xref: /openbmc/qemu/hw/i386/pc.c (revision 500eb6db)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "hw/i386/fw_cfg.h"
34 #include "sysemu/cpus.h"
35 #include "hw/block/fdc.h"
36 #include "hw/ide.h"
37 #include "hw/pci/pci.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/nvram/fw_cfg.h"
40 #include "hw/timer/hpet.h"
41 #include "hw/firmware/smbios.h"
42 #include "hw/loader.h"
43 #include "elf.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/audio/pcspk.h"
50 #include "hw/pci/msi.h"
51 #include "hw/sysbus.h"
52 #include "sysemu/sysemu.h"
53 #include "sysemu/tcg.h"
54 #include "sysemu/numa.h"
55 #include "sysemu/kvm.h"
56 #include "sysemu/qtest.h"
57 #include "kvm_i386.h"
58 #include "hw/xen/xen.h"
59 #include "hw/xen/start_info.h"
60 #include "ui/qemu-spice.h"
61 #include "exec/memory.h"
62 #include "exec/address-spaces.h"
63 #include "sysemu/arch_init.h"
64 #include "qemu/bitmap.h"
65 #include "qemu/config-file.h"
66 #include "qemu/error-report.h"
67 #include "qemu/option.h"
68 #include "hw/acpi/acpi.h"
69 #include "hw/acpi/cpu_hotplug.h"
70 #include "hw/boards.h"
71 #include "acpi-build.h"
72 #include "hw/mem/pc-dimm.h"
73 #include "qapi/error.h"
74 #include "qapi/qapi-visit-common.h"
75 #include "qapi/visitor.h"
76 #include "qom/cpu.h"
77 #include "hw/nmi.h"
78 #include "hw/usb.h"
79 #include "hw/i386/intel_iommu.h"
80 #include "hw/net/ne2000-isa.h"
81 #include "standard-headers/asm-x86/bootparam.h"
82 
83 /* debug PC/ISA interrupts */
84 //#define DEBUG_IRQ
85 
86 #ifdef DEBUG_IRQ
87 #define DPRINTF(fmt, ...)                                       \
88     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
89 #else
90 #define DPRINTF(fmt, ...)
91 #endif
92 
93 #define E820_NR_ENTRIES		16
94 
95 struct e820_entry {
96     uint64_t address;
97     uint64_t length;
98     uint32_t type;
99 } QEMU_PACKED __attribute((__aligned__(4)));
100 
101 struct e820_table {
102     uint32_t count;
103     struct e820_entry entry[E820_NR_ENTRIES];
104 } QEMU_PACKED __attribute((__aligned__(4)));
105 
106 static struct e820_table e820_reserve;
107 static struct e820_entry *e820_table;
108 static unsigned e820_entries;
109 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
110 
111 /* Physical Address of PVH entry point read from kernel ELF NOTE */
112 static size_t pvh_start_addr;
113 
114 GlobalProperty pc_compat_4_0_1[] = {};
115 const size_t pc_compat_4_0_1_len = G_N_ELEMENTS(pc_compat_4_0_1);
116 
117 GlobalProperty pc_compat_4_0[] = {};
118 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
119 
120 GlobalProperty pc_compat_3_1[] = {
121     { "intel-iommu", "dma-drain", "off" },
122     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
123     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
124     { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
125     { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
126     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
127     { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
128     { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
129     { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
130     { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
131     { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
132     { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
133     { "Skylake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
134     { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
135     { "Skylake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
136     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
137     { "Cascadelake-Server" "-" TYPE_X86_CPU,  "mpx", "on" },
138     { "Icelake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
139     { "Icelake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
140     { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
141     { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
142 };
143 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
144 
145 GlobalProperty pc_compat_3_0[] = {
146     { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
147     { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
148     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
149 };
150 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
151 
152 GlobalProperty pc_compat_2_12[] = {
153     { TYPE_X86_CPU, "legacy-cache", "on" },
154     { TYPE_X86_CPU, "topoext", "off" },
155     { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
156     { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
157 };
158 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
159 
160 GlobalProperty pc_compat_2_11[] = {
161     { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
162     { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
163 };
164 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
165 
166 GlobalProperty pc_compat_2_10[] = {
167     { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
168     { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
169     { "q35-pcihost", "x-pci-hole64-fix", "off" },
170 };
171 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
172 
173 GlobalProperty pc_compat_2_9[] = {
174     { "mch", "extended-tseg-mbytes", "0" },
175 };
176 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
177 
178 GlobalProperty pc_compat_2_8[] = {
179     { TYPE_X86_CPU, "tcg-cpuid", "off" },
180     { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
181     { "ICH9-LPC", "x-smi-broadcast", "off" },
182     { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
183     { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
184 };
185 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
186 
187 GlobalProperty pc_compat_2_7[] = {
188     { TYPE_X86_CPU, "l3-cache", "off" },
189     { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
190     { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
191     { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
192     { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
193     { "isa-pcspk", "migrate", "off" },
194 };
195 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
196 
197 GlobalProperty pc_compat_2_6[] = {
198     { TYPE_X86_CPU, "cpuid-0xb", "off" },
199     { "vmxnet3", "romfile", "" },
200     { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
201     { "apic-common", "legacy-instance-id", "on", }
202 };
203 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
204 
205 GlobalProperty pc_compat_2_5[] = {};
206 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
207 
208 GlobalProperty pc_compat_2_4[] = {
209     PC_CPU_MODEL_IDS("2.4.0")
210     { "Haswell-" TYPE_X86_CPU, "abm", "off" },
211     { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
212     { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
213     { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
214     { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
215     { TYPE_X86_CPU, "check", "off" },
216     { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
217     { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
218     { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
219     { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
220     { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
221     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
222     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
223     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
224 };
225 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
226 
227 GlobalProperty pc_compat_2_3[] = {
228     PC_CPU_MODEL_IDS("2.3.0")
229     { TYPE_X86_CPU, "arat", "off" },
230     { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
231     { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
232     { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
233     { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
234     { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
235     { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
236     { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
237     { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
238     { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239     { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240     { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241     { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242     { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243     { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244     { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245     { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246     { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247     { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
248     { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
249 };
250 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
251 
252 GlobalProperty pc_compat_2_2[] = {
253     PC_CPU_MODEL_IDS("2.2.0")
254     { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
255     { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
256     { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
257     { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
258     { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
259     { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
260     { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
261     { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
262     { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
263     { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
264     { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
265     { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
266     { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
267     { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
268     { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
269     { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
270     { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
271     { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
272 };
273 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
274 
275 GlobalProperty pc_compat_2_1[] = {
276     PC_CPU_MODEL_IDS("2.1.0")
277     { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
278     { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
279 };
280 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
281 
282 GlobalProperty pc_compat_2_0[] = {
283     PC_CPU_MODEL_IDS("2.0.0")
284     { "virtio-scsi-pci", "any_layout", "off" },
285     { "PIIX4_PM", "memory-hotplug-support", "off" },
286     { "apic", "version", "0x11" },
287     { "nec-usb-xhci", "superspeed-ports-first", "off" },
288     { "nec-usb-xhci", "force-pcie-endcap", "on" },
289     { "pci-serial", "prog_if", "0" },
290     { "pci-serial-2x", "prog_if", "0" },
291     { "pci-serial-4x", "prog_if", "0" },
292     { "virtio-net-pci", "guest_announce", "off" },
293     { "ICH9-LPC", "memory-hotplug-support", "off" },
294     { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
295     { "ioh3420", COMPAT_PROP_PCP, "off" },
296 };
297 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
298 
299 GlobalProperty pc_compat_1_7[] = {
300     PC_CPU_MODEL_IDS("1.7.0")
301     { TYPE_USB_DEVICE, "msos-desc", "no" },
302     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
303     { "hpet", HPET_INTCAP, "4" },
304 };
305 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
306 
307 GlobalProperty pc_compat_1_6[] = {
308     PC_CPU_MODEL_IDS("1.6.0")
309     { "e1000", "mitigation", "off" },
310     { "qemu64-" TYPE_X86_CPU, "model", "2" },
311     { "qemu32-" TYPE_X86_CPU, "model", "3" },
312     { "i440FX-pcihost", "short_root_bus", "1" },
313     { "q35-pcihost", "short_root_bus", "1" },
314 };
315 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
316 
317 GlobalProperty pc_compat_1_5[] = {
318     PC_CPU_MODEL_IDS("1.5.0")
319     { "Conroe-" TYPE_X86_CPU, "model", "2" },
320     { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
321     { "Penryn-" TYPE_X86_CPU, "model", "2" },
322     { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
323     { "Nehalem-" TYPE_X86_CPU, "model", "2" },
324     { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
