1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "hw/i386/pc.h" 27 #include "hw/char/serial.h" 28 #include "hw/i386/apic.h" 29 #include "hw/i386/topology.h" 30 #include "sysemu/cpus.h" 31 #include "hw/block/fdc.h" 32 #include "hw/ide.h" 33 #include "hw/pci/pci.h" 34 #include "hw/pci/pci_bus.h" 35 #include "hw/nvram/fw_cfg.h" 36 #include "hw/timer/hpet.h" 37 #include "hw/smbios/smbios.h" 38 #include "hw/loader.h" 39 #include "elf.h" 40 #include "multiboot.h" 41 #include "hw/timer/mc146818rtc.h" 42 #include "hw/timer/i8254.h" 43 #include "hw/audio/pcspk.h" 44 #include "hw/pci/msi.h" 45 #include "hw/sysbus.h" 46 #include "sysemu/sysemu.h" 47 #include "sysemu/numa.h" 48 #include "sysemu/kvm.h" 49 #include "sysemu/qtest.h" 50 #include "kvm_i386.h" 51 #include "hw/xen/xen.h" 52 #include "sysemu/block-backend.h" 53 #include "hw/block/block.h" 54 #include "ui/qemu-spice.h" 55 #include "exec/memory.h" 56 #include "exec/address-spaces.h" 57 #include "sysemu/arch_init.h" 58 #include "qemu/bitmap.h" 59 #include "qemu/config-file.h" 60 #include "qemu/error-report.h" 61 #include "hw/acpi/acpi.h" 62 #include "hw/acpi/cpu_hotplug.h" 63 #include "hw/boards.h" 64 #include "hw/pci/pci_host.h" 65 #include "acpi-build.h" 66 #include "hw/mem/pc-dimm.h" 67 #include "qapi/visitor.h" 68 #include "qapi-visit.h" 69 #include "qom/cpu.h" 70 #include "hw/nmi.h" 71 #include "hw/i386/intel_iommu.h" 72 #include "hw/net/ne2000-isa.h" 73 74 /* debug PC/ISA interrupts */ 75 //#define DEBUG_IRQ 76 77 #ifdef DEBUG_IRQ 78 #define DPRINTF(fmt, ...) \ 79 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 80 #else 81 #define DPRINTF(fmt, ...) 82 #endif 83 84 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 85 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 86 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 87 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 88 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 89 90 #define E820_NR_ENTRIES 16 91 92 struct e820_entry { 93 uint64_t address; 94 uint64_t length; 95 uint32_t type; 96 } QEMU_PACKED __attribute((__aligned__(4))); 97 98 struct e820_table { 99 uint32_t count; 100 struct e820_entry entry[E820_NR_ENTRIES]; 101 } QEMU_PACKED __attribute((__aligned__(4))); 102 103 static struct e820_table e820_reserve; 104 static struct e820_entry *e820_table; 105 static unsigned e820_entries; 106 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 107 108 void gsi_handler(void *opaque, int n, int level) 109 { 110 GSIState *s = opaque; 111 112 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 113 if (n < ISA_NUM_IRQS) { 114 qemu_set_irq(s->i8259_irq[n], level); 115 } 116 qemu_set_irq(s->ioapic_irq[n], level); 117 } 118 119 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 120 unsigned size) 121 { 122 } 123 124 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 125 { 126 return 0xffffffffffffffffULL; 127 } 128 129 /* MSDOS compatibility mode FPU exception support */ 130 static qemu_irq ferr_irq; 131 132 void pc_register_ferr_irq(qemu_irq irq) 133 { 134 ferr_irq = irq; 135 } 136 137 /* XXX: add IGNNE support */ 138 void cpu_set_ferr(CPUX86State *s) 139 { 140 qemu_irq_raise(ferr_irq); 141 } 142 143 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 144 unsigned size) 145 { 146 qemu_irq_lower(ferr_irq); 147 } 148 149 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 150 { 151 return 0xffffffffffffffffULL; 152 } 153 154 /* TSC handling */ 155 uint64_t cpu_get_tsc(CPUX86State *env) 156 { 157 return cpu_get_ticks(); 158 } 159 160 /* IRQ handling */ 161 int cpu_get_pic_interrupt(CPUX86State *env) 162 { 163 X86CPU *cpu = x86_env_get_cpu(env); 164 int intno; 165 166 if (!kvm_irqchip_in_kernel()) { 167 intno = apic_get_interrupt(cpu->apic_state); 168 if (intno >= 0) { 169 return intno; 170 } 171 /* read the irq from the PIC */ 172 if (!apic_accept_pic_intr(cpu->apic_state)) { 173 return -1; 174 } 175 } 176 177 intno = pic_read_irq(isa_pic); 178 return intno; 179 } 180 181 static void pic_irq_request(void *opaque, int irq, int level) 182 { 183 CPUState *cs = first_cpu; 184 X86CPU *cpu = X86_CPU(cs); 185 186 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 187 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 188 CPU_FOREACH(cs) { 189 cpu = X86_CPU(cs); 190 if (apic_accept_pic_intr(cpu->apic_state)) { 191 apic_deliver_pic_intr(cpu->apic_state, level); 192 } 193 } 194 } else { 195 if (level) { 196 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 197 } else { 198 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 199 } 200 } 201 } 202 203 /* PC cmos mappings */ 204 205 #define REG_EQUIPMENT_BYTE 0x14 206 207 int cmos_get_fd_drive_type(FloppyDriveType fd0) 208 { 209 int val; 210 211 switch (fd0) { 212 case FLOPPY_DRIVE_TYPE_144: 213 /* 1.44 Mb 3"5 drive */ 214 val = 4; 215 break; 216 case FLOPPY_DRIVE_TYPE_288: 217 /* 2.88 Mb 3"5 drive */ 218 val = 5; 219 break; 220 case FLOPPY_DRIVE_TYPE_120: 221 /* 1.2 Mb 5"5 drive */ 222 val = 2; 223 break; 224 case FLOPPY_DRIVE_TYPE_NONE: 225 default: 226 val = 0; 227 break; 228 } 229 return val; 230 } 231 232 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 233 int16_t cylinders, int8_t heads, int8_t sectors) 234 { 235 rtc_set_memory(s, type_ofs, 47); 236 rtc_set_memory(s, info_ofs, cylinders); 237 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 238 rtc_set_memory(s, info_ofs + 2, heads); 239 rtc_set_memory(s, info_ofs + 3, 0xff); 240 rtc_set_memory(s, info_ofs + 4, 0xff); 241 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 242 rtc_set_memory(s, info_ofs + 6, cylinders); 243 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 244 rtc_set_memory(s, info_ofs + 8, sectors); 245 } 246 247 /* convert boot_device letter to something recognizable by the bios */ 248 static int boot_device2nibble(char boot_device) 249 { 250 switch(boot_device) { 251 case 'a': 252 case 'b': 253 return 0x01; /* floppy boot */ 254 case 'c': 255 return 0x02; /* hard drive boot */ 256 case 'd': 257 return 0x03; /* CD-ROM boot */ 258 case 'n': 259 return 0x04; /* Network boot */ 260 } 261 return 0; 262 } 263 264 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 265 { 266 #define PC_MAX_BOOT_DEVICES 3 267 int nbds, bds[3] = { 0, }; 268 int i; 269 270 nbds = strlen(boot_device); 271 if (nbds > PC_MAX_BOOT_DEVICES) { 272 error_setg(errp, "Too many boot devices for PC"); 273 return; 274 } 275 for (i = 0; i < nbds; i++) { 276 bds[i] = boot_device2nibble(boot_device[i]); 277 if (bds[i] == 0) { 278 error_setg(errp, "Invalid boot device for PC: '%c'", 279 boot_device[i]); 280 return; 281 } 282 } 283 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 284 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 285 } 286 287 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 288 { 289 set_boot_dev(opaque, boot_device, errp); 290 } 291 292 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 293 { 294 int val, nb, i; 295 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 296 FLOPPY_DRIVE_TYPE_NONE }; 297 298 /* floppy type */ 299 if (floppy) { 300 for (i = 0; i < 2; i++) { 301 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 302 } 303 } 304 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 305 cmos_get_fd_drive_type(fd_type[1]); 306 rtc_set_memory(rtc_state, 0x10, val); 307 308 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 309 nb = 0; 310 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 311 nb++; 312 } 313 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 314 nb++; 315 } 316 switch (nb) { 317 case 0: 318 break; 319 case 1: 320 val |= 0x01; /* 1 drive, ready for boot */ 321 break; 322 case 2: 323 val |= 0x41; /* 2 drives, ready for boot */ 324 break; 325 } 326 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 327 } 328 329 typedef struct pc_cmos_init_late_arg { 330 ISADevice *rtc_state; 331 BusState *idebus[2]; 332 } pc_cmos_init_late_arg; 333 334 typedef struct check_fdc_state { 335 ISADevice *floppy; 336 bool multiple; 337 } CheckFdcState; 338 339 static int check_fdc(Object *obj, void *opaque) 340 { 341 CheckFdcState *state = opaque; 342 Object *fdc; 343 uint32_t iobase; 344 Error *local_err = NULL; 345 346 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 347 if (!fdc) { 348 return 0; 349 } 350 351 iobase = object_property_get_uint(obj, "iobase", &local_err); 352 if (local_err || iobase != 0x3f0) { 353 error_free(local_err); 354 return 0; 355 } 356 357 if (state->floppy) { 358 state->multiple = true; 359 } else { 360 state->floppy = ISA_DEVICE(obj); 361 } 362 return 0; 363 } 364 365 static const char * const fdc_container_path[] = { 366 "/unattached", "/peripheral", "/peripheral-anon" 367 }; 368 369 /* 370 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 371 * and ACPI objects. 