 973 /* High and recent kernel */ 974 real_addr = 0x10000; 975 cmdline_addr = 0x20000; 976 prot_addr = 0x100000; 977 } 978 979 #if 0 980 fprintf(stderr, 981 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 982 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 983 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 984 real_addr, 985 cmdline_addr, 986 prot_addr); 987 #endif 988 989 /* highest address for loading the initrd */ 990 if (protocol >= 0x203) { 991 initrd_max = ldl_p(header+0x22c); 992 } else { 993 initrd_max = 0x37ffffff; 994 } 995 996 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 997 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 998 } 999 1000 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 1001 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 1002 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 1003 1004 if (protocol >= 0x202) { 1005 stl_p(header+0x228, cmdline_addr); 1006 } else { 1007 stw_p(header+0x20, 0xA33F); 1008 stw_p(header+0x22, cmdline_addr-real_addr); 1009 } 1010 1011 /* handle vga= parameter */ 1012 vmode = strstr(kernel_cmdline, "vga="); 1013 if (vmode) { 1014 unsigned int video_mode; 1015 /* skip "vga=" */ 1016 vmode += 4; 1017 if (!strncmp(vmode, "normal", 6)) { 1018 video_mode = 0xffff; 1019 } else if (!strncmp(vmode, "ext", 3)) { 1020 video_mode = 0xfffe; 1021 } else if (!strncmp(vmode, "ask", 3)) { 1022 video_mode = 0xfffd; 1023 } else { 1024 video_mode = strtol(vmode, NULL, 0); 1025 } 1026 stw_p(header+0x1fa, video_mode); 1027 } 1028 1029 /* loader type */ 1030 /* High nybble = B reserved for QEMU; low nybble is revision number. 1031 If this code is substantially changed, you may want to consider 1032 incrementing the revision. */ 1033 if (protocol >= 0x200) { 1034 header[0x210] = 0xB0; 1035 } 1036 /* heap */ 1037 if (protocol >= 0x201) { 1038 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 1039 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 1040 } 1041 1042 /* load initrd */ 1043 if (initrd_filename) { 1044 gsize initrd_size; 1045 gchar *initrd_data; 1046 GError *gerr = NULL; 1047 1048 if (protocol < 0x200) { 1049 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 1050 exit(1); 1051 } 1052 1053 if (!g_file_get_contents(initrd_filename, &initrd_data, 1054 &initrd_size, &gerr)) { 1055 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1056 initrd_filename, gerr->message); 1057 exit(1); 1058 } 1059 if (initrd_size >= initrd_max) { 1060 fprintf(stderr, "qemu: initrd is too large, cannot support." 1061 "(max: %"PRIu32", need %"PRId64")\n", 1062 initrd_max, (uint64_t)initrd_size); 1063 exit(1); 1064 } 1065 1066 initrd_addr = (initrd_max-initrd_size) & ~4095; 1067 1068 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1069 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1070 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1071 1072 stl_p(header+0x218, initrd_addr); 1073 stl_p(header+0x21c, initrd_size); 1074 } 1075 1076 /* load kernel and setup */ 1077 setup_size = header[0x1f1]; 1078 if (setup_size == 0) { 1079 setup_size = 4; 1080 } 1081 setup_size = (setup_size+1)*512; 1082 if (setup_size > kernel_size) { 1083 fprintf(stderr, "qemu: invalid kernel header\n"); 1084 exit(1); 1085 } 1086 kernel_size -= setup_size; 1087 1088 setup = g_malloc(setup_size); 1089 kernel = g_malloc(kernel_size); 1090 fseek(f, 0, SEEK_SET); 1091 if (fread(setup, 1, setup_size, f) != setup_size) { 1092 fprintf(stderr, "fread() failed\n"); 1093 exit(1); 1094 } 1095 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1096 fprintf(stderr, "fread() failed\n"); 1097 exit(1); 1098 } 1099 fclose(f); 1100 1101 /* append dtb to kernel */ 1102 if (dtb_filename) { 1103 if (protocol < 0x209) { 1104 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1105 exit(1); 1106 } 1107 1108 dtb_size = get_image_size(dtb_filename); 1109 if (dtb_size <= 0) { 1110 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1111 dtb_filename, strerror(errno)); 1112 exit(1); 1113 } 1114 1115 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1116 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1117 kernel = g_realloc(kernel, kernel_size); 1118 1119 stq_p(header+0x250, prot_addr + setup_data_offset); 1120 1121 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1122 setup_data->next = 0; 1123 setup_data->type = cpu_to_le32(SETUP_DTB); 1124 setup_data->len = cpu_to_le32(dtb_size); 1125 1126 load_image_size(dtb_filename, setup_data->data, dtb_size); 1127 } 1128 1129 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1130 1131 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1132 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1133 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1134 1135 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1136 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1137 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1138 1139 option_rom[nb_option_roms].bootindex = 0; 1140 option_rom[nb_option_roms].name = "linuxboot.bin"; 1141 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1142 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1143 } 1144 nb_option_roms++; 1145 } 1146 1147 #define NE2000_NB_MAX 6 1148 1149 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1150 0x280, 0x380 }; 1151 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1152 1153 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1154 { 1155 static int nb_ne2k = 0; 1156 1157 if (nb_ne2k == NE2000_NB_MAX) 1158 return; 1159 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1160 ne2000_irq[nb_ne2k], nd); 1161 nb_ne2k++; 1162 } 1163 1164 DeviceState *cpu_get_current_apic(void) 1165 { 1166 if (current_cpu) { 1167 X86CPU *cpu = X86_CPU(current_cpu); 1168 return cpu->apic_state; 1169 } else { 1170 return NULL; 1171 } 1172 } 1173 1174 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1175 { 1176 X86CPU *cpu = opaque; 