1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/hw.h" 25 #include "hw/i386/pc.h" 26 #include "hw/char/serial.h" 27 #include "hw/i386/apic.h" 28 #include "hw/block/fdc.h" 29 #include "hw/ide.h" 30 #include "hw/pci/pci.h" 31 #include "monitor/monitor.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/timer/hpet.h" 34 #include "hw/i386/smbios.h" 35 #include "hw/loader.h" 36 #include "elf.h" 37 #include "multiboot.h" 38 #include "hw/timer/mc146818rtc.h" 39 #include "hw/timer/i8254.h" 40 #include "hw/audio/pcspk.h" 41 #include "hw/pci/msi.h" 42 #include "hw/sysbus.h" 43 #include "sysemu/sysemu.h" 44 #include "sysemu/kvm.h" 45 #include "kvm_i386.h" 46 #include "hw/xen/xen.h" 47 #include "sysemu/blockdev.h" 48 #include "hw/block/block.h" 49 #include "ui/qemu-spice.h" 50 #include "exec/memory.h" 51 #include "exec/address-spaces.h" 52 #include "sysemu/arch_init.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/config-file.h" 55 #include "hw/acpi/acpi.h" 56 #include "hw/cpu/icc_bus.h" 57 #include "hw/boards.h" 58 59 /* debug PC/ISA interrupts */ 60 //#define DEBUG_IRQ 61 62 #ifdef DEBUG_IRQ 63 #define DPRINTF(fmt, ...) \ 64 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 65 #else 66 #define DPRINTF(fmt, ...) 67 #endif 68 69 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ 70 #define ACPI_DATA_SIZE 0x10000 71 #define BIOS_CFG_IOPORT 0x510 72 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 73 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 74 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 75 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 76 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 77 78 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000 79 80 #define E820_NR_ENTRIES 16 81 82 struct e820_entry { 83 uint64_t address; 84 uint64_t length; 85 uint32_t type; 86 } QEMU_PACKED __attribute((__aligned__(4))); 87 88 struct e820_table { 89 uint32_t count; 90 struct e820_entry entry[E820_NR_ENTRIES]; 91 } QEMU_PACKED __attribute((__aligned__(4))); 92 93 static struct e820_table e820_table; 94 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 95 96 void gsi_handler(void *opaque, int n, int level) 97 { 98 GSIState *s = opaque; 99 100 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 101 if (n < ISA_NUM_IRQS) { 102 qemu_set_irq(s->i8259_irq[n], level); 103 } 104 qemu_set_irq(s->ioapic_irq[n], level); 105 } 106 107 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 108 unsigned size) 109 { 110 } 111 112 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 113 { 114 return 0xffffffffffffffffULL; 115 } 116 117 /* MSDOS compatibility mode FPU exception support */ 118 static qemu_irq ferr_irq; 119 120 void pc_register_ferr_irq(qemu_irq irq) 121 { 122 ferr_irq = irq; 123 } 124 125 /* XXX: add IGNNE support */ 126 void cpu_set_ferr(CPUX86State *s) 127 { 128 qemu_irq_raise(ferr_irq); 129 } 130 131 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 132 unsigned size) 133 { 134 qemu_irq_lower(ferr_irq); 135 } 136 137 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 138 { 139 return 0xffffffffffffffffULL; 140 } 141 142 /* TSC handling */ 143 uint64_t cpu_get_tsc(CPUX86State *env) 144 { 145 return cpu_get_ticks(); 146 } 147 148 /* SMM support */ 149 150 static cpu_set_smm_t smm_set; 151 static void *smm_arg; 152 153 void cpu_smm_register(cpu_set_smm_t callback, void *arg) 154 { 155 assert(smm_set == NULL); 156 assert(smm_arg == NULL); 157 smm_set = callback; 158 smm_arg = arg; 159 } 160 161 void cpu_smm_update(CPUX86State *env) 162 { 163 if (smm_set && smm_arg && env == first_cpu) 164 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg); 165 } 166 167 168 /* IRQ handling */ 169 int cpu_get_pic_interrupt(CPUX86State *env) 170 { 171 int intno; 172 173 intno = apic_get_interrupt(env->apic_state); 174 if (intno >= 0) { 175 return intno; 176 } 177 /* read the irq from the PIC */ 178 if (!apic_accept_pic_intr(env->apic_state)) { 179 return -1; 180 } 181 182 intno = pic_read_irq(isa_pic); 183 return intno; 184 } 185 186 static void pic_irq_request(void *opaque, int irq, int level) 187 { 188 CPUX86State *env = first_cpu; 189 190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 191 if (env->apic_state) { 192 while (env) { 193 if (apic_accept_pic_intr(env->apic_state)) { 