1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/firmware/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 GlobalProperty pc_compat_3_1[] = { 113 { 114 .driver = "intel-iommu", 115 .property = "dma-drain", 116 .value = "off", 117 }, 118 }; 119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); 120 121 GlobalProperty pc_compat_3_0[] = { 122 { 123 .driver = TYPE_X86_CPU, 124 .property = "x-hv-synic-kvm-only", 125 .value = "on", 126 },{ 127 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 128 .property = "pku", 129 .value = "off", 130 },{ 131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU, 132 .property = "pku", 133 .value = "off", 134 }, 135 }; 136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0); 137 138 GlobalProperty pc_compat_2_12[] = { 139 { 140 .driver = TYPE_X86_CPU, 141 .property = "legacy-cache", 142 .value = "on", 143 },{ 144 .driver = TYPE_X86_CPU, 145 .property = "topoext", 146 .value = "off", 147 },{ 148 .driver = "EPYC-" TYPE_X86_CPU, 149 .property = "xlevel", 150 .value = stringify(0x8000000a), 151 },{ 152 .driver = "EPYC-IBPB-" TYPE_X86_CPU, 153 .property = "xlevel", 154 .value = stringify(0x8000000a), 155 }, 156 }; 157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12); 158 159 GlobalProperty pc_compat_2_11[] = { 160 { 161 .driver = TYPE_X86_CPU, 162 .property = "x-migrate-smi-count", 163 .value = "off", 164 },{ 165 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 166 .property = "clflushopt", 167 .value = "off", 168 }, 169 }; 170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11); 171 172 void gsi_handler(void *opaque, int n, int level) 173 { 174 GSIState *s = opaque; 175 176 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 177 if (n < ISA_NUM_IRQS) { 178 qemu_set_irq(s->i8259_irq[n], level); 179 } 180 qemu_set_irq(s->ioapic_irq[n], level); 181 } 182 183 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 184 unsigned size) 185 { 186 } 187 188 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 189 { 190 return 0xffffffffffffffffULL; 191 } 192 193 /* MSDOS compatibility mode FPU exception support */ 194 static qemu_irq ferr_irq; 195 196 void pc_register_ferr_irq(qemu_irq irq) 197 { 198 ferr_irq = irq; 199 } 200 201 /* XXX: add IGNNE support */ 202 void cpu_set_ferr(CPUX86State *s) 203 { 204 qemu_irq_raise(ferr_irq); 205 } 206 207 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 208 unsigned size) 209 { 210 qemu_irq_lower(ferr_irq); 211 } 212 213 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 214 { 215 return 0xffffffffffffffffULL; 216 } 217 218 /* TSC handling */ 219 uint64_t cpu_get_tsc(CPUX86State *env) 220 { 221 return cpu_get_ticks(); 222 } 223 224 /* IRQ handling */ 225 int cpu_get_pic_interrupt(CPUX86State *env) 226 { 227 X86CPU *cpu = x86_env_get_cpu(env); 228 int intno; 229 230 if (!kvm_irqchip_in_kernel()) { 231 intno = apic_get_interrupt(cpu->apic_state); 232 if (intno >= 0) { 233 return intno; 234 } 235 /* read the irq from the PIC */ 236 if (!apic_accept_pic_intr(cpu->apic_state)) { 237 return -1; 238 } 239 } 240 241 intno = pic_read_irq(isa_pic); 242 return intno; 243 } 244 245 static void pic_irq_request(void *opaque, int irq, int level) 246 { 247 CPUState *cs = first_cpu; 248 X86CPU *cpu = X86_CPU(cs); 249 250 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 251 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 252 CPU_FOREACH(cs) { 253 cpu = X86_CPU(cs); 254 if (apic_accept_pic_intr(cpu->apic_state)) { 255 apic_deliver_pic_intr(cpu->apic_state, level); 256 } 257 } 258 } else { 259 if (level) { 260 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 261 } else { 262 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 263 } 264 } 265 } 266 267 /* PC cmos mappings */ 268 269 #define REG_EQUIPMENT_BYTE 0x14 270 271 int cmos_get_fd_drive_type(FloppyDriveType fd0) 272 { 273 int val; 274 275 switch (fd0) { 276 case FLOPPY_DRIVE_TYPE_144: 277 /* 1.44 Mb 3"5 drive */ 278 val = 4; 279 break; 280 case FLOPPY_DRIVE_TYPE_288: 281 /* 2.88 Mb 3"5 drive */ 282 val = 5; 283 break; 284 case FLOPPY_DRIVE_TYPE_120: 285 /* 1.2 Mb 5"5 drive */ 286 val = 2; 287 break; 288 case FLOPPY_DRIVE_TYPE_NONE: 289 default: 290 val = 0; 291 break; 292 } 293 return val; 294 } 295 296 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 297 int16_t cylinders, int8_t heads, int8_t sectors) 298 { 299 rtc_set_memory(s, type_ofs, 47); 300 rtc_set_memory(s, info_ofs, cylinders); 301 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 302 rtc_set_memory(s, info_ofs + 2, heads); 303 rtc_set_memory(s, info_ofs + 3, 0xff); 304 rtc_set_memory(s, info_ofs + 4, 0xff); 305 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 306 rtc_set_memory(s, info_ofs + 6, cylinders); 307 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 308 rtc_set_memory(s, info_ofs + 8, sectors); 309 } 310 311 /* convert boot_device letter to something recognizable by the bios */ 312 static int boot_device2nibble(char boot_device) 313 { 314 switch(boot_device) { 315 case 'a': 316 case 'b': 317 return 0x01; /* floppy boot */ 318 case 'c': 319 return 0x02; /* hard drive boot */ 320 case 'd': 321 return 0x03; /* CD-ROM boot */ 322 case 'n': 323 return 0x04; /* Network boot */ 324 } 325 return 0; 326 } 327 328 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 329 { 330 #define PC_MAX_BOOT_DEVICES 3 331 int nbds, bds[3] = { 0, }; 332 int i; 333 334 nbds = strlen(boot_device); 335 if (nbds > PC_MAX_BOOT_DEVICES) { 336 error_setg(errp, "Too many boot devices for PC"); 337 return; 338 } 339 for (i = 0; i < nbds; i++) { 340 bds[i] = boot_device2nibble(boot_device[i]); 341 if (bds[i] == 0) { 342 error_setg(errp, "Invalid boot device for PC: '%c'", 343 boot_device[i]); 344 return; 345 } 346 } 347 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 348 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 349 } 350 351 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 352 { 353 set_boot_dev(opaque, boot_device, errp); 354 } 355 356 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 357 { 358 int val, nb, i; 359 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 360 FLOPPY_DRIVE_TYPE_NONE }; 361 362 /* floppy type */ 363 if (floppy) { 364 for (i = 0; i < 2; i++) { 365 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 366 } 367 } 368 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 369 cmos_get_fd_drive_type(fd_type[1]); 370 rtc_set_memory(rtc_state, 0x10, val); 371 372 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 373 nb = 0; 374 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 375 nb++; 376 } 377 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 378 nb++; 379 } 380 switch (nb) { 381 case 0: 382 break; 383 case 1: 384 val |= 0x01; /* 1 drive, ready for boot */ 385 break; 386 case 2: 387 val |= 0x41; /* 2 drives, ready for boot */ 388 break; 389 } 390 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 391 } 392 393 typedef struct pc_cmos_init_late_arg { 394 ISADevice *rtc_state; 395 BusState *idebus[2]; 396 } pc_cmos_init_late_arg; 397 398 typedef struct check_fdc_state { 399 ISADevice *floppy; 400 bool multiple; 401 } CheckFdcState; 402 403 static int check_fdc(Object *obj, void *opaque) 404 { 405 CheckFdcState *state = opaque; 406 Object *fdc; 407 uint32_t iobase; 408 Error *local_err = NULL; 409 410 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 411 if (!fdc) { 412 return 0; 413 } 414 415 iobase = object_property_get_uint(obj, "iobase", &local_err); 416 if (local_err || iobase != 0x3f0) { 417 error_free(local_err); 418 return 0; 419 } 420 421 if (state->floppy) { 422 state->multiple = true; 423 } else { 424 state->floppy = ISA_DEVICE(obj); 425 } 426 return 0; 427 } 428 429 static const char * const fdc_container_path[] = { 430 "/unattached", "/peripheral", "/peripheral-anon" 431 }; 432 433 /* 434 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 435 * and ACPI objects. 