372 */ 373 ISADevice *pc_find_fdc0(void) 374 { 375 int i; 376 Object *container; 377 CheckFdcState state = { 0 }; 378 379 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 380 container = container_get(qdev_get_machine(), fdc_container_path[i]); 381 object_child_foreach(container, check_fdc, &state); 382 } 383 384 if (state.multiple) { 385 warn_report("multiple floppy disk controllers with " 386 "iobase=0x3f0 have been found"); 387 error_printf("the one being picked for CMOS setup might not reflect " 388 "your intent"); 389 } 390 391 return state.floppy; 392 } 393 394 static void pc_cmos_init_late(void *opaque) 395 { 396 pc_cmos_init_late_arg *arg = opaque; 397 ISADevice *s = arg->rtc_state; 398 int16_t cylinders; 399 int8_t heads, sectors; 400 int val; 401 int i, trans; 402 403 val = 0; 404 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 405 &cylinders, &heads, §ors) >= 0) { 406 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 407 val |= 0xf0; 408 } 409 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 410 &cylinders, &heads, §ors) >= 0) { 411 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 412 val |= 0x0f; 413 } 414 rtc_set_memory(s, 0x12, val); 415 416 val = 0; 417 for (i = 0; i < 4; i++) { 418 /* NOTE: ide_get_geometry() returns the physical 419 geometry. It is always such that: 1 <= sects <= 63, 1 420 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 421 geometry can be different if a translation is done. */ 422 if (arg->idebus[i / 2] && 423 ide_get_geometry(arg->idebus[i / 2], i % 2, 424 &cylinders, &heads, §ors) >= 0) { 425 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 426 assert((trans & ~3) == 0); 427 val |= trans << (i * 2); 428 } 429 } 430 rtc_set_memory(s, 0x39, val); 431 432 pc_cmos_init_floppy(s, pc_find_fdc0()); 433 434 qemu_unregister_reset(pc_cmos_init_late, opaque); 435 } 436 437 void pc_cmos_init(PCMachineState *pcms, 438 BusState *idebus0, BusState *idebus1, 439 ISADevice *s) 440 { 441 int val; 442 static pc_cmos_init_late_arg arg; 443 444 /* various important CMOS locations needed by PC/Bochs bios */ 445 446 /* memory size */ 447 /* base memory (first MiB) */ 448 val = MIN(pcms->below_4g_mem_size / 1024, 640); 449 rtc_set_memory(s, 0x15, val); 450 rtc_set_memory(s, 0x16, val >> 8); 451 /* extended memory (next 64MiB) */ 452 if (pcms->below_4g_mem_size > 1024 * 1024) { 453 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024; 454 } else { 455 val = 0; 456 } 457 if (val > 65535) 458 val = 65535; 459 rtc_set_memory(s, 0x17, val); 460 rtc_set_memory(s, 0x18, val >> 8); 461 rtc_set_memory(s, 0x30, val); 462 rtc_set_memory(s, 0x31, val >> 8); 463 /* memory between 16MiB and 4GiB */ 464 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) { 465 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536; 466 } else { 467 val = 0; 468 } 469 if (val > 65535) 470 val = 65535; 471 rtc_set_memory(s, 0x34, val); 472 rtc_set_memory(s, 0x35, val >> 8); 473 /* memory above 4GiB */ 474 val = pcms->above_4g_mem_size / 65536; 475 rtc_set_memory(s, 0x5b, val); 476 rtc_set_memory(s, 0x5c, val >> 8); 477 rtc_set_memory(s, 0x5d, val >> 16); 478 479 object_property_add_link(OBJECT(pcms), "rtc_state", 480 TYPE_ISA_DEVICE, 481 (Object **)&pcms->rtc, 482 object_property_allow_set_link, 483 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); 484 object_property_set_link(OBJECT(pcms), OBJECT(s), 485 "rtc_state", &error_abort); 486 487 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 488 489 val = 0; 490 val |= 0x02; /* FPU is there */ 491 val |= 0x04; /* PS/2 mouse installed */ 492 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 493 494 /* hard drives and FDC */ 495 arg.rtc_state = s; 496 arg.idebus[0] = idebus0; 497 arg.idebus[1] = idebus1; 498 qemu_register_reset(pc_cmos_init_late, &arg); 499 } 500 501 #define TYPE_PORT92 "port92" 502 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 503 504 /* port 92 stuff: could be split off */ 505 typedef struct Port92State { 506 ISADevice parent_obj; 507 508 MemoryRegion io; 509 uint8_t outport; 510 qemu_irq a20_out; 511 } Port92State; 512 513 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 514 unsigned size) 515 { 516 Port92State *s = opaque; 517 int oldval = s->outport; 518 519 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 520 s->outport = val; 521 qemu_set_irq(s->a20_out, (val >> 1) & 1); 522 if ((val & 1) && !(oldval & 1)) { 523 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 524 } 525 } 526 527 static uint64_t port92_read(void *opaque, hwaddr addr, 528 unsigned size) 529 { 530 Port92State *s = opaque; 531 uint32_t ret; 532 533 ret = s->outport; 534 DPRINTF("port92: read 0x%02x\n", ret); 535 return ret; 536 } 537 538 static void port92_init(ISADevice *dev, qemu_irq a20_out) 539 { 540 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 541 } 542 543 static const VMStateDescription vmstate_port92_isa = { 544 .name = "port92", 545 .version_id = 1, 546 .minimum_version_id = 1, 547 .fields = (VMStateField[]) { 548 VMSTATE_UINT8(outport, Port92State), 549 VMSTATE_END_OF_LIST() 550 } 551 }; 552 553 static void port92_reset(DeviceState *d) 554 { 555 Port92State *s = PORT92(d); 556 557 s->outport &= ~1; 558 } 559 560 static const MemoryRegionOps port92_ops = { 561 .read = port92_read, 562 .write = port92_write, 563 .impl = { 564 .min_access_size = 1, 565 .max_access_size = 1, 566 }, 567 .endianness = DEVICE_LITTLE_ENDIAN, 568 }; 569 570 static void port92_initfn(Object *obj) 571 { 572 Port92State *s = PORT92(obj); 573 574 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 575 576 s->outport = 0; 577 578 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 579 } 580 581 static void port92_realizefn(DeviceState *dev, Error **errp) 582 { 583 ISADevice *isadev = ISA_DEVICE(dev); 584 Port92State *s = PORT92(dev); 585 586 isa_register_ioport(isadev, &s->io, 0x92); 587 } 588 589 static void port92_class_initfn(ObjectClass *klass, void *data) 590 { 591 DeviceClass *dc = DEVICE_CLASS(klass); 592 593 dc->realize = port92_realizefn; 594 dc->reset = port92_reset; 595 dc->vmsd = &vmstate_port92_isa; 596 /* 597 * Reason: unlike ordinary ISA devices, this one needs additional 598 * wiring: its A20 output line needs to be wired up by 599 * port92_init(). 600 */ 601 dc->user_creatable = false; 602 } 603 604 static const TypeInfo port92_info = { 605 .name = TYPE_PORT92, 606 .parent = TYPE_ISA_DEVICE, 607 .instance_size = sizeof(Port92State), 608 .instance_init = port92_initfn, 609 .class_init = port92_class_initfn, 610 }; 611 612 static void port92_register_types(void) 613 { 614 type_register_static(&port92_info); 615 } 616 617 type_init(port92_register_types) 618 619 static void handle_a20_line_change(void *opaque, int irq, int level) 620 { 621 X86CPU *cpu = opaque; 622 623 /* XXX: send to all CPUs ? */ 624 /* XXX: add logic to handle multiple A20 line sources */ 625 x86_cpu_set_a20(cpu, level); 626 } 627 628 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 629 { 630 int index = le32_to_cpu(e820_reserve.count); 631 struct e820_entry *entry; 632 633 if (type != E820_RAM) { 634 /* old FW_CFG_E820_TABLE entry -- reservations only */ 635 if (index >= E820_NR_ENTRIES) { 636 return -EBUSY; 637 } 638 entry = &e820_reserve.entry[index++]; 639 640 entry->address = cpu_to_le64(address); 641 entry->length = cpu_to_le64(length); 642 entry->type = cpu_to_le32(type); 643 644 e820_reserve.count = cpu_to_le32(index); 645 } 646 647 /* new "etc/e820" file -- include ram too */ 648 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 649 e820_table[e820_entries].address = cpu_to_le64(address); 650 e820_table[e820_entries].length = cpu_to_le64(length); 651 e820_table[e820_entries].type = cpu_to_le32(type); 652 e820_entries++; 653 654 return e820_entries; 655 } 656 657 int e820_get_num_entries(void) 658 { 659 return e820_entries; 660 } 661 662 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 663 { 664 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 665 *address = le64_to_cpu(e820_table[idx].address); 666 *length = le64_to_cpu(e820_table[idx].length); 667 return true; 668 } 669 return false; 670 } 671 672 /* Enables contiguous-apic-ID mode, for compatibility */ 673 static bool compat_apic_id_mode; 674 675 void enable_compat_apic_id_mode(void) 676 { 677 compat_apic_id_mode = true; 678 } 679 680 /* Calculates initial APIC ID for a specific CPU index 681 * 682 * Currently we need to be able to calculate the APIC ID from the CPU index 683 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 684 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 685 * all CPUs up to max_cpus. 686 */ 687 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 688 { 689 uint32_t correct_id; 690 static bool warned; 691 692 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 