xref: /openbmc/qemu/hw/i386/pc.c (revision 416296a9)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 
72 /* debug PC/ISA interrupts */
73 //#define DEBUG_IRQ
74 
75 #ifdef DEBUG_IRQ
76 #define DPRINTF(fmt, ...)                                       \
77     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
78 #else
79 #define DPRINTF(fmt, ...)
80 #endif
81 
82 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
83 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
84 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
85 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
86 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
87 
88 #define E820_NR_ENTRIES		16
89 
90 struct e820_entry {
91     uint64_t address;
92     uint64_t length;
93     uint32_t type;
94 } QEMU_PACKED __attribute((__aligned__(4)));
95 
96 struct e820_table {
97     uint32_t count;
98     struct e820_entry entry[E820_NR_ENTRIES];
99 } QEMU_PACKED __attribute((__aligned__(4)));
100 
101 static struct e820_table e820_reserve;
102 static struct e820_entry *e820_table;
103 static unsigned e820_entries;
104 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
105 
106 void gsi_handler(void *opaque, int n, int level)
107 {
108     GSIState *s = opaque;
109 
110     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
111     if (n < ISA_NUM_IRQS) {
112         qemu_set_irq(s->i8259_irq[n], level);
113     }
114     qemu_set_irq(s->ioapic_irq[n], level);
115 }
116 
117 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
118                            unsigned size)
119 {
120 }
121 
122 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
123 {
124     return 0xffffffffffffffffULL;
125 }
126 
127 /* MSDOS compatibility mode FPU exception support */
128 static qemu_irq ferr_irq;
129 
130 void pc_register_ferr_irq(qemu_irq irq)
131 {
132     ferr_irq = irq;
133 }
134 
135 /* XXX: add IGNNE support */
136 void cpu_set_ferr(CPUX86State *s)
137 {
138     qemu_irq_raise(ferr_irq);
139 }
140 
141 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
142                            unsigned size)
143 {
144     qemu_irq_lower(ferr_irq);
145 }
146 
147 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
148 {
149     return 0xffffffffffffffffULL;
150 }
151 
152 /* TSC handling */
153 uint64_t cpu_get_tsc(CPUX86State *env)
154 {
155     return cpu_get_ticks();
156 }
157 
158 /* IRQ handling */
159 int cpu_get_pic_interrupt(CPUX86State *env)
160 {
161     X86CPU *cpu = x86_env_get_cpu(env);
162     int intno;
163 
164     intno = apic_get_interrupt(cpu->apic_state);
165     if (intno >= 0) {
166         return intno;
167     }
168     /* read the irq from the PIC */
169     if (!apic_accept_pic_intr(cpu->apic_state)) {
170         return -1;
171     }
172 
173     intno = pic_read_irq(isa_pic);
174     return intno;
175 }
176 
177 static void pic_irq_request(void *opaque, int irq, int level)
178 {
179     CPUState *cs = first_cpu;
180     X86CPU *cpu = X86_CPU(cs);
181 
182     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
183     if (cpu->apic_state) {
184         CPU_FOREACH(cs) {
185             cpu = X86_CPU(cs);
186             if (apic_accept_pic_intr(cpu->apic_state)) {
187                 apic_deliver_pic_intr(cpu->apic_state, level);
188             }
189         }
190     } else {
191         if (level) {
192             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
193         } else {
194             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
195         }
196     }
197 }
198 
199 /* PC cmos mappings */
200 
201 #define REG_EQUIPMENT_BYTE          0x14
202 
203 int cmos_get_fd_drive_type(FloppyDriveType fd0)
204 {
205     int val;
206 
207     switch (fd0) {
208     case FLOPPY_DRIVE_TYPE_144:
209         /* 1.44 Mb 3"5 drive */
210         val = 4;
211         break;
212     case FLOPPY_DRIVE_TYPE_288:
213         /* 2.88 Mb 3"5 drive */
214         val = 5;
215         break;
216     case FLOPPY_DRIVE_TYPE_120:
217         /* 1.2 Mb 5"5 drive */
218         val = 2;
219         break;
220     case FLOPPY_DRIVE_TYPE_NONE:
221     default:
222         val = 0;
223         break;
224     }
225     return val;
226 }
227 
228 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
229                          int16_t cylinders, int8_t heads, int8_t sectors)
230 {
231     rtc_set_memory(s, type_ofs, 47);
232     rtc_set_memory(s, info_ofs, cylinders);
233     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
234     rtc_set_memory(s, info_ofs + 2, heads);
235     rtc_set_memory(s, info_ofs + 3, 0xff);
236     rtc_set_memory(s, info_ofs + 4, 0xff);
237     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
238     rtc_set_memory(s, info_ofs + 6, cylinders);
239     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
240     rtc_set_memory(s, info_ofs + 8, sectors);
241 }
242 
243 /* convert boot_device letter to something recognizable by the bios */
244 static int boot_device2nibble(char boot_device)
245 {
246     switch(boot_device) {
247     case 'a':
248     case 'b':
249         return 0x01; /* floppy boot */
250     case 'c':
251         return 0x02; /* hard drive boot */
252     case 'd':
253         return 0x03; /* CD-ROM boot */
254     case 'n':
255         return 0x04; /* Network boot */
256     }
257     return 0;
258 }
259 
260 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
261 {
262 #define PC_MAX_BOOT_DEVICES 3
263     int nbds, bds[3] = { 0, };
264     int i;
265 
266     nbds = strlen(boot_device);
267     if (nbds > PC_MAX_BOOT_DEVICES) {
268         error_setg(errp, "Too many boot devices for PC");
269         return;
270     }
271     for (i = 0; i < nbds; i++) {
272         bds[i] = boot_device2nibble(boot_device[i]);
273         if (bds[i] == 0) {
274             error_setg(errp, "Invalid boot device for PC: '%c'",
275                        boot_device[i]);
276             return;
277         }
278     }
279     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
280     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
281 }
282 
283 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
284 {
285     set_boot_dev(opaque, boot_device, errp);
286 }
287 
288 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
289 {
290     int val, nb, i;
291     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
292                                    FLOPPY_DRIVE_TYPE_NONE };
293 
294     /* floppy type */
295     if (floppy) {
296         for (i = 0; i < 2; i++) {
297             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
298         }
299     }
300     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
301         cmos_get_fd_drive_type(fd_type[1]);
302     rtc_set_memory(rtc_state, 0x10, val);
303 
304     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
305     nb = 0;
306     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
307         nb++;
308     }
309     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
310         nb++;
311     }
312     switch (nb) {
313     case 0:
314         break;
315     case 1:
316         val |= 0x01; /* 1 drive, ready for boot */
317         break;
318     case 2:
319         val |= 0x41; /* 2 drives, ready for boot */
320         break;
321     }
322     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
323 }
324 
325 typedef struct pc_cmos_init_late_arg {
326     ISADevice *rtc_state;
327     BusState *idebus[2];
328 } pc_cmos_init_late_arg;
329 
330 typedef struct check_fdc_state {
331     ISADevice *floppy;
332     bool multiple;
333 } CheckFdcState;
334 
335 static int check_fdc(Object *obj, void *opaque)
336 {
337     CheckFdcState *state = opaque;
338     Object *fdc;
339     uint32_t iobase;
340     Error *local_err = NULL;
341 
342     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
343     if (!fdc) {
344         return 0;
345     }
346 
347     iobase = object_property_get_int(obj, "iobase", &local_err);
348     if (local_err || iobase != 0x3f0) {
349         error_free(local_err);
350         return 0;
351     }
352 
353     if (state->floppy) {
354         state->multiple = true;
355     } else {
356         state->floppy = ISA_DEVICE(obj);
357     }
358     return 0;
359 }
360 
361 static const char * const fdc_container_path[] = {
362     "/unattached", "/peripheral", "/peripheral-anon"
363 };
364 
365 /*
366  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
367  * and ACPI objects.