1177 1178 if (level) { 1179 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1180 } 1181 } 1182 1183 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1184 { 1185 Object *cpu = NULL; 1186 Error *local_err = NULL; 1187 1188 cpu = object_new(typename); 1189 1190 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1191 object_property_set_bool(cpu, true, "realized", &local_err); 1192 1193 object_unref(cpu); 1194 error_propagate(errp, local_err); 1195 } 1196 1197 void pc_hot_add_cpu(const int64_t id, Error **errp) 1198 { 1199 MachineState *ms = MACHINE(qdev_get_machine()); 1200 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1201 Error *local_err = NULL; 1202 1203 if (id < 0) { 1204 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1205 return; 1206 } 1207 1208 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1209 error_setg(errp, "Unable to add CPU: %" PRIi64 1210 ", resulting APIC ID (%" PRIi64 ") is too large", 1211 id, apic_id); 1212 return; 1213 } 1214 1215 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1216 if (local_err) { 1217 error_propagate(errp, local_err); 1218 return; 1219 } 1220 } 1221 1222 void pc_cpus_init(PCMachineState *pcms) 1223 { 1224 int i; 1225 const CPUArchIdList *possible_cpus; 1226 MachineState *ms = MACHINE(pcms); 1227 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1228 1229 /* Calculates the limit to CPU APIC ID values 1230 * 1231 * Limit for the APIC ID value, so that all 1232 * CPU APIC IDs are < pcms->apic_id_limit. 1233 * 1234 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1235 */ 1236 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1237 possible_cpus = mc->possible_cpu_arch_ids(ms); 1238 for (i = 0; i < smp_cpus; i++) { 1239 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1240 &error_fatal); 1241 } 1242 } 1243 1244 static void pc_build_feature_control_file(PCMachineState *pcms) 1245 { 1246 MachineState *ms = MACHINE(pcms); 1247 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1248 CPUX86State *env = &cpu->env; 1249 uint32_t unused, ecx, edx; 1250 uint64_t feature_control_bits = 0; 1251 uint64_t *val; 1252 1253 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1254 if (ecx & CPUID_EXT_VMX) { 1255 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1256 } 1257 1258 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1259 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1260 (env->mcg_cap & MCG_LMCE_P)) { 1261 feature_control_bits |= FEATURE_CONTROL_LMCE; 1262 } 1263 1264 if (!feature_control_bits) { 1265 return; 1266 } 1267 1268 val = g_malloc(sizeof(*val)); 1269 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1270 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1271 } 1272 1273 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1274 { 1275 if (cpus_count > 0xff) { 1276 /* If the number of CPUs can't be represented in 8 bits, the 1277 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1278 * to make old BIOSes fail more predictably. 1279 */ 1280 rtc_set_memory(rtc, 0x5f, 0); 1281 } else { 1282 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1283 } 1284 } 1285 1286 static 1287 void pc_machine_done(Notifier *notifier, void *data) 1288 { 1289 PCMachineState *pcms = container_of(notifier, 1290 PCMachineState, machine_done); 1291 PCIBus *bus = pcms->bus; 1292 1293 /* set the number of CPUs */ 1294 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1295 1296 if (bus) { 1297 int extra_hosts = 0; 1298 1299 QLIST_FOREACH(bus, &bus->child, sibling) { 1300 /* look for expander root buses */ 1301 if (pci_bus_is_root(bus)) { 1302 extra_hosts++; 1303 } 1304 } 1305 if (extra_hosts && pcms->fw_cfg) { 1306 uint64_t *val = g_malloc(sizeof(*val)); 1307 *val = cpu_to_le64(extra_hosts); 1308 fw_cfg_add_file(pcms->fw_cfg, 1309 "etc/extra-pci-roots", val, sizeof(*val)); 1310 } 1311 } 1312 1313 acpi_setup(); 1314 if (pcms->fw_cfg) { 1315 pc_build_smbios(pcms); 1316 pc_build_feature_control_file(pcms); 1317 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1318 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1319 } 1320 1321 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1322 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1323 1324 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) || 1325 iommu->intr_eim != ON_OFF_AUTO_ON) { 1326 error_report("current -smp configuration requires " 1327 "Extended Interrupt Mode enabled. " 1328 "You can add an IOMMU using: " 1329 "-device intel-iommu,intremap=on,eim=on"); 1330 exit(EXIT_FAILURE); 1331 } 1332 } 1333 } 1334 1335 void pc_guest_info_init(PCMachineState *pcms) 1336 { 1337 int i; 1338 1339 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1340 pcms->numa_nodes = nb_numa_nodes; 1341 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1342 sizeof *pcms->node_mem); 1343 for (i = 0; i < nb_numa_nodes; i++) { 1344 pcms->node_mem[i] = numa_info[i].node_mem; 1345 } 1346 1347 pcms->machine_done.notify = pc_machine_done; 1348 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1349 } 1350 1351 /* setup pci memory address space mapping into system address space */ 1352 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1353 MemoryRegion *pci_address_space) 1354 { 1355 /* Set to lower priority than RAM */ 1356 memory_region_add_subregion_overlap(system_memory, 0x0, 1357 pci_address_space, -1); 1358 } 1359 1360 void pc_acpi_init(const char *default_dsdt) 1361 { 1362 char *filename; 1363 1364 if (acpi_tables != NULL) { 1365 /* manually set via -acpitable, leave it alone */ 1366 return; 1367 } 1368 1369 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1370 if (filename == NULL) { 1371 warn_report("failed to find %s", default_dsdt); 1372 } else { 1373 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1374 &error_abort); 1375 Error *err = NULL; 1376 1377 qemu_opt_set(opts, "file", filename, &error_abort); 1378 1379 acpi_table_add_builtin(opts, &err); 