693 if (compat_apic_id_mode) { 694 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 695 error_report("APIC IDs set in compatibility mode, " 696 "CPU topology won't match the configuration"); 697 warned = true; 698 } 699 return cpu_index; 700 } else { 701 return correct_id; 702 } 703 } 704 705 static void pc_build_smbios(PCMachineState *pcms) 706 { 707 uint8_t *smbios_tables, *smbios_anchor; 708 size_t smbios_tables_len, smbios_anchor_len; 709 struct smbios_phys_mem_area *mem_array; 710 unsigned i, array_count; 711 MachineState *ms = MACHINE(pcms); 712 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 713 714 /* tell smbios about cpuid version and features */ 715 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 716 717 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 718 if (smbios_tables) { 719 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 720 smbios_tables, smbios_tables_len); 721 } 722 723 /* build the array of physical mem area from e820 table */ 724 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 725 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 726 uint64_t addr, len; 727 728 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 729 mem_array[array_count].address = addr; 730 mem_array[array_count].length = len; 731 array_count++; 732 } 733 } 734 smbios_get_tables(mem_array, array_count, 735 &smbios_tables, &smbios_tables_len, 736 &smbios_anchor, &smbios_anchor_len); 737 g_free(mem_array); 738 739 if (smbios_anchor) { 740 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 741 smbios_tables, smbios_tables_len); 742 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 743 smbios_anchor, smbios_anchor_len); 744 } 745 } 746 747 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 748 { 749 FWCfgState *fw_cfg; 750 uint64_t *numa_fw_cfg; 751 int i; 752 const CPUArchIdList *cpus; 753 MachineClass *mc = MACHINE_GET_CLASS(pcms); 754 755 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 756 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 757 758 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 759 * 760 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 761 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 762 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 763 * for CPU hotplug also uses APIC ID and not "CPU index". 764 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 765 * but the "limit to the APIC ID values SeaBIOS may see". 766 * 767 * So for compatibility reasons with old BIOSes we are stuck with 768 * "etc/max-cpus" actually being apic_id_limit 769 */ 770 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 771 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 772 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 773 acpi_tables, acpi_tables_len); 774 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 775 776 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 777 &e820_reserve, sizeof(e820_reserve)); 778 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 779 sizeof(struct e820_entry) * e820_entries); 780 781 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 782 /* allocate memory for the NUMA channel: one (64bit) word for the number 783 * of nodes, one word for each VCPU->node and one word for each node to 784 * hold the amount of memory. 785 */ 786 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 787 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 788 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 789 for (i = 0; i < cpus->len; i++) { 790 unsigned int apic_id = cpus->cpus[i].arch_id; 791 assert(apic_id < pcms->apic_id_limit); 792 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 793 } 794 for (i = 0; i < nb_numa_nodes; i++) { 795 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 796 cpu_to_le64(numa_info[i].node_mem); 797 } 798 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 799 (1 + pcms->apic_id_limit + nb_numa_nodes) * 800 sizeof(*numa_fw_cfg)); 801 802 return fw_cfg; 803 } 804 805 static long get_file_size(FILE *f) 806 { 807 long where, size; 808 809 /* XXX: on Unix systems, using fstat() probably makes more sense */ 810 811 where = ftell(f); 812 fseek(f, 0, SEEK_END); 813 size = ftell(f); 814 fseek(f, where, SEEK_SET); 815 816 return size; 817 } 818 819 /* setup_data types */ 820 #define SETUP_NONE 0 821 #define SETUP_E820_EXT 1 822 #define SETUP_DTB 2 823 #define SETUP_PCI 3 824 #define SETUP_EFI 4 825 826 struct setup_data { 827 uint64_t next; 828 uint32_t type; 829 uint32_t len; 830 uint8_t data[0]; 831 } __attribute__((packed)); 832 833 static void load_linux(PCMachineState *pcms, 834 FWCfgState *fw_cfg) 835 { 836 uint16_t protocol; 837 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 838 int dtb_size, setup_data_offset; 839 uint32_t initrd_max; 840 uint8_t header[8192], *setup, *kernel, *initrd_data; 841 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 842 FILE *f; 843 char *vmode; 844 MachineState *machine = MACHINE(pcms); 845 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 846 struct setup_data *setup_data; 847 const char *kernel_filename = machine->kernel_filename; 848 const char *initrd_filename = machine->initrd_filename; 849 const char *dtb_filename = machine->dtb; 850 const char *kernel_cmdline = machine->kernel_cmdline; 851 852 /* Align to 16 bytes as a paranoia measure */ 853 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 854 855 /* load the kernel header */ 856 f = fopen(kernel_filename, "rb"); 857 if (!f || !(kernel_size = get_file_size(f)) || 858 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 859 MIN(ARRAY_SIZE(header), kernel_size)) { 860 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 861 kernel_filename, strerror(errno)); 862 exit(1); 863 } 864 865 /* kernel protocol version */ 866 #if 0 867 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 868 #endif 869 if (ldl_p(header+0x202) == 0x53726448) { 870 protocol = lduw_p(header+0x206); 871 } else { 872 /* This looks like a multiboot kernel. If it is, let's stop 873 treating it like a Linux kernel. */ 874 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 875 kernel_cmdline, kernel_size, header)) { 876 return; 877 } 878 protocol = 0; 879 } 880 881 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 882 /* Low kernel */ 883 real_addr = 0x90000; 884 cmdline_addr = 0x9a000 - cmdline_size; 885 prot_addr = 0x10000; 886 } else if (protocol < 0x202) { 887 /* High but ancient kernel */ 888 real_addr = 0x90000; 889 cmdline_addr = 0x9a000 - cmdline_size; 890 prot_addr = 0x100000; 891 } else { 892 /* High and recent kernel */ 893 real_addr = 0x10000; 894 cmdline_addr = 0x20000; 895 prot_addr = 0x100000; 896 } 897 898 #if 0 899 fprintf(stderr, 900 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 901 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 902 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 903 real_addr, 904 cmdline_addr, 905 prot_addr); 906 #endif 907 908 /* highest address for loading the initrd */ 909 if (protocol >= 0x203) { 910 initrd_max = ldl_p(header+0x22c); 911 } else { 912 initrd_max = 0x37ffffff; 913 } 914 915 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 916 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 917 } 918 919 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 920 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 921 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 922 923 if (protocol >= 0x202) { 924 stl_p(header+0x228, cmdline_addr); 925 } else { 926 stw_p(header+0x20, 0xA33F); 927 stw_p(header+0x22, cmdline_addr-real_addr); 928 } 929 930 /* handle vga= parameter */ 931 vmode = strstr(kernel_cmdline, "vga="); 932 if (vmode) { 933 unsigned int video_mode; 934 /* skip "vga=" */ 935 vmode += 4; 936 if (!strncmp(vmode, "normal", 6)) { 937 video_mode = 0xffff; 938 } else if (!strncmp(vmode, "ext", 3)) { 939 video_mode = 0xfffe; 940 } else if (!strncmp(vmode, "ask", 3)) { 941 video_mode = 0xfffd; 942 } else { 943 video_mode = strtol(vmode, NULL, 0); 944 } 945 stw_p(header+0x1fa, video_mode); 946 } 947 948 /* loader type */ 949 /* High nybble = B reserved for QEMU; low nybble is revision number. 