368  */
369 ISADevice *pc_find_fdc0(void)
370 {
371     int i;
372     Object *container;
373     CheckFdcState state = { 0 };
374 
375     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
376         container = container_get(qdev_get_machine(), fdc_container_path[i]);
377         object_child_foreach(container, check_fdc, &state);
378     }
379 
380     if (state.multiple) {
381         error_report("warning: multiple floppy disk controllers with "
382                      "iobase=0x3f0 have been found");
383         error_printf("the one being picked for CMOS setup might not reflect "
384                      "your intent\n");
385     }
386 
387     return state.floppy;
388 }
389 
390 static void pc_cmos_init_late(void *opaque)
391 {
392     pc_cmos_init_late_arg *arg = opaque;
393     ISADevice *s = arg->rtc_state;
394     int16_t cylinders;
395     int8_t heads, sectors;
396     int val;
397     int i, trans;
398 
399     val = 0;
400     if (ide_get_geometry(arg->idebus[0], 0,
401                          &cylinders, &heads, &sectors) >= 0) {
402         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
403         val |= 0xf0;
404     }
405     if (ide_get_geometry(arg->idebus[0], 1,
406                          &cylinders, &heads, &sectors) >= 0) {
407         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
408         val |= 0x0f;
409     }
410     rtc_set_memory(s, 0x12, val);
411 
412     val = 0;
413     for (i = 0; i < 4; i++) {
414         /* NOTE: ide_get_geometry() returns the physical
415            geometry.  It is always such that: 1 <= sects <= 63, 1
416            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
417            geometry can be different if a translation is done. */
418         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
419                              &cylinders, &heads, &sectors) >= 0) {
420             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
421             assert((trans & ~3) == 0);
422             val |= trans << (i * 2);
423         }
424     }
425     rtc_set_memory(s, 0x39, val);
426 
427     pc_cmos_init_floppy(s, pc_find_fdc0());
428 
429     qemu_unregister_reset(pc_cmos_init_late, opaque);
430 }
431 
432 void pc_cmos_init(PCMachineState *pcms,
433                   BusState *idebus0, BusState *idebus1,
434                   ISADevice *s)
435 {
436     int val;
437     static pc_cmos_init_late_arg arg;
438 
439     /* various important CMOS locations needed by PC/Bochs bios */
440 
441     /* memory size */
442     /* base memory (first MiB) */
443     val = MIN(pcms->below_4g_mem_size / 1024, 640);
444     rtc_set_memory(s, 0x15, val);
445     rtc_set_memory(s, 0x16, val >> 8);
446     /* extended memory (next 64MiB) */
447     if (pcms->below_4g_mem_size > 1024 * 1024) {
448         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
449     } else {
450         val = 0;
451     }
452     if (val > 65535)
453         val = 65535;
454     rtc_set_memory(s, 0x17, val);
455     rtc_set_memory(s, 0x18, val >> 8);
456     rtc_set_memory(s, 0x30, val);
457     rtc_set_memory(s, 0x31, val >> 8);
458     /* memory between 16MiB and 4GiB */
459     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
460         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
461     } else {
462         val = 0;
463     }
464     if (val > 65535)
465         val = 65535;
466     rtc_set_memory(s, 0x34, val);
467     rtc_set_memory(s, 0x35, val >> 8);
468     /* memory above 4GiB */
469     val = pcms->above_4g_mem_size / 65536;
470     rtc_set_memory(s, 0x5b, val);
471     rtc_set_memory(s, 0x5c, val >> 8);
472     rtc_set_memory(s, 0x5d, val >> 16);
473 
474     object_property_add_link(OBJECT(pcms), "rtc_state",
475                              TYPE_ISA_DEVICE,
476                              (Object **)&pcms->rtc,
477                              object_property_allow_set_link,
478                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
479     object_property_set_link(OBJECT(pcms), OBJECT(s),
480                              "rtc_state", &error_abort);
481 
482     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
483 
484     val = 0;
485     val |= 0x02; /* FPU is there */
486     val |= 0x04; /* PS/2 mouse installed */
487     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
488 
489     /* hard drives and FDC */
490     arg.rtc_state = s;
491     arg.idebus[0] = idebus0;
492     arg.idebus[1] = idebus1;
493     qemu_register_reset(pc_cmos_init_late, &arg);
494 }
495 
496 #define TYPE_PORT92 "port92"
497 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
498 
499 /* port 92 stuff: could be split off */
500 typedef struct Port92State {
501     ISADevice parent_obj;
502 
503     MemoryRegion io;
504     uint8_t outport;
505     qemu_irq a20_out;
506 } Port92State;
507 
508 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
509                          unsigned size)
510 {
511     Port92State *s = opaque;
512     int oldval = s->outport;
513 
514     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
515     s->outport = val;
516     qemu_set_irq(s->a20_out, (val >> 1) & 1);
517     if ((val & 1) && !(oldval & 1)) {
518         qemu_system_reset_request();
519     }
520 }
521 
522 static uint64_t port92_read(void *opaque, hwaddr addr,
523                             unsigned size)
524 {
525     Port92State *s = opaque;
526     uint32_t ret;
527 
528     ret = s->outport;
529     DPRINTF("port92: read 0x%02x\n", ret);
530     return ret;
531 }
532 
533 static void port92_init(ISADevice *dev, qemu_irq a20_out)
534 {
535     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
536 }
537 
538 static const VMStateDescription vmstate_port92_isa = {
539     .name = "port92",
540     .version_id = 1,
541     .minimum_version_id = 1,
542     .fields = (VMStateField[]) {
543         VMSTATE_UINT8(outport, Port92State),
544         VMSTATE_END_OF_LIST()
545     }
546 };
547 
548 static void port92_reset(DeviceState *d)
549 {
550     Port92State *s = PORT92(d);
551 
552     s->outport &= ~1;
553 }
554 
555 static const MemoryRegionOps port92_ops = {
556     .read = port92_read,
557     .write = port92_write,
558     .impl = {
559         .min_access_size = 1,
560         .max_access_size = 1,
561     },
562     .endianness = DEVICE_LITTLE_ENDIAN,
563 };
564 
565 static void port92_initfn(Object *obj)
566 {
567     Port92State *s = PORT92(obj);
568 
569     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
570 
571     s->outport = 0;
572 
573     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
574 }
575 
576 static void port92_realizefn(DeviceState *dev, Error **errp)
577 {
578     ISADevice *isadev = ISA_DEVICE(dev);
579     Port92State *s = PORT92(dev);
580 
581     isa_register_ioport(isadev, &s->io, 0x92);
582 }
583 
584 static void port92_class_initfn(ObjectClass *klass, void *data)
585 {
586     DeviceClass *dc = DEVICE_CLASS(klass);
587 
588     dc->realize = port92_realizefn;
589     dc->reset = port92_reset;
590     dc->vmsd = &vmstate_port92_isa;
591     /*
592      * Reason: unlike ordinary ISA devices, this one needs additional
593      * wiring: its A20 output line needs to be wired up by
594      * port92_init().
595      */
596     dc->cannot_instantiate_with_device_add_yet = true;
597 }
598 
599 static const TypeInfo port92_info = {
600     .name          = TYPE_PORT92,
601     .parent        = TYPE_ISA_DEVICE,
602     .instance_size = sizeof(Port92State),
603     .instance_init = port92_initfn,
604     .class_init    = port92_class_initfn,
605 };
606 
607 static void port92_register_types(void)
608 {
609     type_register_static(&port92_info);
610 }
611 
612 type_init(port92_register_types)
613 
614 static void handle_a20_line_change(void *opaque, int irq, int level)
615 {
616     X86CPU *cpu = opaque;
617 
618     /* XXX: send to all CPUs ? */
619     /* XXX: add logic to handle multiple A20 line sources */
620     x86_cpu_set_a20(cpu, level);
621 }
622 
623 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
624 {
625     int index = le32_to_cpu(e820_reserve.count);
626     struct e820_entry *entry;
627 
628     if (type != E820_RAM) {
629         /* old FW_CFG_E820_TABLE entry -- reservations only */
630         if (index >= E820_NR_ENTRIES) {
631             return -EBUSY;
632         }
633         entry = &e820_reserve.entry[index++];
634 
635         entry->address = cpu_to_le64(address);
636         entry->length = cpu_to_le64(length);
637         entry->type = cpu_to_le32(type);
638 
639         e820_reserve.count = cpu_to_le32(index);
640     }
641 
642     /* new "etc/e820" file -- include ram too */
643     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
644     e820_table[e820_entries].address = cpu_to_le64(address);
645     e820_table[e820_entries].length = cpu_to_le64(length);
646     e820_table[e820_entries].type = cpu_to_le32(type);
647     e820_entries++;
648 
649     return e820_entries;
650 }
651 
652 int e820_get_num_entries(void)
653 {
654     return e820_entries;
655 }
656 
657 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
658 {
659     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
660         *address = le64_to_cpu(e820_table[idx].address);
661         *length = le64_to_cpu(e820_table[idx].length);
662         return true;
663     }
664     return false;
665 }
666 
667 /* Enables contiguous-apic-ID mode, for compatibility */
668 static bool compat_apic_id_mode;
669 
670 void enable_compat_apic_id_mode(void)
671 {
672     compat_apic_id_mode = true;
673 }
674 
675 /* Calculates initial APIC ID for a specific CPU index
676  *
677  * Currently we need to be able to calculate the APIC ID from the CPU index
678  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
679  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
680  * all CPUs up to max_cpus.