436 */ 437 ISADevice *pc_find_fdc0(void) 438 { 439 int i; 440 Object *container; 441 CheckFdcState state = { 0 }; 442 443 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 444 container = container_get(qdev_get_machine(), fdc_container_path[i]); 445 object_child_foreach(container, check_fdc, &state); 446 } 447 448 if (state.multiple) { 449 warn_report("multiple floppy disk controllers with " 450 "iobase=0x3f0 have been found"); 451 error_printf("the one being picked for CMOS setup might not reflect " 452 "your intent"); 453 } 454 455 return state.floppy; 456 } 457 458 static void pc_cmos_init_late(void *opaque) 459 { 460 pc_cmos_init_late_arg *arg = opaque; 461 ISADevice *s = arg->rtc_state; 462 int16_t cylinders; 463 int8_t heads, sectors; 464 int val; 465 int i, trans; 466 467 val = 0; 468 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 469 &cylinders, &heads, §ors) >= 0) { 470 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 471 val |= 0xf0; 472 } 473 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 474 &cylinders, &heads, §ors) >= 0) { 475 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 476 val |= 0x0f; 477 } 478 rtc_set_memory(s, 0x12, val); 479 480 val = 0; 481 for (i = 0; i < 4; i++) { 482 /* NOTE: ide_get_geometry() returns the physical 483 geometry. It is always such that: 1 <= sects <= 63, 1 484 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 485 geometry can be different if a translation is done. */ 486 if (arg->idebus[i / 2] && 487 ide_get_geometry(arg->idebus[i / 2], i % 2, 488 &cylinders, &heads, §ors) >= 0) { 489 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 490 assert((trans & ~3) == 0); 491 val |= trans << (i * 2); 492 } 493 } 494 rtc_set_memory(s, 0x39, val); 495 496 pc_cmos_init_floppy(s, pc_find_fdc0()); 497 498 qemu_unregister_reset(pc_cmos_init_late, opaque); 499 } 500 501 void pc_cmos_init(PCMachineState *pcms, 502 BusState *idebus0, BusState *idebus1, 503 ISADevice *s) 504 { 505 int val; 506 static pc_cmos_init_late_arg arg; 507 508 /* various important CMOS locations needed by PC/Bochs bios */ 509 510 /* memory size */ 511 /* base memory (first MiB) */ 512 val = MIN(pcms->below_4g_mem_size / KiB, 640); 513 rtc_set_memory(s, 0x15, val); 514 rtc_set_memory(s, 0x16, val >> 8); 515 /* extended memory (next 64MiB) */ 516 if (pcms->below_4g_mem_size > 1 * MiB) { 517 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 518 } else { 519 val = 0; 520 } 521 if (val > 65535) 522 val = 65535; 523 rtc_set_memory(s, 0x17, val); 524 rtc_set_memory(s, 0x18, val >> 8); 525 rtc_set_memory(s, 0x30, val); 526 rtc_set_memory(s, 0x31, val >> 8); 527 /* memory between 16MiB and 4GiB */ 528 if (pcms->below_4g_mem_size > 16 * MiB) { 529 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 530 } else { 531 val = 0; 532 } 533 if (val > 65535) 534 val = 65535; 535 rtc_set_memory(s, 0x34, val); 536 rtc_set_memory(s, 0x35, val >> 8); 537 /* memory above 4GiB */ 538 val = pcms->above_4g_mem_size / 65536; 539 rtc_set_memory(s, 0x5b, val); 540 rtc_set_memory(s, 0x5c, val >> 8); 541 rtc_set_memory(s, 0x5d, val >> 16); 542 543 object_property_add_link(OBJECT(pcms), "rtc_state", 544 TYPE_ISA_DEVICE, 545 (Object **)&pcms->rtc, 546 object_property_allow_set_link, 547 OBJ_PROP_LINK_STRONG, &error_abort); 548 object_property_set_link(OBJECT(pcms), OBJECT(s), 549 "rtc_state", &error_abort); 550 551 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 552 553 val = 0; 554 val |= 0x02; /* FPU is there */ 555 val |= 0x04; /* PS/2 mouse installed */ 556 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 557 558 /* hard drives and FDC */ 559 arg.rtc_state = s; 560 arg.idebus[0] = idebus0; 561 arg.idebus[1] = idebus1; 562 qemu_register_reset(pc_cmos_init_late, &arg); 563 } 564 565 #define TYPE_PORT92 "port92" 566 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 567 568 /* port 92 stuff: could be split off */ 569 typedef struct Port92State { 570 ISADevice parent_obj; 571 572 MemoryRegion io; 573 uint8_t outport; 574 qemu_irq a20_out; 575 } Port92State; 576 577 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 578 unsigned size) 579 { 580 Port92State *s = opaque; 581 int oldval = s->outport; 582 583 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 584 s->outport = val; 585 qemu_set_irq(s->a20_out, (val >> 1) & 1); 586 if ((val & 1) && !(oldval & 1)) { 587 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 588 } 589 } 590 591 static uint64_t port92_read(void *opaque, hwaddr addr, 592 unsigned size) 593 { 594 Port92State *s = opaque; 595 uint32_t ret; 596 597 ret = s->outport; 598 DPRINTF("port92: read 0x%02x\n", ret); 599 return ret; 600 } 601 602 static void port92_init(ISADevice *dev, qemu_irq a20_out) 603 { 604 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 605 } 606 607 static const VMStateDescription vmstate_port92_isa = { 608 .name = "port92", 609 .version_id = 1, 610 .minimum_version_id = 1, 611 .fields = (VMStateField[]) { 612 VMSTATE_UINT8(outport, Port92State), 613 VMSTATE_END_OF_LIST() 614 } 615 }; 616 617 static void port92_reset(DeviceState *d) 618 { 619 Port92State *s = PORT92(d); 620 621 s->outport &= ~1; 622 } 623 624 static const MemoryRegionOps port92_ops = { 625 .read = port92_read, 626 .write = port92_write, 627 .impl = { 628 .min_access_size = 1, 629 .max_access_size = 1, 630 }, 631 .endianness = DEVICE_LITTLE_ENDIAN, 632 }; 633 634 static void port92_initfn(Object *obj) 635 { 636 Port92State *s = PORT92(obj); 637 638 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 639 640 s->outport = 0; 641 642 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 643 } 644 645 static void port92_realizefn(DeviceState *dev, Error **errp) 646 { 647 ISADevice *isadev = ISA_DEVICE(dev); 648 Port92State *s = PORT92(dev); 649 650 isa_register_ioport(isadev, &s->io, 0x92); 651 } 652 653 static void port92_class_initfn(ObjectClass *klass, void *data) 654 { 655 DeviceClass *dc = DEVICE_CLASS(klass); 656 657 dc->realize = port92_realizefn; 658 dc->reset = port92_reset; 659 dc->vmsd = &vmstate_port92_isa; 660 /* 661 * Reason: unlike ordinary ISA devices, this one needs additional 662 * wiring: its A20 output line needs to be wired up by 663 * port92_init(). 664 */ 665 dc->user_creatable = false; 666 } 667 668 static const TypeInfo port92_info = { 669 .name = TYPE_PORT92, 670 .parent = TYPE_ISA_DEVICE, 671 .instance_size = sizeof(Port92State), 672 .instance_init = port92_initfn, 673 .class_init = port92_class_initfn, 674 }; 675 676 static void port92_register_types(void) 677 { 678 type_register_static(&port92_info); 679 } 680 681 type_init(port92_register_types) 682 683 static void handle_a20_line_change(void *opaque, int irq, int level) 684 { 685 X86CPU *cpu = opaque; 686 687 /* XXX: send to all CPUs ? */ 688 /* XXX: add logic to handle multiple A20 line sources */ 689 x86_cpu_set_a20(cpu, level); 690 } 691 692 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 693 { 694 int index = le32_to_cpu(e820_reserve.count); 695 struct e820_entry *entry; 696 697 if (type != E820_RAM) { 698 /* old FW_CFG_E820_TABLE entry -- reservations only */ 699 if (index >= E820_NR_ENTRIES) { 700 return -EBUSY; 701 } 702 entry = &e820_reserve.entry[index++]; 703 704 entry->address = cpu_to_le64(address); 705 entry->length = cpu_to_le64(length); 706 entry->type = cpu_to_le32(type); 707 708 e820_reserve.count = cpu_to_le32(index); 709 } 710 711 /* new "etc/e820" file -- include ram too */ 712 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 713 e820_table[e820_entries].address = cpu_to_le64(address); 714 e820_table[e820_entries].length = cpu_to_le64(length); 715 e820_table[e820_entries].type = cpu_to_le32(type); 716 e820_entries++; 717 718 return e820_entries; 719 } 720 721 int e820_get_num_entries(void) 722 { 723 return e820_entries; 724 } 725 726 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 727 { 728 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 729 *address = le64_to_cpu(e820_table[idx].address); 730 *length = le64_to_cpu(e820_table[idx].length); 731 return true; 732 } 733 return false; 734 } 735 736 /* Enables contiguous-apic-ID mode, for compatibility */ 737 static bool compat_apic_id_mode; 738 739 void enable_compat_apic_id_mode(void) 740 { 741 compat_apic_id_mode = true; 742 } 743 744 /* Calculates initial APIC ID for a specific CPU index 745 * 746 * Currently we need to be able to calculate the APIC ID from the CPU index 747 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 748 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 749 * all CPUs up to max_cpus. 750 */ 751 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 752 { 753 uint32_t correct_id; 754 static bool warned; 755 756 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 757 if (compat_apic_id_mode) { 758 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 759 error_report("APIC IDs set in compatibility mode, " 760 "CPU topology won't match the configuration"); 761 warned = true; 762 } 763 return cpu_index; 764 } else { 765 return correct_id; 766 } 767 } 768 769 static void pc_build_smbios(PCMachineState *pcms) 770 { 771 uint8_t *smbios_tables, *smbios_anchor; 772 size_t smbios_tables_len, smbios_anchor_len; 773 struct smbios_phys_mem_area *mem_array; 774 unsigned i, array_count; 775 MachineState *ms = MACHINE(pcms); 776 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 777 778 /* tell smbios about cpuid version and features */ 779 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 780 781 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 782 if (smbios_tables) { 783 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 784 smbios_tables, smbios_tables_len); 785 } 786 787 /* build the array of physical mem area from e820 table */ 788 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 789 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 790 uint64_t addr, len; 791 792 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 793 mem_array[array_count].address = addr; 794 mem_array[array_count].length = len; 795 array_count++; 796 } 797 } 798 smbios_get_tables(mem_array, array_count, 799 &smbios_tables, &smbios_tables_len, 800 &smbios_anchor, &smbios_anchor_len); 801 g_free(mem_array); 802 803 if (smbios_anchor) { 804 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 805 smbios_tables, smbios_tables_len); 806 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 807 smbios_anchor, smbios_anchor_len); 808 } 809 } 810 811 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 812 { 813 FWCfgState *fw_cfg; 814 uint64_t *numa_fw_cfg; 815 int i; 816 const CPUArchIdList *cpus; 817 MachineClass *mc = MACHINE_GET_CLASS(pcms); 818 819 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 820 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 821 822 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 823 * 824 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 825 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 826 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 827 * for CPU hotplug also uses APIC ID and not "CPU index". 828 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 829 * but the "limit to the APIC ID values SeaBIOS may see". 830 * 831 * So for compatibility reasons with old BIOSes we are stuck with 832 * "etc/max-cpus" actually being apic_id_limit 833 */ 834 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 835 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 836 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 837 acpi_tables, acpi_tables_len); 838 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 839 840 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 841 &e820_reserve, sizeof(e820_reserve)); 842 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 843 sizeof(struct e820_entry) * e820_entries); 844 845 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 846 /* allocate memory for the NUMA channel: one (64bit) word for the number 847 * of nodes, one word for each VCPU->node and one word for each node to 848 * hold the amount of memory. 849 */ 850 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 851 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 852 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 853 for (i = 0; i < cpus->len; i++) { 854 unsigned int apic_id = cpus->cpus[i].arch_id; 855 assert(apic_id < pcms->apic_id_limit); 856 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 857 } 858 for (i = 0; i < nb_numa_nodes; i++) { 859 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 860 cpu_to_le64(numa_info[i].node_mem); 861 } 862 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 863 (1 + pcms->apic_id_limit + nb_numa_nodes) * 864 sizeof(*numa_fw_cfg)); 865 866 return fw_cfg; 867 } 868 869 static long get_file_size(FILE *f) 870 { 871 long where, size; 872 873 /* XXX: on Unix systems, using fstat() probably makes more sense */ 874 875 where = ftell(f); 876 fseek(f, 0, SEEK_END); 877 size = ftell(f); 878 fseek(f, where, SEEK_SET); 879 880 return size; 881 } 882 883 /* setup_data types */ 884 #define SETUP_NONE 0 885 #define SETUP_E820_EXT 1 886 #define SETUP_DTB 2 887 #define SETUP_PCI 3 888 #define SETUP_EFI 4 889 890 struct setup_data { 891 uint64_t next; 892 uint32_t type; 893 uint32_t len; 894 uint8_t data[0]; 895 } __attribute__((packed)); 896 897 static void load_linux(PCMachineState *pcms, 898 FWCfgState *fw_cfg) 899 { 900 uint16_t protocol; 901 int setup_size, kernel_size, cmdline_size; 902 int dtb_size, setup_data_offset; 903 uint32_t initrd_max; 904 uint8_t header[8192], *setup, *kernel; 905 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 906 FILE *f; 907 char *vmode; 908 MachineState *machine = MACHINE(pcms); 909 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 910 struct setup_data *setup_data; 911 const char *kernel_filename = machine->kernel_filename; 912 const char *initrd_filename = machine->initrd_filename; 913 const char *dtb_filename = machine->dtb; 914 const char *kernel_cmdline = machine->kernel_cmdline; 915 916 /* Align to 16 bytes as a paranoia measure */ 917 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 918 919 /* load the kernel header */ 920 f = fopen(kernel_filename, "rb"); 921 if (!f || !(kernel_size = get_file_size(f)) || 922 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 923 MIN(ARRAY_SIZE(header), kernel_size)) { 924 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 925 kernel_filename, strerror(errno)); 926 exit(1); 927 } 928 929 /* kernel protocol version */ 930 #if 0 931 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 932 #endif 933 if (ldl_p(header+0x202) == 0x53726448) { 934 protocol = lduw_p(header+0x206); 935 } else { 936 /* This looks like a multiboot kernel. If it is, let's stop 937 treating it like a Linux kernel. */ 938 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 939 kernel_cmdline, kernel_size, header)) { 940 return; 941 } 942 protocol = 0; 943 } 944 945 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 946 /* Low kernel */ 947 real_addr = 0x90000; 948 cmdline_addr = 0x9a000 - cmdline_size; 949 prot_addr = 0x10000; 950 } else if (protocol < 0x202) { 951 /* High but ancient kernel */ 952 real_addr = 0x90000; 953 cmdline_addr = 0x9a000 - cmdline_size; 954 prot_addr = 0x100000; 955 } else { 956 /* High and recent kernel */ 957 real_addr = 0x10000; 958 cmdline_addr = 0x20000; 959 prot_addr = 0x100000; 960 } 961 962 #if 0 963 fprintf(stderr, 964 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 965 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 966 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 967 real_addr, 968 cmdline_addr, 969 prot_addr); 970 #endif 971 972 /* highest address for loading the initrd */ 973 if (protocol >= 0x203) { 974 initrd_max = ldl_p(header+0x22c); 975 } else { 976 initrd_max = 0x37ffffff; 977 } 978 979 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 980 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 981 } 982 983 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 984 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 985 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 986 987 if (protocol >= 0x202) { 988 stl_p(header+0x228, cmdline_addr); 989 } else { 990 stw_p(header+0x20, 0xA33F); 991 stw_p(header+0x22, cmdline_addr-real_addr); 992 } 993 994 /* handle vga= parameter */ 995 vmode = strstr(kernel_cmdline, "vga="); 996 if (vmode) { 997 unsigned int video_mode; 998 /* skip "vga=" */ 999 vmode += 4; 1000 if (!strncmp(vmode, "normal", 6)) { 1001 video_mode = 0xffff; 1002 } else if (!strncmp(vmode, "ext", 3)) { 1003 video_mode = 0xfffe; 1004 } else if (!strncmp(vmode, "ask", 3)) { 1005 video_mode = 0xfffd; 1006 } else { 1007 video_mode = strtol(vmode, NULL, 0); 1008 } 1009 stw_p(header+0x1fa, video_mode); 1010 } 1011 1012 /* loader type */ 1013 /* High nybble = B reserved for QEMU; low nybble is revision number. 1014 If this code is substantially changed, you may want to consider 1015 incrementing the revision. */ 1016 if (protocol >= 0x200) { 1017 header[0x210] = 0xB0; 1018 } 1019 /* heap */ 1020 if (protocol >= 0x201) { 1021 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 1022 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 1023 } 1024 1025 /* load initrd */ 1026 if (initrd_filename) { 1027 gsize initrd_size; 1028 gchar *initrd_data; 1029 GError *gerr = NULL; 1030 1031 if (protocol < 0x200) { 1032 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 1033 exit(1); 1034 } 1035 1036 if (!g_file_get_contents(initrd_filename, &initrd_data, 1037 &initrd_size, &gerr)) { 1038 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1039 initrd_filename, gerr->message); 1040 exit(1); 1041 } 1042 if (initrd_size >= initrd_max) { 1043 fprintf(stderr, "qemu: initrd is too large, cannot support." 