1380 if (err) { 1381 warn_reportf_err(err, "failed to load %s: ", filename); 1382 } 1383 g_free(filename); 1384 } 1385 } 1386 1387 void xen_load_linux(PCMachineState *pcms) 1388 { 1389 int i; 1390 FWCfgState *fw_cfg; 1391 1392 assert(MACHINE(pcms)->kernel_filename != NULL); 1393 1394 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1395 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1396 rom_set_fw(fw_cfg); 1397 1398 load_linux(pcms, fw_cfg); 1399 for (i = 0; i < nb_option_roms; i++) { 1400 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1401 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1402 !strcmp(option_rom[i].name, "multiboot.bin")); 1403 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1404 } 1405 pcms->fw_cfg = fw_cfg; 1406 } 1407 1408 void pc_memory_init(PCMachineState *pcms, 1409 MemoryRegion *system_memory, 1410 MemoryRegion *rom_memory, 1411 MemoryRegion **ram_memory) 1412 { 1413 int linux_boot, i; 1414 MemoryRegion *ram, *option_rom_mr; 1415 MemoryRegion *ram_below_4g, *ram_above_4g; 1416 FWCfgState *fw_cfg; 1417 MachineState *machine = MACHINE(pcms); 1418 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1419 1420 assert(machine->ram_size == pcms->below_4g_mem_size + 1421 pcms->above_4g_mem_size); 1422 1423 linux_boot = (machine->kernel_filename != NULL); 1424 1425 /* Allocate RAM. We allocate it as a single memory region and use 1426 * aliases to address portions of it, mostly for backwards compatibility 1427 * with older qemus that used qemu_ram_alloc(). 1428 */ 1429 ram = g_malloc(sizeof(*ram)); 1430 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1431 machine->ram_size); 1432 *ram_memory = ram; 1433 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1434 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1435 0, pcms->below_4g_mem_size); 1436 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1437 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1438 if (pcms->above_4g_mem_size > 0) { 1439 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1440 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1441 pcms->below_4g_mem_size, 1442 pcms->above_4g_mem_size); 1443 memory_region_add_subregion(system_memory, 0x100000000ULL, 1444 ram_above_4g); 1445 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1446 } 1447 1448 if (!pcmc->has_reserved_memory && 1449 (machine->ram_slots || 1450 (machine->maxram_size > machine->ram_size))) { 1451 MachineClass *mc = MACHINE_GET_CLASS(machine); 1452 1453 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1454 mc->name); 1455 exit(EXIT_FAILURE); 1456 } 1457 1458 /* always allocate the device memory information */ 1459 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1460 1461 /* initialize device memory address space */ 1462 if (pcmc->has_reserved_memory && 1463 (machine->ram_size < machine->maxram_size)) { 1464 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1465 1466 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1467 error_report("unsupported amount of memory slots: %"PRIu64, 1468 machine->ram_slots); 1469 exit(EXIT_FAILURE); 1470 } 1471 1472 if (QEMU_ALIGN_UP(machine->maxram_size, 1473 TARGET_PAGE_SIZE) != machine->maxram_size) { 1474 error_report("maximum memory size must by aligned to multiple of " 1475 "%d bytes", TARGET_PAGE_SIZE); 1476 exit(EXIT_FAILURE); 1477 } 1478 1479 machine->device_memory->base = 1480 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1481 1482 if (pcmc->enforce_aligned_dimm) { 1483 /* size device region assuming 1G page max alignment per slot */ 1484 device_mem_size += (1 * GiB) * machine->ram_slots; 1485 } 1486 1487 if ((machine->device_memory->base + device_mem_size) < 1488 device_mem_size) { 1489 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1490 machine->maxram_size); 1491 exit(EXIT_FAILURE); 1492 } 1493 1494 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1495 "device-memory", device_mem_size); 1496 memory_region_add_subregion(system_memory, machine->device_memory->base, 1497 &machine->device_memory->mr); 1498 } 1499 1500 /* Initialize PC system firmware */ 1501 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1502 1503 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1504 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1505 &error_fatal); 1506 if (pcmc->pci_enabled) { 1507 memory_region_set_readonly(option_rom_mr, true); 1508 } 1509 memory_region_add_subregion_overlap(rom_memory, 1510 PC_ROM_MIN_VGA, 1511 option_rom_mr, 1512 1); 1513 1514 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1515 1516 rom_set_fw(fw_cfg); 1517 1518 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1519 uint64_t *val = g_malloc(sizeof(*val)); 1520 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1521 uint64_t res_mem_end = machine->device_memory->base; 1522 1523 if (!pcmc->broken_reserved_end) { 1524 res_mem_end += memory_region_size(&machine->device_memory->mr); 1525 } 1526 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1527 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1528 } 1529 1530 if (linux_boot) { 1531 load_linux(pcms, fw_cfg); 1532 } 1533 1534 for (i = 0; i < nb_option_roms; i++) { 1535 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1536 } 1537 pcms->fw_cfg = fw_cfg; 1538 1539 /* Init default IOAPIC address space */ 1540 pcms->ioapic_as = &address_space_memory; 1541 } 1542 1543 /* 1544 * The 64bit pci hole starts after "above 4G RAM" and 1545 * potentially the space reserved for memory hotplug. 