1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "hw/i386/pc.h" 27 #include "hw/char/serial.h" 28 #include "hw/i386/apic.h" 29 #include "hw/i386/topology.h" 30 #include "sysemu/cpus.h" 31 #include "hw/block/fdc.h" 32 #include "hw/ide.h" 33 #include "hw/pci/pci.h" 34 #include "hw/pci/pci_bus.h" 35 #include "hw/nvram/fw_cfg.h" 36 #include "hw/timer/hpet.h" 37 #include "hw/smbios/smbios.h" 38 #include "hw/loader.h" 39 #include "elf.h" 40 #include "multiboot.h" 41 #include "hw/timer/mc146818rtc.h" 42 #include "hw/timer/i8254.h" 43 #include "hw/audio/pcspk.h" 44 #include "hw/pci/msi.h" 45 #include "hw/sysbus.h" 46 #include "sysemu/sysemu.h" 47 #include "sysemu/numa.h" 48 #include "sysemu/kvm.h" 49 #include "sysemu/qtest.h" 50 #include "kvm_i386.h" 51 #include "hw/xen/xen.h" 52 #include "sysemu/block-backend.h" 53 #include "hw/block/block.h" 54 #include "ui/qemu-spice.h" 55 #include "exec/memory.h" 56 #include "exec/address-spaces.h" 57 #include "sysemu/arch_init.h" 58 #include "qemu/bitmap.h" 59 #include "qemu/config-file.h" 60 #include "qemu/error-report.h" 61 #include "hw/acpi/acpi.h" 62 #include "hw/acpi/cpu_hotplug.h" 63 #include "hw/boards.h" 64 #include "hw/pci/pci_host.h" 65 #include "acpi-build.h" 66 #include "hw/mem/pc-dimm.h" 67 #include "qapi/visitor.h" 68 #include "qapi-visit.h" 69 #include "qom/cpu.h" 70 #include "hw/nmi.h" 71 72 /* debug PC/ISA interrupts */ 73 //#define DEBUG_IRQ 74 75 #ifdef DEBUG_IRQ 76 #define DPRINTF(fmt, ...) \ 77 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 78 #else 79 #define DPRINTF(fmt, ...) 80 #endif 81 82 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 83 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 84 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 85 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 86 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 87 88 #define E820_NR_ENTRIES 16 89 90 struct e820_entry { 91 uint64_t address; 92 uint64_t length; 93 uint32_t type; 94 } QEMU_PACKED __attribute((__aligned__(4))); 95 96 struct e820_table { 97 uint32_t count; 98 struct e820_entry entry[E820_NR_ENTRIES]; 99 } QEMU_PACKED __attribute((__aligned__(4))); 100 101 static struct e820_table e820_reserve; 102 static struct e820_entry *e820_table; 103 static unsigned e820_entries; 104 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 105 106 void gsi_handler(void *opaque, int n, int level) 107 { 108 GSIState *s = opaque; 109 110 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 111 if (n < ISA_NUM_IRQS) { 112 qemu_set_irq(s->i8259_irq[n], level); 113 } 114 qemu_set_irq(s->ioapic_irq[n], level); 115 } 116 117 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 118 unsigned size) 119 { 120 } 121 122 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 123 { 124 return 0xffffffffffffffffULL; 125 } 126 127 /* MSDOS compatibility mode FPU exception support */ 128 static qemu_irq ferr_irq; 129 130 void pc_register_ferr_irq(qemu_irq irq) 131 { 132 ferr_irq = irq; 133 } 134 135 /* XXX: add IGNNE support */ 136 void cpu_set_ferr(CPUX86State *s) 137 { 138 qemu_irq_raise(ferr_irq); 139 } 140 141 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 142 unsigned size) 143 { 144 qemu_irq_lower(ferr_irq); 145 } 146 147 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 148 { 149 return 0xffffffffffffffffULL; 150 } 151 152 /* TSC handling */ 153 uint64_t cpu_get_tsc(CPUX86State *env) 154 { 155 return cpu_get_ticks(); 156 } 157 158 /* IRQ handling */ 159 int cpu_get_pic_interrupt(CPUX86State *env) 160 { 161 X86CPU *cpu = x86_env_get_cpu(env); 162 int intno; 163 164 intno = apic_get_interrupt(cpu->apic_state); 165 if (intno >= 0) { 166 return intno; 167 } 168 /* read the irq from the PIC */ 169 if (!apic_accept_pic_intr(cpu->apic_state)) { 170 return -1; 171 } 172 173 intno = pic_read_irq(isa_pic); 174 return intno; 175 } 176 177 static void pic_irq_request(void *opaque, int irq, int level) 178 { 179 CPUState *cs = first_cpu; 180 X86CPU *cpu = X86_CPU(cs); 181 182 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 183 if (cpu->apic_state) { 184 CPU_FOREACH(cs) { 185 cpu = X86_CPU(cs); 186 if (apic_accept_pic_intr(cpu->apic_state)) { 187 apic_deliver_pic_intr(cpu->apic_state, level); 188 } 189 } 190 } else { 191 if (level) { 192 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 193 } else { 194 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 195 } 196 } 197 } 198 199 /* PC cmos mappings */ 200 201 #define REG_EQUIPMENT_BYTE 0x14 202 203 int cmos_get_fd_drive_type(FloppyDriveType fd0) 204 { 205 int val; 206 207 switch (fd0) { 208 case FLOPPY_DRIVE_TYPE_144: 209 /* 1.44 Mb 3"5 drive */ 210 val = 4; 211 break; 212 case FLOPPY_DRIVE_TYPE_288: 213 /* 2.88 Mb 3"5 drive */ 214 val = 5; 215 break; 216 case FLOPPY_DRIVE_TYPE_120: 217 /* 1.2 Mb 5"5 drive */ 218 val = 2; 219 break; 220 case FLOPPY_DRIVE_TYPE_NONE: 221 default: 222 val = 0; 223 break; 224 } 225 return val; 226 } 227 228 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 229 int16_t cylinders, int8_t heads, int8_t sectors) 230 { 231 rtc_set_memory(s, type_ofs, 47); 232 rtc_set_memory(s, info_ofs, cylinders); 233 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 234 rtc_set_memory(s, info_ofs + 2, heads); 235 rtc_set_memory(s, info_ofs + 3, 0xff); 236 rtc_set_memory(s, info_ofs + 4, 0xff); 237 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 238 rtc_set_memory(s, info_ofs + 6, cylinders); 239 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 240 rtc_set_memory(s, info_ofs + 8, sectors); 241 } 242 243 /* convert boot_device letter to something recognizable by the bios */ 244 static int boot_device2nibble(char boot_device) 245 { 246 switch(boot_device) { 247 case 'a': 248 case 'b': 249 return 0x01; /* floppy boot */ 250 case 'c': 251 return 0x02; /* hard drive boot */ 252 case 'd': 253 return 0x03; /* CD-ROM boot */ 254 case 'n': 255 return 0x04; /* Network boot */ 256 } 257 return 0; 258 } 259 260 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 261 { 262 #define PC_MAX_BOOT_DEVICES 3 263 int nbds, bds[3] = { 0, }; 264 int i; 265 266 nbds = strlen(boot_device); 267 if (nbds > PC_MAX_BOOT_DEVICES) { 268 error_setg(errp, "Too many boot devices for PC"); 269 return; 270 } 271 for (i = 0; i < nbds; i++) { 272 bds[i] = boot_device2nibble(boot_device[i]); 273 if (bds[i] == 0) { 274 error_setg(errp, "Invalid boot device for PC: '%c'", 275 boot_device[i]); 276 return; 277 } 278 } 279 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 280 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 281 } 282 283 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 284 { 285 set_boot_dev(opaque, boot_device, errp); 286 } 287 288 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 289 { 290 int val, nb, i; 291 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 292 FLOPPY_DRIVE_TYPE_NONE }; 293 294 /* floppy type */ 295 if (floppy) { 296 for (i = 0; i < 2; i++) { 297 