1044 "(max: %"PRIu32", need %"PRId64")\n", 1045 initrd_max, (uint64_t)initrd_size); 1046 exit(1); 1047 } 1048 1049 initrd_addr = (initrd_max-initrd_size) & ~4095; 1050 1051 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1052 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1053 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1054 1055 stl_p(header+0x218, initrd_addr); 1056 stl_p(header+0x21c, initrd_size); 1057 } 1058 1059 /* load kernel and setup */ 1060 setup_size = header[0x1f1]; 1061 if (setup_size == 0) { 1062 setup_size = 4; 1063 } 1064 setup_size = (setup_size+1)*512; 1065 if (setup_size > kernel_size) { 1066 fprintf(stderr, "qemu: invalid kernel header\n"); 1067 exit(1); 1068 } 1069 kernel_size -= setup_size; 1070 1071 setup = g_malloc(setup_size); 1072 kernel = g_malloc(kernel_size); 1073 fseek(f, 0, SEEK_SET); 1074 if (fread(setup, 1, setup_size, f) != setup_size) { 1075 fprintf(stderr, "fread() failed\n"); 1076 exit(1); 1077 } 1078 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1079 fprintf(stderr, "fread() failed\n"); 1080 exit(1); 1081 } 1082 fclose(f); 1083 1084 /* append dtb to kernel */ 1085 if (dtb_filename) { 1086 if (protocol < 0x209) { 1087 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1088 exit(1); 1089 } 1090 1091 dtb_size = get_image_size(dtb_filename); 1092 if (dtb_size <= 0) { 1093 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1094 dtb_filename, strerror(errno)); 1095 exit(1); 1096 } 1097 1098 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1099 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1100 kernel = g_realloc(kernel, kernel_size); 1101 1102 stq_p(header+0x250, prot_addr + setup_data_offset); 1103 1104 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1105 setup_data->next = 0; 1106 setup_data->type = cpu_to_le32(SETUP_DTB); 1107 setup_data->len = cpu_to_le32(dtb_size); 1108 1109 load_image_size(dtb_filename, setup_data->data, dtb_size); 1110 } 1111 1112 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1113 1114 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1115 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1116 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1117 1118 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1119 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1120 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1121 1122 option_rom[nb_option_roms].bootindex = 0; 1123 option_rom[nb_option_roms].name = "linuxboot.bin"; 1124 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1125 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1126 } 1127 nb_option_roms++; 1128 } 1129 1130 #define NE2000_NB_MAX 6 1131 1132 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1133 0x280, 0x380 }; 1134 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1135 1136 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1137 { 1138 static int nb_ne2k = 0; 1139 1140 if (nb_ne2k == NE2000_NB_MAX) 1141 return; 1142 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1143 ne2000_irq[nb_ne2k], nd); 1144 nb_ne2k++; 1145 } 1146 1147 DeviceState *cpu_get_current_apic(void) 1148 { 1149 if (current_cpu) { 1150 X86CPU *cpu = X86_CPU(current_cpu); 1151 return cpu->apic_state; 1152 } else { 1153 return NULL; 1154 } 1155 } 1156 1157 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1158 { 1159 X86CPU *cpu = opaque; 1160 1161 if (level) { 1162 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1163 } 1164 } 1165 1166 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1167 { 1168 Object *cpu = NULL; 1169 Error *local_err = NULL; 1170 1171 cpu = object_new(typename); 1172 1173 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1174 object_property_set_bool(cpu, true, "realized", &local_err); 1175 1176 object_unref(cpu); 1177 error_propagate(errp, local_err); 1178 } 1179 1180 void pc_hot_add_cpu(const int64_t id, Error **errp) 1181 { 1182 MachineState *ms = MACHINE(qdev_get_machine()); 1183 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1184 Error *local_err = NULL; 1185 1186 if (id < 0) { 1187 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1188 return; 1189 } 1190 1191 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1192 error_setg(errp, "Unable to add CPU: %" PRIi64 1193 ", resulting APIC ID (%" PRIi64 ") is too large", 1194 id, apic_id); 1195 return; 1196 } 1197 1198 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1199 if (local_err) { 1200 error_propagate(errp, local_err); 1201 return; 1202 } 1203 } 1204 1205 void pc_cpus_init(PCMachineState *pcms) 1206 { 1207 int i; 1208 const CPUArchIdList *possible_cpus; 1209 MachineState *ms = MACHINE(pcms); 1210 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1211 1212 /* Calculates the limit to CPU APIC ID values 1213 * 1214 * Limit for the APIC ID value, so that all 1215 * CPU APIC IDs are < pcms->apic_id_limit. 1216 * 1217 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1218 */ 1219 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1220 possible_cpus = mc->possible_cpu_arch_ids(ms); 1221 for (i = 0; i < smp_cpus; i++) { 1222 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1223 &error_fatal); 1224 } 1225 } 1226 1227 static void pc_build_feature_control_file(PCMachineState *pcms) 1228 { 1229 MachineState *ms = MACHINE(pcms); 1230 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1231 CPUX86State *env = &cpu->env; 1232 uint32_t unused, ecx, edx; 1233 uint64_t feature_control_bits = 0; 1234 uint64_t *val; 1235 1236 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1237 if (ecx & CPUID_EXT_VMX) { 1238 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1239 } 1240 1241 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1242 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1243 (env->mcg_cap & MCG_LMCE_P)) { 1244 feature_control_bits |= FEATURE_CONTROL_LMCE; 1245 } 1246 1247 if (!feature_control_bits) { 1248 return; 1249 } 1250 1251 val = g_malloc(sizeof(*val)); 1252 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1253 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1254 } 1255 1256 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1257 { 1258 if (cpus_count > 0xff) { 1259 /* If the number of CPUs can't be represented in 8 bits, the 1260 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1261 * to make old BIOSes fail more predictably. 1262 */ 1263 rtc_set_memory(rtc, 0x5f, 0); 1264 } else { 1265 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1266 } 1267 } 1268 1269 static 1270 void pc_machine_done(Notifier *notifier, void *data) 1271 { 1272 PCMachineState *pcms = container_of(notifier, 1273 PCMachineState, machine_done); 1274 PCIBus *bus = pcms->bus; 1275 1276 /* set the number of CPUs */ 1277 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1278 1279 if (bus) { 1280 int extra_hosts = 0; 1281 1282 QLIST_FOREACH(bus, &bus->child, sibling) { 1283 /* look for expander root buses */ 1284 if (pci_bus_is_root(bus)) { 1285 extra_hosts++; 1286 } 1287 } 1288 if (extra_hosts && pcms->fw_cfg) { 1289 uint64_t *val = g_malloc(sizeof(*val)); 1290 *val = cpu_to_le64(extra_hosts); 1291 fw_cfg_add_file(pcms->fw_cfg, 1292 "etc/extra-pci-roots", val, sizeof(*val)); 1293 } 1294 } 1295 1296 acpi_setup(); 1297 if (pcms->fw_cfg) { 1298 pc_build_smbios(pcms); 1299 pc_build_feature_control_file(pcms); 1300 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1301 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1302 } 1303 1304 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1305 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1306 1307 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) || 1308 iommu->intr_eim != ON_OFF_AUTO_ON) { 1309 error_report("current -smp configuration requires " 1310 "Extended Interrupt Mode enabled. " 1311 "You can add an IOMMU using: " 1312 "-device intel-iommu,intremap=on,eim=on"); 1313 exit(EXIT_FAILURE); 1314 } 1315 } 1316 } 1317 1318 void pc_guest_info_init(PCMachineState *pcms) 1319 { 1320 int i; 1321 1322 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1323 pcms->numa_nodes = nb_numa_nodes; 1324 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1325 sizeof *pcms->node_mem); 1326 for (i = 0; i < nb_numa_nodes; i++) { 1327 pcms->node_mem[i] = numa_info[i].node_mem; 1328 } 1329 1330 pcms->machine_done.notify = pc_machine_done; 1331 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1332 } 1333 1334 /* setup pci memory address space mapping into system address space */ 1335 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1336 MemoryRegion *pci_address_space) 1337 { 1338 /* Set to lower priority than RAM */ 1339 memory_region_add_subregion_overlap(system_memory, 0x0, 1340 pci_address_space, -1); 1341 } 1342 1343 void pc_acpi_init(const char *default_dsdt) 1344 { 1345 char *filename; 1346 1347 if (acpi_tables != NULL) { 1348 /* manually set via -acpitable, leave it alone */ 1349 return; 1350 } 1351 1352 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1353 if (filename == NULL) { 1354 warn_report("failed to find %s", default_dsdt); 1355 } else { 1356 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1357 &error_abort); 1358 Error *err = NULL; 1359 1360 qemu_opt_set(opts, "file", filename, &error_abort); 1361 1362 acpi_table_add_builtin(opts, &err); 1363 if (err) { 1364 warn_reportf_err(err, "failed to load %s: ", filename); 1365 } 1366 g_free(filename); 1367 } 1368 } 1369 1370 void xen_load_linux(PCMachineState *pcms) 1371 { 1372 int i; 1373 