194 apic_deliver_pic_intr(env->apic_state, level); 195 } 196 env = env->next_cpu; 197 } 198 } else { 199 CPUState *cs = CPU(x86_env_get_cpu(env)); 200 if (level) { 201 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 202 } else { 203 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 204 } 205 } 206 } 207 208 /* PC cmos mappings */ 209 210 #define REG_EQUIPMENT_BYTE 0x14 211 212 static int cmos_get_fd_drive_type(FDriveType fd0) 213 { 214 int val; 215 216 switch (fd0) { 217 case FDRIVE_DRV_144: 218 /* 1.44 Mb 3"5 drive */ 219 val = 4; 220 break; 221 case FDRIVE_DRV_288: 222 /* 2.88 Mb 3"5 drive */ 223 val = 5; 224 break; 225 case FDRIVE_DRV_120: 226 /* 1.2 Mb 5"5 drive */ 227 val = 2; 228 break; 229 case FDRIVE_DRV_NONE: 230 default: 231 val = 0; 232 break; 233 } 234 return val; 235 } 236 237 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 238 int16_t cylinders, int8_t heads, int8_t sectors) 239 { 240 rtc_set_memory(s, type_ofs, 47); 241 rtc_set_memory(s, info_ofs, cylinders); 242 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 243 rtc_set_memory(s, info_ofs + 2, heads); 244 rtc_set_memory(s, info_ofs + 3, 0xff); 245 rtc_set_memory(s, info_ofs + 4, 0xff); 246 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 247 rtc_set_memory(s, info_ofs + 6, cylinders); 248 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 249 rtc_set_memory(s, info_ofs + 8, sectors); 250 } 251 252 /* convert boot_device letter to something recognizable by the bios */ 253 static int boot_device2nibble(char boot_device) 254 { 255 switch(boot_device) { 256 case 'a': 257 case 'b': 258 return 0x01; /* floppy boot */ 259 case 'c': 260 return 0x02; /* hard drive boot */ 261 case 'd': 262 return 0x03; /* CD-ROM boot */ 263 case 'n': 264 return 0x04; /* Network boot */ 265 } 266 return 0; 267 } 268 269 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk) 270 { 271 #define PC_MAX_BOOT_DEVICES 3 272 int nbds, bds[3] = { 0, }; 273 int i; 274 275 nbds = strlen(boot_device); 276 if (nbds > PC_MAX_BOOT_DEVICES) { 277 error_report("Too many boot devices for PC"); 278 return(1); 279 } 280 for (i = 0; i < nbds; i++) { 281 bds[i] = boot_device2nibble(boot_device[i]); 282 if (bds[i] == 0) { 283 error_report("Invalid boot device for PC: '%c'", 284 boot_device[i]); 285 return(1); 286 } 287 } 288 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 289 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 290 return(0); 291 } 292 293 static int pc_boot_set(void *opaque, const char *boot_device) 294 { 295 return set_boot_dev(opaque, boot_device, 0); 296 } 297 298 typedef struct pc_cmos_init_late_arg { 299 ISADevice *rtc_state; 300 BusState *idebus[2]; 301 } pc_cmos_init_late_arg; 302 303 static void pc_cmos_init_late(void *opaque) 304 { 305 pc_cmos_init_late_arg *arg = opaque; 306 ISADevice *s = arg->rtc_state; 307 int16_t cylinders; 308 int8_t heads, sectors; 309 int val; 310 int i, trans; 311 312 val = 0; 313 if (ide_get_geometry(arg->idebus[0], 0, 314 &cylinders, &heads, §ors) >= 0) { 315 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 316 val |= 0xf0; 317 } 318 if (ide_get_geometry(arg->idebus[0], 1, 319 &cylinders, &heads, §ors) >= 0) { 320 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 321 val |= 0x0f; 322 } 323 rtc_set_memory(s, 0x12, val); 324 325 val = 0; 326 for (i = 0; i < 4; i++) { 327 /* NOTE: ide_get_geometry() returns the physical 328 geometry. It is always such that: 1 <= sects <= 63, 1 329 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 330 geometry can be different if a translation is done. */ 331 if (ide_get_geometry(arg->idebus[i / 2], i % 2, 332 &cylinders, &heads, §ors) >= 0) { 333 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 334 assert((trans & ~3) == 0); 335 val |= trans << (i * 2); 336 } 337 } 338 rtc_set_memory(s, 0x39, val); 339 340 qemu_unregister_reset(pc_cmos_init_late, opaque); 341 } 342 343 typedef struct RTCCPUHotplugArg { 344 Notifier cpu_added_notifier; 345 ISADevice *rtc_state; 346 } RTCCPUHotplugArg; 347 348 static void rtc_notify_cpu_added(Notifier *notifier, void *data) 349 { 350 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg, 351 cpu_added_notifier); 352 ISADevice *s = arg->rtc_state; 353 354 /* increment the number of CPUs */ 355 