950 If this code is substantially changed, you may want to consider 951 incrementing the revision. */ 952 if (protocol >= 0x200) { 953 header[0x210] = 0xB0; 954 } 955 /* heap */ 956 if (protocol >= 0x201) { 957 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 958 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 959 } 960 961 /* load initrd */ 962 if (initrd_filename) { 963 if (protocol < 0x200) { 964 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 965 exit(1); 966 } 967 968 initrd_size = get_image_size(initrd_filename); 969 if (initrd_size < 0) { 970 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 971 initrd_filename, strerror(errno)); 972 exit(1); 973 } 974 975 initrd_addr = (initrd_max-initrd_size) & ~4095; 976 977 initrd_data = g_malloc(initrd_size); 978 load_image(initrd_filename, initrd_data); 979 980 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 981 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 982 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 983 984 stl_p(header+0x218, initrd_addr); 985 stl_p(header+0x21c, initrd_size); 986 } 987 988 /* load kernel and setup */ 989 setup_size = header[0x1f1]; 990 if (setup_size == 0) { 991 setup_size = 4; 992 } 993 setup_size = (setup_size+1)*512; 994 if (setup_size > kernel_size) { 995 fprintf(stderr, "qemu: invalid kernel header\n"); 996 exit(1); 997 } 998 kernel_size -= setup_size; 999 1000 setup = g_malloc(setup_size); 1001 kernel = g_malloc(kernel_size); 1002 fseek(f, 0, SEEK_SET); 1003 if (fread(setup, 1, setup_size, f) != setup_size) { 1004 fprintf(stderr, "fread() failed\n"); 1005 exit(1); 1006 } 1007 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1008 fprintf(stderr, "fread() failed\n"); 1009 exit(1); 1010 } 1011 fclose(f); 1012 1013 /* append dtb to kernel */ 1014 if (dtb_filename) { 1015 if (protocol < 0x209) { 1016 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1017 exit(1); 1018 } 1019 1020 dtb_size = get_image_size(dtb_filename); 1021 if (dtb_size <= 0) { 1022 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1023 dtb_filename, strerror(errno)); 1024 exit(1); 1025 } 1026 1027 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1028 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1029 kernel = g_realloc(kernel, kernel_size); 1030 1031 stq_p(header+0x250, prot_addr + setup_data_offset); 1032 1033 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1034 setup_data->next = 0; 1035 setup_data->type = cpu_to_le32(SETUP_DTB); 1036 setup_data->len = cpu_to_le32(dtb_size); 1037 1038 load_image_size(dtb_filename, setup_data->data, dtb_size); 1039 } 1040 1041 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1042 1043 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1044 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1045 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1046 1047 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1048 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1049 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1050 1051 option_rom[nb_option_roms].bootindex = 0; 1052 option_rom[nb_option_roms].name = "linuxboot.bin"; 1053 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1054 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1055 } 1056 nb_option_roms++; 1057 } 1058 1059 #define NE2000_NB_MAX 6 1060 1061 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1062 0x280, 0x380 }; 1063 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1064 1065 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1066 { 1067 static int nb_ne2k = 0; 1068 1069 if (nb_ne2k == NE2000_NB_MAX) 1070 return; 1071 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1072 ne2000_irq[nb_ne2k], nd); 1073 nb_ne2k++; 1074 } 1075 1076 DeviceState *cpu_get_current_apic(void) 1077 { 1078 if (current_cpu) { 1079 X86CPU *cpu = X86_CPU(current_cpu); 1080 return cpu->apic_state; 1081 } else { 1082 return NULL; 1083 } 1084 } 1085 1086 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1087 { 1088 X86CPU *cpu = opaque; 1089 1090 if (level) { 1091 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1092 } 1093 } 1094 1095 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1096 { 1097 Object *cpu = NULL; 1098 Error *local_err = NULL; 1099 1100 cpu = object_new(typename); 1101 1102 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1103 object_property_set_bool(cpu, true, "realized", &local_err); 1104 1105 object_unref(cpu); 1106 error_propagate(errp, local_err); 1107 } 1108 1109 void pc_hot_add_cpu(const int64_t id, Error **errp) 1110 { 1111 MachineState *ms = MACHINE(qdev_get_machine()); 1112 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1113 Error *local_err = NULL; 1114 1115 if (id < 0) { 1116 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1117 return; 1118 } 1119 1120 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1121 error_setg(errp, "Unable to add CPU: %" PRIi64 1122 ", resulting APIC ID (%" PRIi64 ") is too large", 1123 id, apic_id); 1124 return; 1125 } 1126 1127 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1128 if (local_err) { 1129 error_propagate(errp, local_err); 1130 return; 1131 } 1132 } 1133 1134 void pc_cpus_init(PCMachineState *pcms) 1135 { 1136 int i; 1137 const CPUArchIdList *possible_cpus; 1138 MachineState *ms = MACHINE(pcms); 1139 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1140 1141 /* Calculates the limit to CPU APIC ID values 1142 * 1143 * Limit for the APIC ID value, so that all 1144 * CPU APIC IDs are < pcms->apic_id_limit. 1145 * 1146 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1147 */ 1148 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1149 possible_cpus = mc->possible_cpu_arch_ids(ms); 1150 for (i = 0; i < smp_cpus; i++) { 1151 pc_new_cpu(ms->cpu_type, possible_cpus->cpus[i].arch_id, &error_fatal); 1152 } 1153 } 1154 1155 static void pc_build_feature_control_file(PCMachineState *pcms) 1156 { 1157 MachineState *ms = MACHINE(pcms); 1158 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1159 CPUX86State *env = &cpu->env; 1160 uint32_t unused, ecx, edx; 1161 uint64_t feature_control_bits = 0; 1162 uint64_t *val; 1163 1164 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1165 if (ecx & CPUID_EXT_VMX) { 1166 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1167 } 1168 1169 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1170 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1171 (env->mcg_cap & MCG_LMCE_P)) { 1172 feature_control_bits |= FEATURE_CONTROL_LMCE; 1173 } 1174 1175 if (!feature_control_bits) { 1176 return; 1177 } 1178 1179 val = g_malloc(sizeof(*val)); 1180 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1181 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1182 } 1183 1184 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1185 { 1186 if (cpus_count > 0xff) { 1187 /* If the number of CPUs can't be represented in 8 bits, the 1188 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1189 * to make old BIOSes fail more predictably. 1190 */ 1191 rtc_set_memory(rtc, 0x5f, 0); 1192 } else { 1193 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1194 } 1195 } 1196 1197 static 1198 void pc_machine_done(Notifier *notifier, void *data) 1199 { 1200 PCMachineState *pcms = container_of(notifier, 1201 PCMachineState, machine_done); 1202 PCIBus *bus = pcms->bus; 1203 1204 /* set the number of CPUs */ 1205 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1206 1207 if (bus) { 1208 int extra_hosts = 0; 1209 1210 QLIST_FOREACH(bus, &bus->child, sibling) { 1211 /* look for expander root buses */ 1212 if (pci_bus_is_root(bus)) { 1213 extra_hosts++; 1214 } 1215 } 1216 if (extra_hosts && pcms->fw_cfg) { 1217 uint64_t *val = g_malloc(sizeof(*val)); 1218 *val = cpu_to_le64(extra_hosts); 1219 fw_cfg_add_file(pcms->fw_cfg, 1220 "etc/extra-pci-roots", val, sizeof(*val)); 1221 } 1222 } 1223 1224 acpi_setup(); 1225 if (pcms->fw_cfg) { 1226 pc_build_smbios(pcms); 1227 pc_build_feature_control_file(pcms); 1228 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1229 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1230 } 1231 1232 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1233 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1234 1235 if (!iommu || !iommu->x86_iommu.intr_supported || 1236 iommu->intr_eim != ON_OFF_AUTO_ON) { 1237 error_report("current -smp configuration requires " 1238 "Extended Interrupt Mode enabled. " 1239 "You can add an IOMMU using: " 1240 "-device intel-iommu,intremap=on,eim=on"); 1241 exit(EXIT_FAILURE); 1242 } 1243 } 1244 } 1245 1246 void pc_guest_info_init(PCMachineState *pcms) 1247 { 1248 int i; 1249 1250 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1251 pcms->numa_nodes = nb_numa_nodes; 1252 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1253 sizeof *pcms->node_mem); 1254 for (i = 0; i < nb_numa_nodes; i++) { 1255 pcms->node_mem[i] = numa_info[i].node_mem; 1256 } 1257 1258 pcms->machine_done.notify = pc_machine_done; 1259 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1260 } 1261 1262 /* setup pci memory address space mapping into system address space */ 1263 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1264 MemoryRegion *pci_address_space) 1265 { 1266 /* Set to lower priority than RAM */ 1267 memory_region_add_subregion_overlap(system_memory, 0x0, 1268 pci_address_space, -1); 1269 } 1270 1271 void pc_acpi_init(const char *default_dsdt) 