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 298 } 299 } 300 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 301 cmos_get_fd_drive_type(fd_type[1]); 302 rtc_set_memory(rtc_state, 0x10, val); 303 304 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 305 nb = 0; 306 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 307 nb++; 308 } 309 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 310 nb++; 311 } 312 switch (nb) { 313 case 0: 314 break; 315 case 1: 316 val |= 0x01; /* 1 drive, ready for boot */ 317 break; 318 case 2: 319 val |= 0x41; /* 2 drives, ready for boot */ 320 break; 321 } 322 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 323 } 324 325 typedef struct pc_cmos_init_late_arg { 326 ISADevice *rtc_state; 327 BusState *idebus[2]; 328 } pc_cmos_init_late_arg; 329 330 typedef struct check_fdc_state { 331 ISADevice *floppy; 332 bool multiple; 333 } CheckFdcState; 334 335 static int check_fdc(Object *obj, void *opaque) 336 { 337 CheckFdcState *state = opaque; 338 Object *fdc; 339 uint32_t iobase; 340 Error *local_err = NULL; 341 342 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 343 if (!fdc) { 344 return 0; 345 } 346 347 iobase = object_property_get_int(obj, "iobase", &local_err); 348 if (local_err || iobase != 0x3f0) { 349 error_free(local_err); 350 return 0; 351 } 352 353 if (state->floppy) { 354 state->multiple = true; 355 } else { 356 state->floppy = ISA_DEVICE(obj); 357 } 358 return 0; 359 } 360 361 static const char * const fdc_container_path[] = { 362 "/unattached", "/peripheral", "/peripheral-anon" 363 }; 364 365 /* 366 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 367 * and ACPI objects. 368 */ 369 ISADevice *pc_find_fdc0(void) 370 { 371 int i; 372 Object *container; 373 CheckFdcState state = { 0 }; 374 375 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 376 container = container_get(qdev_get_machine(), fdc_container_path[i]); 377 object_child_foreach(container, check_fdc, &state); 378 } 379 380 if (state.multiple) { 381 error_report("warning: multiple floppy disk controllers with " 382 "iobase=0x3f0 have been found"); 383 error_printf("the one being picked for CMOS setup might not reflect " 384 "your intent\n"); 385 } 386 387 return state.floppy; 388 } 389 390 static void pc_cmos_init_late(void *opaque) 391 { 392 pc_cmos_init_late_arg *arg = opaque; 393 ISADevice *s = arg->rtc_state; 394 int16_t cylinders; 395 int8_t heads, sectors; 396 int val; 397 int i, trans; 398 399 val = 0; 400 if (ide_get_geometry(arg->idebus[0], 0, 401 &cylinders, &heads, §ors) >= 0) { 402 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 403 val |= 0xf0; 404 } 405 if (ide_get_geometry(arg->idebus[0], 1, 406 &cylinders, &heads, §ors) >= 0) { 407 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 408 val |= 0x0f; 409 } 410 rtc_set_memory(s, 0x12, val); 411 412 val = 0; 413 for (i = 0; i < 4; i++) { 414 /* NOTE: ide_get_geometry() returns the physical 415 geometry. It is always such that: 1 <= sects <= 63, 1 416 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 417 geometry can be different if a translation is done. */ 418 if (ide_get_geometry(arg->idebus[i / 2], i % 2, 419 &cylinders, &heads, §ors) >= 0) { 420 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 421 assert((trans & ~3) == 0); 422 val |= trans << (i * 2); 423 } 424 } 425 rtc_set_memory(s, 0x39, val); 426 427 pc_cmos_init_floppy(s, pc_find_fdc0()); 428 429 qemu_unregister_reset(pc_cmos_init_late, opaque); 430 } 