325     { "virtio-net-pci", "any_layout", "off" },
326     { TYPE_X86_CPU, "pmu", "on" },
327     { "i440FX-pcihost", "short_root_bus", "0" },
328     { "q35-pcihost", "short_root_bus", "0" },
329 };
330 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
331 
332 GlobalProperty pc_compat_1_4[] = {
333     PC_CPU_MODEL_IDS("1.4.0")
334     { "scsi-hd", "discard_granularity", "0" },
335     { "scsi-cd", "discard_granularity", "0" },
336     { "scsi-disk", "discard_granularity", "0" },
337     { "ide-hd", "discard_granularity", "0" },
338     { "ide-cd", "discard_granularity", "0" },
339     { "ide-drive", "discard_granularity", "0" },
340     { "virtio-blk-pci", "discard_granularity", "0" },
341     /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
342     { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
343     { "virtio-net-pci", "ctrl_guest_offloads", "off" },
344     { "e1000", "romfile", "pxe-e1000.rom" },
345     { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
346     { "pcnet", "romfile", "pxe-pcnet.rom" },
347     { "rtl8139", "romfile", "pxe-rtl8139.rom" },
348     { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
349     { "486-" TYPE_X86_CPU, "model", "0" },
350     { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
351     { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
352 };
353 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
354 
355 void gsi_handler(void *opaque, int n, int level)
356 {
357     GSIState *s = opaque;
358 
359     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
360     if (n < ISA_NUM_IRQS) {
361         qemu_set_irq(s->i8259_irq[n], level);
362     }
363     qemu_set_irq(s->ioapic_irq[n], level);
364 }
365 
366 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
367                            unsigned size)
368 {
369 }
370 
371 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
372 {
373     return 0xffffffffffffffffULL;
374 }
375 
376 /* MSDOS compatibility mode FPU exception support */
377 static qemu_irq ferr_irq;
378 
379 void pc_register_ferr_irq(qemu_irq irq)
380 {
381     ferr_irq = irq;
382 }
383 
384 /* XXX: add IGNNE support */
385 void cpu_set_ferr(CPUX86State *s)
386 {
387     qemu_irq_raise(ferr_irq);
388 }
389 
390 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
391                            unsigned size)
392 {
393     qemu_irq_lower(ferr_irq);
394 }
395 
396 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
397 {
398     return 0xffffffffffffffffULL;
399 }
400 
401 /* TSC handling */
402 uint64_t cpu_get_tsc(CPUX86State *env)
403 {
404     return cpu_get_ticks();
405 }
406 
407 /* IRQ handling */
408 int cpu_get_pic_interrupt(CPUX86State *env)
409 {
410     X86CPU *cpu = env_archcpu(env);
411     int intno;
412 
413     if (!kvm_irqchip_in_kernel()) {
414         intno = apic_get_interrupt(cpu->apic_state);
415         if (intno >= 0) {
416             return intno;
417         }
418         /* read the irq from the PIC */
419         if (!apic_accept_pic_intr(cpu->apic_state)) {
420             return -1;
421         }
422     }
423 
424     intno = pic_read_irq(isa_pic);
425     return intno;
426 }
427 
428 static void pic_irq_request(void *opaque, int irq, int level)
429 {
430     CPUState *cs = first_cpu;
431     X86CPU *cpu = X86_CPU(cs);
432 
433     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
434     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
435         CPU_FOREACH(cs) {
436             cpu = X86_CPU(cs);
437             if (apic_accept_pic_intr(cpu->apic_state)) {
438                 apic_deliver_pic_intr(cpu->apic_state, level);
439             }
440         }
441     } else {
442         if (level) {
443             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
444         } else {
445             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
446         }
447     }
448 }
449 
450 /* PC cmos mappings */
451 
452 #define REG_EQUIPMENT_BYTE          0x14
453 
454 int cmos_get_fd_drive_type(FloppyDriveType fd0)
455 {
456     int val;
457 
458     switch (fd0) {
459     case FLOPPY_DRIVE_TYPE_144:
460         /* 1.44 Mb 3"5 drive */
461         val = 4;
462         break;
463     case FLOPPY_DRIVE_TYPE_288:
464         /* 2.88 Mb 3"5 drive */
465         val = 5;
466         break;
467     case FLOPPY_DRIVE_TYPE_120:
468         /* 1.2 Mb 5"5 drive */
469         val = 2;
470         break;
471     case FLOPPY_DRIVE_TYPE_NONE:
472     default:
473         val = 0;
474         break;
475     }
476     return val;
477 }
478 
479 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
480                          int16_t cylinders, int8_t heads, int8_t sectors)
481 {
482     rtc_set_memory(s, type_ofs, 47);
483     rtc_set_memory(s, info_ofs, cylinders);
484     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
485     rtc_set_memory(s, info_ofs + 2, heads);
486     rtc_set_memory(s, info_ofs + 3, 0xff);
487     rtc_set_memory(s, info_ofs + 4, 0xff);
488     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
489     rtc_set_memory(s, info_ofs + 6, cylinders);
490     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
491     rtc_set_memory(s, info_ofs + 8, sectors);
492 }
493 
494 /* convert boot_device letter to something recognizable by the bios */
495 static int boot_device2nibble(char boot_device)
496 {
497     switch(boot_device) {
498     case 'a':
499     case 'b':
500         return 0x01; /* floppy boot */
501     case 'c':
502         return 0x02; /* hard drive boot */
503     case 'd':
504         return 0x03; /* CD-ROM boot */
505     case 'n':
506         return 0x04; /* Network boot */
507     }
508     return 0;
509 }
510 
511 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
512 {
513 #define PC_MAX_BOOT_DEVICES 3
514     int nbds, bds[3] = { 0, };
515     int i;
516 
517     nbds = strlen(boot_device);
518     if (nbds > PC_MAX_BOOT_DEVICES) {
519         error_setg(errp, "Too many boot devices for PC");
520         return;
521     }
522     for (i = 0; i < nbds; i++) {
523         bds[i] = boot_device2nibble(boot_device[i]);
524         if (bds[i] == 0) {
525             error_setg(errp, "Invalid boot device for PC: '%c'",
526                        boot_device[i]);
527             return;
528         }
529     }
530     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
531     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
532 }
533 
534 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
535 {
536     set_boot_dev(opaque, boot_device, errp);
537 }
538 
539 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
540 {
541     int val, nb, i;
542     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
543                                    FLOPPY_DRIVE_TYPE_NONE };
544 
545     /* floppy type */
546     if (floppy) {
547         for (i = 0; i < 2; i++) {
548             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
549         }
550     }
551     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
552         cmos_get_fd_drive_type(fd_type[1]);
553     rtc_set_memory(rtc_state, 0x10, val);
554 
555     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
556     nb = 0;
557     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
558         nb++;
559     }
560     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
561         nb++;
562     }
563     switch (nb) {
564     case 0:
565         break;
566     case 1:
567         val |= 0x01; /* 1 drive, ready for boot */
568         break;
569     case 2:
570         val |= 0x41; /* 2 drives, ready for boot */
571         break;
572     }
573     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
574 }
575 
576 typedef struct pc_cmos_init_late_arg {
577     ISADevice *rtc_state;
578     BusState *idebus[2];
579 } pc_cmos_init_late_arg;
580 
581 typedef struct check_fdc_state {
582     ISADevice *floppy;
583     bool multiple;
584 } CheckFdcState;
585 
586 static int check_fdc(Object *obj, void *opaque)
587 {
588     CheckFdcState *state = opaque;
589     Object *fdc;
590     uint32_t iobase;
591     Error *local_err = NULL;
592 
593     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
594     if (!fdc) {
595         return 0;
596     }
597 
598     iobase = object_property_get_uint(obj, "iobase", &local_err);
599     if (local_err || iobase != 0x3f0) {
600         error_free(local_err);
601         return 0;
602     }
603 
604     if (state->floppy) {
605         state->multiple = true;
606     } else {
607         state->floppy = ISA_DEVICE(obj);
608     }
609     return 0;
610 }
611 
612 static const char * const fdc_container_path[] = {
613     "/unattached", "/peripheral", "/peripheral-anon"
614 };
615 
616 /*
617  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
618  * and ACPI objects.
619  */
620 ISADevice *pc_find_fdc0(void)
621 {
622     int i;
623     Object *container;
624     CheckFdcState state = { 0 };
625 
626     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
627         container = container_get(qdev_get_machine(), fdc_container_path[i]);
628         object_child_foreach(container, check_fdc, &state);
629     }
630 
631     if (state.multiple) {
632         warn_report("multiple floppy disk controllers with "
633                     "iobase=0x3f0 have been found");
634         error_printf("the one being picked for CMOS setup might not reflect "
635                      "your intent");
636     }
637 
638     return state.floppy;
639 }
640 
641 static void pc_cmos_init_late(void *opaque)
642 {
643     pc_cmos_init_late_arg *arg = opaque;
644     ISADevice *s = arg->rtc_state;
645     int16_t cylinders;
646     int8_t heads, sectors;
647     int val;
648     int i, trans;
649 
650     val = 0;
651     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
652                                            &cylinders, &heads, &sectors) >= 0) {
653         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
654         val |= 0xf0;
655     }
656     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
657                                            &cylinders, &heads, &sectors) >= 0) {
658         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
659         val |= 0x0f;
660     }
661     rtc_set_memory(s, 0x12, val);
662 
663     val = 0;
664     for (i = 0; i < 4; i++) {
665         /* NOTE: ide_get_geometry() returns the physical
666            geometry.  It is always such that: 1 <= sects <= 63, 1
667            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
668            geometry can be different if a translation is done. */
669         if (arg->idebus[i / 2] &&
670             ide_get_geometry(arg->idebus[i / 2], i % 2,
671                              &cylinders, &heads, &sectors) >= 0) {
672             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
673             assert((trans & ~3) == 0);
674             val |= trans << (i * 2);
675         }
676     }
677     rtc_set_memory(s, 0x39, val);
678 
679     pc_cmos_init_floppy(s, pc_find_fdc0());
680 
681     qemu_unregister_reset(pc_cmos_init_late, opaque);
682 }
683 
684 void pc_cmos_init(PCMachineState *pcms,
685                   BusState *idebus0, BusState *idebus1,
686                   ISADevice *s)
687 {
688     int val;
689     static pc_cmos_init_late_arg arg;
690 
691     /* various important CMOS locations needed by PC/Bochs bios */
692 
693     /* memory size */
694     /* base memory (first MiB) */
695     val = MIN(pcms->below_4g_mem_size / KiB, 640);
696     rtc_set_memory(s, 0x15, val);
697     rtc_set_memory(s, 0x16, val >> 8);
698     /* extended memory (next 64MiB) */
699     if (pcms->below_4g_mem_size > 1 * MiB) {
700         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
701     } else {
702         val = 0;
703     }
704     if (val > 65535)
705         val = 65535;
706     rtc_set_memory(s, 0x17, val);
707     rtc_set_memory(s, 0x18, val >> 8);
708     rtc_set_memory(s, 0x30, val);
709     rtc_set_memory(s, 0x31, val >> 8);
710     /* memory between 16MiB and 4GiB */
711     if (pcms->below_4g_mem_size > 16 * MiB) {
712         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
713     } else {
714         val = 0;
715     }
716     if (val > 65535)
717         val = 65535;
718     rtc_set_memory(s, 0x34, val);