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1); 356 } 357 358 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, 359 const char *boot_device, 360 ISADevice *floppy, BusState *idebus0, BusState *idebus1, 361 ISADevice *s) 362 { 363 int val, nb, i; 364 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE }; 365 static pc_cmos_init_late_arg arg; 366 static RTCCPUHotplugArg cpu_hotplug_cb; 367 368 /* various important CMOS locations needed by PC/Bochs bios */ 369 370 /* memory size */ 371 /* base memory (first MiB) */ 372 val = MIN(ram_size / 1024, 640); 373 rtc_set_memory(s, 0x15, val); 374 rtc_set_memory(s, 0x16, val >> 8); 375 /* extended memory (next 64MiB) */ 376 if (ram_size > 1024 * 1024) { 377 val = (ram_size - 1024 * 1024) / 1024; 378 } else { 379 val = 0; 380 } 381 if (val > 65535) 382 val = 65535; 383 rtc_set_memory(s, 0x17, val); 384 rtc_set_memory(s, 0x18, val >> 8); 385 rtc_set_memory(s, 0x30, val); 386 rtc_set_memory(s, 0x31, val >> 8); 387 /* memory between 16MiB and 4GiB */ 388 if (ram_size > 16 * 1024 * 1024) { 389 val = (ram_size - 16 * 1024 * 1024) / 65536; 390 } else { 391 val = 0; 392 } 393 if (val > 65535) 394 val = 65535; 395 rtc_set_memory(s, 0x34, val); 396 rtc_set_memory(s, 0x35, val >> 8); 397 /* memory above 4GiB */ 398 val = above_4g_mem_size / 65536; 399 rtc_set_memory(s, 0x5b, val); 400 rtc_set_memory(s, 0x5c, val >> 8); 401 rtc_set_memory(s, 0x5d, val >> 16); 402 403 /* set the number of CPU */ 404 rtc_set_memory(s, 0x5f, smp_cpus - 1); 405 /* init CPU hotplug notifier */ 406 cpu_hotplug_cb.rtc_state = s; 407 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added; 408 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier); 409 410 /* set boot devices, and disable floppy signature check if requested */ 411 if (set_boot_dev(s, boot_device, fd_bootchk)) { 412 exit(1); 413 } 414 415 /* floppy type */ 416 if (floppy) { 417 for (i = 0; i < 2; i++) { 418 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 419 } 420 } 421 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 422 cmos_get_fd_drive_type(fd_type[1]); 423 rtc_set_memory(s, 0x10, val); 424 425 val = 0; 426 nb = 0; 427 if (fd_type[0] < FDRIVE_DRV_NONE) { 428 nb++; 429 } 430 if (fd_type[1] < FDRIVE_DRV_NONE) { 431 nb++; 432 } 433 switch (nb) { 434 case 0: 435 break; 436 case 1: 437 val |= 0x01; /* 1 drive, ready for boot */ 438 break; 439 case 2: 440 val |= 0x41; /* 2 drives, ready for boot */ 441 break; 442 } 443 val |= 0x02; /* FPU is there */ 444 val |= 0x04; /* PS/2 mouse installed */ 445 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 446 447 /* hard drives */ 448 arg.rtc_state = s; 449 arg.idebus[0] = idebus0; 450 arg.idebus[1] = idebus1; 451 qemu_register_reset(pc_cmos_init_late, &arg); 452 } 453 454 #define TYPE_PORT92 "port92" 455 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 456 457 /* port 92 stuff: could be split off */ 458 typedef struct Port92State { 459 ISADevice parent_obj; 460 461 MemoryRegion io; 462 uint8_t outport; 463 qemu_irq *a20_out; 464 } Port92State; 465 466 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 467 unsigned size) 468 { 469 Port92State *s = opaque; 470 471 DPRINTF("port92: write 0x%02x\n", val); 472 s->outport = val; 473 qemu_set_irq(*s->a20_out, (val >> 1) & 1); 474 if (val & 1) { 475 qemu_system_reset_request(); 476 } 477 } 478 479 static uint64_t port92_read(void *opaque, hwaddr addr, 480 unsigned size) 481 { 482 Port92State *s = opaque; 483 uint32_t ret; 484 485 ret = s->outport; 486 DPRINTF("port92: read 0x%02x\n", ret); 487 return ret; 488 } 489 490 static void port92_init(ISADevice *dev, qemu_irq *a20_out) 491 { 492 Port92State *s = PORT92(dev); 493 494 s->a20_out = a20_out; 495 } 496 497 static const VMStateDescription vmstate_port92_isa = { 498 .name = "port92", 499 .version_id = 1, 500 .minimum_version_id = 1, 501 .minimum_version_id_old = 1, 502 .fields = (VMStateField []) { 503 VMSTATE_UINT8(outport, Port92State), 504 VMSTATE_END_OF_LIST() 505 } 506 }; 507 508 static void port92_reset(DeviceState *d) 509 { 510 Port92State *s = PORT92(d); 511 512 s->outport &= ~1; 513 } 514 515 static const MemoryRegionOps port92_ops = { 516 .read = port92_read, 517 .write = port92_write, 518 .impl = { 519 .min_access_size = 1, 520 .max_access_size = 1, 521 }, 522 .endianness = DEVICE_LITTLE_ENDIAN, 523 }; 524 525 static void port92_initfn(Object *obj) 526 { 527 Port92State *s = PORT92(obj); 528 529 memory_region_init_io(&s->io, &port92_ops, s, "port92", 1); 530 531 s->outport = 0; 532 } 533 534 static void port92_realizefn(DeviceState *dev, Error **errp) 535 { 536 ISADevice *isadev = ISA_DEVICE(dev); 537 Port92State *s = PORT92(dev); 538 539 isa_register_ioport(isadev, &s->io, 0x92); 540 } 541 542 static void port92_class_initfn(ObjectClass *klass, void *data) 543 { 544 DeviceClass *dc = DEVICE_CLASS(klass); 545 546 dc->no_user = 1; 547 dc->realize = port92_realizefn; 548 dc->reset = port92_reset; 549 dc->vmsd = &vmstate_port92_isa; 550 } 551 552 static const TypeInfo port92_info = { 553 .name = TYPE_PORT92, 554 .parent = TYPE_ISA_DEVICE, 555 .instance_size = sizeof(Port92State), 556 .instance_init = port92_initfn, 557 .class_init = port92_class_initfn, 558 }; 559 560 static void port92_register_types(void) 561 { 562 type_register_static(&port92_info); 563 } 564 565 type_init(port92_register_types) 566 567 static void handle_a20_line_change(void *opaque, int irq, int level) 568 { 569 X86CPU *cpu = opaque; 570 571 /* XXX: send to all CPUs ? */ 572 /* XXX: add logic to handle multiple A20 line sources */ 573 x86_cpu_set_a20(cpu, level); 574 } 575 576 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 577 { 578 int index = le32_to_cpu(e820_table.count); 579 struct e820_entry *entry; 580 581 if (index >= E820_NR_ENTRIES) 582 return -EBUSY; 583 entry = &e820_table.entry[index++]; 584 585 entry->address = cpu_to_le64(address); 586 entry->length = cpu_to_le64(length); 587 entry->type = cpu_to_le32(type); 588 589 e820_table.count = cpu_to_le32(index); 590 return index; 591 } 592 593 /* Calculates the limit to CPU APIC ID values 594 * 595 * This function returns the limit for the APIC ID value, so that all 596 * CPU APIC IDs are < pc_apic_id_limit(). 597 * 598 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 599 */ 600 static unsigned int pc_apic_id_limit(unsigned int max_cpus) 601 { 602 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 603 } 604 605 static FWCfgState *bochs_bios_init(void) 606 { 607 FWCfgState *fw_cfg; 608 uint8_t *smbios_table; 609 size_t smbios_len; 610 uint64_t *numa_fw_cfg; 611 int i, j; 612 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus); 613 614 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); 615 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 616 * 617 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug 618 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC 619 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the 620 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS 621 * may see". 622 * 623 * So, this means we must not use max_cpus, here, but the maximum possible 624 * APIC ID value, plus one. 625 * 626 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is 627 * the APIC ID, not the "CPU index" 628 */ 629 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit); 630 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); 631 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 632 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 633 acpi_tables, acpi_tables_len); 634 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 635 636 smbios_table = smbios_get_table(&smbios_len); 637 if (smbios_table) 638 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 639 smbios_table, smbios_len); 640 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 641 &e820_table, sizeof(e820_table)); 642 643 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 644 /* allocate memory for the NUMA channel: one (64bit) word for the number 645 * of nodes, one word for each VCPU->node and one word for each node to 646 * hold the amount of memory. 