1546 */ 1547 uint64_t pc_pci_hole64_start(void) 1548 { 1549 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1550 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1551 MachineState *ms = MACHINE(pcms); 1552 uint64_t hole64_start = 0; 1553 1554 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1555 hole64_start = ms->device_memory->base; 1556 if (!pcmc->broken_reserved_end) { 1557 hole64_start += memory_region_size(&ms->device_memory->mr); 1558 } 1559 } else { 1560 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1561 } 1562 1563 return ROUND_UP(hole64_start, 1 * GiB); 1564 } 1565 1566 qemu_irq pc_allocate_cpu_irq(void) 1567 { 1568 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1569 } 1570 1571 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1572 { 1573 DeviceState *dev = NULL; 1574 1575 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1576 if (pci_bus) { 1577 PCIDevice *pcidev = pci_vga_init(pci_bus); 1578 dev = pcidev ? &pcidev->qdev : NULL; 1579 } else if (isa_bus) { 1580 ISADevice *isadev = isa_vga_init(isa_bus); 1581 dev = isadev ? DEVICE(isadev) : NULL; 1582 } 1583 rom_reset_order_override(); 1584 return dev; 1585 } 1586 1587 static const MemoryRegionOps ioport80_io_ops = { 1588 .write = ioport80_write, 1589 .read = ioport80_read, 1590 .endianness = DEVICE_NATIVE_ENDIAN, 1591 .impl = { 1592 .min_access_size = 1, 1593 .max_access_size = 1, 1594 }, 1595 }; 1596 1597 static const MemoryRegionOps ioportF0_io_ops = { 1598 .write = ioportF0_write, 1599 .read = ioportF0_read, 1600 .endianness = DEVICE_NATIVE_ENDIAN, 1601 .impl = { 1602 .min_access_size = 1, 1603 .max_access_size = 1, 1604 }, 1605 }; 1606 1607 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1608 { 1609 int i; 1610 DriveInfo *fd[MAX_FD]; 1611 qemu_irq *a20_line; 1612 ISADevice *i8042, *port92, *vmmouse; 1613 1614 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1615 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1616 1617 for (i = 0; i < MAX_FD; i++) { 1618 fd[i] = drive_get(IF_FLOPPY, 0, i); 1619 create_fdctrl |= !!fd[i]; 1620 } 1621 if (create_fdctrl) { 1622 fdctrl_init_isa(isa_bus, fd); 1623 } 1624 1625 i8042 = isa_create_simple(isa_bus, "i8042"); 1626 if (!no_vmport) { 1627 vmport_init(isa_bus); 1628 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1629 } else { 1630 vmmouse = NULL; 1631 } 1632 if (vmmouse) { 1633 DeviceState *dev = DEVICE(vmmouse); 1634 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1635 qdev_init_nofail(dev); 1636 } 1637 port92 = isa_create_simple(isa_bus, "port92"); 1638 1639 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1640 i8042_setup_a20_line(i8042, a20_line[0]); 1641 port92_init(port92, a20_line[1]); 1642 g_free(a20_line); 1643 } 1644 1645 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1646 ISADevice **rtc_state, 1647 bool create_fdctrl, 1648 bool no_vmport, 1649 bool has_pit, 1650 uint32_t hpet_irqs) 1651 { 1652 int i; 1653 DeviceState *hpet = NULL; 1654 int pit_isa_irq = 0; 1655 qemu_irq pit_alt_irq = NULL; 1656 qemu_irq rtc_irq = NULL; 1657 ISADevice *pit = NULL; 1658 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1659 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1660 1661 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1662 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1663 1664 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1665 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1666 1667 /* 1668 * Check if an HPET shall be created. 1669 * 1670 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1671 * when the HPET wants to take over. Thus we have to disable the latter. 1672 */ 1673 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1674 /* In order to set property, here not using sysbus_try_create_simple */ 1675 hpet = qdev_try_create(NULL, TYPE_HPET); 1676 if (hpet) { 1677 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1678 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1679 * IRQ8 and IRQ2. 1680 */ 1681 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1682 HPET_INTCAP, NULL); 1683 if (!compat) { 1684 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1685 } 1686 qdev_init_nofail(hpet); 1687 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1688 1689 for (i = 0; i < GSI_NUM_PINS; i++) { 1690 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1691 } 1692 pit_isa_irq = -1; 1693 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1694 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1695 } 1696 } 1697 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1698 1699 qemu_register_boot_set(pc_boot_set, *rtc_state); 1700 1701 if (!xen_enabled() && has_pit) { 1702 if (kvm_pit_in_kernel()) { 1703 pit = kvm_pit_init(isa_bus, 0x40); 1704 } else { 1705 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1706 } 1707 if (hpet) { 1708 /* connect PIT to output control line of the HPET */ 1709 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1710 } 1711 pcspk_init(isa_bus, pit); 1712 } 1713 1714 i8257_dma_init(isa_bus, 0); 1715 1716 /* Super I/O */ 1717 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1718 } 1719 1720 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1721 { 1722 int i; 1723 1724 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1725 for (i = 0; i < nb_nics; i++) { 1726 NICInfo *nd = &nd_table[i]; 1727 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1728 1729 if (g_str_equal(model, "ne2k_isa")) { 1730 pc_init_ne2k_isa(isa_bus, nd); 1731 } else { 1732 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1733 } 1734 } 1735 rom_reset_order_override(); 1736 } 1737 1738 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1739 { 1740 DeviceState *dev; 1741 SysBusDevice *d; 1742 unsigned int i; 1743 1744 if (kvm_ioapic_in_kernel()) { 1745 dev = qdev_create(NULL, "kvm-ioapic"); 1746 } else { 1747 dev = qdev_create(NULL, "ioapic"); 1748 } 1749 if (parent_name) { 1750 object_property_add_child(object_resolve_path(parent_name, NULL), 1751 "ioapic", OBJECT(dev), NULL); 1752 } 1753 qdev_init_nofail(dev); 1754 d = SYS_BUS_DEVICE(dev); 1755 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1756 1757 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1758 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1759 } 1760 } 1761 1762 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1763 