719     rtc_set_memory(s, 0x35, val >> 8);
720     /* memory above 4GiB */
721     val = pcms->above_4g_mem_size / 65536;
722     rtc_set_memory(s, 0x5b, val);
723     rtc_set_memory(s, 0x5c, val >> 8);
724     rtc_set_memory(s, 0x5d, val >> 16);
725 
726     object_property_add_link(OBJECT(pcms), "rtc_state",
727                              TYPE_ISA_DEVICE,
728                              (Object **)&pcms->rtc,
729                              object_property_allow_set_link,
730                              OBJ_PROP_LINK_STRONG, &error_abort);
731     object_property_set_link(OBJECT(pcms), OBJECT(s),
732                              "rtc_state", &error_abort);
733 
734     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
735 
736     val = 0;
737     val |= 0x02; /* FPU is there */
738     val |= 0x04; /* PS/2 mouse installed */
739     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
740 
741     /* hard drives and FDC */
742     arg.rtc_state = s;
743     arg.idebus[0] = idebus0;
744     arg.idebus[1] = idebus1;
745     qemu_register_reset(pc_cmos_init_late, &arg);
746 }
747 
748 #define TYPE_PORT92 "port92"
749 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
750 
751 /* port 92 stuff: could be split off */
752 typedef struct Port92State {
753     ISADevice parent_obj;
754 
755     MemoryRegion io;
756     uint8_t outport;
757     qemu_irq a20_out;
758 } Port92State;
759 
760 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
761                          unsigned size)
762 {
763     Port92State *s = opaque;
764     int oldval = s->outport;
765 
766     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
767     s->outport = val;
768     qemu_set_irq(s->a20_out, (val >> 1) & 1);
769     if ((val & 1) && !(oldval & 1)) {
770         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
771     }
772 }
773 
774 static uint64_t port92_read(void *opaque, hwaddr addr,
775                             unsigned size)
776 {
777     Port92State *s = opaque;
778     uint32_t ret;
779 
780     ret = s->outport;
781     DPRINTF("port92: read 0x%02x\n", ret);
782     return ret;
783 }
784 
785 static void port92_init(ISADevice *dev, qemu_irq a20_out)
786 {
787     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
788 }
789 
790 static const VMStateDescription vmstate_port92_isa = {
791     .name = "port92",
792     .version_id = 1,
793     .minimum_version_id = 1,
794     .fields = (VMStateField[]) {
795         VMSTATE_UINT8(outport, Port92State),
796         VMSTATE_END_OF_LIST()
797     }
798 };
799 
800 static void port92_reset(DeviceState *d)
801 {
802     Port92State *s = PORT92(d);
803 
804     s->outport &= ~1;
805 }
806 
807 static const MemoryRegionOps port92_ops = {
808     .read = port92_read,
809     .write = port92_write,
810     .impl = {
811         .min_access_size = 1,
812         .max_access_size = 1,
813     },
814     .endianness = DEVICE_LITTLE_ENDIAN,
815 };
816 
817 static void port92_initfn(Object *obj)
818 {
819     Port92State *s = PORT92(obj);
820 
821     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
822 
823     s->outport = 0;
824 
825     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
826 }
827 
828 static void port92_realizefn(DeviceState *dev, Error **errp)
829 {
830     ISADevice *isadev = ISA_DEVICE(dev);
831     Port92State *s = PORT92(dev);
832 
833     isa_register_ioport(isadev, &s->io, 0x92);
834 }
835 
836 static void port92_class_initfn(ObjectClass *klass, void *data)
837 {
838     DeviceClass *dc = DEVICE_CLASS(klass);
839 
840     dc->realize = port92_realizefn;
841     dc->reset = port92_reset;
842     dc->vmsd = &vmstate_port92_isa;
843     /*
844      * Reason: unlike ordinary ISA devices, this one needs additional
845      * wiring: its A20 output line needs to be wired up by
846      * port92_init().
847      */
848     dc->user_creatable = false;
849 }
850 
851 static const TypeInfo port92_info = {
852     .name          = TYPE_PORT92,
853     .parent        = TYPE_ISA_DEVICE,
854     .instance_size = sizeof(Port92State),
855     .instance_init = port92_initfn,
856     .class_init    = port92_class_initfn,
857 };
858 
859 static void port92_register_types(void)
860 {
861     type_register_static(&port92_info);
862 }
863 
864 type_init(port92_register_types)
865 
866 static void handle_a20_line_change(void *opaque, int irq, int level)
867 {
868     X86CPU *cpu = opaque;
869 
870     /* XXX: send to all CPUs ? */
871     /* XXX: add logic to handle multiple A20 line sources */
872     x86_cpu_set_a20(cpu, level);
873 }
874 
875 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
876 {
877     int index = le32_to_cpu(e820_reserve.count);
878     struct e820_entry *entry;
879 
880     if (type != E820_RAM) {
881         /* old FW_CFG_E820_TABLE entry -- reservations only */
882         if (index >= E820_NR_ENTRIES) {
883             return -EBUSY;
884         }
885         entry = &e820_reserve.entry[index++];
886 
887         entry->address = cpu_to_le64(address);
888         entry->length = cpu_to_le64(length);
889         entry->type = cpu_to_le32(type);
890 
891         e820_reserve.count = cpu_to_le32(index);
892     }
893 
894     /* new "etc/e820" file -- include ram too */
895     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
896     e820_table[e820_entries].address = cpu_to_le64(address);
897     e820_table[e820_entries].length = cpu_to_le64(length);
898     e820_table[e820_entries].type = cpu_to_le32(type);
899     e820_entries++;
900 
901     return e820_entries;
902 }
903 
904 int e820_get_num_entries(void)
905 {
906     return e820_entries;
907 }
908 
909 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
910 {
911     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
912         *address = le64_to_cpu(e820_table[idx].address);
913         *length = le64_to_cpu(e820_table[idx].length);
914         return true;
915     }
916     return false;
917 }
918 
919 /* Enables contiguous-apic-ID mode, for compatibility */
920 static bool compat_apic_id_mode;
921 
922 void enable_compat_apic_id_mode(void)
923 {
924     compat_apic_id_mode = true;
925 }
926 
927 /* Calculates initial APIC ID for a specific CPU index
928  *
929  * Currently we need to be able to calculate the APIC ID from the CPU index
930  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
931  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
932  * all CPUs up to max_cpus.
933  */
934 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
935 {
936     uint32_t correct_id;
937     static bool warned;
938 
939     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
940     if (compat_apic_id_mode) {
941         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
942             error_report("APIC IDs set in compatibility mode, "
943                          "CPU topology won't match the configuration");
944             warned = true;
945         }
946         return cpu_index;
947     } else {
948         return correct_id;
949     }
950 }
951 
952 static void pc_build_smbios(PCMachineState *pcms)
953 {
954     uint8_t *smbios_tables, *smbios_anchor;
955     size_t smbios_tables_len, smbios_anchor_len;
956     struct smbios_phys_mem_area *mem_array;
957     unsigned i, array_count;
958     MachineState *ms = MACHINE(pcms);
959     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
960 
961     /* tell smbios about cpuid version and features */
962     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
963 
964     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
965     if (smbios_tables) {
966         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
967                          smbios_tables, smbios_tables_len);
968     }
969 
970     /* build the array of physical mem area from e820 table */
971     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
972     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
973         uint64_t addr, len;
974 
975         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
976             mem_array[array_count].address = addr;
977             mem_array[array_count].length = len;
978             array_count++;
979         }
980     }
981     smbios_get_tables(mem_array, array_count,
982                       &smbios_tables, &smbios_tables_len,
983                       &smbios_anchor, &smbios_anchor_len);
984     g_free(mem_array);
985 
986     if (smbios_anchor) {
987         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
988                         smbios_tables, smbios_tables_len);
989         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
990                         smbios_anchor, smbios_anchor_len);
991     }
992 }
993 
994 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
995 {
996     FWCfgState *fw_cfg;
997     uint64_t *numa_fw_cfg;
998     int i;
999     const CPUArchIdList *cpus;
1000     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1001 
1002     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1003     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1004 
1005     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1006      *
1007      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1008      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1009      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1010      * for CPU hotplug also uses APIC ID and not "CPU index".
1011      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1012      * but the "limit to the APIC ID values SeaBIOS may see".
1013      *
1014      * So for compatibility reasons with old BIOSes we are stuck with
1015      * "etc/max-cpus" actually being apic_id_limit
1016      */
1017     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1018     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1019     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1020                      acpi_tables, acpi_tables_len);
1021     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1022 
1023     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1024                      &e820_reserve, sizeof(e820_reserve));
1025     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1026                     sizeof(struct e820_entry) * e820_entries);
1027 
1028     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1029     /* allocate memory for the NUMA channel: one (64bit) word for the number
1030      * of nodes, one word for each VCPU->node and one word for each node to
1031      * hold the amount of memory.
1032      */
1033     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1034     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1035     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1036     for (i = 0; i < cpus->len; i++) {
1037         unsigned int apic_id = cpus->cpus[i].arch_id;
1038         assert(apic_id < pcms->apic_id_limit);
1039         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1040     }
1041     for (i = 0; i < nb_numa_nodes; i++) {
1042         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1043             cpu_to_le64(numa_info[i].node_mem);
1044     }
1045     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1046                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
1047                      sizeof(*numa_fw_cfg));
1048 
1049     return fw_cfg;
1050 }
1051 
1052 static long get_file_size(FILE *f)
1053 {
1054     long where, size;
1055 
1056     /* XXX: on Unix systems, using fstat() probably makes more sense */
1057 
1058     where = ftell(f);
1059     fseek(f, 0, SEEK_END);
1060     size = ftell(f);
1061     fseek(f, where, SEEK_SET);
1062 
1063     return size;
1064 }
1065 
1066 struct setup_data {
1067     uint64_t next;
1068     uint32_t type;
1069     uint32_t len;
1070     uint8_t data[0];
1071 } __attribute__((packed));
1072 
1073 
1074 /*
1075  * The entry point into the kernel for PVH boot is different from
1076  * the native entry point.  The PVH entry is defined by the x86/HVM
1077  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1078  *
1079  * This function is passed to load_elf() when it is called from
1080  * load_elfboot() which then additionally checks for an ELF Note of
1081  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1082  * parse the PVH entry address from the ELF Note.