681  */
682 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
683 {
684     uint32_t correct_id;
685     static bool warned;
686 
687     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
688     if (compat_apic_id_mode) {
689         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
690             error_report("APIC IDs set in compatibility mode, "
691                          "CPU topology won't match the configuration");
692             warned = true;
693         }
694         return cpu_index;
695     } else {
696         return correct_id;
697     }
698 }
699 
700 static void pc_build_smbios(FWCfgState *fw_cfg)
701 {
702     uint8_t *smbios_tables, *smbios_anchor;
703     size_t smbios_tables_len, smbios_anchor_len;
704     struct smbios_phys_mem_area *mem_array;
705     unsigned i, array_count;
706 
707     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
708     if (smbios_tables) {
709         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
710                          smbios_tables, smbios_tables_len);
711     }
712 
713     /* build the array of physical mem area from e820 table */
714     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
715     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
716         uint64_t addr, len;
717 
718         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
719             mem_array[array_count].address = addr;
720             mem_array[array_count].length = len;
721             array_count++;
722         }
723     }
724     smbios_get_tables(mem_array, array_count,
725                       &smbios_tables, &smbios_tables_len,
726                       &smbios_anchor, &smbios_anchor_len);
727     g_free(mem_array);
728 
729     if (smbios_anchor) {
730         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
731                         smbios_tables, smbios_tables_len);
732         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
733                         smbios_anchor, smbios_anchor_len);
734     }
735 }
736 
737 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
738 {
739     FWCfgState *fw_cfg;
740     uint64_t *numa_fw_cfg;
741     int i, j;
742 
743     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
744 
745     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
746      *
747      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
748      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
749      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
750      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
751      * may see".
752      *
753      * So, this means we must not use max_cpus, here, but the maximum possible
754      * APIC ID value, plus one.
755      *
756      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
757      *     the APIC ID, not the "CPU index"
758      */
759     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
760     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
761     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
762                      acpi_tables, acpi_tables_len);
763     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
764 
765     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
766                      &e820_reserve, sizeof(e820_reserve));
767     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
768                     sizeof(struct e820_entry) * e820_entries);
769 
770     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
771     /* allocate memory for the NUMA channel: one (64bit) word for the number
772      * of nodes, one word for each VCPU->node and one word for each node to
773      * hold the amount of memory.
774      */
775     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
776     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
777     for (i = 0; i < max_cpus; i++) {
778         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
779         assert(apic_id < pcms->apic_id_limit);
780         for (j = 0; j < nb_numa_nodes; j++) {
781             if (test_bit(i, numa_info[j].node_cpu)) {
782                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
783                 break;
784             }
785         }
786     }
787     for (i = 0; i < nb_numa_nodes; i++) {
788         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
789             cpu_to_le64(numa_info[i].node_mem);
790     }
791     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
792                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
793                      sizeof(*numa_fw_cfg));
794 
795     return fw_cfg;
796 }
797 
798 static long get_file_size(FILE *f)
799 {
800     long where, size;
801 
802     /* XXX: on Unix systems, using fstat() probably makes more sense */
803 
804     where = ftell(f);
805     fseek(f, 0, SEEK_END);
806     size = ftell(f);
807     fseek(f, where, SEEK_SET);
808 
809     return size;
810 }
811 
812 /* setup_data types */
813 #define SETUP_NONE     0
814 #define SETUP_E820_EXT 1
815 #define SETUP_DTB      2
816 #define SETUP_PCI      3
817 #define SETUP_EFI      4
818 
819 struct setup_data {
820     uint64_t next;
821     uint32_t type;
822     uint32_t len;
823     uint8_t data[0];
824 } __attribute__((packed));
825 
826 static void load_linux(PCMachineState *pcms,
827                        FWCfgState *fw_cfg)
828 {
829     uint16_t protocol;
830     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
831     int dtb_size, setup_data_offset;
832     uint32_t initrd_max;
833     uint8_t header[8192], *setup, *kernel, *initrd_data;
834     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
835     FILE *f;
836     char *vmode;
837     MachineState *machine = MACHINE(pcms);
838     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
839     struct setup_data *setup_data;
840     const char *kernel_filename = machine->kernel_filename;
841     const char *initrd_filename = machine->initrd_filename;
842     const char *dtb_filename = machine->dtb;
843     const char *kernel_cmdline = machine->kernel_cmdline;
844 
845     /* Align to 16 bytes as a paranoia measure */
846     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
847 
848     /* load the kernel header */
849     f = fopen(kernel_filename, "rb");
850     if (!f || !(kernel_size = get_file_size(f)) ||
851         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
852         MIN(ARRAY_SIZE(header), kernel_size)) {
853         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
854                 kernel_filename, strerror(errno));
855         exit(1);
856     }
857 
858     /* kernel protocol version */
859 #if 0
860     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
861 #endif
862     if (ldl_p(header+0x202) == 0x53726448) {
863         protocol = lduw_p(header+0x206);
864     } else {
865         /* This looks like a multiboot kernel. If it is, let's stop
866            treating it like a Linux kernel. */
867         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
868                            kernel_cmdline, kernel_size, header)) {
869             return;
870         }
871         protocol = 0;
872     }
873 
874     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
875         /* Low kernel */
876         real_addr    = 0x90000;
877         cmdline_addr = 0x9a000 - cmdline_size;
878         prot_addr    = 0x10000;
879     } else if (protocol < 0x202) {
880         /* High but ancient kernel */
881         real_addr    = 0x90000;
882         cmdline_addr = 0x9a000 - cmdline_size;
883         prot_addr    = 0x100000;
884     } else {
885         /* High and recent kernel */
886         real_addr    = 0x10000;
887         cmdline_addr = 0x20000;
888         prot_addr    = 0x100000;
889     }
890 
891 #if 0
892     fprintf(stderr,
893             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
894             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
895             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
896             real_addr,
897             cmdline_addr,
898             prot_addr);
899 #endif
900 
901     /* highest address for loading the initrd */
902     if (protocol >= 0x203) {
903         initrd_max = ldl_p(header+0x22c);
904     } else {
905         initrd_max = 0x37ffffff;
906     }
907 
908     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
909         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
910     }
911 
912     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
913     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
914     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
915 
916     if (protocol >= 0x202) {
917         stl_p(header+0x228, cmdline_addr);
918     } else {
919         stw_p(header+0x20, 0xA33F);
920         stw_p(header+0x22, cmdline_addr-real_addr);
921     }
922 
923     /* handle vga= parameter */
924     vmode = strstr(kernel_cmdline, "vga=");
925     if (vmode) {
926         unsigned int video_mode;
927         /* skip "vga=" */
928         vmode += 4;
929         if (!strncmp(vmode, "normal", 6)) {
930             video_mode = 0xffff;
931         } else if (!strncmp(vmode, "ext", 3)) {
932             video_mode = 0xfffe;
933         } else if (!strncmp(vmode, "ask", 3)) {
934             video_mode = 0xfffd;
935         } else {
936             video_mode = strtol(vmode, NULL, 0);
937         }
938         stw_p(header+0x1fa, video_mode);
939     }
940 
941     /* loader type */
942     /* High nybble = B reserved for QEMU; low nybble is revision number.