Error **errp) 1764 { 1765 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1766 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1767 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1768 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1769 1770 /* 1771 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1772 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1773 * addition to cover this case. 1774 */ 1775 if (!pcms->acpi_dev || !acpi_enabled) { 1776 error_setg(errp, 1777 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1778 return; 1779 } 1780 1781 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1782 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1783 return; 1784 } 1785 1786 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), 1787 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1788 } 1789 1790 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1791 DeviceState *dev, Error **errp) 1792 { 1793 HotplugHandlerClass *hhc; 1794 Error *local_err = NULL; 1795 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1796 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1797 1798 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); 1799 if (local_err) { 1800 goto out; 1801 } 1802 1803 if (is_nvdimm) { 1804 nvdimm_plug(&pcms->acpi_nvdimm_state); 1805 } 1806 1807 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1808 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1809 out: 1810 error_propagate(errp, local_err); 1811 } 1812 1813 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1814 DeviceState *dev, Error **errp) 1815 { 1816 HotplugHandlerClass *hhc; 1817 Error *local_err = NULL; 1818 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1819 1820 /* 1821 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1822 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1823 * addition to cover this case. 1824 */ 1825 if (!pcms->acpi_dev || !acpi_enabled) { 1826 error_setg(&local_err, 1827 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1828 goto out; 1829 } 1830 1831 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1832 error_setg(&local_err, 1833 "nvdimm device hot unplug is not supported yet."); 1834 goto out; 1835 } 1836 1837 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1838 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1839 1840 out: 1841 error_propagate(errp, local_err); 1842 } 1843 1844 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1845 DeviceState *dev, Error **errp) 1846 { 1847 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1848 HotplugHandlerClass *hhc; 1849 Error *local_err = NULL; 1850 1851 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1852 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1853 1854 if (local_err) { 1855 goto out; 1856 } 1857 1858 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); 1859 object_unparent(OBJECT(dev)); 1860 1861 out: 1862 error_propagate(errp, local_err); 1863 } 1864 1865 static int pc_apic_cmp(const void *a, const void *b) 1866 { 1867 CPUArchId *apic_a = (CPUArchId *)a; 1868 CPUArchId *apic_b = (CPUArchId *)b; 1869 1870 return apic_a->arch_id - apic_b->arch_id; 1871 } 1872 1873 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1874 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1875 * entry corresponding to CPU's apic_id returns NULL. 1876 */ 1877 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1878 { 1879 CPUArchId apic_id, *found_cpu; 1880 1881 apic_id.arch_id = id; 1882 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1883 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1884 pc_apic_cmp); 1885 if (found_cpu && idx) { 1886 *idx = found_cpu - ms->possible_cpus->cpus; 1887 } 1888 return found_cpu; 1889 } 1890 1891 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1892 DeviceState *dev, Error **errp) 1893 { 1894 CPUArchId *found_cpu; 1895 HotplugHandlerClass *hhc; 1896 Error *local_err = NULL; 1897 X86CPU *cpu = X86_CPU(dev); 1898 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1899 1900 if (pcms->acpi_dev) { 1901 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1902 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1903 if (local_err) { 1904 goto out; 1905 } 1906 } 1907 1908 /* increment the number of CPUs */ 1909 pcms->boot_cpus++; 1910 if (pcms->rtc) { 1911 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1912 } 1913 if (pcms->fw_cfg) { 1914 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1915 } 1916 1917 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1918 found_cpu->cpu = OBJECT(dev); 1919 out: 1920 error_propagate(errp, local_err); 1921 } 1922 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1923 DeviceState *dev, Error **errp) 1924 { 1925 int idx = -1; 1926 HotplugHandlerClass *hhc; 1927 Error *local_err = NULL; 1928 X86CPU *cpu = X86_CPU(dev); 1929 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1930 1931 if (!pcms->acpi_dev) { 1932 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1933 goto out; 1934 } 1935 1936 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1937 assert(idx != -1); 1938 if (idx == 0) { 1939 error_setg(&local_err, "Boot CPU is unpluggable"); 1940 goto out; 1941 } 1942 1943 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1944 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1945 1946 if (local_err) { 1947 goto out; 1948 } 1949 1950 out: 1951 error_propagate(errp, local_err); 1952 1953 } 1954 1955 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1956 DeviceState *dev, Error **errp) 1957 { 1958 CPUArchId *found_cpu; 1959 HotplugHandlerClass *hhc; 1960 Error *local_err = NULL; 1961 X86CPU *cpu = X86_CPU(dev); 1962 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1963 1964 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1965 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1966 1967 if (local_err) { 1968 goto out; 