647 */ 648 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); 649 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 650 for (i = 0; i < max_cpus; i++) { 651 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 652 assert(apic_id < apic_id_limit); 653 for (j = 0; j < nb_numa_nodes; j++) { 654 if (test_bit(i, node_cpumask[j])) { 655 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); 656 break; 657 } 658 } 659 } 660 for (i = 0; i < nb_numa_nodes; i++) { 661 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]); 662 } 663 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 664 (1 + apic_id_limit + nb_numa_nodes) * 665 sizeof(*numa_fw_cfg)); 666 667 return fw_cfg; 668 } 669 670 static long get_file_size(FILE *f) 671 { 672 long where, size; 673 674 /* XXX: on Unix systems, using fstat() probably makes more sense */ 675 676 where = ftell(f); 677 fseek(f, 0, SEEK_END); 678 size = ftell(f); 679 fseek(f, where, SEEK_SET); 680 681 return size; 682 } 683 684 static void load_linux(FWCfgState *fw_cfg, 685 const char *kernel_filename, 686 const char *initrd_filename, 687 const char *kernel_cmdline, 688 hwaddr max_ram_size) 689 { 690 uint16_t protocol; 691 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 692 uint32_t initrd_max; 693 uint8_t header[8192], *setup, *kernel, *initrd_data; 694 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 695 FILE *f; 696 char *vmode; 697 698 /* Align to 16 bytes as a paranoia measure */ 699 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 700 701 /* load the kernel header */ 702 f = fopen(kernel_filename, "rb"); 703 if (!f || !(kernel_size = get_file_size(f)) || 704 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 705 MIN(ARRAY_SIZE(header), kernel_size)) { 706 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 707 kernel_filename, strerror(errno)); 708 exit(1); 709 } 710 711 /* kernel protocol version */ 712 #if 0 713 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 714 #endif 715 if (ldl_p(header+0x202) == 0x53726448) { 716 protocol = lduw_p(header+0x206); 717 } else { 718 /* This looks like a multiboot kernel. If it is, let's stop 719 treating it like a Linux kernel. */ 720 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 721 kernel_cmdline, kernel_size, header)) { 722 return; 723 } 724 protocol = 0; 725 } 726 727 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 728 /* Low kernel */ 729 real_addr = 0x90000; 730 cmdline_addr = 0x9a000 - cmdline_size; 731 prot_addr = 0x10000; 732 } else if (protocol < 0x202) { 733 /* High but ancient kernel */ 734 real_addr = 0x90000; 735 cmdline_addr = 0x9a000 - cmdline_size; 736 prot_addr = 0x100000; 737 } else { 738 /* High and recent kernel */ 739 real_addr = 0x10000; 740 cmdline_addr = 0x20000; 741 prot_addr = 0x100000; 742 } 743 744 #if 0 745 fprintf(stderr, 746 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 747 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 748 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 749 real_addr, 750 cmdline_addr, 751 prot_addr); 752 #endif 753 754 /* highest address for loading the initrd */ 755 if (protocol >= 0x203) { 756 initrd_max = ldl_p(header+0x22c); 757 } else { 758 initrd_max = 0x37ffffff; 759 } 760 761 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) 762 initrd_max = max_ram_size-ACPI_DATA_SIZE-1; 763 764 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 765 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 766 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 767 768 if (protocol >= 0x202) { 769 stl_p(header+0x228, cmdline_addr); 770 } else { 771 stw_p(header+0x20, 0xA33F); 772 stw_p(header+0x22, cmdline_addr-real_addr); 773 } 774 775 /* handle vga= parameter */ 776 vmode = strstr(kernel_cmdline, "vga="); 777 if (vmode) { 778 unsigned int video_mode; 779 /* skip "vga=" */ 780 vmode += 4; 781 if (!strncmp(vmode, "normal", 6)) { 782 video_mode = 0xffff; 783 } else if (!strncmp(vmode, "ext", 3)) { 784 video_mode = 0xfffe; 785 } else if (!strncmp(vmode, "ask", 3)) { 786 video_mode = 0xfffd; 787 } else { 788 video_mode = strtol(vmode, NULL, 0); 789 } 790 stw_p(header+0x1fa, video_mode); 791 } 792 793 /* loader type */ 794 /* High nybble = B reserved for QEMU; low nybble is revision number. 