FWCfgState *fw_cfg; 1374 1375 assert(MACHINE(pcms)->kernel_filename != NULL); 1376 1377 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1378 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1379 rom_set_fw(fw_cfg); 1380 1381 load_linux(pcms, fw_cfg); 1382 for (i = 0; i < nb_option_roms; i++) { 1383 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1384 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1385 !strcmp(option_rom[i].name, "multiboot.bin")); 1386 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1387 } 1388 pcms->fw_cfg = fw_cfg; 1389 } 1390 1391 void pc_memory_init(PCMachineState *pcms, 1392 MemoryRegion *system_memory, 1393 MemoryRegion *rom_memory, 1394 MemoryRegion **ram_memory) 1395 { 1396 int linux_boot, i; 1397 MemoryRegion *ram, *option_rom_mr; 1398 MemoryRegion *ram_below_4g, *ram_above_4g; 1399 FWCfgState *fw_cfg; 1400 MachineState *machine = MACHINE(pcms); 1401 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1402 1403 assert(machine->ram_size == pcms->below_4g_mem_size + 1404 pcms->above_4g_mem_size); 1405 1406 linux_boot = (machine->kernel_filename != NULL); 1407 1408 /* Allocate RAM. We allocate it as a single memory region and use 1409 * aliases to address portions of it, mostly for backwards compatibility 1410 * with older qemus that used qemu_ram_alloc(). 1411 */ 1412 ram = g_malloc(sizeof(*ram)); 1413 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1414 machine->ram_size); 1415 *ram_memory = ram; 1416 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1417 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1418 0, pcms->below_4g_mem_size); 1419 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1420 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1421 if (pcms->above_4g_mem_size > 0) { 1422 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1423 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1424 pcms->below_4g_mem_size, 1425 pcms->above_4g_mem_size); 1426 memory_region_add_subregion(system_memory, 0x100000000ULL, 1427 ram_above_4g); 1428 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1429 } 1430 1431 if (!pcmc->has_reserved_memory && 1432 (machine->ram_slots || 1433 (machine->maxram_size > machine->ram_size))) { 1434 MachineClass *mc = MACHINE_GET_CLASS(machine); 1435 1436 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1437 mc->name); 1438 exit(EXIT_FAILURE); 1439 } 1440 1441 /* always allocate the device memory information */ 1442 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1443 1444 /* initialize device memory address space */ 1445 if (pcmc->has_reserved_memory && 1446 (machine->ram_size < machine->maxram_size)) { 1447 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1448 1449 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1450 error_report("unsupported amount of memory slots: %"PRIu64, 1451 machine->ram_slots); 1452 exit(EXIT_FAILURE); 1453 } 1454 1455 if (QEMU_ALIGN_UP(machine->maxram_size, 1456 TARGET_PAGE_SIZE) != machine->maxram_size) { 1457 error_report("maximum memory size must by aligned to multiple of " 1458 "%d bytes", TARGET_PAGE_SIZE); 1459 exit(EXIT_FAILURE); 1460 } 1461 1462 machine->device_memory->base = 1463 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1464 1465 if (pcmc->enforce_aligned_dimm) { 1466 /* size device region assuming 1G page max alignment per slot */ 1467 device_mem_size += (1 * GiB) * machine->ram_slots; 1468 } 1469 1470 if ((machine->device_memory->base + device_mem_size) < 1471 device_mem_size) { 1472 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1473 machine->maxram_size); 1474 exit(EXIT_FAILURE); 1475 } 1476 1477 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1478 "device-memory", device_mem_size); 1479 memory_region_add_subregion(system_memory, machine->device_memory->base, 1480 &machine->device_memory->mr); 1481 } 1482 1483 /* Initialize PC system firmware */ 1484 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1485 1486 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1487 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1488 &error_fatal); 1489 if (pcmc->pci_enabled) { 1490 memory_region_set_readonly(option_rom_mr, true); 1491 } 1492 memory_region_add_subregion_overlap(rom_memory, 1493 PC_ROM_MIN_VGA, 1494 option_rom_mr, 1495 1); 1496 1497 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1498 1499 rom_set_fw(fw_cfg); 1500 1501 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1502 uint64_t *val = g_malloc(sizeof(*val)); 1503 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1504 uint64_t res_mem_end = machine->device_memory->base; 1505 1506 if (!pcmc->broken_reserved_end) { 1507 res_mem_end += memory_region_size(&machine->device_memory->mr); 1508 } 1509 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1510 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1511 } 1512 1513 if (linux_boot) { 1514 load_linux(pcms, fw_cfg); 1515 } 1516 1517 for (i = 0; i < nb_option_roms; i++) { 1518 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1519 } 1520 pcms->fw_cfg = fw_cfg; 1521 1522 /* Init default IOAPIC address space */ 1523 pcms->ioapic_as = &address_space_memory; 1524 } 1525 1526 /* 1527 * The 64bit pci hole starts after "above 4G RAM" and 1528 * potentially the space reserved for memory hotplug. 1529 */ 1530 uint64_t pc_pci_hole64_start(void) 1531 { 1532 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1533 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1534 MachineState *ms = MACHINE(pcms); 1535 uint64_t hole64_start = 0; 1536 1537 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1538 hole64_start = ms->device_memory->base; 1539 if (!pcmc->broken_reserved_end) { 1540 hole64_start += memory_region_size(&ms->device_memory->mr); 1541 } 1542 } else { 1543 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1544 } 1545 1546 return ROUND_UP(hole64_start, 1 * GiB); 1547 } 1548 1549 qemu_irq pc_allocate_cpu_irq(void) 1550 { 1551 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1552 } 1553 1554 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1555 { 1556 DeviceState *dev = NULL; 1557 1558 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1559 if (pci_bus) { 1560 PCIDevice *pcidev = pci_vga_init(pci_bus); 1561 dev = pcidev ? &pcidev->qdev : NULL; 1562 } else if (isa_bus) { 1563 ISADevice *isadev = isa_vga_init(isa_bus); 1564 dev = isadev ? DEVICE(isadev) : NULL; 1565 } 1566 rom_reset_order_override(); 1567 return dev; 1568 } 1569 1570 static const MemoryRegionOps ioport80_io_ops = { 1571 .write = ioport80_write, 1572 .read = ioport80_read, 1573 .endianness = DEVICE_NATIVE_ENDIAN, 1574 .impl = { 1575 .min_access_size = 1, 1576 .max_access_size = 1, 1577 }, 1578 }; 1579 1580 static const MemoryRegionOps ioportF0_io_ops = { 1581 .write = ioportF0_write, 1582 .read = ioportF0_read, 1583 .endianness = DEVICE_NATIVE_ENDIAN, 1584 .impl = { 1585 .min_access_size = 1, 1586 .max_access_size = 1, 1587 }, 1588 }; 1589 1590 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1591 { 1592 int i; 1593 DriveInfo *fd[MAX_FD]; 1594 qemu_irq *a20_line; 1595 ISADevice *i8042, *port92, *vmmouse; 1596 1597 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1598 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1599 1600 for (i = 0; i < MAX_FD; i++) { 1601 fd[i] = drive_get(IF_FLOPPY, 0, i); 1602 create_fdctrl |= !!fd[i]; 1603 } 1604 if (create_fdctrl) { 1605 fdctrl_init_isa(isa_bus, fd); 1606 } 1607 1608 i8042 = isa_create_simple(isa_bus, "i8042"); 1609 if (!no_vmport) { 1610 vmport_init(isa_bus); 1611 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1612 } else { 1613 vmmouse = NULL; 1614 } 1615 if (vmmouse) { 1616 DeviceState *dev = DEVICE(vmmouse); 1617 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1618 qdev_init_nofail(dev); 1619 } 1620 port92 = isa_create_simple(isa_bus, "port92"); 1621 1622 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1623 i8042_setup_a20_line(i8042, a20_line[0]); 1624 port92_init(port92, a20_line[1]); 1625 g_free(a20_line); 1626 } 1627 1628 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1629 ISADevice **rtc_state, 1630 bool create_fdctrl, 1631 bool no_vmport, 1632 bool has_pit, 1633 uint32_t hpet_irqs) 1634 { 1635 int i; 1636 DeviceState *hpet = NULL; 1637 int pit_isa_irq = 0; 1638 qemu_irq pit_alt_irq = NULL; 1639 qemu_irq rtc_irq = NULL; 1640 ISADevice *pit = NULL; 1641 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1642 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1643 1644 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1645 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1646 1647 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1648 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1649 1650 /* 1651 * Check if an HPET shall be created. 