943        If this code is substantially changed, you may want to consider
944        incrementing the revision. */
945     if (protocol >= 0x200) {
946         header[0x210] = 0xB0;
947     }
948     /* heap */
949     if (protocol >= 0x201) {
950         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
951         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
952     }
953 
954     /* load initrd */
955     if (initrd_filename) {
956         if (protocol < 0x200) {
957             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
958             exit(1);
959         }
960 
961         initrd_size = get_image_size(initrd_filename);
962         if (initrd_size < 0) {
963             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
964                     initrd_filename, strerror(errno));
965             exit(1);
966         }
967 
968         initrd_addr = (initrd_max-initrd_size) & ~4095;
969 
970         initrd_data = g_malloc(initrd_size);
971         load_image(initrd_filename, initrd_data);
972 
973         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
974         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
975         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
976 
977         stl_p(header+0x218, initrd_addr);
978         stl_p(header+0x21c, initrd_size);
979     }
980 
981     /* load kernel and setup */
982     setup_size = header[0x1f1];
983     if (setup_size == 0) {
984         setup_size = 4;
985     }
986     setup_size = (setup_size+1)*512;
987     if (setup_size > kernel_size) {
988         fprintf(stderr, "qemu: invalid kernel header\n");
989         exit(1);
990     }
991     kernel_size -= setup_size;
992 
993     setup  = g_malloc(setup_size);
994     kernel = g_malloc(kernel_size);
995     fseek(f, 0, SEEK_SET);
996     if (fread(setup, 1, setup_size, f) != setup_size) {
997         fprintf(stderr, "fread() failed\n");
998         exit(1);
999     }
1000     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1001         fprintf(stderr, "fread() failed\n");
1002         exit(1);
1003     }
1004     fclose(f);
1005 
1006     /* append dtb to kernel */
1007     if (dtb_filename) {
1008         if (protocol < 0x209) {
1009             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1010             exit(1);
1011         }
1012 
1013         dtb_size = get_image_size(dtb_filename);
1014         if (dtb_size <= 0) {
1015             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1016                     dtb_filename, strerror(errno));
1017             exit(1);
1018         }
1019 
1020         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1021         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1022         kernel = g_realloc(kernel, kernel_size);
1023 
1024         stq_p(header+0x250, prot_addr + setup_data_offset);
1025 
1026         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1027         setup_data->next = 0;
1028         setup_data->type = cpu_to_le32(SETUP_DTB);
1029         setup_data->len = cpu_to_le32(dtb_size);
1030 
1031         load_image_size(dtb_filename, setup_data->data, dtb_size);
1032     }
1033 
1034     memcpy(setup, header, MIN(sizeof(header), setup_size));
1035 
1036     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1037     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1038     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1039 
1040     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1041     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1042     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1043 
1044     if (fw_cfg_dma_enabled(fw_cfg)) {
1045         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1046         option_rom[nb_option_roms].bootindex = 0;
1047     } else {
1048         option_rom[nb_option_roms].name = "linuxboot.bin";
1049         option_rom[nb_option_roms].bootindex = 0;
1050     }
1051     nb_option_roms++;
1052 }
1053 
1054 #define NE2000_NB_MAX 6
1055 
1056 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1057                                               0x280, 0x380 };
1058 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1059 
1060 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1061 {
1062     static int nb_ne2k = 0;
1063 
1064     if (nb_ne2k == NE2000_NB_MAX)
1065         return;
1066     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1067                     ne2000_irq[nb_ne2k], nd);
1068     nb_ne2k++;
1069 }
1070 
1071 DeviceState *cpu_get_current_apic(void)
1072 {
1073     if (current_cpu) {
1074         X86CPU *cpu = X86_CPU(current_cpu);
1075         return cpu->apic_state;
1076     } else {
1077         return NULL;
1078     }
1079 }
1080 
1081 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1082 {
1083     X86CPU *cpu = opaque;
1084 
1085     if (level) {
1086         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1087     }
1088 }
1089 
1090 static int pc_present_cpus_count(PCMachineState *pcms)
1091 {
1092     int i, boot_cpus = 0;
1093     for (i = 0; i < pcms->possible_cpus->len; i++) {
1094         if (pcms->possible_cpus->cpus[i].cpu) {
1095             boot_cpus++;
1096         }
1097     }
1098     return boot_cpus;
1099 }
1100 
1101 static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id,
1102                           Error **errp)
1103 {
1104     X86CPU *cpu = NULL;
1105     Error *local_err = NULL;
1106 
1107     cpu = X86_CPU(object_new(typename));
1108 
1109     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1110     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1111 
1112     if (local_err) {
1113         error_propagate(errp, local_err);
1114         object_unref(OBJECT(cpu));
1115         cpu = NULL;
1116     }
1117     return cpu;
1118 }
1119 
1120 void pc_hot_add_cpu(const int64_t id, Error **errp)
1121 {
1122     X86CPU *cpu;
1123     ObjectClass *oc;
1124     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1125     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1126     Error *local_err = NULL;
1127 
1128     if (id < 0) {
1129         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1130         return;
1131     }
1132 
1133     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1134         error_setg(errp, "Unable to add CPU: %" PRIi64
1135                    ", resulting APIC ID (%" PRIi64 ") is too large",
1136                    id, apic_id);
1137         return;
1138     }
1139 
1140     assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1141     oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu));
1142     cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1143     if (local_err) {
1144         error_propagate(errp, local_err);
1145         return;
1146     }
1147     object_unref(OBJECT(cpu));
1148 }
1149 
1150 void pc_cpus_init(PCMachineState *pcms)
1151 {
1152     int i;
1153     CPUClass *cc;
1154     ObjectClass *oc;
1155     const char *typename;
1156     gchar **model_pieces;
1157     X86CPU *cpu = NULL;
1158     MachineState *machine = MACHINE(pcms);
1159 
1160     /* init CPUs */
1161     if (machine->cpu_model == NULL) {
1162 #ifdef TARGET_X86_64
1163         machine->cpu_model = "qemu64";
1164 #else
1165         machine->cpu_model = "qemu32";
1166 #endif
1167     }
1168 
1169     model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1170     if (!model_pieces[0]) {
1171         error_report("Invalid/empty CPU model name");
1172         exit(1);
1173     }
1174 
1175     oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1176     if (oc == NULL) {
1177         error_report("Unable to find CPU definition: %s", model_pieces[0]);
1178         exit(1);
1179     }
1180     typename = object_class_get_name(oc);
1181     cc = CPU_CLASS(oc);
1182     cc->parse_features(typename, model_pieces[1], &error_fatal);
1183     g_strfreev(model_pieces);
1184 
1185     /* Calculates the limit to CPU APIC ID values
1186      *
1187      * Limit for the APIC ID value, so that all
1188      * CPU APIC IDs are < pcms->apic_id_limit.