1272 { 1273 char *filename; 1274 1275 if (acpi_tables != NULL) { 1276 /* manually set via -acpitable, leave it alone */ 1277 return; 1278 } 1279 1280 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1281 if (filename == NULL) { 1282 warn_report("failed to find %s", default_dsdt); 1283 } else { 1284 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1285 &error_abort); 1286 Error *err = NULL; 1287 1288 qemu_opt_set(opts, "file", filename, &error_abort); 1289 1290 acpi_table_add_builtin(opts, &err); 1291 if (err) { 1292 warn_reportf_err(err, "failed to load %s: ", filename); 1293 } 1294 g_free(filename); 1295 } 1296 } 1297 1298 void xen_load_linux(PCMachineState *pcms) 1299 { 1300 int i; 1301 FWCfgState *fw_cfg; 1302 1303 assert(MACHINE(pcms)->kernel_filename != NULL); 1304 1305 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1306 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1307 rom_set_fw(fw_cfg); 1308 1309 load_linux(pcms, fw_cfg); 1310 for (i = 0; i < nb_option_roms; i++) { 1311 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1312 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1313 !strcmp(option_rom[i].name, "multiboot.bin")); 1314 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1315 } 1316 pcms->fw_cfg = fw_cfg; 1317 } 1318 1319 void pc_memory_init(PCMachineState *pcms, 1320 MemoryRegion *system_memory, 1321 MemoryRegion *rom_memory, 1322 MemoryRegion **ram_memory) 1323 { 1324 int linux_boot, i; 1325 MemoryRegion *ram, *option_rom_mr; 1326 MemoryRegion *ram_below_4g, *ram_above_4g; 1327 FWCfgState *fw_cfg; 1328 MachineState *machine = MACHINE(pcms); 1329 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1330 1331 assert(machine->ram_size == pcms->below_4g_mem_size + 1332 pcms->above_4g_mem_size); 1333 1334 linux_boot = (machine->kernel_filename != NULL); 1335 1336 /* Allocate RAM. We allocate it as a single memory region and use 1337 * aliases to address portions of it, mostly for backwards compatibility 1338 * with older qemus that used qemu_ram_alloc(). 1339 */ 1340 ram = g_malloc(sizeof(*ram)); 1341 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1342 machine->ram_size); 1343 *ram_memory = ram; 1344 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1345 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1346 0, pcms->below_4g_mem_size); 1347 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1348 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1349 if (pcms->above_4g_mem_size > 0) { 1350 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1351 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1352 pcms->below_4g_mem_size, 1353 pcms->above_4g_mem_size); 1354 memory_region_add_subregion(system_memory, 0x100000000ULL, 1355 ram_above_4g); 1356 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1357 } 1358 1359 if (!pcmc->has_reserved_memory && 1360 (machine->ram_slots || 1361 (machine->maxram_size > machine->ram_size))) { 1362 MachineClass *mc = MACHINE_GET_CLASS(machine); 1363 1364 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1365 mc->name); 1366 exit(EXIT_FAILURE); 1367 } 1368 1369 /* initialize hotplug memory address space */ 1370 if (pcmc->has_reserved_memory && 1371 (machine->ram_size < machine->maxram_size)) { 1372 ram_addr_t hotplug_mem_size = 1373 machine->maxram_size - machine->ram_size; 1374 1375 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1376 error_report("unsupported amount of memory slots: %"PRIu64, 1377 machine->ram_slots); 1378 exit(EXIT_FAILURE); 1379 } 1380 1381 if (QEMU_ALIGN_UP(machine->maxram_size, 1382 TARGET_PAGE_SIZE) != machine->maxram_size) { 1383 error_report("maximum memory size must by aligned to multiple of " 1384 "%d bytes", TARGET_PAGE_SIZE); 1385 exit(EXIT_FAILURE); 1386 } 1387 1388 pcms->hotplug_memory.base = 1389 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30); 1390 1391 if (pcmc->enforce_aligned_dimm) { 1392 /* size hotplug region assuming 1G page max alignment per slot */ 1393 hotplug_mem_size += (1ULL << 30) * machine->ram_slots; 1394 } 1395 1396 if ((pcms->hotplug_memory.base + hotplug_mem_size) < 1397 hotplug_mem_size) { 1398 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1399 machine->maxram_size); 1400 exit(EXIT_FAILURE); 1401 } 1402 1403 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms), 1404 "hotplug-memory", hotplug_mem_size); 1405 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base, 1406 &pcms->hotplug_memory.mr); 1407 } 1408 1409 /* Initialize PC system firmware */ 1410 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1411 1412 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1413 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1414 &error_fatal); 1415 if (pcmc->pci_enabled) { 1416 memory_region_set_readonly(option_rom_mr, true); 1417 } 1418 memory_region_add_subregion_overlap(rom_memory, 1419 PC_ROM_MIN_VGA, 1420 option_rom_mr, 1421 1); 1422 1423 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1424 1425 rom_set_fw(fw_cfg); 1426 1427 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1428 uint64_t *val = g_malloc(sizeof(*val)); 1429 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1430 uint64_t res_mem_end = pcms->hotplug_memory.base; 1431 1432 if (!pcmc->broken_reserved_end) { 1433 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr); 1434 } 1435 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30)); 1436 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1437 } 1438 1439 if (linux_boot) { 1440 load_linux(pcms, fw_cfg); 1441 } 1442 1443 for (i = 0; i < nb_option_roms; i++) { 1444 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1445 } 1446 pcms->fw_cfg = fw_cfg; 1447 1448 /* Init default IOAPIC address space */ 1449 pcms->ioapic_as = &address_space_memory; 1450 } 1451 1452 /* 1453 * The 64bit pci hole starts after "above 4G RAM" and 1454 * potentially the space reserved for memory hotplug. 1455 */ 1456 uint64_t pc_pci_hole64_start(void) 1457 { 1458 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1459 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1460 uint64_t hole64_start = 0; 1461 1462 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1463 hole64_start = pcms->hotplug_memory.base; 1464 if (!pcmc->broken_reserved_end) { 1465 hole64_start += memory_region_size(&pcms->hotplug_memory.mr); 1466 } 1467 } else { 1468 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1469 } 1470 1471 return ROUND_UP(hole64_start, 1ULL << 30); 1472 } 1473 1474 qemu_irq pc_allocate_cpu_irq(void) 1475 { 1476 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1477 } 1478 1479 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1480 { 1481 DeviceState *dev = NULL; 1482 1483 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1484 if (pci_bus) { 1485 PCIDevice *pcidev = pci_vga_init(pci_bus); 1486 dev = pcidev ? &pcidev->qdev : NULL; 1487 } else if (isa_bus) { 1488 ISADevice *isadev = isa_vga_init(isa_bus); 1489 dev = isadev ? DEVICE(isadev) : NULL; 1490 } 1491 rom_reset_order_override(); 1492 return dev; 1493 } 1494 1495 static const MemoryRegionOps ioport80_io_ops = { 1496 .write = ioport80_write, 1497 .read = ioport80_read, 1498 .endianness = DEVICE_NATIVE_ENDIAN, 1499 .impl = { 1500 .min_access_size = 1, 1501 .max_access_size = 1, 1502 }, 1503 }; 1504 1505 static const MemoryRegionOps ioportF0_io_ops = { 1506 .write = ioportF0_write, 1507 .read = ioportF0_read, 1508 .endianness = DEVICE_NATIVE_ENDIAN, 1509 .impl = { 1510 .min_access_size = 1, 1511 .max_access_size = 1, 1512 }, 1513 }; 1514 1515 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1516 ISADevice **rtc_state, 1517 bool create_fdctrl, 1518 bool no_vmport, 1519 bool has_pit, 1520 uint32_t hpet_irqs) 1521 { 1522 int i; 1523 DriveInfo *fd[MAX_FD]; 1524 DeviceState *hpet = NULL; 1525 int pit_isa_irq = 0; 1526 qemu_irq pit_alt_irq = NULL; 1527 qemu_irq rtc_irq = NULL; 1528 qemu_irq *a20_line; 1529 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1530 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1531 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1532 1533 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1534 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1535 1536 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1537 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1538 1539 /* 1540 * Check if an HPET shall be created. 1541 * 1542 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1543 * when the HPET wants to take over. Thus we have to disable the latter. 1544 */ 1545 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1546 /* In order to set property, here not using sysbus_try_create_simple */ 1547 hpet = qdev_try_create(NULL, TYPE_HPET); 1548 if (hpet) { 1549 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1550 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1551 * IRQ8 and IRQ2. 