1083  *
1084  * Due to trickery in elf_opts.h, load_elf() is actually available as
1085  * load_elf32() or load_elf64() and this routine needs to be able
1086  * to deal with being called as 32 or 64 bit.
1087  *
1088  * The address of the PVH entry point is saved to the 'pvh_start_addr'
1089  * global variable.  (although the entry point is 32-bit, the kernel
1090  * binary can be either 32-bit or 64-bit).
1091  */
1092 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1093 {
1094     size_t *elf_note_data_addr;
1095 
1096     /* Check if ELF Note header passed in is valid */
1097     if (arg1 == NULL) {
1098         return 0;
1099     }
1100 
1101     if (is64) {
1102         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1103         uint64_t nhdr_size64 = sizeof(struct elf64_note);
1104         uint64_t phdr_align = *(uint64_t *)arg2;
1105         uint64_t nhdr_namesz = nhdr64->n_namesz;
1106 
1107         elf_note_data_addr =
1108             ((void *)nhdr64) + nhdr_size64 +
1109             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1110     } else {
1111         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1112         uint32_t nhdr_size32 = sizeof(struct elf32_note);
1113         uint32_t phdr_align = *(uint32_t *)arg2;
1114         uint32_t nhdr_namesz = nhdr32->n_namesz;
1115 
1116         elf_note_data_addr =
1117             ((void *)nhdr32) + nhdr_size32 +
1118             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1119     }
1120 
1121     pvh_start_addr = *elf_note_data_addr;
1122 
1123     return pvh_start_addr;
1124 }
1125 
1126 static bool load_elfboot(const char *kernel_filename,
1127                    int kernel_file_size,
1128                    uint8_t *header,
1129                    size_t pvh_xen_start_addr,
1130                    FWCfgState *fw_cfg)
1131 {
1132     uint32_t flags = 0;
1133     uint32_t mh_load_addr = 0;
1134     uint32_t elf_kernel_size = 0;
1135     uint64_t elf_entry;
1136     uint64_t elf_low, elf_high;
1137     int kernel_size;
1138 
1139     if (ldl_p(header) != 0x464c457f) {
1140         return false; /* no elfboot */
1141     }
1142 
1143     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1144     flags = elf_is64 ?
1145         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1146 
1147     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1148         error_report("elfboot unsupported flags = %x", flags);
1149         exit(1);
1150     }
1151 
1152     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1153     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1154                            NULL, &elf_note_type, &elf_entry,
1155                            &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1156                            0, 0);
1157 
1158     if (kernel_size < 0) {
1159         error_report("Error while loading elf kernel");
1160         exit(1);
1161     }
1162     mh_load_addr = elf_low;
1163     elf_kernel_size = elf_high - elf_low;
1164 
1165     if (pvh_start_addr == 0) {
1166         error_report("Error loading uncompressed kernel without PVH ELF Note");
1167         exit(1);
1168     }
1169     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1170     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1171     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1172 
1173     return true;
1174 }
1175 
1176 static void load_linux(PCMachineState *pcms,
1177                        FWCfgState *fw_cfg)
1178 {
1179     uint16_t protocol;
1180     int setup_size, kernel_size, cmdline_size;
1181     int dtb_size, setup_data_offset;
1182     uint32_t initrd_max;
1183     uint8_t header[8192], *setup, *kernel;
1184     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1185     FILE *f;
1186     char *vmode;
1187     MachineState *machine = MACHINE(pcms);
1188     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1189     struct setup_data *setup_data;
1190     const char *kernel_filename = machine->kernel_filename;
1191     const char *initrd_filename = machine->initrd_filename;
1192     const char *dtb_filename = machine->dtb;
1193     const char *kernel_cmdline = machine->kernel_cmdline;
1194 
1195     /* Align to 16 bytes as a paranoia measure */
1196     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1197 
1198     /* load the kernel header */
1199     f = fopen(kernel_filename, "rb");
1200     if (!f || !(kernel_size = get_file_size(f)) ||
1201         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1202         MIN(ARRAY_SIZE(header), kernel_size)) {
1203         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1204                 kernel_filename, strerror(errno));
1205         exit(1);
1206     }
1207 
1208     /* kernel protocol version */
1209 #if 0
1210     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1211 #endif
1212     if (ldl_p(header+0x202) == 0x53726448) {
1213         protocol = lduw_p(header+0x206);
1214     } else {
1215         /*
1216          * This could be a multiboot kernel. If it is, let's stop treating it
1217          * like a Linux kernel.
1218          * Note: some multiboot images could be in the ELF format (the same of
1219          * PVH), so we try multiboot first since we check the multiboot magic
1220          * header before to load it.
1221          */
1222         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1223                            kernel_cmdline, kernel_size, header)) {
1224             return;
1225         }
1226         /*
1227          * Check if the file is an uncompressed kernel file (ELF) and load it,
1228          * saving the PVH entry point used by the x86/HVM direct boot ABI.
1229          * If load_elfboot() is successful, populate the fw_cfg info.
1230          */
1231         if (pcmc->pvh_enabled &&
1232             load_elfboot(kernel_filename, kernel_size,
1233                          header, pvh_start_addr, fw_cfg)) {
1234             fclose(f);
1235 
1236             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1237                 strlen(kernel_cmdline) + 1);
1238             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1239 
1240             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1241             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1242                              header, sizeof(header));
1243 
1244             /* load initrd */
1245             if (initrd_filename) {
1246                 gsize initrd_size;
1247                 gchar *initrd_data;
1248                 GError *gerr = NULL;
1249 
1250                 if (!g_file_get_contents(initrd_filename, &initrd_data,
1251                             &initrd_size, &gerr)) {
1252                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1253                             initrd_filename, gerr->message);
1254                     exit(1);
1255                 }
1256 
1257                 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1258                 if (initrd_size >= initrd_max) {
1259                     fprintf(stderr, "qemu: initrd is too large, cannot support."
1260                             "(max: %"PRIu32", need %"PRId64")\n",
1261                             initrd_max, (uint64_t)initrd_size);
1262                     exit(1);
1263                 }
1264 
1265                 initrd_addr = (initrd_max - initrd_size) & ~4095;
1266 
1267                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1268                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1269                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1270                                  initrd_size);
1271             }
1272 
1273             option_rom[nb_option_roms].bootindex = 0;
1274             option_rom[nb_option_roms].name = "pvh.bin";
1275             nb_option_roms++;
1276 
1277             return;
1278         }
1279         protocol = 0;
1280     }
1281 
1282     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1283         /* Low kernel */
1284         real_addr    = 0x90000;
1285         cmdline_addr = 0x9a000 - cmdline_size;
1286         prot_addr    = 0x10000;
1287     } else if (protocol < 0x202) {
1288         /* High but ancient kernel */
1289         real_addr    = 0x90000;
1290         cmdline_addr = 0x9a000 - cmdline_size;
1291         prot_addr    = 0x100000;
1292     } else {
1293         /* High and recent kernel */
1294         real_addr    = 0x10000;
1295         cmdline_addr = 0x20000;
1296         prot_addr    = 0x100000;
1297     }
1298 
1299 #if 0
1300     fprintf(stderr,
1301             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
1302             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
1303             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
1304             real_addr,
1305             cmdline_addr,
1306             prot_addr);
1307 #endif
1308 
1309     /* highest address for loading the initrd */
1310     if (protocol >= 0x20c &&
1311         lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1312         /*
1313          * Linux has supported initrd up to 4 GB for a very long time (2007,
1314          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1315          * though it only sets initrd_max to 2 GB to "work around bootloader
1316          * bugs". Luckily, QEMU firmware(which does something like bootloader)
1317          * has supported this.
1318          *
1319          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1320          * be loaded into any address.
1321          *
1322          * In addition, initrd_max is uint32_t simply because QEMU doesn't
1323          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1324          * field).
1325          *
1326          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1327          */
1328         initrd_max = UINT32_MAX;
1329     } else if (protocol >= 0x203) {
1330         initrd_max = ldl_p(header+0x22c);
1331     } else {
1332         initrd_max = 0x37ffffff;
1333     }
1334 
1335     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1336         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1337     }
1338 
1339     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1340     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1341     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1342 
1343     if (protocol >= 0x202) {
1344         stl_p(header+0x228, cmdline_addr);
1345     } else {
1346         stw_p(header+0x20, 0xA33F);
1347         stw_p(header+0x22, cmdline_addr-real_addr);
1348     }
1349 
1350     /* handle vga= parameter */
1351     vmode = strstr(kernel_cmdline, "vga=");
1352     if (vmode) {
1353         unsigned int video_mode;
1354         /* skip "vga=" */
1355         vmode += 4;
1356         if (!strncmp(vmode, "normal", 6)) {
1357             video_mode = 0xffff;
1358         } else if (!strncmp(vmode, "ext", 3)) {
1359             video_mode = 0xfffe;
1360         } else if (!strncmp(vmode, "ask", 3)) {
1361             video_mode = 0xfffd;
1362         } else {
1363             video_mode = strtol(vmode, NULL, 0);
1364         }
1365         stw_p(header+0x1fa, video_mode);
1366     }
1367 
1368     /* loader type */
1369     /* High nybble = B reserved for QEMU; low nybble is revision number.
1370        If this code is substantially changed, you may want to consider
1371        incrementing the revision. */
1372     if (protocol >= 0x200) {
1373         header[0x210] = 0xB0;
1374     }
1375     /* heap */
1376     if (protocol >= 0x201) {
1377         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
1378         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1379     }
1380 
1381     /* load initrd */
1382     if (initrd_filename) {
1383         gsize initrd_size;
1384         gchar *initrd_data;
1385         GError *gerr = NULL;
1386 
1387         if (protocol < 0x200) {
1388             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1389             exit(1);
1390         }
1391 
1392         if (!g_file_get_contents(initrd_filename, &initrd_data,
1393                                  &initrd_size, &gerr)) {
1394             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1395                     initrd_filename, gerr->message);
1396             exit(1);
1397         }
1398         if (initrd_size >= initrd_max) {
1399             fprintf(stderr, "qemu: initrd is too large, cannot support."