1189      *
1190      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1191      */
1192     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1193     if (pcms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1194         error_report("max_cpus is too large. APIC ID of last CPU is %u",
1195                      pcms->apic_id_limit - 1);
1196         exit(1);
1197     }
1198 
1199     pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1200                                     sizeof(CPUArchId) * max_cpus);
1201     for (i = 0; i < max_cpus; i++) {
1202         pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1203         pcms->possible_cpus->len++;
1204         if (i < smp_cpus) {
1205             cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i),
1206                              &error_fatal);
1207             object_unref(OBJECT(cpu));
1208         }
1209     }
1210 
1211     /* tell smbios about cpuid version and features */
1212     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1213 }
1214 
1215 static void pc_build_feature_control_file(PCMachineState *pcms)
1216 {
1217     X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
1218     CPUX86State *env = &cpu->env;
1219     uint32_t unused, ecx, edx;
1220     uint64_t feature_control_bits = 0;
1221     uint64_t *val;
1222 
1223     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1224     if (ecx & CPUID_EXT_VMX) {
1225         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1226     }
1227 
1228     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1229         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1230         (env->mcg_cap & MCG_LMCE_P)) {
1231         feature_control_bits |= FEATURE_CONTROL_LMCE;
1232     }
1233 
1234     if (!feature_control_bits) {
1235         return;
1236     }
1237 
1238     val = g_malloc(sizeof(*val));
1239     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1240     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1241 }
1242 
1243 static
1244 void pc_machine_done(Notifier *notifier, void *data)
1245 {
1246     PCMachineState *pcms = container_of(notifier,
1247                                         PCMachineState, machine_done);
1248     PCIBus *bus = pcms->bus;
1249 
1250     /* set the number of CPUs */
1251     rtc_set_memory(pcms->rtc, 0x5f, pc_present_cpus_count(pcms) - 1);
1252 
1253     if (bus) {
1254         int extra_hosts = 0;
1255 
1256         QLIST_FOREACH(bus, &bus->child, sibling) {
1257             /* look for expander root buses */
1258             if (pci_bus_is_root(bus)) {
1259                 extra_hosts++;
1260             }
1261         }
1262         if (extra_hosts && pcms->fw_cfg) {
1263             uint64_t *val = g_malloc(sizeof(*val));
1264             *val = cpu_to_le64(extra_hosts);
1265             fw_cfg_add_file(pcms->fw_cfg,
1266                     "etc/extra-pci-roots", val, sizeof(*val));
1267         }
1268     }
1269 
1270     acpi_setup();
1271     if (pcms->fw_cfg) {
1272         pc_build_smbios(pcms->fw_cfg);
1273         pc_build_feature_control_file(pcms);
1274     }
1275 }
1276 
1277 void pc_guest_info_init(PCMachineState *pcms)
1278 {
1279     int i;
1280 
1281     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1282     pcms->numa_nodes = nb_numa_nodes;
1283     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1284                                     sizeof *pcms->node_mem);
1285     for (i = 0; i < nb_numa_nodes; i++) {
1286         pcms->node_mem[i] = numa_info[i].node_mem;
1287     }
1288 
1289     pcms->machine_done.notify = pc_machine_done;
1290     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1291 }
1292 
1293 /* setup pci memory address space mapping into system address space */
1294 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1295                             MemoryRegion *pci_address_space)
1296 {
1297     /* Set to lower priority than RAM */
1298     memory_region_add_subregion_overlap(system_memory, 0x0,
1299                                         pci_address_space, -1);
1300 }
1301 
1302 void pc_acpi_init(const char *default_dsdt)
1303 {
1304     char *filename;
1305 
1306     if (acpi_tables != NULL) {
1307         /* manually set via -acpitable, leave it alone */
1308         return;
1309     }
1310 
1311     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1312     if (filename == NULL) {
1313         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1314     } else {
1315         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1316                                           &error_abort);
1317         Error *err = NULL;
1318 
1319         qemu_opt_set(opts, "file", filename, &error_abort);
1320 
1321         acpi_table_add_builtin(opts, &err);
1322         if (err) {
1323             error_reportf_err(err, "WARNING: failed to load %s: ",
1324                               filename);
1325         }
1326         g_free(filename);
1327     }
1328 }
1329 
1330 void xen_load_linux(PCMachineState *pcms)
1331 {
1332     int i;
1333     FWCfgState *fw_cfg;
1334 
1335     assert(MACHINE(pcms)->kernel_filename != NULL);
1336 
1337     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1338     rom_set_fw(fw_cfg);
1339 
1340     load_linux(pcms, fw_cfg);
1341     for (i = 0; i < nb_option_roms; i++) {
1342         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1343                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1344                !strcmp(option_rom[i].name, "multiboot.bin"));
1345         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1346     }
1347     pcms->fw_cfg = fw_cfg;
1348 }
1349 
1350 void pc_memory_init(PCMachineState *pcms,
1351                     MemoryRegion *system_memory,
1352                     MemoryRegion *rom_memory,
1353                     MemoryRegion **ram_memory)
1354 {
1355     int linux_boot, i;
1356     MemoryRegion *ram, *option_rom_mr;
1357     MemoryRegion *ram_below_4g, *ram_above_4g;
1358     FWCfgState *fw_cfg;
1359     MachineState *machine = MACHINE(pcms);
1360     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1361 
1362     assert(machine->ram_size == pcms->below_4g_mem_size +
1363                                 pcms->above_4g_mem_size);
1364 
1365     linux_boot = (machine->kernel_filename != NULL);
1366 
1367     /* Allocate RAM.  We allocate it as a single memory region and use
1368      * aliases to address portions of it, mostly for backwards compatibility
1369      * with older qemus that used qemu_ram_alloc().
1370      */
1371     ram = g_malloc(sizeof(*ram));
1372     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1373                                          machine->ram_size);
1374     *ram_memory = ram;
1375     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1376     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1377                              0, pcms->below_4g_mem_size);
1378     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1379     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1380     if (pcms->above_4g_mem_size > 0) {
1381         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1382         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1383                                  pcms->below_4g_mem_size,
1384                                  pcms->above_4g_mem_size);
1385         memory_region_add_subregion(system_memory, 0x100000000ULL,
1386                                     ram_above_4g);
1387         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1388     }
1389 
1390     if (!pcmc->has_reserved_memory &&
1391         (machine->ram_slots ||
1392          (machine->maxram_size > machine->ram_size))) {
1393         MachineClass *mc = MACHINE_GET_CLASS(machine);
1394 
1395         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1396                      mc->name);
1397         exit(EXIT_FAILURE);
1398     }
1399 
1400     /* initialize hotplug memory address space */
1401     if (pcmc->has_reserved_memory &&
1402         (machine->ram_size < machine->maxram_size)) {
1403         ram_addr_t hotplug_mem_size =
1404             machine->maxram_size - machine->ram_size;
1405 
1406         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1407             error_report("unsupported amount of memory slots: %"PRIu64,
1408                          machine->ram_slots);
1409             exit(EXIT_FAILURE);
1410         }
1411 
1412         if (QEMU_ALIGN_UP(machine->maxram_size,
1413                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1414             error_report("maximum memory size must by aligned to multiple of "
1415                          "%d bytes", TARGET_PAGE_SIZE);
1416             exit(EXIT_FAILURE);
1417         }
1418 
1419         pcms->hotplug_memory.base =
1420             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1421 
1422         if (pcmc->enforce_aligned_dimm) {
1423             /* size hotplug region assuming 1G page max alignment per slot */
1424             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1425         }
1426 
1427         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1428             hotplug_mem_size) {
1429             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1430                          machine->maxram_size);
1431             exit(EXIT_FAILURE);
1432         }
1433 
1434         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1435                            "hotplug-memory", hotplug_mem_size);
1436         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1437                                     &pcms->hotplug_memory.mr);
1438     }
1439 
1440     /* Initialize PC system firmware */
1441     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1442 
1443     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1444     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1445                            &error_fatal);
1446     vmstate_register_ram_global(option_rom_mr);
1447     memory_region_add_subregion_overlap(rom_memory,
1448                                         PC_ROM_MIN_VGA,
1449                                         option_rom_mr,
1450                                         1);
1451 
1452     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1453 
1454     rom_set_fw(fw_cfg);
1455 
1456     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1457         uint64_t *val = g_malloc(sizeof(*val));
1458         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1459         uint64_t res_mem_end = pcms->hotplug_memory.base;
1460 
1461         if (!pcmc->broken_reserved_end) {
1462             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1463         }
1464         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1465         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1466     }
1467 
1468     if (linux_boot) {
1469         load_linux(pcms, fw_cfg);
1470     }
1471 
1472     for (i = 0; i < nb_option_roms; i++) {
1473         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1474     }
1475     pcms->fw_cfg = fw_cfg;
1476 
1477     /* Init default IOAPIC address space */
1478     pcms->ioapic_as = &address_space_memory;
1479 }
1480 
1481 qemu_irq pc_allocate_cpu_irq(void)
1482 {
1483     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1484 }
1485 
1486 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1487 {
1488     DeviceState *dev = NULL;
1489 
1490     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1491     if (pci_bus) {
1492         PCIDevice *pcidev = pci_vga_init(pci_bus);
1493         dev = pcidev ? &pcidev->qdev : NULL;
1494     } else if (isa_bus) {
1495         ISADevice *isadev = isa_vga_init(isa_bus);
1496         dev = isadev ? DEVICE(isadev) : NULL;
1497     }
1498     rom_reset_order_override();
1499     return dev;
1500 }
1501 
1502 static const MemoryRegionOps ioport80_io_ops = {
1503     .write = ioport80_write,
1504     .read = ioport80_read,
1505     .endianness = DEVICE_NATIVE_ENDIAN,
1506     .impl = {
1507         .min_access_size = 1,
1508         .max_access_size = 1,
1509     },
1510 };
1511 
1512 static const MemoryRegionOps ioportF0_io_ops = {
1513     .write = ioportF0_write,
1514     .read = ioportF0_read,
1515     .endianness = DEVICE_NATIVE_ENDIAN,
1516     .impl = {
1517         .min_access_size = 1,
1518         .max_access_size = 1,
1519     },
1520 };
1521 
1522 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1523                           ISADevice **rtc_state,
1524                           bool create_fdctrl,
1525                           bool no_vmport,
1526                           uint32_t hpet_irqs)
1527 {
1528     int i;
1529     DriveInfo *fd[MAX_FD];
1530     DeviceState *hpet = NULL;
1531     int pit_isa_irq = 0;
1532     qemu_irq pit_alt_irq = NULL;
1533     qemu_irq rtc_irq = NULL;
1534     qemu_irq *a20_line;
1535     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1536     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1537     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1538 
1539     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1540     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1541 
1542     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1543     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1544 
1545     /*
1546      * Check if an HPET shall be created.