1969 } 1970 1971 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1972 found_cpu->cpu = NULL; 1973 object_unparent(OBJECT(dev)); 1974 1975 /* decrement the number of CPUs */ 1976 pcms->boot_cpus--; 1977 /* Update the number of CPUs in CMOS */ 1978 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1979 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1980 out: 1981 error_propagate(errp, local_err); 1982 } 1983 1984 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1985 DeviceState *dev, Error **errp) 1986 { 1987 int idx; 1988 CPUState *cs; 1989 CPUArchId *cpu_slot; 1990 X86CPUTopoInfo topo; 1991 X86CPU *cpu = X86_CPU(dev); 1992 MachineState *ms = MACHINE(hotplug_dev); 1993 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1994 1995 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1996 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1997 ms->cpu_type); 1998 return; 1999 } 2000 2001 /* if APIC ID is not set, set it based on socket/core/thread properties */ 2002 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 2003 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 2004 2005 if (cpu->socket_id < 0) { 2006 error_setg(errp, "CPU socket-id is not set"); 2007 return; 2008 } else if (cpu->socket_id > max_socket) { 2009 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 2010 cpu->socket_id, max_socket); 2011 return; 2012 } 2013 if (cpu->core_id < 0) { 2014 error_setg(errp, "CPU core-id is not set"); 2015 return; 2016 } else if (cpu->core_id > (smp_cores - 1)) { 2017 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 2018 cpu->core_id, smp_cores - 1); 2019 return; 2020 } 2021 if (cpu->thread_id < 0) { 2022 error_setg(errp, "CPU thread-id is not set"); 2023 return; 2024 } else if (cpu->thread_id > (smp_threads - 1)) { 2025 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 2026 cpu->thread_id, smp_threads - 1); 2027 return; 2028 } 2029 2030 topo.pkg_id = cpu->socket_id; 2031 topo.core_id = cpu->core_id; 2032 topo.smt_id = cpu->thread_id; 2033 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 2034 } 2035 2036 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 2037 if (!cpu_slot) { 2038 MachineState *ms = MACHINE(pcms); 2039 2040 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2041 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 2042 " APIC ID %" PRIu32 ", valid index range 0:%d", 2043 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 2044 ms->possible_cpus->len - 1); 2045 return; 2046 } 2047 2048 if (cpu_slot->cpu) { 2049 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 2050 idx, cpu->apic_id); 2051 return; 2052 } 2053 2054 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 2055 * so that machine_query_hotpluggable_cpus would show correct values 2056 */ 2057 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 2058 * once -smp refactoring is complete and there will be CPU private 2059 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 2060 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2061 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 2062 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 2063 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 2064 return; 2065 } 2066 cpu->socket_id = topo.pkg_id; 2067 2068 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 2069 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 2070 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 2071 return; 2072 } 2073 cpu->core_id = topo.core_id; 2074 2075 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2076 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2077 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2078 return; 2079 } 2080 cpu->thread_id = topo.smt_id; 2081 2082 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2083 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2084 return; 2085 } 2086 2087 cs = CPU(cpu); 2088 cs->cpu_index = idx; 2089 2090 numa_cpu_pre_plug(cpu_slot, dev, errp); 2091 } 2092 2093 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2094 DeviceState *dev, Error **errp) 2095 { 2096 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2097 pc_memory_pre_plug(hotplug_dev, dev, errp); 2098 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2099 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2100 } 2101 } 2102 2103 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2104 DeviceState *dev, Error **errp) 2105 { 2106 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2107 pc_memory_plug(hotplug_dev, dev, errp); 2108 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2109 pc_cpu_plug(hotplug_dev, dev, errp); 2110 } 2111 } 2112 2113 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2114 DeviceState *dev, Error **errp) 2115 { 2116 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2117 pc_memory_unplug_request(hotplug_dev, dev, errp); 2118 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2119 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2120 } else { 2121 error_setg(errp, "acpi: device unplug request for not supported device" 2122 " type: %s", object_get_typename(OBJECT(dev))); 2123 } 2124 } 2125 2126 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2127 DeviceState *dev, Error **errp) 2128 { 2129 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2130 pc_memory_unplug(hotplug_dev, dev, errp); 2131 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2132 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2133 } else { 2134 error_setg(errp, "acpi: device unplug for not supported device" 2135 " type: %s", object_get_typename(OBJECT(dev))); 2136 } 2137 } 2138 2139 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2140 DeviceState *dev) 2141 { 2142 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2143 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2144 return HOTPLUG_HANDLER(machine); 2145 } 2146 2147 return NULL; 2148 } 2149 2150 static