1400                     "(max: %"PRIu32", need %"PRId64")\n",
1401                     initrd_max, (uint64_t)initrd_size);
1402             exit(1);
1403         }
1404 
1405         initrd_addr = (initrd_max-initrd_size) & ~4095;
1406 
1407         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1408         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1409         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1410 
1411         stl_p(header+0x218, initrd_addr);
1412         stl_p(header+0x21c, initrd_size);
1413     }
1414 
1415     /* load kernel and setup */
1416     setup_size = header[0x1f1];
1417     if (setup_size == 0) {
1418         setup_size = 4;
1419     }
1420     setup_size = (setup_size+1)*512;
1421     if (setup_size > kernel_size) {
1422         fprintf(stderr, "qemu: invalid kernel header\n");
1423         exit(1);
1424     }
1425     kernel_size -= setup_size;
1426 
1427     setup  = g_malloc(setup_size);
1428     kernel = g_malloc(kernel_size);
1429     fseek(f, 0, SEEK_SET);
1430     if (fread(setup, 1, setup_size, f) != setup_size) {
1431         fprintf(stderr, "fread() failed\n");
1432         exit(1);
1433     }
1434     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1435         fprintf(stderr, "fread() failed\n");
1436         exit(1);
1437     }
1438     fclose(f);
1439 
1440     /* append dtb to kernel */
1441     if (dtb_filename) {
1442         if (protocol < 0x209) {
1443             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1444             exit(1);
1445         }
1446 
1447         dtb_size = get_image_size(dtb_filename);
1448         if (dtb_size <= 0) {
1449             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1450                     dtb_filename, strerror(errno));
1451             exit(1);
1452         }
1453 
1454         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1455         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1456         kernel = g_realloc(kernel, kernel_size);
1457 
1458         stq_p(header+0x250, prot_addr + setup_data_offset);
1459 
1460         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1461         setup_data->next = 0;
1462         setup_data->type = cpu_to_le32(SETUP_DTB);
1463         setup_data->len = cpu_to_le32(dtb_size);
1464 
1465         load_image_size(dtb_filename, setup_data->data, dtb_size);
1466     }
1467 
1468     memcpy(setup, header, MIN(sizeof(header), setup_size));
1469 
1470     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1471     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1472     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1473 
1474     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1475     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1476     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1477 
1478     option_rom[nb_option_roms].bootindex = 0;
1479     option_rom[nb_option_roms].name = "linuxboot.bin";
1480     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1481         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1482     }
1483     nb_option_roms++;
1484 }
1485 
1486 #define NE2000_NB_MAX 6
1487 
1488 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1489                                               0x280, 0x380 };
1490 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1491 
1492 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1493 {
1494     static int nb_ne2k = 0;
1495 
1496     if (nb_ne2k == NE2000_NB_MAX)
1497         return;
1498     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1499                     ne2000_irq[nb_ne2k], nd);
1500     nb_ne2k++;
1501 }
1502 
1503 DeviceState *cpu_get_current_apic(void)
1504 {
1505     if (current_cpu) {
1506         X86CPU *cpu = X86_CPU(current_cpu);
1507         return cpu->apic_state;
1508     } else {
1509         return NULL;
1510     }
1511 }
1512 
1513 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1514 {
1515     X86CPU *cpu = opaque;
1516 
1517     if (level) {
1518         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1519     }
1520 }
1521 
1522 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1523 {
1524     Object *cpu = NULL;
1525     Error *local_err = NULL;
1526 
1527     cpu = object_new(typename);
1528 
1529     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1530     object_property_set_bool(cpu, true, "realized", &local_err);
1531 
1532     object_unref(cpu);
1533     error_propagate(errp, local_err);
1534 }
1535 
1536 void pc_hot_add_cpu(const int64_t id, Error **errp)
1537 {
1538     MachineState *ms = MACHINE(qdev_get_machine());
1539     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1540     Error *local_err = NULL;
1541 
1542     if (id < 0) {
1543         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1544         return;
1545     }
1546 
1547     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1548         error_setg(errp, "Unable to add CPU: %" PRIi64
1549                    ", resulting APIC ID (%" PRIi64 ") is too large",
1550                    id, apic_id);
1551         return;
1552     }
1553 
1554     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1555     if (local_err) {
1556         error_propagate(errp, local_err);
1557         return;
1558     }
1559 }
1560 
1561 void pc_cpus_init(PCMachineState *pcms)
1562 {
1563     int i;
1564     const CPUArchIdList *possible_cpus;
1565     MachineState *ms = MACHINE(pcms);
1566     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1567 
1568     /* Calculates the limit to CPU APIC ID values
1569      *
1570      * Limit for the APIC ID value, so that all
1571      * CPU APIC IDs are < pcms->apic_id_limit.
1572      *
1573      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1574      */
1575     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1576     possible_cpus = mc->possible_cpu_arch_ids(ms);
1577     for (i = 0; i < smp_cpus; i++) {
1578         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1579                    &error_fatal);
1580     }
1581 }
1582 
1583 static void pc_build_feature_control_file(PCMachineState *pcms)
1584 {
1585     MachineState *ms = MACHINE(pcms);
1586     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1587     CPUX86State *env = &cpu->env;
1588     uint32_t unused, ecx, edx;
1589     uint64_t feature_control_bits = 0;
1590     uint64_t *val;
1591 
1592     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1593     if (ecx & CPUID_EXT_VMX) {
1594         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1595     }
1596 
1597     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1598         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1599         (env->mcg_cap & MCG_LMCE_P)) {
1600         feature_control_bits |= FEATURE_CONTROL_LMCE;
1601     }
1602 
1603     if (!feature_control_bits) {
1604         return;
1605     }
1606 
1607     val = g_malloc(sizeof(*val));
1608     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1609     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1610 }
1611 
1612 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1613 {
1614     if (cpus_count > 0xff) {
1615         /* If the number of CPUs can't be represented in 8 bits, the
1616          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1617          * to make old BIOSes fail more predictably.
1618          */
1619         rtc_set_memory(rtc, 0x5f, 0);
1620     } else {
1621         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1622     }
1623 }
1624 
1625 static
1626 void pc_machine_done(Notifier *notifier, void *data)
1627 {
1628     PCMachineState *pcms = container_of(notifier,
1629                                         PCMachineState, machine_done);
1630     PCIBus *bus = pcms->bus;
1631 
1632     /* set the number of CPUs */
1633     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1634 
1635     if (bus) {
1636         int extra_hosts = 0;
1637 
1638         QLIST_FOREACH(bus, &bus->child, sibling) {
1639             /* look for expander root buses */
1640             if (pci_bus_is_root(bus)) {
1641                 extra_hosts++;
1642             }
1643         }
1644         if (extra_hosts && pcms->fw_cfg) {
1645             uint64_t *val = g_malloc(sizeof(*val));
1646             *val = cpu_to_le64(extra_hosts);
1647             fw_cfg_add_file(pcms->fw_cfg,
1648                     "etc/extra-pci-roots", val, sizeof(*val));
1649         }
1650     }
1651 
1652     acpi_setup();
1653     if (pcms->fw_cfg) {
1654         pc_build_smbios(pcms);
1655         pc_build_feature_control_file(pcms);
1656         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1657         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1658     }
1659 
1660     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1661         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1662 
1663         if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1664             iommu->intr_eim != ON_OFF_AUTO_ON) {
1665             error_report("current -smp configuration requires "
1666                          "Extended Interrupt Mode enabled. "
1667                          "You can add an IOMMU using: "
1668                          "-device intel-iommu,intremap=on,eim=on");
1669             exit(EXIT_FAILURE);
1670         }
1671     }
1672 }
1673 
1674 void pc_guest_info_init(PCMachineState *pcms)
1675 {
1676     int i;
1677 
1678     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1679     pcms->numa_nodes = nb_numa_nodes;
1680     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1681                                     sizeof *pcms->node_mem);
1682     for (i = 0; i < nb_numa_nodes; i++) {
1683         pcms->node_mem[i] = numa_info[i].node_mem;
1684     }
1685 
1686     pcms->machine_done.notify = pc_machine_done;
1687     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1688 }
1689 
1690 /* setup pci memory address space mapping into system address space */
1691 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1692                             MemoryRegion *pci_address_space)
1693 {
1694     /* Set to lower priority than RAM */
1695     memory_region_add_subregion_overlap(system_memory, 0x0,
1696                                         pci_address_space, -1);
1697 }
1698 
1699 void xen_load_linux(PCMachineState *pcms)
1700 {
1701     int i;
1702     FWCfgState *fw_cfg;
1703 
1704     assert(MACHINE(pcms)->kernel_filename != NULL);
1705 
1706     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1707     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1708     rom_set_fw(fw_cfg);
1709 
1710     load_linux(pcms, fw_cfg);
1711     for (i = 0; i < nb_option_roms; i++) {
1712         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1713                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1714                !strcmp(option_rom[i].name, "pvh.bin") ||
1715                !strcmp(option_rom[i].name, "multiboot.bin"));
1716         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1717     }
1718     pcms->fw_cfg = fw_cfg;
1719 }
1720 
1721 void pc_memory_init(PCMachineState *pcms,
1722                     MemoryRegion *system_memory,
1723                     MemoryRegion *rom_memory,
1724                     MemoryRegion **ram_memory)
1725 {
1726     int linux_boot, i;
1727     MemoryRegion *ram, *option_rom_mr;
1728     MemoryRegion *ram_below_4g, *ram_above_4g;
1729     FWCfgState *fw_cfg;
1730     MachineState *machine = MACHINE(pcms);
1731     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1732 
1733     assert(machine->ram_size == pcms->below_4g_mem_size +
1734                                 pcms->above_4g_mem_size);
1735 
1736     linux_boot = (machine->kernel_filename != NULL);
1737 
1738     /* Allocate RAM.  We allocate it as a single memory region and use
1739      * aliases to address portions of it, mostly for backwards compatibility
1740      * with older qemus that used qemu_ram_alloc().