1547      *
1548      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1549      * when the HPET wants to take over. Thus we have to disable the latter.
1550      */
1551     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1552         /* In order to set property, here not using sysbus_try_create_simple */
1553         hpet = qdev_try_create(NULL, TYPE_HPET);
1554         if (hpet) {
1555             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1556              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1557              * IRQ8 and IRQ2.
1558              */
1559             uint8_t compat = object_property_get_int(OBJECT(hpet),
1560                     HPET_INTCAP, NULL);
1561             if (!compat) {
1562                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1563             }
1564             qdev_init_nofail(hpet);
1565             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1566 
1567             for (i = 0; i < GSI_NUM_PINS; i++) {
1568                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1569             }
1570             pit_isa_irq = -1;
1571             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1572             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1573         }
1574     }
1575     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1576 
1577     qemu_register_boot_set(pc_boot_set, *rtc_state);
1578 
1579     if (!xen_enabled()) {
1580         if (kvm_pit_in_kernel()) {
1581             pit = kvm_pit_init(isa_bus, 0x40);
1582         } else {
1583             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1584         }
1585         if (hpet) {
1586             /* connect PIT to output control line of the HPET */
1587             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1588         }
1589         pcspk_init(isa_bus, pit);
1590     }
1591 
1592     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1593     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1594 
1595     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1596     i8042 = isa_create_simple(isa_bus, "i8042");
1597     i8042_setup_a20_line(i8042, a20_line[0]);
1598     if (!no_vmport) {
1599         vmport_init(isa_bus);
1600         vmmouse = isa_try_create(isa_bus, "vmmouse");
1601     } else {
1602         vmmouse = NULL;
1603     }
1604     if (vmmouse) {
1605         DeviceState *dev = DEVICE(vmmouse);
1606         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1607         qdev_init_nofail(dev);
1608     }
1609     port92 = isa_create_simple(isa_bus, "port92");
1610     port92_init(port92, a20_line[1]);
1611     g_free(a20_line);
1612 
1613     DMA_init(isa_bus, 0);
1614 
1615     for(i = 0; i < MAX_FD; i++) {
1616         fd[i] = drive_get(IF_FLOPPY, 0, i);
1617         create_fdctrl |= !!fd[i];
1618     }
1619     if (create_fdctrl) {
1620         fdctrl_init_isa(isa_bus, fd);
1621     }
1622 }
1623 
1624 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1625 {
1626     int i;
1627 
1628     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1629     for (i = 0; i < nb_nics; i++) {
1630         NICInfo *nd = &nd_table[i];
1631 
1632         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1633             pc_init_ne2k_isa(isa_bus, nd);
1634         } else {
1635             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1636         }
1637     }
1638     rom_reset_order_override();
1639 }
1640 
1641 void pc_pci_device_init(PCIBus *pci_bus)
1642 {
1643     int max_bus;
1644     int bus;
1645 
1646     max_bus = drive_get_max_bus(IF_SCSI);
1647     for (bus = 0; bus <= max_bus; bus++) {
1648         pci_create_simple(pci_bus, -1, "lsi53c895a");
1649     }
1650 }
1651 
1652 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1653 {
1654     DeviceState *dev;
1655     SysBusDevice *d;
1656     unsigned int i;
1657 
1658     if (kvm_ioapic_in_kernel()) {
1659         dev = qdev_create(NULL, "kvm-ioapic");
1660     } else {
1661         dev = qdev_create(NULL, "ioapic");
1662     }
1663     if (parent_name) {
1664         object_property_add_child(object_resolve_path(parent_name, NULL),
1665                                   "ioapic", OBJECT(dev), NULL);
1666     }
1667     qdev_init_nofail(dev);
1668     d = SYS_BUS_DEVICE(dev);
1669     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1670 
1671     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1672         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1673     }
1674 }
1675 
1676 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1677                          DeviceState *dev, Error **errp)
1678 {
1679     HotplugHandlerClass *hhc;
1680     Error *local_err = NULL;
1681     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1682     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1683     PCDIMMDevice *dimm = PC_DIMM(dev);
1684     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1685     MemoryRegion *mr = ddc->get_memory_region(dimm);
1686     uint64_t align = TARGET_PAGE_SIZE;
1687 
1688     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1689         align = memory_region_get_alignment(mr);
1690     }
1691 
1692     if (!pcms->acpi_dev) {
1693         error_setg(&local_err,
1694                    "memory hotplug is not enabled: missing acpi device");
1695         goto out;
1696     }
1697 
1698     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1699     if (local_err) {
1700         goto out;
1701     }
1702 
1703     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1704     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1705 out:
1706     error_propagate(errp, local_err);
1707 }
1708 
1709 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1710                                    DeviceState *dev, Error **errp)
1711 {
1712     HotplugHandlerClass *hhc;
1713     Error *local_err = NULL;
1714     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1715 
1716     if (!pcms->acpi_dev) {
1717         error_setg(&local_err,
1718                    "memory hotplug is not enabled: missing acpi device");
1719         goto out;
1720     }
1721 
1722     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1723     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1724 
1725 out:
1726     error_propagate(errp, local_err);
1727 }
1728 
1729 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1730                            DeviceState *dev, Error **errp)
1731 {
1732     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1733     PCDIMMDevice *dimm = PC_DIMM(dev);
1734     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1735     MemoryRegion *mr = ddc->get_memory_region(dimm);
1736     HotplugHandlerClass *hhc;
1737     Error *local_err = NULL;
1738 
1739     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1740     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1741 
1742     if (local_err) {
1743         goto out;
1744     }
1745 
1746     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1747     object_unparent(OBJECT(dev));
1748 
1749  out:
1750     error_propagate(errp, local_err);
1751 }
1752 
1753 static int pc_apic_cmp(const void *a, const void *b)
1754 {
1755    CPUArchId *apic_a = (CPUArchId *)a;
1756    CPUArchId *apic_b = (CPUArchId *)b;
1757 
1758    return apic_a->arch_id - apic_b->arch_id;
1759 }
1760 
1761 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1762  * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no
1763  * entry correponding to CPU's apic_id returns NULL.