795 If this code is substantially changed, you may want to consider 796 incrementing the revision. */ 797 if (protocol >= 0x200) { 798 header[0x210] = 0xB0; 799 } 800 /* heap */ 801 if (protocol >= 0x201) { 802 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 803 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 804 } 805 806 /* load initrd */ 807 if (initrd_filename) { 808 if (protocol < 0x200) { 809 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 810 exit(1); 811 } 812 813 initrd_size = get_image_size(initrd_filename); 814 if (initrd_size < 0) { 815 fprintf(stderr, "qemu: error reading initrd %s\n", 816 initrd_filename); 817 exit(1); 818 } 819 820 initrd_addr = (initrd_max-initrd_size) & ~4095; 821 822 initrd_data = g_malloc(initrd_size); 823 load_image(initrd_filename, initrd_data); 824 825 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 826 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 827 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 828 829 stl_p(header+0x218, initrd_addr); 830 stl_p(header+0x21c, initrd_size); 831 } 832 833 /* load kernel and setup */ 834 setup_size = header[0x1f1]; 835 if (setup_size == 0) { 836 setup_size = 4; 837 } 838 setup_size = (setup_size+1)*512; 839 kernel_size -= setup_size; 840 841 setup = g_malloc(setup_size); 842 kernel = g_malloc(kernel_size); 843 fseek(f, 0, SEEK_SET); 844 if (fread(setup, 1, setup_size, f) != setup_size) { 845 fprintf(stderr, "fread() failed\n"); 846 exit(1); 847 } 848 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 849 fprintf(stderr, "fread() failed\n"); 850 exit(1); 851 } 852 fclose(f); 853 memcpy(setup, header, MIN(sizeof(header), setup_size)); 854 855 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 856 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 857 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 858 859 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 860 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 861 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 862 863 option_rom[nb_option_roms].name = "linuxboot.bin"; 864 option_rom[nb_option_roms].bootindex = 0; 865 nb_option_roms++; 866 } 867 868 #define NE2000_NB_MAX 6 869 870 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 871 0x280, 0x380 }; 872 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 873 874 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc }; 875 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 }; 876 877 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 878 { 879 static int nb_ne2k = 0; 880 881 if (nb_ne2k == NE2000_NB_MAX) 882 return; 883 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 884 ne2000_irq[nb_ne2k], nd); 885 nb_ne2k++; 886 } 887 888 DeviceState *cpu_get_current_apic(void) 889 { 890 if (cpu_single_env) { 891 return cpu_single_env->apic_state; 892 } else { 893 return NULL; 894 } 895 } 896 897 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 898 { 899 X86CPU *cpu = opaque; 900 901 if (level) { 902 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 903 } 904 } 905 906 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id, 907 DeviceState *icc_bridge, Error **errp) 908 { 909 X86CPU *cpu; 910 Error *local_err = NULL; 911 912 cpu = cpu_x86_create(cpu_model, icc_bridge, errp); 913 if (!cpu) { 914 return cpu; 915 } 916 917 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); 918 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); 919 920 if (local_err) { 921 if (cpu != NULL) { 922 object_unref(OBJECT(cpu)); 923 cpu = NULL; 924 } 925 error_propagate(errp, local_err); 926 } 927 return cpu; 928 } 929 930 static const char *current_cpu_model; 931 932 void pc_hot_add_cpu(const int64_t id, Error **errp) 933 { 934 DeviceState *icc_bridge; 935 int64_t apic_id = x86_cpu_apic_id_from_index(id); 936 937 if (cpu_exists(apic_id)) { 938 error_setg(errp, "Unable to add CPU: %" PRIi64 939 ", it already exists", id); 940 return; 941 } 942 943 if (id >= max_cpus) { 944 error_setg(errp, "Unable to add CPU: %" PRIi64 945 ", max allowed: %d", id, max_cpus - 1); 946 return; 947 } 948 949 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge", 950 TYPE_ICC_BRIDGE, NULL)); 951 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp); 952 } 953 954 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge) 955 { 956 int i; 957 X86CPU *cpu = NULL; 958 Error *error = NULL; 959 960 /* init CPUs */ 961 if (cpu_model == NULL) { 962 #ifdef TARGET_X86_64 963 cpu_model = "qemu64"; 964 #else 965 cpu_model = "qemu32"; 966 #endif 967 } 968 current_cpu_model = cpu_model; 969 970 for (i = 0; i < smp_cpus; i++) { 971 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i), 972 icc_bridge, &error); 973 if (error) { 974 fprintf(stderr, "%s\n", error_get_pretty(error)); 975 error_free(error); 