1741      */
1742     ram = g_malloc(sizeof(*ram));
1743     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1744                                          machine->ram_size);
1745     *ram_memory = ram;
1746     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1747     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1748                              0, pcms->below_4g_mem_size);
1749     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1750     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1751     if (pcms->above_4g_mem_size > 0) {
1752         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1753         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1754                                  pcms->below_4g_mem_size,
1755                                  pcms->above_4g_mem_size);
1756         memory_region_add_subregion(system_memory, 0x100000000ULL,
1757                                     ram_above_4g);
1758         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1759     }
1760 
1761     if (!pcmc->has_reserved_memory &&
1762         (machine->ram_slots ||
1763          (machine->maxram_size > machine->ram_size))) {
1764         MachineClass *mc = MACHINE_GET_CLASS(machine);
1765 
1766         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1767                      mc->name);
1768         exit(EXIT_FAILURE);
1769     }
1770 
1771     /* always allocate the device memory information */
1772     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1773 
1774     /* initialize device memory address space */
1775     if (pcmc->has_reserved_memory &&
1776         (machine->ram_size < machine->maxram_size)) {
1777         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1778 
1779         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1780             error_report("unsupported amount of memory slots: %"PRIu64,
1781                          machine->ram_slots);
1782             exit(EXIT_FAILURE);
1783         }
1784 
1785         if (QEMU_ALIGN_UP(machine->maxram_size,
1786                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1787             error_report("maximum memory size must by aligned to multiple of "
1788                          "%d bytes", TARGET_PAGE_SIZE);
1789             exit(EXIT_FAILURE);
1790         }
1791 
1792         machine->device_memory->base =
1793             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1794 
1795         if (pcmc->enforce_aligned_dimm) {
1796             /* size device region assuming 1G page max alignment per slot */
1797             device_mem_size += (1 * GiB) * machine->ram_slots;
1798         }
1799 
1800         if ((machine->device_memory->base + device_mem_size) <
1801             device_mem_size) {
1802             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1803                          machine->maxram_size);
1804             exit(EXIT_FAILURE);
1805         }
1806 
1807         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1808                            "device-memory", device_mem_size);
1809         memory_region_add_subregion(system_memory, machine->device_memory->base,
1810                                     &machine->device_memory->mr);
1811     }
1812 
1813     /* Initialize PC system firmware */
1814     pc_system_firmware_init(pcms, rom_memory);
1815 
1816     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1817     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1818                            &error_fatal);
1819     if (pcmc->pci_enabled) {
1820         memory_region_set_readonly(option_rom_mr, true);
1821     }
1822     memory_region_add_subregion_overlap(rom_memory,
1823                                         PC_ROM_MIN_VGA,
1824                                         option_rom_mr,
1825                                         1);
1826 
1827     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1828 
1829     rom_set_fw(fw_cfg);
1830 
1831     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1832         uint64_t *val = g_malloc(sizeof(*val));
1833         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1834         uint64_t res_mem_end = machine->device_memory->base;
1835 
1836         if (!pcmc->broken_reserved_end) {
1837             res_mem_end += memory_region_size(&machine->device_memory->mr);
1838         }
1839         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1840         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1841     }
1842 
1843     if (linux_boot) {
1844         load_linux(pcms, fw_cfg);
1845     }
1846 
1847     for (i = 0; i < nb_option_roms; i++) {
1848         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1849     }
1850     pcms->fw_cfg = fw_cfg;
1851 
1852     /* Init default IOAPIC address space */
1853     pcms->ioapic_as = &address_space_memory;
1854 }
1855 
1856 /*
1857  * The 64bit pci hole starts after "above 4G RAM" and
1858  * potentially the space reserved for memory hotplug.
1859  */
1860 uint64_t pc_pci_hole64_start(void)
1861 {
1862     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1863     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1864     MachineState *ms = MACHINE(pcms);
1865     uint64_t hole64_start = 0;
1866 
1867     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1868         hole64_start = ms->device_memory->base;
1869         if (!pcmc->broken_reserved_end) {
1870             hole64_start += memory_region_size(&ms->device_memory->mr);
1871         }
1872     } else {
1873         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1874     }
1875 
1876     return ROUND_UP(hole64_start, 1 * GiB);
1877 }
1878 
1879 qemu_irq pc_allocate_cpu_irq(void)
1880 {
1881     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1882 }
1883 
1884 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1885 {
1886     DeviceState *dev = NULL;
1887 
1888     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1889     if (pci_bus) {
1890         PCIDevice *pcidev = pci_vga_init(pci_bus);
1891         dev = pcidev ? &pcidev->qdev : NULL;
1892     } else if (isa_bus) {
1893         ISADevice *isadev = isa_vga_init(isa_bus);
1894         dev = isadev ? DEVICE(isadev) : NULL;
1895     }
1896     rom_reset_order_override();
1897     return dev;
1898 }
1899 
1900 static const MemoryRegionOps ioport80_io_ops = {
1901     .write = ioport80_write,
1902     .read = ioport80_read,
1903     .endianness = DEVICE_NATIVE_ENDIAN,
1904     .impl = {
1905         .min_access_size = 1,
1906         .max_access_size = 1,
1907     },
1908 };
1909 
1910 static const MemoryRegionOps ioportF0_io_ops = {
1911     .write = ioportF0_write,
1912     .read = ioportF0_read,
1913     .endianness = DEVICE_NATIVE_ENDIAN,
1914     .impl = {
1915         .min_access_size = 1,
1916         .max_access_size = 1,
1917     },
1918 };
1919 
1920 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1921 {
1922     int i;
1923     DriveInfo *fd[MAX_FD];
1924     qemu_irq *a20_line;
1925     ISADevice *i8042, *port92, *vmmouse;
1926 
1927     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1928     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1929 
1930     for (i = 0; i < MAX_FD; i++) {
1931         fd[i] = drive_get(IF_FLOPPY, 0, i);
1932         create_fdctrl |= !!fd[i];
1933     }
1934     if (create_fdctrl) {
1935         fdctrl_init_isa(isa_bus, fd);
1936     }
1937 
1938     i8042 = isa_create_simple(isa_bus, "i8042");
1939     if (!no_vmport) {
1940         vmport_init(isa_bus);
1941         vmmouse = isa_try_create(isa_bus, "vmmouse");
1942     } else {
1943         vmmouse = NULL;
1944     }
1945     if (vmmouse) {
1946         DeviceState *dev = DEVICE(vmmouse);
1947         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1948         qdev_init_nofail(dev);
1949     }
1950     port92 = isa_create_simple(isa_bus, "port92");
1951 
1952     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1953     i8042_setup_a20_line(i8042, a20_line[0]);
1954     port92_init(port92, a20_line[1]);
1955     g_free(a20_line);
1956 }
1957 
1958 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1959                           ISADevice **rtc_state,
1960                           bool create_fdctrl,
1961                           bool no_vmport,
1962                           bool has_pit,
1963                           uint32_t hpet_irqs)
1964 {
1965     int i;
1966     DeviceState *hpet = NULL;
1967     int pit_isa_irq = 0;
1968     qemu_irq pit_alt_irq = NULL;
1969     qemu_irq rtc_irq = NULL;
1970     ISADevice *pit = NULL;
1971     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1972     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1973 
1974     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1975     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1976 
1977     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1978     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1979 
1980     /*
1981      * Check if an HPET shall be created.
1982      *
1983      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1984      * when the HPET wants to take over. Thus we have to disable the latter.
1985      */
1986     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1987         /* In order to set property, here not using sysbus_try_create_simple */
1988         hpet = qdev_try_create(NULL, TYPE_HPET);
1989         if (hpet) {
1990             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1991              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1992              * IRQ8 and IRQ2.
1993              */
1994             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1995                     HPET_INTCAP, NULL);
1996             if (!compat) {
1997                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1998             }
1999             qdev_init_nofail(hpet);
2000             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2001 
2002             for (i = 0; i < GSI_NUM_PINS; i++) {
2003                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2004             }
2005             pit_isa_irq = -1;
2006             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2007             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2008         }
2009     }
2010     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2011 
2012     qemu_register_boot_set(pc_boot_set, *rtc_state);
2013 
2014     if (!xen_enabled() && has_pit) {
2015         if (kvm_pit_in_kernel()) {
2016             pit = kvm_pit_init(isa_bus, 0x40);
2017         } else {
2018             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2019         }
2020         if (hpet) {
2021             /* connect PIT to output control line of the HPET */
2022             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2023         }
2024         pcspk_init(isa_bus, pit);
2025     }
2026 
2027     i8257_dma_init(isa_bus, 0);
2028 
2029     /* Super I/O */
2030     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2031 }
2032 
2033 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2034 {
2035     int i;
2036 
2037     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2038     for (i = 0; i < nb_nics; i++) {
2039         NICInfo *nd = &nd_table[i];
2040         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2041 
2042         if (g_str_equal(model, "ne2k_isa")) {
2043             pc_init_ne2k_isa(isa_bus, nd);
2044         } else {
2045             pci_nic_init_nofail(nd, pci_bus, model, NULL);
2046         }
2047     }
2048     rom_reset_order_override();
2049 }
2050 
2051 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2052 {
2053     DeviceState *dev;
2054     SysBusDevice *d;
2055     unsigned int i;
2056 
2057     if (kvm_ioapic_in_kernel()) {
2058         dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2059     } else {
2060         dev = qdev_create(NULL, TYPE_IOAPIC);
2061     }
2062     if (parent_name) {
2063         object_property_add_child(object_resolve_path(parent_name, NULL),
2064                                   "ioapic", OBJECT(dev), NULL);
2065     }
2066     qdev_init_nofail(dev);
2067     d = SYS_BUS_DEVICE(dev);
2068     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2069 
2070     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2071         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2072     }
2073 }
2074 
2075 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2076                                Error **errp)
2077 {
2078     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2079     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2080     const MachineState *ms = MACHINE(hotplug_dev);
2081     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2082     const uint64_t legacy_align = TARGET_PAGE_SIZE;
2083     Error *local_err = NULL;
2084 
2085     /*
2086      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2087      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2088      * addition to cover this case.