1764  */
1765 static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu,
1766                                    int *idx)
1767 {
1768     CPUClass *cc = CPU_GET_CLASS(cpu);
1769     CPUArchId apic_id, *found_cpu;
1770 
1771     apic_id.arch_id = cc->get_arch_id(CPU(cpu));
1772     found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1773         pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1774         pc_apic_cmp);
1775     if (found_cpu && idx) {
1776         *idx = found_cpu - pcms->possible_cpus->cpus;
1777     }
1778     return found_cpu;
1779 }
1780 
1781 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1782                         DeviceState *dev, Error **errp)
1783 {
1784     CPUArchId *found_cpu;
1785     HotplugHandlerClass *hhc;
1786     Error *local_err = NULL;
1787     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1788 
1789     if (pcms->acpi_dev) {
1790         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1791         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1792         if (local_err) {
1793             goto out;
1794         }
1795     }
1796 
1797     if (dev->hotplugged) {
1798         /* increment the number of CPUs */
1799         rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1800     }
1801 
1802     found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1803     found_cpu->cpu = CPU(dev);
1804 out:
1805     error_propagate(errp, local_err);
1806 }
1807 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1808                                      DeviceState *dev, Error **errp)
1809 {
1810     int idx = -1;
1811     HotplugHandlerClass *hhc;
1812     Error *local_err = NULL;
1813     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1814 
1815     pc_find_cpu_slot(pcms, CPU(dev), &idx);
1816     assert(idx != -1);
1817     if (idx == 0) {
1818         error_setg(&local_err, "Boot CPU is unpluggable");
1819         goto out;
1820     }
1821 
1822     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1823     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1824 
1825     if (local_err) {
1826         goto out;
1827     }
1828 
1829  out:
1830     error_propagate(errp, local_err);
1831 
1832 }
1833 
1834 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1835                              DeviceState *dev, Error **errp)
1836 {
1837     CPUArchId *found_cpu;
1838     HotplugHandlerClass *hhc;
1839     Error *local_err = NULL;
1840     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1841 
1842     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1843     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1844 
1845     if (local_err) {
1846         goto out;
1847     }
1848 
1849     found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1850     found_cpu->cpu = NULL;
1851     object_unparent(OBJECT(dev));
1852 
1853     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) - 1);
1854  out:
1855     error_propagate(errp, local_err);
1856 }
1857 
1858 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1859                             DeviceState *dev, Error **errp)
1860 {
1861     int idx;
1862     CPUState *cs;
1863     CPUArchId *cpu_slot;
1864     X86CPUTopoInfo topo;
1865     X86CPU *cpu = X86_CPU(dev);
1866     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1867 
1868     /* if APIC ID is not set, set it based on socket/core/thread properties */
1869     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1870         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1871 
1872         if (cpu->socket_id < 0) {
1873             error_setg(errp, "CPU socket-id is not set");
1874             return;
1875         } else if (cpu->socket_id > max_socket) {
1876             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1877                        cpu->socket_id, max_socket);
1878             return;
1879         }
1880         if (cpu->core_id < 0) {
1881             error_setg(errp, "CPU core-id is not set");
1882             return;
1883         } else if (cpu->core_id > (smp_cores - 1)) {
1884             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1885                        cpu->core_id, smp_cores - 1);
1886             return;
1887         }
1888         if (cpu->thread_id < 0) {
1889             error_setg(errp, "CPU thread-id is not set");
1890             return;
1891         } else if (cpu->thread_id > (smp_threads - 1)) {
1892             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1893                        cpu->thread_id, smp_threads - 1);
1894             return;
1895         }
1896 
1897         topo.pkg_id = cpu->socket_id;
1898         topo.core_id = cpu->core_id;
1899         topo.smt_id = cpu->thread_id;
1900         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1901     }
1902 
1903     cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx);
1904     if (!cpu_slot) {
1905         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1906         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1907                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1908                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1909                    pcms->possible_cpus->len - 1);
1910         return;
1911     }
1912 
1913     if (cpu_slot->cpu) {
1914         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1915                    idx, cpu->apic_id);
1916         return;
1917     }
1918 
1919     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1920      * so that query_hotpluggable_cpus would show correct values
1921      */
1922     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1923      * once -smp refactoring is complete and there will be CPU private
1924      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1925     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1926     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1927         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1928             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1929         return;
1930     }
1931     cpu->socket_id = topo.pkg_id;
1932 
1933     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1934         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1935             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1936         return;
1937     }
1938     cpu->core_id = topo.core_id;
1939 
1940     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1941         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1942             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1943         return;
1944     }
1945     cpu->thread_id = topo.smt_id;
1946 
1947     cs = CPU(cpu);
1948     cs->cpu_index = idx;
1949 }
1950 
1951 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1952                                           DeviceState *dev, Error **errp)
1953 {
1954     if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1955         pc_cpu_pre_plug(hotplug_dev, dev, errp);
1956     }
1957 }
1958 
1959 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1960                                       DeviceState *dev, Error **errp)
1961 {
1962     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1963         pc_dimm_plug(hotplug_dev, dev, errp);
1964     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1965         pc_cpu_plug(hotplug_dev, dev, errp);
1966     }
1967 }
1968 
1969 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1970                                                 DeviceState *dev, Error **errp)
1971 {
1972     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1973         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1974     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1975         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
1976     } else {
1977         error_setg(errp, "acpi: device unplug request for not supported device"
1978                    " type: %s", object_get_typename(OBJECT(dev)));
1979     }
1980 }
1981 
1982 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1983                                         DeviceState *dev, Error **errp)
1984 {
1985     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1986         pc_dimm_unplug(hotplug_dev, dev, errp);
1987     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1988         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
1989     } else {
1990         error_setg(errp, "acpi: device unplug for not supported device"
1991                    " type: %s", object_get_typename(OBJECT(dev)));
1992     }
1993 }
1994 
1995 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1996                                              DeviceState *dev)
1997 {
1998     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1999 
2000     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2001         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2002         return HOTPLUG_HANDLER(machine);
2003     }
2004 
2005     return pcmc->get_hotplug_handler ?