976 exit(1); 977 } 978 } 979 980 /* map APIC MMIO area if CPU has APIC */ 981 if (cpu && cpu->env.apic_state) { 982 /* XXX: what if the base changes? */ 983 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0, 984 APIC_DEFAULT_ADDRESS, 0x1000); 985 } 986 } 987 988 void pc_acpi_init(const char *default_dsdt) 989 { 990 char *filename; 991 992 if (acpi_tables != NULL) { 993 /* manually set via -acpitable, leave it alone */ 994 return; 995 } 996 997 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 998 if (filename == NULL) { 999 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 1000 } else { 1001 char *arg; 1002 QemuOpts *opts; 1003 Error *err = NULL; 1004 1005 arg = g_strdup_printf("file=%s", filename); 1006 1007 /* creates a deep copy of "arg" */ 1008 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0); 1009 g_assert(opts != NULL); 1010 1011 acpi_table_add(opts, &err); 1012 if (err) { 1013 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename, 1014 error_get_pretty(err)); 1015 error_free(err); 1016 } 1017 g_free(arg); 1018 g_free(filename); 1019 } 1020 } 1021 1022 FWCfgState *pc_memory_init(MemoryRegion *system_memory, 1023 const char *kernel_filename, 1024 const char *kernel_cmdline, 1025 const char *initrd_filename, 1026 ram_addr_t below_4g_mem_size, 1027 ram_addr_t above_4g_mem_size, 1028 MemoryRegion *rom_memory, 1029 MemoryRegion **ram_memory) 1030 { 1031 int linux_boot, i; 1032 MemoryRegion *ram, *option_rom_mr; 1033 MemoryRegion *ram_below_4g, *ram_above_4g; 1034 FWCfgState *fw_cfg; 1035 1036 linux_boot = (kernel_filename != NULL); 1037 1038 /* Allocate RAM. We allocate it as a single memory region and use 1039 * aliases to address portions of it, mostly for backwards compatibility 1040 * with older qemus that used qemu_ram_alloc(). 1041 */ 1042 ram = g_malloc(sizeof(*ram)); 1043 memory_region_init_ram(ram, "pc.ram", 1044 below_4g_mem_size + above_4g_mem_size); 1045 vmstate_register_ram_global(ram); 1046 *ram_memory = ram; 1047 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1048 memory_region_init_alias(ram_below_4g, "ram-below-4g", ram, 1049 0, below_4g_mem_size); 1050 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1051 if (above_4g_mem_size > 0) { 1052 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1053 memory_region_init_alias(ram_above_4g, "ram-above-4g", ram, 1054 below_4g_mem_size, above_4g_mem_size); 1055 memory_region_add_subregion(system_memory, 0x100000000ULL, 1056 ram_above_4g); 1057 } 1058 1059 1060 /* Initialize PC system firmware */ 1061 pc_system_firmware_init(rom_memory); 1062 1063 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1064 memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE); 1065 vmstate_register_ram_global(option_rom_mr); 1066 memory_region_add_subregion_overlap(rom_memory, 1067 PC_ROM_MIN_VGA, 1068 option_rom_mr, 1069 1); 1070 1071 fw_cfg = bochs_bios_init(); 1072 rom_set_fw(fw_cfg); 1073 1074 if (linux_boot) { 1075 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size); 1076 } 1077 1078 for (i = 0; i < nb_option_roms; i++) { 1079 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1080 } 1081 return fw_cfg; 1082 } 1083 1084 qemu_irq *pc_allocate_cpu_irq(void) 1085 { 1086 return qemu_allocate_irqs(pic_irq_request, NULL, 1); 1087 } 1088 1089 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1090 { 1091 DeviceState *dev = NULL; 1092 1093 if (pci_bus) { 1094 PCIDevice *pcidev = pci_vga_init(pci_bus); 1095 dev = pcidev ? &pcidev->qdev : NULL; 1096 } else if (isa_bus) { 1097 ISADevice *isadev = isa_vga_init(isa_bus); 1098 dev = isadev ? DEVICE(isadev) : NULL; 1099 } 1100 return dev; 1101 } 1102 1103 static void cpu_request_exit(void *opaque, int irq, int level) 1104 { 1105 CPUX86State *env = cpu_single_env; 1106 1107 if (env && level) { 1108 cpu_exit(env); 1109 } 1110 } 1111 1112 static const MemoryRegionOps ioport80_io_ops = { 1113 .write = ioport80_write, 1114 .read = ioport80_read, 1115 .endianness = DEVICE_NATIVE_ENDIAN, 1116 .impl = { 1117 .min_access_size = 1, 1118 .max_access_size = 1, 1119 }, 1120 }; 1121 1122 static const MemoryRegionOps ioportF0_io_ops = { 1123 .write = ioportF0_write, 1124 .read = ioportF0_read, 1125 .endianness = DEVICE_NATIVE_ENDIAN, 1126 .impl = { 1127 .min_access_size = 1, 1128 .max_access_size = 1, 1129 }, 1130 }; 1131 1132 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1133 ISADevice **rtc_state, 1134 ISADevice **floppy, 1135 bool no_vmport) 1136 { 1137 int i; 1138 DriveInfo *fd[MAX_FD]; 1139 DeviceState *hpet = NULL; 1140 int pit_isa_irq = 0; 1141 qemu_irq pit_alt_irq = NULL; 1142 qemu_irq rtc_irq = NULL; 1143 qemu_irq *a20_line; 1144 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1145 qemu_irq *cpu_exit_irq; 1146 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1147 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1148 1149 memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1); 1150 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1151 1152 memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1); 1153 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1154 1155 /* 1156 * Check if an HPET shall be created. 1157 * 1158 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1159 * when the HPET wants to take over. Thus we have to disable the latter. 1160 */ 1161 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1162 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL); 1163 1164 if (hpet) { 1165 for (i = 0; i < GSI_NUM_PINS; i++) { 1166 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1167 } 1168 pit_isa_irq = -1; 1169 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1170 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1171 } 1172 } 1173 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1174 1175 qemu_register_boot_set(pc_boot_set, *rtc_state); 1176 1177 if (!xen_enabled()) { 1178 if (kvm_irqchip_in_kernel()) { 1179 pit = kvm_pit_init(isa_bus, 0x40); 1180 } else { 1181 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1182 } 1183 if (hpet) { 1184 /* connect PIT to output control line of the HPET */ 1185 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1186 } 1187 pcspk_init(isa_bus, pit); 1188 } 1189 1190 for(i = 0; i < MAX_SERIAL_PORTS; i++) { 1191 if (serial_hds[i]) { 1192 serial_isa_init(isa_bus, i, serial_hds[i]); 1193 } 1194 } 1195 1196 for(i = 0; i < MAX_PARALLEL_PORTS; i++) { 1197 if (parallel_hds[i]) { 1198 parallel_init(isa_bus, i, parallel_hds[i]); 1199 } 1200 } 1201 1202 a20_line = qemu_allocate_irqs(handle_a20_line_change, 1203 x86_env_get_cpu(first_cpu), 2); 1204 i8042 = isa_create_simple(isa_bus, "i8042"); 1205 i8042_setup_a20_line(i8042, &a20_line[0]); 1206 if (!no_vmport) { 1207 vmport_init(isa_bus); 1208 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1209 } else { 1210 vmmouse = NULL; 1211 } 1212 if (vmmouse) { 1213 DeviceState *dev = DEVICE(vmmouse); 1214 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1215 qdev_init_nofail(dev); 1216 } 1217 port92 = isa_create_simple(isa_bus, "port92"); 1218 port92_init(port92, &a20_line[1]); 1219 1220 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); 1221 DMA_init(0, cpu_exit_irq); 1222 1223 for(i = 0; i < MAX_FD; i++) { 1224 fd[i] = drive_get(IF_FLOPPY, 0, i); 1225 } 1226 *floppy = fdctrl_init_isa(isa_bus, fd); 1227 } 1228 1229 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1230 { 1231 int i; 1232 1233 for (i = 0; i < nb_nics; i++) { 1234 NICInfo *nd = &nd_table[i]; 1235 1236 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1237 pc_init_ne2k_isa(isa_bus, nd); 1238 } else { 1239 pci_nic_init_nofail(nd, "e1000", NULL); 1240 } 1241 } 1242 } 1243 1244 void pc_pci_device_init(PCIBus *pci_bus) 1245 { 1246 int max_bus; 1247 int bus; 1248 1249 max_bus = drive_get_max_bus(IF_SCSI); 1250 for (bus = 0; bus <= max_bus; bus++) { 1251 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1252 } 1253 } 1254 1255 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1256 { 1257 DeviceState *dev; 1258 SysBusDevice *d; 1259 unsigned int i; 1260 1261 if (kvm_irqchip_in_kernel()) { 1262 dev = qdev_create(NULL, "kvm-ioapic"); 1263 } else { 1264 dev = qdev_create(NULL, "ioapic"); 1265 } 1266 if (parent_name) { 1267 object_property_add_child(object_resolve_path(parent_name, NULL), 1268 "ioapic", OBJECT(dev), NULL); 1269 } 1270 qdev_init_nofail(dev); 1271 d = SYS_BUS_DEVICE(dev); 1272 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1273 1274 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1275 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1276 } 1277 } 1278