1652 * 1653 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1654 * when the HPET wants to take over. Thus we have to disable the latter. 1655 */ 1656 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1657 /* In order to set property, here not using sysbus_try_create_simple */ 1658 hpet = qdev_try_create(NULL, TYPE_HPET); 1659 if (hpet) { 1660 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1661 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1662 * IRQ8 and IRQ2. 1663 */ 1664 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1665 HPET_INTCAP, NULL); 1666 if (!compat) { 1667 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1668 } 1669 qdev_init_nofail(hpet); 1670 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1671 1672 for (i = 0; i < GSI_NUM_PINS; i++) { 1673 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1674 } 1675 pit_isa_irq = -1; 1676 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1677 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1678 } 1679 } 1680 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1681 1682 qemu_register_boot_set(pc_boot_set, *rtc_state); 1683 1684 if (!xen_enabled() && has_pit) { 1685 if (kvm_pit_in_kernel()) { 1686 pit = kvm_pit_init(isa_bus, 0x40); 1687 } else { 1688 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1689 } 1690 if (hpet) { 1691 /* connect PIT to output control line of the HPET */ 1692 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1693 } 1694 pcspk_init(isa_bus, pit); 1695 } 1696 1697 i8257_dma_init(isa_bus, 0); 1698 1699 /* Super I/O */ 1700 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1701 } 1702 1703 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1704 { 1705 int i; 1706 1707 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1708 for (i = 0; i < nb_nics; i++) { 1709 NICInfo *nd = &nd_table[i]; 1710 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1711 1712 if (g_str_equal(model, "ne2k_isa")) { 1713 pc_init_ne2k_isa(isa_bus, nd); 1714 } else { 1715 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1716 } 1717 } 1718 rom_reset_order_override(); 1719 } 1720 1721 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1722 { 1723 DeviceState *dev; 1724 SysBusDevice *d; 1725 unsigned int i; 1726 1727 if (kvm_ioapic_in_kernel()) { 1728 dev = qdev_create(NULL, "kvm-ioapic"); 1729 } else { 1730 dev = qdev_create(NULL, "ioapic"); 1731 } 1732 if (parent_name) { 1733 object_property_add_child(object_resolve_path(parent_name, NULL), 1734 "ioapic", OBJECT(dev), NULL); 1735 } 1736 qdev_init_nofail(dev); 1737 d = SYS_BUS_DEVICE(dev); 1738 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1739 1740 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1741 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1742 } 1743 } 1744 1745 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1746 Error **errp) 1747 { 1748 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1749 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1750 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1751 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1752 1753 /* 1754 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1755 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1756 * addition to cover this case. 1757 */ 1758 if (!pcms->acpi_dev || !acpi_enabled) { 1759 error_setg(errp, 1760 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1761 return; 1762 } 1763 1764 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1765 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1766 return; 1767 } 1768 1769 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), 1770 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1771 } 1772 1773 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1774 DeviceState *dev, Error **errp) 1775 { 1776 HotplugHandlerClass *hhc; 1777 Error *local_err = NULL; 1778 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1779 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1780 1781 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); 1782 if (local_err) { 1783 goto out; 1784 } 1785 1786 if (is_nvdimm) { 1787 nvdimm_plug(&pcms->acpi_nvdimm_state); 1788 } 1789 1790 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1791 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1792 out: 1793 error_propagate(errp, local_err); 1794 } 1795 1796 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1797 DeviceState *dev, Error **errp) 1798 { 1799 HotplugHandlerClass *hhc; 1800 Error *local_err = NULL; 1801 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1802 1803 /* 1804 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1805 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1806 * addition to cover this case. 1807 */ 1808 if (!pcms->acpi_dev || !acpi_enabled) { 1809 error_setg(&local_err, 1810 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1811 goto out; 1812 } 1813 1814 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1815 error_setg(&local_err, 1816 "nvdimm device hot unplug is not supported yet."); 1817 goto out; 1818 } 1819 1820 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1821 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1822 1823 out: 1824 error_propagate(errp, local_err); 1825 } 1826 1827 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1828 DeviceState *dev, Error **errp) 1829 { 1830 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1831 HotplugHandlerClass *hhc; 1832 Error *local_err = NULL; 1833 1834 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1835 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1836 1837 if (local_err) { 1838 goto out; 1839 } 1840 1841 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); 1842 object_unparent(OBJECT(dev)); 1843 1844 out: 1845 error_propagate(errp, local_err); 1846 } 1847 1848 static int pc_apic_cmp(const void *a, const void *b) 1849 { 1850 CPUArchId *apic_a = (CPUArchId *)a; 1851 CPUArchId *apic_b = (CPUArchId *)b; 1852 1853 return apic_a->arch_id - apic_b->arch_id; 1854 } 1855 1856 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1857 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1858 * entry corresponding to CPU's apic_id returns NULL. 1859 */ 1860 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1861 { 1862 CPUArchId apic_id, *found_cpu; 1863 1864 apic_id.arch_id = id; 1865 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1866 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1867 pc_apic_cmp); 1868 if (found_cpu && idx) { 1869 *idx = found_cpu - ms->possible_cpus->cpus; 1870 } 1871 return found_cpu; 1872 } 1873 1874 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1875 DeviceState *dev, Error **errp) 1876 { 1877 CPUArchId *found_cpu; 1878 HotplugHandlerClass *hhc; 1879 Error *local_err = NULL; 1880 X86CPU *cpu = X86_CPU(dev); 1881 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1882 1883 if (pcms->acpi_dev) { 1884 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1885 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1886 if (local_err) { 1887 goto out; 1888 } 1889 } 1890 1891 /* increment the number of CPUs */ 1892 pcms->boot_cpus++; 1893 if (pcms->rtc) { 1894 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1895 } 1896 if (pcms->fw_cfg) { 1897 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1898 } 1899 1900 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1901 found_cpu->cpu = OBJECT(dev); 1902 out: 1903 error_propagate(errp, local_err); 1904 } 1905 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1906 DeviceState *dev, Error **errp) 1907 { 1908 int idx = -1; 1909 HotplugHandlerClass *hhc; 1910 Error *local_err = NULL; 1911 X86CPU *cpu = X86_CPU(dev); 1912 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1913 1914 if (!pcms->acpi_dev) { 1915 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1916 goto out; 1917 } 1918 1919 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1920 assert(idx != -1); 1921 if (idx == 0) { 1922 error_setg(&local_err, "Boot CPU is unpluggable"); 1923 goto out; 1924 } 1925 1926 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1927 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1928 1929 if (local_err) { 1930 goto out; 1931 } 1932 1933 out: 1934 error_propagate(errp, local_err); 1935 1936 } 1937 1938 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1939 DeviceState *dev, Error **errp) 1940 { 1941 CPUArchId *found_cpu; 1942 HotplugHandlerClass *hhc; 1943 Error *local_err = NULL; 1944 X86CPU *cpu = X86_CPU(dev); 1945 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1946 1947 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1948 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1949 1950 if (local_err) { 1951 goto out; 1952 } 1953 1954 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1955 found_cpu->cpu = NULL; 1956 object_unparent(OBJECT(dev)); 1957 1958 /* decrement the number of CPUs */ 1959 pcms->boot_cpus--; 1960 /* Update the number of CPUs in CMOS */ 1961 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1962 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1963 out: 1964 error_propagate(errp, local_err); 1965 } 1966 1967 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1968 DeviceState *dev, Error **errp) 1969 { 1970 int idx; 1971 CPUState *cs; 1972 CPUArchId *cpu_slot; 1973 X86CPUTopoInfo topo; 1974 X86CPU *cpu = X86_CPU(dev); 1975 MachineState *ms = MACHINE(hotplug_dev); 1976 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1977 1978 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1979 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1980 ms->cpu_type); 1981 return; 1982 } 1983 1984 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1985 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1986 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1987 1988 if (cpu->socket_id < 0) { 1989 error_setg(errp, "CPU socket-id is not set"); 1990 return; 1991 } else if (cpu->socket_id > max_socket) { 1992 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1993 cpu->socket_id, max_socket); 1994 return; 1995 } 1996 if (cpu->core_id < 0) { 1997 error_setg(errp, "CPU core-id is not set"); 1998 return; 1999 } else if (cpu->core_id > (smp_cores - 1)) { 2000 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 2001 cpu->core_id, smp_cores - 1); 2002 return; 2003 } 2004 if (cpu->thread_id < 0) { 2005 error_setg(errp, "CPU thread-id is not set"); 2006 return; 2007 } else if (cpu->thread_id > (smp_threads - 1)) { 2008 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 2009 cpu->thread_id, smp_threads - 1); 2010 return; 2011 } 2012 2013 topo.pkg_id = cpu->socket_id; 2014 topo.core_id = cpu->core_id; 2015 topo.smt_id = cpu->thread_id; 2016 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 2017 } 2018 2019 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 2020 if (!cpu_slot) { 2021 MachineState *ms = MACHINE(pcms); 2022 2023 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2024 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 2025 " APIC ID %" PRIu32 ", valid index range 0:%d", 2026 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 2027 ms->possible_cpus->len - 1); 2028 return; 2029 } 2030 2031 if (cpu_slot->cpu) { 2032 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 2033 idx, cpu->apic_id); 2034 return; 2035 } 2036 2037 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 2038 * so that machine_query_hotpluggable_cpus would show correct values 2039 */ 2040 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 2041 * once -smp refactoring is complete and there will be CPU private 2042 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 2043 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2044 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 2045 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 2046 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 2047 return; 2048 } 2049 cpu->socket_id = topo.pkg_id; 2050 2051 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 2052 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 2053 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 2054 return; 2055 } 2056 cpu->core_id = topo.core_id; 2057 2058 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2059 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2060 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2061 return; 2062 } 2063 cpu->thread_id = topo.smt_id; 2064 2065 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2066 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2067 return; 2068 } 2069 2070 cs = CPU(cpu); 2071 cs->cpu_index = idx; 2072 2073 numa_cpu_pre_plug(cpu_slot, dev, errp); 2074 } 2075 2076 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2077 DeviceState *dev, Error **errp) 2078 { 2079 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2080 pc_memory_pre_plug(hotplug_dev, dev, errp); 2081 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2082 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2083 } 2084 } 2085 2086 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2087 DeviceState *dev, Error **errp) 2088 { 2089 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2090 pc_memory_plug(hotplug_dev, dev, errp); 2091 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2092 pc_cpu_plug(hotplug_dev, dev, errp); 2093 } 2094 } 2095 2096 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2097 DeviceState *dev, Error **errp) 2098 { 2099 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2100 pc_memory_unplug_request(hotplug_dev, dev, errp); 2101 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2102 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2103 } else { 2104 error_setg(errp, "acpi: device unplug request for not supported device" 2105 " type: %s", object_get_typename(OBJECT(dev))); 2106 } 2107 } 2108 2109 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2110 DeviceState *dev, Error **errp) 2111 { 2112 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2113 pc_memory_unplug(hotplug_dev, dev, errp); 2114 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2115 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2116 } else { 2117 error_setg(errp, "acpi: device unplug for not supported device" 2118 " type: %s", object_get_typename(OBJECT(dev))); 2119 } 2120 } 2121 2122 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2123 DeviceState *dev) 2124 { 2125 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2126 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2127 return HOTPLUG_HANDLER(machine); 2128 } 2129 2130 return NULL; 2131 } 2132 2133 static void 2134 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2135 const char *name, void *opaque, 2136 Error **errp) 2137 { 2138 MachineState *ms = MACHINE(obj); 2139 int64_t value = memory_region_size(&ms->device_memory->mr); 2140 2141 visit_type_int(v, name, &value, errp); 2142 } 2143 2144 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2145 const char *name, void *opaque, 2146 Error **errp) 2147 { 2148 PCMachineState *pcms = PC_MACHINE(obj); 2149 uint64_t value = pcms->max_ram_below_4g; 2150 2151 visit_type_size(v, name, &value, errp); 2152 } 2153 2154 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2155 const char *name, void *opaque, 2156 Error **errp) 2157 { 2158 PCMachineState *pcms = PC_MACHINE(obj); 2159 Error *error = NULL; 2160 uint64_t value; 2161 2162 visit_type_size(v, name, &value, &error); 2163 if (error) { 2164 error_propagate(errp, error); 2165 return; 2166 } 2167 if (value > 4 * GiB) { 2168 error_setg(&error, 2169 "Machine option 'max-ram-below-4g=%"PRIu64 2170 "' expects size less than or equal to 4G", value); 2171 error_propagate(errp, error); 2172 return; 2173 } 2174 2175 if (value < 1 * MiB) { 2176 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2177 "BIOS may not work with less than 1MiB", value); 2178 } 2179 2180 pcms->max_ram_below_4g = value; 2181 } 2182 2183 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2184 void *opaque, Error **errp) 2185 { 2186 PCMachineState *pcms = PC_MACHINE(obj); 2187 OnOffAuto vmport = pcms->vmport; 2188 2189 visit_type_OnOffAuto(v, name, &vmport, errp); 2190 } 2191 2192 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2193 void *opaque, Error **errp) 2194 { 2195 PCMachineState *pcms = PC_MACHINE(obj); 2196 2197 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2198 } 2199 2200 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2201 { 2202 bool smm_available = false; 2203 2204 if (pcms->smm == ON_OFF_AUTO_OFF) { 2205 return false; 2206 } 2207 2208 if (tcg_enabled() || qtest_enabled()) { 2209 smm_available = true; 2210 } else if (kvm_enabled()) { 2211 smm_available = kvm_has_smm(); 2212 } 2213 2214 if (smm_available) { 2215 return true; 2216 } 2217 2218 if (pcms->smm == ON_OFF_AUTO_ON) { 2219 error_report("System Management Mode not supported by this hypervisor."); 2220 exit(1); 2221 } 2222 return false; 2223 } 2224 2225 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2226 void *opaque, Error **errp) 2227 { 2228 PCMachineState *pcms = PC_MACHINE(obj); 2229 OnOffAuto smm = pcms->smm; 2230 2231 visit_type_OnOffAuto(v, name, &smm, errp); 2232 } 2233 2234 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2235 void *opaque, Error **errp) 2236 { 2237 PCMachineState *pcms = PC_MACHINE(obj); 2238 2239 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2240 } 2241 2242 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2243 { 2244 PCMachineState *pcms = PC_MACHINE(obj); 2245 2246 return pcms->acpi_nvdimm_state.is_enabled; 2247 } 2248 2249 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2250 { 2251 PCMachineState *pcms = PC_MACHINE(obj); 2252 2253 pcms->acpi_nvdimm_state.is_enabled = value; 2254 } 2255 2256 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2257 { 2258 PCMachineState *pcms = PC_MACHINE(obj); 2259 2260 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2261 } 2262 2263 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2264 Error **errp) 2265 { 2266 PCMachineState *pcms = PC_MACHINE(obj); 2267 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2268 2269 if (strcmp(value, "cpu") == 0) 2270 nvdimm_state->persistence = 3; 2271 else if (strcmp(value, "mem-ctrl") == 0) 2272 nvdimm_state->persistence = 2; 2273 else { 2274 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option", 2275 value); 2276 return; 2277 } 2278 2279 g_free(nvdimm_state->persistence_string); 2280 nvdimm_state->persistence_string = g_strdup(value); 2281 } 2282 2283 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2284 { 2285 PCMachineState *pcms = PC_MACHINE(obj); 2286 2287 return pcms->smbus_enabled; 2288 } 2289 2290 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2291 { 2292 PCMachineState *pcms = PC_MACHINE(obj); 2293 2294 pcms->smbus_enabled = value; 2295 } 2296 2297 static bool pc_machine_get_sata(Object *obj, Error **errp) 2298 { 2299 PCMachineState *pcms = PC_MACHINE(obj); 2300 2301 return pcms->sata_enabled; 2302 } 2303 2304 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2305 { 2306 PCMachineState *pcms = PC_MACHINE(obj); 2307 2308 pcms->sata_enabled = value; 2309 } 2310 2311 static bool pc_machine_get_pit(Object *obj, Error **errp) 2312 { 2313 PCMachineState *pcms = PC_MACHINE(obj); 2314 2315 return pcms->pit_enabled; 2316 } 2317 2318 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2319 { 2320 PCMachineState *pcms = PC_MACHINE(obj); 2321 2322 pcms->pit_enabled = value; 2323 } 2324 2325 static void pc_machine_initfn(Object *obj) 2326 { 2327 PCMachineState *pcms = PC_MACHINE(obj); 2328 2329 pcms->max_ram_below_4g = 0; /* use default */ 2330 pcms->smm = ON_OFF_AUTO_AUTO; 2331 pcms->vmport = ON_OFF_AUTO_AUTO; 2332 /* nvdimm is disabled on default. */ 2333 pcms->acpi_nvdimm_state.is_enabled = false; 2334 /* acpi build is enabled by default if machine supports it */ 2335 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2336 pcms->smbus_enabled = true; 2337 pcms->sata_enabled = true; 2338 pcms->pit_enabled = true; 2339 } 2340 2341 static void pc_machine_reset(void) 2342 { 2343 CPUState *cs; 2344 X86CPU *cpu; 2345 2346 qemu_devices_reset(); 2347 2348 /* Reset APIC after devices have been reset to cancel 2349 * any changes that qemu_devices_reset() might have done. 2350 */ 2351 CPU_FOREACH(cs) { 2352 cpu = X86_CPU(cs); 2353 2354 if (cpu->apic_state) { 2355 device_reset(cpu->apic_state); 2356 } 2357 } 2358 } 2359 2360 static CpuInstanceProperties 2361 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2362 { 2363 MachineClass *mc = MACHINE_GET_CLASS(ms); 2364 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2365 2366 assert(cpu_index < possible_cpus->len); 2367 return possible_cpus->cpus[cpu_index].props; 2368 } 2369 2370 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2371 { 2372 X86CPUTopoInfo topo; 2373 2374 assert(idx < ms->possible_cpus->len); 2375 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2376 smp_cores, smp_threads, &topo); 2377 return topo.pkg_id % nb_numa_nodes; 2378 } 2379 2380 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2381 { 2382 int i; 2383 2384 if (ms->possible_cpus) { 2385 /* 2386 * make sure that max_cpus hasn't changed since the first use, i.e. 2387 * -smp hasn't been parsed after it 2388 */ 2389 assert(ms->possible_cpus->len == max_cpus); 2390 return ms->possible_cpus; 2391 } 2392 2393 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2394 sizeof(CPUArchId) * max_cpus); 2395 ms->possible_cpus->len = max_cpus; 2396 for (i = 0; i < ms->possible_cpus->len; i++) { 2397 X86CPUTopoInfo topo; 2398 2399 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2400 ms->possible_cpus->cpus[i].vcpus_count = 1; 2401 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2402 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2403 smp_cores, smp_threads, &topo); 2404 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2405 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2406 ms->possible_cpus->cpus[i].props.has_core_id = true; 2407 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2408 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2409 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2410 } 2411 return ms->possible_cpus; 2412 } 2413 2414 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2415 { 2416 /* cpu index isn't used */ 2417 CPUState *cs; 2418 2419 CPU_FOREACH(cs) { 2420 X86CPU *cpu = X86_CPU(cs); 2421 2422 if (!cpu->apic_state) { 2423 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2424 } else { 2425 apic_deliver_nmi(cpu->apic_state); 2426 } 2427 } 2428 } 2429 2430 static void pc_machine_class_init(ObjectClass *oc, void *data) 2431 { 2432 MachineClass *mc = MACHINE_CLASS(oc); 2433 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2434 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2435 NMIClass *nc = NMI_CLASS(oc); 2436 2437 pcmc->pci_enabled = true; 2438 pcmc->has_acpi_build = true; 2439 pcmc->rsdp_in_ram = true; 2440 pcmc->smbios_defaults = true; 2441 pcmc->smbios_uuid_encoded = true; 2442 pcmc->gigabyte_align = true; 2443 pcmc->has_reserved_memory = true; 2444 pcmc->kvmclock_enabled = true; 2445 pcmc->enforce_aligned_dimm = true; 2446 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2447 * to be used at the moment, 32K should be enough for a while. */ 2448 pcmc->acpi_data_size = 0x20000 + 0x8000; 2449 pcmc->save_tsc_khz = true; 2450 pcmc->linuxboot_dma_enabled = true; 2451 assert(!mc->get_hotplug_handler); 2452 mc->get_hotplug_handler = pc_get_hotpug_handler; 2453 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2454 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2455 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2456 mc->auto_enable_numa_with_memhp = true; 2457 mc->has_hotpluggable_cpus = true; 2458 mc->default_boot_order = "cad"; 2459 mc->hot_add_cpu = pc_hot_add_cpu; 2460 mc->block_default_type = IF_IDE; 2461 mc->max_cpus = 255; 2462 mc->reset = pc_machine_reset; 2463 hc->pre_plug = pc_machine_device_pre_plug_cb; 2464 hc->plug = pc_machine_device_plug_cb; 2465 hc->unplug_request = pc_machine_device_unplug_request_cb; 2466 hc->unplug = pc_machine_device_unplug_cb; 2467 nc->nmi_monitor_handler = x86_nmi; 2468 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2469 2470 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2471 pc_machine_get_device_memory_region_size, NULL, 2472 NULL, NULL, &error_abort); 2473 2474 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2475 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2476 NULL, NULL, &error_abort); 2477 2478 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2479 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2480 2481 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2482 pc_machine_get_smm, pc_machine_set_smm, 2483 NULL, NULL, &error_abort); 2484 object_class_property_set_description(oc, PC_MACHINE_SMM, 2485 "Enable SMM (pc & q35)", &error_abort); 2486 2487 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2488 pc_machine_get_vmport, pc_machine_set_vmport, 2489 NULL, NULL, &error_abort); 2490 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2491 "Enable vmport (pc & q35)", &error_abort); 2492 2493 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2494 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2495 2496 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2497 pc_machine_get_nvdimm_persistence, 2498 pc_machine_set_nvdimm_persistence, &error_abort); 2499 2500 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2501 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2502 2503 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2504 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2505 2506 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2507 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2508 } 2509 2510 static const TypeInfo pc_machine_info = { 2511 .name = TYPE_PC_MACHINE, 2512 .parent = TYPE_MACHINE, 2513 .abstract = true, 2514 .instance_size = sizeof(PCMachineState), 2515 .instance_init = pc_machine_initfn, 2516 .class_size = sizeof(PCMachineClass), 2517 .class_init = pc_machine_class_init, 2518 .interfaces = (InterfaceInfo[]) { 2519 { TYPE_HOTPLUG_HANDLER }, 2520 { TYPE_NMI }, 2521 { } 2522 }, 2523 }; 2524 2525 static void pc_machine_register_types(void) 2526 { 2527 type_register_static(&pc_machine_info); 2528 } 2529 2530 type_init(pc_machine_register_types) 2531