2089      */
2090     if (!pcms->acpi_dev || !acpi_enabled) {
2091         error_setg(errp,
2092                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2093         return;
2094     }
2095 
2096     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2097         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2098         return;
2099     }
2100 
2101     hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2102     if (local_err) {
2103         error_propagate(errp, local_err);
2104         return;
2105     }
2106 
2107     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2108                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2109 }
2110 
2111 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2112                            DeviceState *dev, Error **errp)
2113 {
2114     Error *local_err = NULL;
2115     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2116     MachineState *ms = MACHINE(hotplug_dev);
2117     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2118 
2119     pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2120     if (local_err) {
2121         goto out;
2122     }
2123 
2124     if (is_nvdimm) {
2125         nvdimm_plug(ms->nvdimms_state);
2126     }
2127 
2128     hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2129 out:
2130     error_propagate(errp, local_err);
2131 }
2132 
2133 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2134                                      DeviceState *dev, Error **errp)
2135 {
2136     Error *local_err = NULL;
2137     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2138 
2139     /*
2140      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2141      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2142      * addition to cover this case.
2143      */
2144     if (!pcms->acpi_dev || !acpi_enabled) {
2145         error_setg(&local_err,
2146                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2147         goto out;
2148     }
2149 
2150     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2151         error_setg(&local_err,
2152                    "nvdimm device hot unplug is not supported yet.");
2153         goto out;
2154     }
2155 
2156     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2157                                    &local_err);
2158 out:
2159     error_propagate(errp, local_err);
2160 }
2161 
2162 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2163                              DeviceState *dev, Error **errp)
2164 {
2165     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2166     Error *local_err = NULL;
2167 
2168     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2169     if (local_err) {
2170         goto out;
2171     }
2172 
2173     pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2174     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2175  out:
2176     error_propagate(errp, local_err);
2177 }
2178 
2179 static int pc_apic_cmp(const void *a, const void *b)
2180 {
2181    CPUArchId *apic_a = (CPUArchId *)a;
2182    CPUArchId *apic_b = (CPUArchId *)b;
2183 
2184    return apic_a->arch_id - apic_b->arch_id;
2185 }
2186 
2187 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2188  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2189  * entry corresponding to CPU's apic_id returns NULL.
2190  */
2191 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2192 {
2193     CPUArchId apic_id, *found_cpu;
2194 
2195     apic_id.arch_id = id;
2196     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2197         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2198         pc_apic_cmp);
2199     if (found_cpu && idx) {
2200         *idx = found_cpu - ms->possible_cpus->cpus;
2201     }
2202     return found_cpu;
2203 }
2204 
2205 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2206                         DeviceState *dev, Error **errp)
2207 {
2208     CPUArchId *found_cpu;
2209     Error *local_err = NULL;
2210     X86CPU *cpu = X86_CPU(dev);
2211     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2212 
2213     if (pcms->acpi_dev) {
2214         hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2215         if (local_err) {
2216             goto out;
2217         }
2218     }
2219 
2220     /* increment the number of CPUs */
2221     pcms->boot_cpus++;
2222     if (pcms->rtc) {
2223         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2224     }
2225     if (pcms->fw_cfg) {
2226         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2227     }
2228 
2229     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2230     found_cpu->cpu = OBJECT(dev);
2231 out:
2232     error_propagate(errp, local_err);
2233 }
2234 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2235                                      DeviceState *dev, Error **errp)
2236 {
2237     int idx = -1;
2238     Error *local_err = NULL;
2239     X86CPU *cpu = X86_CPU(dev);
2240     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2241 
2242     if (!pcms->acpi_dev) {
2243         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2244         goto out;
2245     }
2246 
2247     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2248     assert(idx != -1);
2249     if (idx == 0) {
2250         error_setg(&local_err, "Boot CPU is unpluggable");
2251         goto out;
2252     }
2253 
2254     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2255                                    &local_err);
2256     if (local_err) {
2257         goto out;
2258     }
2259 
2260  out:
2261     error_propagate(errp, local_err);
2262 
2263 }
2264 
2265 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2266                              DeviceState *dev, Error **errp)
2267 {
2268     CPUArchId *found_cpu;
2269     Error *local_err = NULL;
2270     X86CPU *cpu = X86_CPU(dev);
2271     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2272 
2273     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2274     if (local_err) {
2275         goto out;
2276     }
2277 
2278     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2279     found_cpu->cpu = NULL;
2280     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2281 
2282     /* decrement the number of CPUs */
2283     pcms->boot_cpus--;
2284     /* Update the number of CPUs in CMOS */
2285     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2286     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2287  out:
2288     error_propagate(errp, local_err);
2289 }
2290 
2291 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2292                             DeviceState *dev, Error **errp)
2293 {
2294     int idx;
2295     CPUState *cs;
2296     CPUArchId *cpu_slot;
2297     X86CPUTopoInfo topo;
2298     X86CPU *cpu = X86_CPU(dev);
2299     MachineState *ms = MACHINE(hotplug_dev);
2300     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2301 
2302     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2303         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2304                    ms->cpu_type);
2305         return;
2306     }
2307 
2308     /* if APIC ID is not set, set it based on socket/core/thread properties */
2309     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2310         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2311 
2312         if (cpu->socket_id < 0) {
2313             error_setg(errp, "CPU socket-id is not set");
2314             return;
2315         } else if (cpu->socket_id > max_socket) {
2316             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2317                        cpu->socket_id, max_socket);
2318             return;
2319         }
2320         if (cpu->core_id < 0) {
2321             error_setg(errp, "CPU core-id is not set");
2322             return;
2323         } else if (cpu->core_id > (smp_cores - 1)) {
2324             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2325                        cpu->core_id, smp_cores - 1);
2326             return;
2327         }
2328         if (cpu->thread_id < 0) {
2329             error_setg(errp, "CPU thread-id is not set");
2330             return;
2331         } else if (cpu->thread_id > (smp_threads - 1)) {
2332             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2333                        cpu->thread_id, smp_threads - 1);
2334             return;
2335         }
2336 
2337         topo.pkg_id = cpu->socket_id;
2338         topo.core_id = cpu->core_id;
2339         topo.smt_id = cpu->thread_id;
2340         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2341     }
2342 
2343     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2344     if (!cpu_slot) {
2345         MachineState *ms = MACHINE(pcms);
2346 
2347         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2348         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2349                   " APIC ID %" PRIu32 ", valid index range 0:%d",
2350                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2351                    ms->possible_cpus->len - 1);
2352         return;
2353     }
2354 
2355     if (cpu_slot->cpu) {
2356         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2357                    idx, cpu->apic_id);
2358         return;
2359     }
2360 
2361     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2362      * so that machine_query_hotpluggable_cpus would show correct values
2363      */
2364     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2365      * once -smp refactoring is complete and there will be CPU private
2366      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2367     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2368     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2369         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2370             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2371         return;
2372     }
2373     cpu->socket_id = topo.pkg_id;
2374 
2375     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2376         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2377             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2378         return;
2379     }
2380     cpu->core_id = topo.core_id;
2381 
2382     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2383         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2384             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2385         return;
2386     }
2387     cpu->thread_id = topo.smt_id;
2388 
2389     if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2390         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2391         return;
2392     }
2393 
2394     cs = CPU(cpu);
2395     cs->cpu_index = idx;
2396 
2397     numa_cpu_pre_plug(cpu_slot, dev, errp);
2398 }
2399 
2400 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2401                                           DeviceState *dev, Error **errp)
2402 {
2403     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2404         pc_memory_pre_plug(hotplug_dev, dev, errp);
2405     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2406         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2407     }
2408 }
2409 
2410 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2411                                       DeviceState *dev, Error **errp)
2412 {
2413     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2414         pc_memory_plug(hotplug_dev, dev, errp);
2415     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2416         pc_cpu_plug(hotplug_dev, dev, errp);
2417     }
2418 }
2419 
2420 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2421                                                 DeviceState *dev, Error **errp)
2422 {
2423     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2424         pc_memory_unplug_request(hotplug_dev, dev, errp);
2425     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2426         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2427     } else {
2428         error_setg(errp, "acpi: device unplug request for not supported device"
2429                    " type: %s", object_get_typename(OBJECT(dev)));
2430     }
2431 }
2432 
2433 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2434                                         DeviceState *dev, Error **errp)
2435 {
2436     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2437         pc_memory_unplug(hotplug_dev, dev, errp);
2438     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2439         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2440     } else {