void 2151 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2152 const char *name, void *opaque, 2153 Error **errp) 2154 { 2155 MachineState *ms = MACHINE(obj); 2156 int64_t value = memory_region_size(&ms->device_memory->mr); 2157 2158 visit_type_int(v, name, &value, errp); 2159 } 2160 2161 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2162 const char *name, void *opaque, 2163 Error **errp) 2164 { 2165 PCMachineState *pcms = PC_MACHINE(obj); 2166 uint64_t value = pcms->max_ram_below_4g; 2167 2168 visit_type_size(v, name, &value, errp); 2169 } 2170 2171 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2172 const char *name, void *opaque, 2173 Error **errp) 2174 { 2175 PCMachineState *pcms = PC_MACHINE(obj); 2176 Error *error = NULL; 2177 uint64_t value; 2178 2179 visit_type_size(v, name, &value, &error); 2180 if (error) { 2181 error_propagate(errp, error); 2182 return; 2183 } 2184 if (value > 4 * GiB) { 2185 error_setg(&error, 2186 "Machine option 'max-ram-below-4g=%"PRIu64 2187 "' expects size less than or equal to 4G", value); 2188 error_propagate(errp, error); 2189 return; 2190 } 2191 2192 if (value < 1 * MiB) { 2193 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2194 "BIOS may not work with less than 1MiB", value); 2195 } 2196 2197 pcms->max_ram_below_4g = value; 2198 } 2199 2200 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2201 void *opaque, Error **errp) 2202 { 2203 PCMachineState *pcms = PC_MACHINE(obj); 2204 OnOffAuto vmport = pcms->vmport; 2205 2206 visit_type_OnOffAuto(v, name, &vmport, errp); 2207 } 2208 2209 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2210 void *opaque, Error **errp) 2211 { 2212 PCMachineState *pcms = PC_MACHINE(obj); 2213 2214 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2215 } 2216 2217 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2218 { 2219 bool smm_available = false; 2220 2221 if (pcms->smm == ON_OFF_AUTO_OFF) { 2222 return false; 2223 } 2224 2225 if (tcg_enabled() || qtest_enabled()) { 2226 smm_available = true; 2227 } else if (kvm_enabled()) { 2228 smm_available = kvm_has_smm(); 2229 } 2230 2231 if (smm_available) { 2232 return true; 2233 } 2234 2235 if (pcms->smm == ON_OFF_AUTO_ON) { 2236 error_report("System Management Mode not supported by this hypervisor."); 2237 exit(1); 2238 } 2239 return false; 2240 } 2241 2242 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2243 void *opaque, Error **errp) 2244 { 2245 PCMachineState *pcms = PC_MACHINE(obj); 2246 OnOffAuto smm = pcms->smm; 2247 2248 visit_type_OnOffAuto(v, name, &smm, errp); 2249 } 2250 2251 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2252 void *opaque, Error **errp) 2253 { 2254 PCMachineState *pcms = PC_MACHINE(obj); 2255 2256 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2257 } 2258 2259 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2260 { 2261 PCMachineState *pcms = PC_MACHINE(obj); 2262 2263 return pcms->acpi_nvdimm_state.is_enabled; 2264 } 2265 2266 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2267 { 2268 PCMachineState *pcms = PC_MACHINE(obj); 2269 2270 pcms->acpi_nvdimm_state.is_enabled = value; 2271 } 2272 2273 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2274 { 2275 PCMachineState *pcms = PC_MACHINE(obj); 2276 2277 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2278 } 2279 2280 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2281 Error **errp) 2282 { 2283 PCMachineState *pcms = PC_MACHINE(obj); 2284 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2285 2286 if (strcmp(value, "cpu") == 0) 2287 nvdimm_state->persistence = 3; 2288 else if (strcmp(value, "mem-ctrl") == 0) 2289 nvdimm_state->persistence = 2; 2290 else { 2291 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option", 2292 value); 2293 return; 2294 } 2295 2296 g_free(nvdimm_state->persistence_string); 2297 nvdimm_state->persistence_string = g_strdup(value); 2298 } 2299 2300 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2301 { 2302 PCMachineState *pcms = PC_MACHINE(obj); 2303 2304 return pcms->smbus_enabled; 2305 } 2306 2307 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2308 { 2309 PCMachineState *pcms = PC_MACHINE(obj); 2310 2311 pcms->smbus_enabled = value; 2312 } 2313 2314 static bool pc_machine_get_sata(Object *obj, Error **errp) 2315 { 2316 PCMachineState *pcms = PC_MACHINE(obj); 2317 2318 return pcms->sata_enabled; 2319 } 2320 2321 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2322 { 2323 PCMachineState *pcms = PC_MACHINE(obj); 2324 2325 pcms->sata_enabled = value; 2326 } 2327 2328 static bool pc_machine_get_pit(Object *obj, Error **errp) 2329 { 2330 PCMachineState *pcms = PC_MACHINE(obj); 2331 2332 return pcms->pit_enabled; 2333 } 2334 2335 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2336 { 2337 PCMachineState *pcms = PC_MACHINE(obj); 2338 2339 pcms->pit_enabled = value; 2340 } 2341 2342 static void pc_machine_initfn(Object *obj) 2343 { 2344 PCMachineState *pcms = PC_MACHINE(obj); 2345 2346 pcms->max_ram_below_4g = 0; /* use default */ 2347 pcms->smm = ON_OFF_AUTO_AUTO; 2348 pcms->vmport = ON_OFF_AUTO_AUTO; 2349 /* nvdimm is disabled on default. */ 2350 pcms->acpi_nvdimm_state.is_enabled = false; 2351 /* acpi build is enabled by default if machine supports it */ 2352 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2353 pcms->smbus_enabled = true; 2354 pcms->sata_enabled = true; 2355 pcms->pit_enabled = true; 2356 } 2357 2358 static void pc_machine_reset(void) 2359 { 2360 CPUState *cs; 2361 X86CPU *cpu; 2362 2363 qemu_devices_reset(); 2364 2365 /* Reset APIC after devices have been reset to cancel 2366 * any changes that qemu_devices_reset() might have done. 2367 */ 2368 CPU_FOREACH(cs) { 2369 cpu = X86_CPU(cs); 2370 2371 if (cpu->apic_state) { 2372 device_reset(cpu->apic_state); 2373 } 2374 } 2375 } 2376 2377 static CpuInstanceProperties 2378 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2379 { 2380 MachineClass *mc = MACHINE_GET_CLASS(ms); 2381 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2382 2383 assert(cpu_index < possible_cpus->len); 2384 return possible_cpus->cpus[cpu_index].props; 2385 } 2386 2387 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2388 { 2389 X86CPUTopoInfo topo; 2390 2391 assert(idx < ms->possible_cpus->len); 2392 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2393 smp_cores, smp_threads, &topo); 2394 return topo.pkg_id % nb_numa_nodes; 2395 } 2396 2397 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2398 { 2399 int i; 2400 2401 if (ms->possible_cpus) { 2402 /* 2403 * make sure that max_cpus hasn't changed since the first use, i.e. 2404 * -smp hasn't been parsed after it 2405 */ 2406 assert(ms->possible_cpus->len == max_cpus); 2407 return ms->possible_cpus; 2408 } 2409 2410 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2411 sizeof(CPUArchId) * max_cpus); 2412 ms->possible_cpus->len = max_cpus; 2413 for (i = 0; i < ms->possible_cpus->len; i++) { 2414 X86CPUTopoInfo topo; 2415 2416 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2417 ms->possible_cpus->cpus[i].vcpus_count = 1; 2418 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2419 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2420 smp_cores, smp_threads, &topo); 2421 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2422 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2423 ms->possible_cpus->cpus[i].props.has_core_id = true; 2424 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2425 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2426 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2427 } 2428 return ms->possible_cpus; 2429 } 2430 2431 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2432 { 2433 /* cpu index isn't used */ 2434 CPUState *cs; 2435 2436 CPU_FOREACH(cs) { 2437 X86CPU *cpu = X86_CPU(cs); 2438 2439 if (!cpu->apic_state) { 2440 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2441 } else { 2442 apic_deliver_nmi(cpu->apic_state); 2443 } 2444 } 2445 } 2446 2447 static void pc_machine_class_init(ObjectClass *oc, void *data) 2448 { 2449 MachineClass *mc = MACHINE_CLASS(oc); 2450 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2451 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2452 NMIClass *nc = NMI_CLASS(oc); 2453 2454 pcmc->pci_enabled = true; 2455 pcmc->has_acpi_build = true; 2456 pcmc->rsdp_in_ram = true; 2457 pcmc->smbios_defaults = true; 2458 pcmc->smbios_uuid_encoded = true; 2459 pcmc->gigabyte_align = true; 2460 pcmc->has_reserved_memory = true; 2461 pcmc->kvmclock_enabled = true; 2462 pcmc->enforce_aligned_dimm = true; 2463 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2464 * to be used at the moment, 32K should be enough for a while. */ 2465 pcmc->acpi_data_size = 0x20000 + 0x8000; 2466 pcmc->save_tsc_khz = true; 2467 pcmc->linuxboot_dma_enabled = true; 2468 assert(!mc->get_hotplug_handler); 2469 mc->get_hotplug_handler = pc_get_hotpug_handler; 2470 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2471 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2472 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2473 mc->auto_enable_numa_with_memhp = true; 2474 mc->has_hotpluggable_cpus = true; 2475 mc->default_boot_order = "cad"; 2476 mc->hot_add_cpu = pc_hot_add_cpu; 2477 mc->block_default_type = IF_IDE; 2478 mc->max_cpus = 255; 2479 mc->reset = pc_machine_reset; 2480 hc->pre_plug = pc_machine_device_pre_plug_cb; 2481 hc->plug = pc_machine_device_plug_cb; 2482 hc->unplug_request = pc_machine_device_unplug_request_cb; 2483 hc->unplug = pc_machine_device_unplug_cb; 2484 nc->nmi_monitor_handler = x86_nmi; 2485 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2486 2487 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2488 pc_machine_get_device_memory_region_size, NULL, 2489 NULL, NULL, &error_abort); 2490 2491 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2492 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2493 NULL, NULL, &error_abort); 2494 2495 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2496 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2497 2498 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2499 pc_machine_get_smm, pc_machine_set_smm, 2500 NULL, NULL, &error_abort); 2501 object_class_property_set_description(oc, PC_MACHINE_SMM, 2502 "Enable SMM (pc & q35)", &error_abort); 2503 2504 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2505 pc_machine_get_vmport, pc_machine_set_vmport, 2506 NULL, NULL, &error_abort); 2507 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2508 "Enable vmport (pc & q35)", &error_abort); 2509 2510 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2511 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2512 2513 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2514 pc_machine_get_nvdimm_persistence, 2515 pc_machine_set_nvdimm_persistence, &error_abort); 2516 2517 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2518 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2519 2520 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2521 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2522 2523 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2524 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2525 } 2526 2527 static const TypeInfo pc_machine_info = { 2528 .name = TYPE_PC_MACHINE, 2529 .parent = TYPE_MACHINE, 2530 .abstract = true, 2531 .instance_size = sizeof(PCMachineState), 2532 .instance_init = pc_machine_initfn, 2533 .class_size = sizeof(PCMachineClass), 2534 .class_init = pc_machine_class_init, 2535 .interfaces = (InterfaceInfo[]) { 2536 { TYPE_HOTPLUG_HANDLER }, 2537 { TYPE_NMI }, 2538 { } 2539 }, 2540 }; 2541 2542 static void pc_machine_register_types(void) 2543 { 2544 type_register_static(&pc_machine_info); 2545 } 2546 2547 type_init(pc_machine_register_types) 2548