1552 */ 1553 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1554 HPET_INTCAP, NULL); 1555 if (!compat) { 1556 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1557 } 1558 qdev_init_nofail(hpet); 1559 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1560 1561 for (i = 0; i < GSI_NUM_PINS; i++) { 1562 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1563 } 1564 pit_isa_irq = -1; 1565 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1566 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1567 } 1568 } 1569 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1570 1571 qemu_register_boot_set(pc_boot_set, *rtc_state); 1572 1573 if (!xen_enabled() && has_pit) { 1574 if (kvm_pit_in_kernel()) { 1575 pit = kvm_pit_init(isa_bus, 0x40); 1576 } else { 1577 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1578 } 1579 if (hpet) { 1580 /* connect PIT to output control line of the HPET */ 1581 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1582 } 1583 pcspk_init(isa_bus, pit); 1584 } 1585 1586 serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS); 1587 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1588 1589 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1590 i8042 = isa_create_simple(isa_bus, "i8042"); 1591 i8042_setup_a20_line(i8042, a20_line[0]); 1592 if (!no_vmport) { 1593 vmport_init(isa_bus); 1594 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1595 } else { 1596 vmmouse = NULL; 1597 } 1598 if (vmmouse) { 1599 DeviceState *dev = DEVICE(vmmouse); 1600 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1601 qdev_init_nofail(dev); 1602 } 1603 port92 = isa_create_simple(isa_bus, "port92"); 1604 port92_init(port92, a20_line[1]); 1605 g_free(a20_line); 1606 1607 DMA_init(isa_bus, 0); 1608 1609 for(i = 0; i < MAX_FD; i++) { 1610 fd[i] = drive_get(IF_FLOPPY, 0, i); 1611 create_fdctrl |= !!fd[i]; 1612 } 1613 if (create_fdctrl) { 1614 fdctrl_init_isa(isa_bus, fd); 1615 } 1616 } 1617 1618 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1619 { 1620 int i; 1621 1622 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1623 for (i = 0; i < nb_nics; i++) { 1624 NICInfo *nd = &nd_table[i]; 1625 1626 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1627 pc_init_ne2k_isa(isa_bus, nd); 1628 } else { 1629 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1630 } 1631 } 1632 rom_reset_order_override(); 1633 } 1634 1635 void pc_pci_device_init(PCIBus *pci_bus) 1636 { 1637 int max_bus; 1638 int bus; 1639 1640 /* Note: if=scsi is deprecated with PC machine types */ 1641 max_bus = drive_get_max_bus(IF_SCSI); 1642 for (bus = 0; bus <= max_bus; bus++) { 1643 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1644 /* 1645 * By not creating frontends here, we make 1646 * scsi_legacy_handle_cmdline() create them, and warn that 1647 * this usage is deprecated. 1648 */ 1649 } 1650 } 1651 1652 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1653 { 1654 DeviceState *dev; 1655 SysBusDevice *d; 1656 unsigned int i; 1657 1658 if (kvm_ioapic_in_kernel()) { 1659 dev = qdev_create(NULL, "kvm-ioapic"); 1660 } else { 1661 dev = qdev_create(NULL, "ioapic"); 1662 } 1663 if (parent_name) { 1664 object_property_add_child(object_resolve_path(parent_name, NULL), 1665 "ioapic", OBJECT(dev), NULL); 1666 } 1667 qdev_init_nofail(dev); 1668 d = SYS_BUS_DEVICE(dev); 1669 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1670 1671 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1672 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1673 } 1674 } 1675 1676 static void pc_dimm_plug(HotplugHandler *hotplug_dev, 1677 DeviceState *dev, Error **errp) 1678 { 1679 HotplugHandlerClass *hhc; 1680 Error *local_err = NULL; 1681 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1682 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1683 PCDIMMDevice *dimm = PC_DIMM(dev); 1684 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1685 MemoryRegion *mr; 1686 uint64_t align = TARGET_PAGE_SIZE; 1687 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1688 1689 mr = ddc->get_memory_region(dimm, &local_err); 1690 if (local_err) { 1691 goto out; 1692 } 1693 1694 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) { 1695 align = memory_region_get_alignment(mr); 1696 } 1697 1698 /* 1699 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1700 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1701 * addition to cover this case. 1702 */ 1703 if (!pcms->acpi_dev || !acpi_enabled) { 1704 error_setg(&local_err, 1705 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1706 goto out; 1707 } 1708 1709 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1710 error_setg(&local_err, 1711 "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1712 goto out; 1713 } 1714 1715 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err); 1716 if (local_err) { 1717 goto out; 1718 } 1719 1720 if (is_nvdimm) { 1721 nvdimm_plug(&pcms->acpi_nvdimm_state); 1722 } 1723 1724 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1725 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1726 out: 1727 error_propagate(errp, local_err); 1728 } 1729 1730 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev, 1731 DeviceState *dev, Error **errp) 1732 { 1733 HotplugHandlerClass *hhc; 1734 Error *local_err = NULL; 1735 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1736 1737 /* 1738 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1739 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1740 * addition to cover this case. 1741 */ 1742 if (!pcms->acpi_dev || !acpi_enabled) { 1743 error_setg(&local_err, 1744 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1745 goto out; 1746 } 1747 1748 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1749 error_setg(&local_err, 1750 "nvdimm device hot unplug is not supported yet."); 1751 goto out; 1752 } 1753 1754 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1755 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1756 1757 out: 1758 error_propagate(errp, local_err); 1759 } 1760 1761 static void pc_dimm_unplug(HotplugHandler *hotplug_dev, 1762 DeviceState *dev, Error **errp) 1763 { 1764 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1765 PCDIMMDevice *dimm = PC_DIMM(dev); 1766 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1767 MemoryRegion *mr; 1768 HotplugHandlerClass *hhc; 1769 Error *local_err = NULL; 1770 1771 mr = ddc->get_memory_region(dimm, &local_err); 1772 if (local_err) { 1773 goto out; 1774 } 1775 1776 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1777 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1778 1779 if (local_err) { 1780 goto out; 1781 } 1782 1783 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr); 1784 object_unparent(OBJECT(dev)); 1785 1786 out: 1787 error_propagate(errp, local_err); 1788 } 1789 1790 static int pc_apic_cmp(const void *a, const void *b) 1791 { 1792 CPUArchId *apic_a = (CPUArchId *)a; 1793 CPUArchId *apic_b = (CPUArchId *)b; 1794 1795 return apic_a->arch_id - apic_b->arch_id; 1796 } 1797 1798 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1799 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1800 * entry corresponding to CPU's apic_id returns NULL. 1801 */ 1802 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1803 { 1804 CPUArchId apic_id, *found_cpu; 1805 1806 apic_id.arch_id = id; 1807 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1808 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1809 pc_apic_cmp); 1810 if (found_cpu && idx) { 1811 *idx = found_cpu - ms->possible_cpus->cpus; 1812 } 1813 return found_cpu; 1814 } 1815 1816 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1817 DeviceState *dev, Error **errp) 1818 { 1819 CPUArchId *found_cpu; 1820 HotplugHandlerClass *hhc; 1821 Error *local_err = NULL; 1822 X86CPU *cpu = X86_CPU(dev); 1823 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1824 1825 if (pcms->acpi_dev) { 1826 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1827 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1828 if (local_err) { 1829 goto out; 1830 } 1831 } 1832 1833 /* increment the number of CPUs */ 1834 pcms->boot_cpus++; 1835 if (pcms->rtc) { 1836 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1837 } 1838 if (pcms->fw_cfg) { 1839 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1840 } 1841 1842 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1843 found_cpu->cpu = OBJECT(dev); 1844 out: 1845 error_propagate(errp, local_err); 1846 } 1847 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1848 DeviceState *dev, Error **errp) 1849 { 1850 int idx = -1; 1851 HotplugHandlerClass *hhc; 1852 Error *local_err = NULL; 1853 X86CPU *cpu = X86_CPU(dev); 1854 