2441         error_setg(errp, "acpi: device unplug for not supported device"
2442                    " type: %s", object_get_typename(OBJECT(dev)));
2443     }
2444 }
2445 
2446 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2447                                              DeviceState *dev)
2448 {
2449     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2450         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2451         return HOTPLUG_HANDLER(machine);
2452     }
2453 
2454     return NULL;
2455 }
2456 
2457 static void
2458 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2459                                          const char *name, void *opaque,
2460                                          Error **errp)
2461 {
2462     MachineState *ms = MACHINE(obj);
2463     int64_t value = memory_region_size(&ms->device_memory->mr);
2464 
2465     visit_type_int(v, name, &value, errp);
2466 }
2467 
2468 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2469                                             const char *name, void *opaque,
2470                                             Error **errp)
2471 {
2472     PCMachineState *pcms = PC_MACHINE(obj);
2473     uint64_t value = pcms->max_ram_below_4g;
2474 
2475     visit_type_size(v, name, &value, errp);
2476 }
2477 
2478 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2479                                             const char *name, void *opaque,
2480                                             Error **errp)
2481 {
2482     PCMachineState *pcms = PC_MACHINE(obj);
2483     Error *error = NULL;
2484     uint64_t value;
2485 
2486     visit_type_size(v, name, &value, &error);
2487     if (error) {
2488         error_propagate(errp, error);
2489         return;
2490     }
2491     if (value > 4 * GiB) {
2492         error_setg(&error,
2493                    "Machine option 'max-ram-below-4g=%"PRIu64
2494                    "' expects size less than or equal to 4G", value);
2495         error_propagate(errp, error);
2496         return;
2497     }
2498 
2499     if (value < 1 * MiB) {
2500         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2501                     "BIOS may not work with less than 1MiB", value);
2502     }
2503 
2504     pcms->max_ram_below_4g = value;
2505 }
2506 
2507 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2508                                   void *opaque, Error **errp)
2509 {
2510     PCMachineState *pcms = PC_MACHINE(obj);
2511     OnOffAuto vmport = pcms->vmport;
2512 
2513     visit_type_OnOffAuto(v, name, &vmport, errp);
2514 }
2515 
2516 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2517                                   void *opaque, Error **errp)
2518 {
2519     PCMachineState *pcms = PC_MACHINE(obj);
2520 
2521     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2522 }
2523 
2524 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2525 {
2526     bool smm_available = false;
2527 
2528     if (pcms->smm == ON_OFF_AUTO_OFF) {
2529         return false;
2530     }
2531 
2532     if (tcg_enabled() || qtest_enabled()) {
2533         smm_available = true;
2534     } else if (kvm_enabled()) {
2535         smm_available = kvm_has_smm();
2536     }
2537 
2538     if (smm_available) {
2539         return true;
2540     }
2541 
2542     if (pcms->smm == ON_OFF_AUTO_ON) {
2543         error_report("System Management Mode not supported by this hypervisor.");
2544         exit(1);
2545     }
2546     return false;
2547 }
2548 
2549 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2550                                void *opaque, Error **errp)
2551 {
2552     PCMachineState *pcms = PC_MACHINE(obj);
2553     OnOffAuto smm = pcms->smm;
2554 
2555     visit_type_OnOffAuto(v, name, &smm, errp);
2556 }
2557 
2558 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2559                                void *opaque, Error **errp)
2560 {
2561     PCMachineState *pcms = PC_MACHINE(obj);
2562 
2563     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2564 }
2565 
2566 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2567 {
2568     PCMachineState *pcms = PC_MACHINE(obj);
2569 
2570     return pcms->smbus_enabled;
2571 }
2572 
2573 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2574 {
2575     PCMachineState *pcms = PC_MACHINE(obj);
2576 
2577     pcms->smbus_enabled = value;
2578 }
2579 
2580 static bool pc_machine_get_sata(Object *obj, Error **errp)
2581 {
2582     PCMachineState *pcms = PC_MACHINE(obj);
2583 
2584     return pcms->sata_enabled;
2585 }
2586 
2587 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2588 {
2589     PCMachineState *pcms = PC_MACHINE(obj);
2590 
2591     pcms->sata_enabled = value;
2592 }
2593 
2594 static bool pc_machine_get_pit(Object *obj, Error **errp)
2595 {
2596     PCMachineState *pcms = PC_MACHINE(obj);
2597 
2598     return pcms->pit_enabled;
2599 }
2600 
2601 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2602 {
2603     PCMachineState *pcms = PC_MACHINE(obj);
2604 
2605     pcms->pit_enabled = value;
2606 }
2607 
2608 static void pc_machine_initfn(Object *obj)
2609 {
2610     PCMachineState *pcms = PC_MACHINE(obj);
2611 
2612     pcms->max_ram_below_4g = 0; /* use default */
2613     pcms->smm = ON_OFF_AUTO_AUTO;
2614     pcms->vmport = ON_OFF_AUTO_AUTO;
2615     /* acpi build is enabled by default if machine supports it */
2616     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2617     pcms->smbus_enabled = true;
2618     pcms->sata_enabled = true;
2619     pcms->pit_enabled = true;
2620 
2621     pc_system_flash_create(pcms);
2622 }
2623 
2624 static void pc_machine_reset(void)
2625 {
2626     CPUState *cs;
2627     X86CPU *cpu;
2628 
2629     qemu_devices_reset();
2630 
2631     /* Reset APIC after devices have been reset to cancel
2632      * any changes that qemu_devices_reset() might have done.
2633      */
2634     CPU_FOREACH(cs) {
2635         cpu = X86_CPU(cs);
2636 
2637         if (cpu->apic_state) {
2638             device_reset(cpu->apic_state);
2639         }
2640     }
2641 }
2642 
2643 static CpuInstanceProperties
2644 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2645 {
2646     MachineClass *mc = MACHINE_GET_CLASS(ms);
2647     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2648 
2649     assert(cpu_index < possible_cpus->len);
2650     return possible_cpus->cpus[cpu_index].props;
2651 }
2652 
2653 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2654 {
2655    X86CPUTopoInfo topo;
2656 
2657    assert(idx < ms->possible_cpus->len);
2658    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2659                             smp_cores, smp_threads, &topo);
2660    return topo.pkg_id % nb_numa_nodes;
2661 }
2662 
2663 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2664 {
2665     int i;
2666 
2667     if (ms->possible_cpus) {
2668         /*
2669          * make sure that max_cpus hasn't changed since the first use, i.e.
2670          * -smp hasn't been parsed after it
2671         */
2672         assert(ms->possible_cpus->len == max_cpus);
2673         return ms->possible_cpus;
2674     }
2675 
2676     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2677                                   sizeof(CPUArchId) * max_cpus);
2678     ms->possible_cpus->len = max_cpus;
2679     for (i = 0; i < ms->possible_cpus->len; i++) {
2680         X86CPUTopoInfo topo;
2681 
2682         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2683         ms->possible_cpus->cpus[i].vcpus_count = 1;
2684         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2685         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2686                                  smp_cores, smp_threads, &topo);
2687         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2688         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2689         ms->possible_cpus->cpus[i].props.has_core_id = true;
2690         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2691         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2692         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2693     }
2694     return ms->possible_cpus;
2695 }
2696 
2697 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2698 {
2699     /* cpu index isn't used */
2700     CPUState *cs;
2701 
2702     CPU_FOREACH(cs) {
2703         X86CPU *cpu = X86_CPU(cs);
2704 
2705         if (!cpu->apic_state) {
2706             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2707         } else {
2708             apic_deliver_nmi(cpu->apic_state);
2709         }
2710     }
2711 }
2712 
2713 static void pc_machine_class_init(ObjectClass *oc, void *data)
2714 {
2715     MachineClass *mc = MACHINE_CLASS(oc);
2716     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2717     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2718     NMIClass *nc = NMI_CLASS(oc);
2719 
2720     pcmc->pci_enabled = true;
2721     pcmc->has_acpi_build = true;
2722     pcmc->rsdp_in_ram = true;
2723     pcmc->smbios_defaults = true;
2724     pcmc->smbios_uuid_encoded = true;
2725     pcmc->gigabyte_align = true;
2726     pcmc->has_reserved_memory = true;
2727     pcmc->kvmclock_enabled = true;
2728     pcmc->enforce_aligned_dimm = true;
2729     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2730      * to be used at the moment, 32K should be enough for a while.  */
2731     pcmc->acpi_data_size = 0x20000 + 0x8000;
2732     pcmc->save_tsc_khz = true;
2733     pcmc->linuxboot_dma_enabled = true;
2734     pcmc->pvh_enabled = true;
2735     assert(!mc->get_hotplug_handler);
2736     mc->get_hotplug_handler = pc_get_hotplug_handler;
2737     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2738     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2739     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2740     mc->auto_enable_numa_with_memhp = true;
2741     mc->has_hotpluggable_cpus = true;
2742     mc->default_boot_order = "cad";
2743     mc->hot_add_cpu = pc_hot_add_cpu;
2744     mc->block_default_type = IF_IDE;
2745     mc->max_cpus = 255;
2746     mc->reset = pc_machine_reset;
2747     hc->pre_plug = pc_machine_device_pre_plug_cb;
2748     hc->plug = pc_machine_device_plug_cb;
2749     hc->unplug_request = pc_machine_device_unplug_request_cb;
2750     hc->unplug = pc_machine_device_unplug_cb;
2751     nc->nmi_monitor_handler = x86_nmi;
2752     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2753     mc->nvdimm_supported = true;
2754 
2755     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2756         pc_machine_get_device_memory_region_size, NULL,
2757         NULL, NULL, &error_abort);
2758 
2759     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2760         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2761         NULL, NULL, &error_abort);
2762 
2763     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2764         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2765 
2766     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2767         pc_machine_get_smm, pc_machine_set_smm,
2768         NULL, NULL, &error_abort);
2769     object_class_property_set_description(oc, PC_MACHINE_SMM,
2770         "Enable SMM (pc & q35)", &error_abort);
2771 
2772     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2773         pc_machine_get_vmport, pc_machine_set_vmport,
2774         NULL, NULL, &error_abort);
2775     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2776         "Enable vmport (pc & q35)", &error_abort);
2777 
2778     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2779         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2780 
2781     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2782         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2783 
2784     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2785         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2786 }
2787 
2788 static const TypeInfo pc_machine_info = {
2789     .name = TYPE_PC_MACHINE,
2790     .parent = TYPE_MACHINE,
2791     .abstract = true,
2792     .instance_size = sizeof(PCMachineState),
2793     .instance_init = pc_machine_initfn,
2794     .class_size = sizeof(PCMachineClass),
2795     .class_init = pc_machine_class_init,
2796     .interfaces = (InterfaceInfo[]) {
2797          { TYPE_HOTPLUG_HANDLER },
2798          { TYPE_NMI },
2799          { }
2800     },
2801 };
2802 
2803 static void pc_machine_register_types(void)
2804 {
2805     type_register_static(&pc_machine_info);
2806 }
2807 
2808 type_init(pc_machine_register_types)
2809