2006         pcmc->get_hotplug_handler(machine, dev) : NULL;
2007 }
2008 
2009 static void
2010 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2011                                           const char *name, void *opaque,
2012                                           Error **errp)
2013 {
2014     PCMachineState *pcms = PC_MACHINE(obj);
2015     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2016 
2017     visit_type_int(v, name, &value, errp);
2018 }
2019 
2020 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2021                                             const char *name, void *opaque,
2022                                             Error **errp)
2023 {
2024     PCMachineState *pcms = PC_MACHINE(obj);
2025     uint64_t value = pcms->max_ram_below_4g;
2026 
2027     visit_type_size(v, name, &value, errp);
2028 }
2029 
2030 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2031                                             const char *name, void *opaque,
2032                                             Error **errp)
2033 {
2034     PCMachineState *pcms = PC_MACHINE(obj);
2035     Error *error = NULL;
2036     uint64_t value;
2037 
2038     visit_type_size(v, name, &value, &error);
2039     if (error) {
2040         error_propagate(errp, error);
2041         return;
2042     }
2043     if (value > (1ULL << 32)) {
2044         error_setg(&error,
2045                    "Machine option 'max-ram-below-4g=%"PRIu64
2046                    "' expects size less than or equal to 4G", value);
2047         error_propagate(errp, error);
2048         return;
2049     }
2050 
2051     if (value < (1ULL << 20)) {
2052         error_report("Warning: small max_ram_below_4g(%"PRIu64
2053                      ") less than 1M.  BIOS may not work..",
2054                      value);
2055     }
2056 
2057     pcms->max_ram_below_4g = value;
2058 }
2059 
2060 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2061                                   void *opaque, Error **errp)
2062 {
2063     PCMachineState *pcms = PC_MACHINE(obj);
2064     OnOffAuto vmport = pcms->vmport;
2065 
2066     visit_type_OnOffAuto(v, name, &vmport, errp);
2067 }
2068 
2069 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2070                                   void *opaque, Error **errp)
2071 {
2072     PCMachineState *pcms = PC_MACHINE(obj);
2073 
2074     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2075 }
2076 
2077 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2078 {
2079     bool smm_available = false;
2080 
2081     if (pcms->smm == ON_OFF_AUTO_OFF) {
2082         return false;
2083     }
2084 
2085     if (tcg_enabled() || qtest_enabled()) {
2086         smm_available = true;
2087     } else if (kvm_enabled()) {
2088         smm_available = kvm_has_smm();
2089     }
2090 
2091     if (smm_available) {
2092         return true;
2093     }
2094 
2095     if (pcms->smm == ON_OFF_AUTO_ON) {
2096         error_report("System Management Mode not supported by this hypervisor.");
2097         exit(1);
2098     }
2099     return false;
2100 }
2101 
2102 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2103                                void *opaque, Error **errp)
2104 {
2105     PCMachineState *pcms = PC_MACHINE(obj);
2106     OnOffAuto smm = pcms->smm;
2107 
2108     visit_type_OnOffAuto(v, name, &smm, errp);
2109 }
2110 
2111 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2112                                void *opaque, Error **errp)
2113 {
2114     PCMachineState *pcms = PC_MACHINE(obj);
2115 
2116     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2117 }
2118 
2119 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2120 {
2121     PCMachineState *pcms = PC_MACHINE(obj);
2122 
2123     return pcms->acpi_nvdimm_state.is_enabled;
2124 }
2125 
2126 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2127 {
2128     PCMachineState *pcms = PC_MACHINE(obj);
2129 
2130     pcms->acpi_nvdimm_state.is_enabled = value;
2131 }
2132 
2133 static void pc_machine_initfn(Object *obj)
2134 {
2135     PCMachineState *pcms = PC_MACHINE(obj);
2136 
2137     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2138                         pc_machine_get_hotplug_memory_region_size,
2139                         NULL, NULL, NULL, &error_abort);
2140 
2141     pcms->max_ram_below_4g = 0; /* use default */
2142     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2143                         pc_machine_get_max_ram_below_4g,
2144                         pc_machine_set_max_ram_below_4g,
2145                         NULL, NULL, &error_abort);
2146     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
2147                                     "Maximum ram below the 4G boundary (32bit boundary)",
2148                                     &error_abort);
2149 
2150     pcms->smm = ON_OFF_AUTO_AUTO;
2151     object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
2152                         pc_machine_get_smm,
2153                         pc_machine_set_smm,
2154                         NULL, NULL, &error_abort);
2155     object_property_set_description(obj, PC_MACHINE_SMM,
2156                                     "Enable SMM (pc & q35)",
2157                                     &error_abort);
2158 
2159     pcms->vmport = ON_OFF_AUTO_AUTO;
2160     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
2161                         pc_machine_get_vmport,
2162                         pc_machine_set_vmport,
2163                         NULL, NULL, &error_abort);
2164     object_property_set_description(obj, PC_MACHINE_VMPORT,
2165                                     "Enable vmport (pc & q35)",
2166                                     &error_abort);
2167 
2168     /* nvdimm is disabled on default. */
2169     pcms->acpi_nvdimm_state.is_enabled = false;
2170     object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
2171                              pc_machine_set_nvdimm, &error_abort);
2172 }
2173 
2174 static void pc_machine_reset(void)
2175 {
2176     CPUState *cs;
2177     X86CPU *cpu;
2178 
2179     qemu_devices_reset();
2180 
2181     /* Reset APIC after devices have been reset to cancel
2182      * any changes that qemu_devices_reset() might have done.
2183      */
2184     CPU_FOREACH(cs) {
2185         cpu = X86_CPU(cs);
2186 
2187         if (cpu->apic_state) {
2188             device_reset(cpu->apic_state);
2189         }
2190     }
2191 }
2192 
2193 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2194 {
2195     X86CPUTopoInfo topo;
2196     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2197                           &topo);
2198     return topo.pkg_id;
2199 }
2200 
2201 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
2202 {
2203     PCMachineState *pcms = PC_MACHINE(machine);
2204     int len = sizeof(CPUArchIdList) +
2205               sizeof(CPUArchId) * (pcms->possible_cpus->len);
2206     CPUArchIdList *list = g_malloc(len);
2207 
2208     memcpy(list, pcms->possible_cpus, len);
2209     return list;
2210 }
2211 
2212 static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine)
2213 {
2214     int i;
2215     CPUState *cpu;
2216     HotpluggableCPUList *head = NULL;
2217     PCMachineState *pcms = PC_MACHINE(machine);
2218     const char *cpu_type;
2219 
2220     cpu = pcms->possible_cpus->cpus[0].cpu;
2221     assert(cpu); /* BSP is always present */
2222     cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu)));
2223 
2224     for (i = 0; i < pcms->possible_cpus->len; i++) {
2225         X86CPUTopoInfo topo;
2226         HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2227         HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2228         CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2229         const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id;
2230 
2231         x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo);
2232 
2233         cpu_item->type = g_strdup(cpu_type);
2234         cpu_item->vcpus_count = 1;
2235         cpu_props->has_socket_id = true;
2236         cpu_props->socket_id = topo.pkg_id;
2237         cpu_props->has_core_id = true;
2238         cpu_props->core_id = topo.core_id;
2239         cpu_props->has_thread_id = true;
2240         cpu_props->thread_id = topo.smt_id;
2241         cpu_item->props = cpu_props;
2242 
2243         cpu = pcms->possible_cpus->cpus[i].cpu;
2244         if (cpu) {
2245             cpu_item->has_qom_path = true;
2246             cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu));
2247         }
2248 
2249         list_item->value = cpu_item;
2250         list_item->next = head;
2251         head = list_item;
2252     }
2253     return head;
2254 }
2255 
2256 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2257 {
2258     /* cpu index isn't used */
2259     CPUState *cs;
2260 
2261     CPU_FOREACH(cs) {
2262         X86CPU *cpu = X86_CPU(cs);
2263 
2264         if (!cpu->apic_state) {
2265             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2266         } else {
2267             apic_deliver_nmi(cpu->apic_state);
2268         }
2269     }
2270 }
2271 
2272 static void pc_machine_class_init(ObjectClass *oc, void *data)
2273 {
2274     MachineClass *mc = MACHINE_CLASS(oc);
2275     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2276     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2277     NMIClass *nc = NMI_CLASS(oc);
2278 
2279     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2280     pcmc->pci_enabled = true;
2281     pcmc->has_acpi_build = true;
2282     pcmc->rsdp_in_ram = true;
2283     pcmc->smbios_defaults = true;
2284     pcmc->smbios_uuid_encoded = true;
2285     pcmc->gigabyte_align = true;
2286     pcmc->has_reserved_memory = true;
2287     pcmc->kvmclock_enabled = true;
2288     pcmc->enforce_aligned_dimm = true;
2289     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2290      * to be used at the moment, 32K should be enough for a while.  */
2291     pcmc->acpi_data_size = 0x20000 + 0x8000;
2292     pcmc->save_tsc_khz = true;
2293     mc->get_hotplug_handler = pc_get_hotpug_handler;
2294     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2295     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2296     mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus;
2297     mc->default_boot_order = "cad";
2298     mc->hot_add_cpu = pc_hot_add_cpu;
2299     mc->max_cpus = 255;
2300     mc->reset = pc_machine_reset;
2301     hc->pre_plug = pc_machine_device_pre_plug_cb;
2302     hc->plug = pc_machine_device_plug_cb;
2303     hc->unplug_request = pc_machine_device_unplug_request_cb;
2304     hc->unplug = pc_machine_device_unplug_cb;
2305     nc->nmi_monitor_handler = x86_nmi;
2306 }
2307 
2308 static const TypeInfo pc_machine_info = {
2309     .name = TYPE_PC_MACHINE,
2310     .parent = TYPE_MACHINE,
2311     .abstract = true,
2312     .instance_size = sizeof(PCMachineState),
2313     .instance_init = pc_machine_initfn,
2314     .class_size = sizeof(PCMachineClass),
2315     .class_init = pc_machine_class_init,
2316     .interfaces = (InterfaceInfo[]) {
2317          { TYPE_HOTPLUG_HANDLER },
2318          { TYPE_NMI },
2319          { }
2320     },
2321 };
2322 
2323 static void pc_machine_register_types(void)
2324 {
2325     type_register_static(&pc_machine_info);
2326 }
2327 
2328 type_init(pc_machine_register_types)
2329