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1855 1856 if (!pcms->acpi_dev) { 1857 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1858 goto out; 1859 } 1860 1861 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1862 assert(idx != -1); 1863 if (idx == 0) { 1864 error_setg(&local_err, "Boot CPU is unpluggable"); 1865 goto out; 1866 } 1867 1868 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1869 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1870 1871 if (local_err) { 1872 goto out; 1873 } 1874 1875 out: 1876 error_propagate(errp, local_err); 1877 1878 } 1879 1880 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1881 DeviceState *dev, Error **errp) 1882 { 1883 CPUArchId *found_cpu; 1884 HotplugHandlerClass *hhc; 1885 Error *local_err = NULL; 1886 X86CPU *cpu = X86_CPU(dev); 1887 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1888 1889 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1890 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1891 1892 if (local_err) { 1893 goto out; 1894 } 1895 1896 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1897 found_cpu->cpu = NULL; 1898 object_unparent(OBJECT(dev)); 1899 1900 /* decrement the number of CPUs */ 1901 pcms->boot_cpus--; 1902 /* Update the number of CPUs in CMOS */ 1903 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1904 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1905 out: 1906 error_propagate(errp, local_err); 1907 } 1908 1909 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1910 DeviceState *dev, Error **errp) 1911 { 1912 int idx; 1913 CPUState *cs; 1914 CPUArchId *cpu_slot; 1915 X86CPUTopoInfo topo; 1916 X86CPU *cpu = X86_CPU(dev); 1917 MachineState *ms = MACHINE(hotplug_dev); 1918 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1919 1920 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1921 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1922 ms->cpu_type); 1923 return; 1924 } 1925 1926 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1927 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1928 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1929 1930 if (cpu->socket_id < 0) { 1931 error_setg(errp, "CPU socket-id is not set"); 1932 return; 1933 } else if (cpu->socket_id > max_socket) { 1934 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1935 cpu->socket_id, max_socket); 1936 return; 1937 } 1938 if (cpu->core_id < 0) { 1939 error_setg(errp, "CPU core-id is not set"); 1940 return; 1941 } else if (cpu->core_id > (smp_cores - 1)) { 1942 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1943 cpu->core_id, smp_cores - 1); 1944 return; 1945 } 1946 if (cpu->thread_id < 0) { 1947 error_setg(errp, "CPU thread-id is not set"); 1948 return; 1949 } else if (cpu->thread_id > (smp_threads - 1)) { 1950 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1951 cpu->thread_id, smp_threads - 1); 1952 return; 1953 } 1954 1955 topo.pkg_id = cpu->socket_id; 1956 topo.core_id = cpu->core_id; 1957 topo.smt_id = cpu->thread_id; 1958 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1959 } 1960 1961 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1962 if (!cpu_slot) { 1963 MachineState *ms = MACHINE(pcms); 1964 1965 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1966 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1967 " APIC ID %" PRIu32 ", valid index range 0:%d", 1968 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1969 ms->possible_cpus->len - 1); 1970 return; 1971 } 1972 1973 if (cpu_slot->cpu) { 1974 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1975 idx, cpu->apic_id); 1976 return; 1977 } 1978 1979 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1980 * so that machine_query_hotpluggable_cpus would show correct values 1981 */ 1982 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1983 * once -smp refactoring is complete and there will be CPU private 1984 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1985 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1986 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1987 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1988 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1989 return; 1990 } 1991 cpu->socket_id = topo.pkg_id; 1992 1993 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 1994 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 1995 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 1996 return; 1997 } 1998 cpu->core_id = topo.core_id; 1999 2000 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2001 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2002 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2003 return; 2004 } 2005 cpu->thread_id = topo.smt_id; 2006 2007 cs = CPU(cpu); 2008 cs->cpu_index = idx; 2009 2010 numa_cpu_pre_plug(cpu_slot, dev, errp); 2011 } 2012 2013 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2014 DeviceState *dev, Error **errp) 2015 { 2016 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2017 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2018 } 2019 } 2020 2021 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2022 DeviceState *dev, Error **errp) 2023 { 2024 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2025 pc_dimm_plug(hotplug_dev, dev, errp); 2026 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2027 pc_cpu_plug(hotplug_dev, dev, errp); 2028 } 2029 } 2030 2031 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2032 DeviceState *dev, Error **errp) 2033 { 2034 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2035 pc_dimm_unplug_request(hotplug_dev, dev, errp); 2036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2037 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2038 } else { 2039 error_setg(errp, "acpi: device unplug request for not supported device" 2040 " type: %s", object_get_typename(OBJECT(dev))); 2041 } 2042 } 2043 2044 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2045 DeviceState *dev, Error **errp) 2046 { 2047 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2048 pc_dimm_unplug(hotplug_dev, dev, errp); 2049 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2050 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2051 } else { 2052 error_setg(errp, "acpi: device unplug for not supported device" 2053 " type: %s", object_get_typename(OBJECT(dev))); 2054 } 2055 } 2056 2057 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2058 DeviceState *dev) 2059 { 2060 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); 2061 2062 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2063 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2064 return HOTPLUG_HANDLER(machine); 2065 } 2066 2067 return pcmc->get_hotplug_handler ? 2068 pcmc->get_hotplug_handler(machine, dev) : NULL; 2069 } 2070 2071 static void 2072 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, 2073 const char *name, void *opaque, 2074 Error **errp) 2075 { 2076 PCMachineState *pcms = PC_MACHINE(obj); 2077 int64_t value = memory_region_size(&pcms->hotplug_memory.mr); 2078 2079 visit_type_int(v, name, &value, errp); 2080 } 2081 2082 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2083 const char *name, void *opaque, 2084 Error **errp) 2085 { 2086 PCMachineState *pcms = PC_MACHINE(obj); 2087 uint64_t value = pcms->max_ram_below_4g; 2088 2089 visit_type_size(v, name, &value, errp); 2090 } 2091 2092 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2093 const char *name, void *opaque, 2094 Error **errp) 2095 { 2096 PCMachineState *pcms = PC_MACHINE(obj); 2097 Error *error = NULL; 2098 uint64_t value; 2099 2100 visit_type_size(v, name, &value, &error); 2101 if (error) { 2102 error_propagate(errp, error); 2103 return; 2104 } 2105 if (value > (1ULL << 32)) { 2106 error_setg(&error, 2107 "Machine option 'max-ram-below-4g=%"PRIu64 2108 "' expects size less than or equal to 4G", value); 2109 error_propagate(errp, error); 2110 return; 2111 } 2112 2113 if (value < (1ULL << 20)) { 2114 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2115 "BIOS may not work with less than 1MiB", value); 2116 } 2117 2118 pcms->max_ram_below_4g = value; 2119 } 2120 2121 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2122 void *opaque, Error **errp) 2123 { 2124 PCMachineState *pcms = PC_MACHINE(obj); 2125 OnOffAuto vmport = pcms->vmport; 2126 2127 visit_type_OnOffAuto(v, name, &vmport, errp); 2128 } 2129 2130 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2131 void *opaque, Error **errp) 2132 { 2133 PCMachineState *pcms = PC_MACHINE(obj); 2134 2135 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2136 } 2137 2138 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2139 { 2140 bool smm_available = false; 2141 2142 if (pcms->smm == ON_OFF_AUTO_OFF) { 2143 return false; 2144 } 2145 2146 if (tcg_enabled() || qtest_enabled()) { 2147 smm_available = true; 2148 } else if (kvm_enabled()) { 2149 smm_available = kvm_has_smm(); 2150 } 2151 2152 if (smm_available) { 2153 return true; 2154 } 2155 2156 if (pcms->smm == ON_OFF_AUTO_ON) { 2157 error_report("System Management Mode not supported by this hypervisor."); 2158 exit(1); 2159 } 2160 return false; 2161 } 2162 2163 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2164 void *opaque, Error **errp) 2165 { 2166 PCMachineState *pcms = PC_MACHINE(obj); 2167 OnOffAuto smm = pcms->smm; 2168 2169 visit_type_OnOffAuto(v, name, &smm, errp); 2170 } 2171 2172 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2173 void *opaque, Error **errp) 2174 { 2175 PCMachineState *pcms = PC_MACHINE(obj); 2176 2177 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2178 } 2179 2180 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2181 { 2182 PCMachineState *pcms = PC_MACHINE(obj); 2183 2184 return pcms->acpi_nvdimm_state.is_enabled; 2185 } 2186 2187 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2188 { 2189 PCMachineState *pcms = PC_MACHINE(obj); 2190 2191 pcms->acpi_nvdimm_state.is_enabled = value; 2192 } 2193 2194 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2195 { 2196 PCMachineState *pcms = PC_MACHINE(obj); 2197 2198 return pcms->smbus; 2199 } 2200 2201 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2202 { 2203 PCMachineState *pcms = PC_MACHINE(obj); 2204 2205 pcms->smbus = value; 2206 } 2207 2208 static bool pc_machine_get_sata(Object *obj, Error **errp) 2209 { 2210 PCMachineState *pcms = PC_MACHINE(obj); 2211 2212 return pcms->sata; 2213 } 2214 2215 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2216 { 2217 PCMachineState *pcms = PC_MACHINE(obj); 2218 2219 pcms->sata = value; 2220 } 2221 2222 static bool pc_machine_get_pit(Object *obj, Error **errp) 2223 { 2224 PCMachineState *pcms = PC_MACHINE(obj); 2225 2226 return pcms->pit; 2227 } 2228 2229 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2230 { 2231 PCMachineState *pcms = PC_MACHINE(obj); 2232 2233 pcms->pit = value; 2234 } 2235 2236 static void pc_machine_initfn(Object *obj) 2237 { 2238 PCMachineState *pcms = PC_MACHINE(obj); 2239 2240 pcms->max_ram_below_4g = 0; /* use default */ 2241 pcms->smm = ON_OFF_AUTO_AUTO; 2242 pcms->vmport = ON_OFF_AUTO_AUTO; 2243 /* nvdimm is disabled on default. */ 2244 pcms->acpi_nvdimm_state.is_enabled = false; 2245 /* acpi build is enabled by default if machine supports it */ 2246 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2247 pcms->smbus = true; 2248 pcms->sata = true; 2249 pcms->pit = true; 2250 } 2251 2252 static void pc_machine_reset(void) 2253 { 2254 CPUState *cs; 2255 X86CPU *cpu; 2256 2257 qemu_devices_reset(); 2258 2259 /* Reset APIC after devices have been reset to cancel 2260 * any changes that qemu_devices_reset() might have done. 2261 */ 2262 CPU_FOREACH(cs) { 2263 cpu = X86_CPU(cs); 2264 2265 if (cpu->apic_state) { 2266 device_reset(cpu->apic_state); 2267 } 2268 } 2269 } 2270 2271 static CpuInstanceProperties 2272 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2273 { 2274 MachineClass *mc = MACHINE_GET_CLASS(ms); 2275 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2276 2277 assert(cpu_index < possible_cpus->len); 2278 return possible_cpus->cpus[cpu_index].props; 2279 } 2280 2281 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2282 { 2283 X86CPUTopoInfo topo; 2284 2285 assert(idx < ms->possible_cpus->len); 2286 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2287 smp_cores, smp_threads, &topo); 2288 return topo.pkg_id % nb_numa_nodes; 2289 } 2290 2291 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2292 { 2293 int i; 2294 2295 if (ms->possible_cpus) { 2296 /* 2297 * make sure that max_cpus hasn't changed since the first use, i.e. 2298 * -smp hasn't been parsed after it 2299 */ 2300 assert(ms->possible_cpus->len == max_cpus); 2301 return ms->possible_cpus; 2302 } 2303 2304 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2305 sizeof(CPUArchId) * max_cpus); 2306 ms->possible_cpus->len = max_cpus; 2307 for (i = 0; i < ms->possible_cpus->len; i++) { 2308 X86CPUTopoInfo topo; 2309 2310 ms->possible_cpus->cpus[i].vcpus_count = 1; 2311 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2312 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2313 smp_cores, smp_threads, &topo); 2314 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2315 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2316 ms->possible_cpus->cpus[i].props.has_core_id = true; 2317 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2318 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2319 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2320 } 2321 return ms->possible_cpus; 2322 } 2323 2324 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2325 { 2326 /* cpu index isn't used */ 2327 CPUState *cs; 2328 2329 CPU_FOREACH(cs) { 2330 X86CPU *cpu = X86_CPU(cs); 2331 2332 if (!cpu->apic_state) { 2333 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2334 } else { 2335 apic_deliver_nmi(cpu->apic_state); 2336 } 2337 } 2338 } 2339 2340 static void pc_machine_class_init(ObjectClass *oc, void *data) 2341 { 2342 MachineClass *mc = MACHINE_CLASS(oc); 2343 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2344 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2345 NMIClass *nc = NMI_CLASS(oc); 2346 2347 pcmc->get_hotplug_handler = mc->get_hotplug_handler; 2348 pcmc->pci_enabled = true; 2349 pcmc->has_acpi_build = true; 2350 pcmc->rsdp_in_ram = true; 2351 pcmc->smbios_defaults = true; 2352 pcmc->smbios_uuid_encoded = true; 2353 pcmc->gigabyte_align = true; 2354 pcmc->has_reserved_memory = true; 2355 pcmc->kvmclock_enabled = true; 2356 pcmc->enforce_aligned_dimm = true; 2357 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2358 * to be used at the moment, 32K should be enough for a while. */ 2359 pcmc->acpi_data_size = 0x20000 + 0x8000; 2360 pcmc->save_tsc_khz = true; 2361 pcmc->linuxboot_dma_enabled = true; 2362 mc->get_hotplug_handler = pc_get_hotpug_handler; 2363 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2364 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2365 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2366 mc->auto_enable_numa_with_memhp = true; 2367 mc->has_hotpluggable_cpus = true; 2368 mc->default_boot_order = "cad"; 2369 mc->hot_add_cpu = pc_hot_add_cpu; 2370 mc->block_default_type = IF_IDE; 2371 mc->max_cpus = 255; 2372 mc->reset = pc_machine_reset; 2373 hc->pre_plug = pc_machine_device_pre_plug_cb; 2374 hc->plug = pc_machine_device_plug_cb; 2375 hc->unplug_request = pc_machine_device_unplug_request_cb; 2376 hc->unplug = pc_machine_device_unplug_cb; 2377 nc->nmi_monitor_handler = x86_nmi; 2378 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2379 2380 object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int", 2381 pc_machine_get_hotplug_memory_region_size, NULL, 2382 NULL, NULL, &error_abort); 2383 2384 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2385 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2386 NULL, NULL, &error_abort); 2387 2388 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2389 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2390 2391 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2392 pc_machine_get_smm, pc_machine_set_smm, 2393 NULL, NULL, &error_abort); 2394 object_class_property_set_description(oc, PC_MACHINE_SMM, 2395 "Enable SMM (pc & q35)", &error_abort); 2396 2397 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2398 pc_machine_get_vmport, pc_machine_set_vmport, 2399 NULL, NULL, &error_abort); 2400 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2401 "Enable vmport (pc & q35)", &error_abort); 2402 2403 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2404 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2405 2406 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2407 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2408 2409 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2410 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2411 2412 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2413 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2414 } 2415 2416 static const TypeInfo pc_machine_info = { 2417 .name = TYPE_PC_MACHINE, 2418 .parent = TYPE_MACHINE, 2419 .abstract = true, 2420 .instance_size = sizeof(PCMachineState), 2421 .instance_init = pc_machine_initfn, 2422 .class_size = sizeof(PCMachineClass), 2423 .class_init = pc_machine_class_init, 2424 .interfaces = (InterfaceInfo[]) { 2425 { TYPE_HOTPLUG_HANDLER }, 2426 { TYPE_NMI }, 2427 { } 2428 }, 2429 }; 2430 2431 static void pc_machine_register_types(void) 2432 { 2433 type_register_static(&pc_machine_info); 2434 } 2435 2436 type_init(pc_machine_register_types) 2437