431 432 void pc_cmos_init(PCMachineState *pcms, 433 BusState *idebus0, BusState *idebus1, 434 ISADevice *s) 435 { 436 int val; 437 static pc_cmos_init_late_arg arg; 438 439 /* various important CMOS locations needed by PC/Bochs bios */ 440 441 /* memory size */ 442 /* base memory (first MiB) */ 443 val = MIN(pcms->below_4g_mem_size / 1024, 640); 444 rtc_set_memory(s, 0x15, val); 445 rtc_set_memory(s, 0x16, val >> 8); 446 /* extended memory (next 64MiB) */ 447 if (pcms->below_4g_mem_size > 1024 * 1024) { 448 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024; 449 } else { 450 val = 0; 451 } 452 if (val > 65535) 453 val = 65535; 454 rtc_set_memory(s, 0x17, val); 455 rtc_set_memory(s, 0x18, val >> 8); 456 rtc_set_memory(s, 0x30, val); 457 rtc_set_memory(s, 0x31, val >> 8); 458 /* memory between 16MiB and 4GiB */ 459 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) { 460 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536; 461 } else { 462 val = 0; 463 } 464 if (val > 65535) 465 val = 65535; 466 rtc_set_memory(s, 0x34, val); 467 rtc_set_memory(s, 0x35, val >> 8); 468 /* memory above 4GiB */ 469 val = pcms->above_4g_mem_size / 65536; 470 rtc_set_memory(s, 0x5b, val); 471 rtc_set_memory(s, 0x5c, val >> 8); 472 rtc_set_memory(s, 0x5d, val >> 16); 473 474 object_property_add_link(OBJECT(pcms), "rtc_state", 475 TYPE_ISA_DEVICE, 476 (Object **)&pcms->rtc, 477 object_property_allow_set_link, 478 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); 479 object_property_set_link(OBJECT(pcms), OBJECT(s), 480 "rtc_state", &error_abort); 481 482 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 483 484 val = 0; 485 val |= 0x02; /* FPU is there */ 486 val |= 0x04; /* PS/2 mouse installed */ 487 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 488 489 /* hard drives and FDC */ 490 arg.rtc_state = s; 491 arg.idebus[0] = idebus0; 492 arg.idebus[1] = idebus1; 493 qemu_register_reset(pc_cmos_init_late, &arg); 494 } 495 496 #define TYPE_PORT92 "port92" 497 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 498 499 /* port 92 stuff: could be split off */ 500 typedef struct Port92State { 501 ISADevice parent_obj; 502 503 MemoryRegion io; 504 uint8_t outport; 505 qemu_irq a20_out; 506 } Port92State; 507 508 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 509 unsigned size) 510 { 511 Port92State *s = opaque; 512 int oldval = s->outport; 513 514 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 515 s->outport = val; 516 qemu_set_irq(s->a20_out, (val >> 1) & 1); 517 if ((val & 1) && !(oldval & 1)) { 518 qemu_system_reset_request(); 519 } 520 } 521 522 static uint64_t port92_read(void *opaque, hwaddr addr, 523 unsigned size) 524 { 525 Port92State *s = opaque; 526 uint32_t ret; 527 528 ret = s->outport; 529 DPRINTF("port92: read 0x%02x\n", ret); 530 return ret; 531 } 532 533 static void port92_init(ISADevice *dev, qemu_irq a20_out) 534 { 535 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 536 } 537 538 static const VMStateDescription vmstate_port92_isa = { 539 .name = "port92", 540 .version_id = 1, 541 .minimum_version_id = 1, 542 .fields = (VMStateField[]) { 543 VMSTATE_UINT8(outport, Port92State), 544 VMSTATE_END_OF_LIST() 545 } 546 }; 547 548 static void port92_reset(DeviceState *d) 549 { 550 Port92State *s = PORT92(d); 551 552 s->outport &= ~1; 553 } 554 555 static const MemoryRegionOps port92_ops = { 556 .read = port92_read, 557 .write = port92_write, 558 .impl = { 559 .min_access_size = 1, 560 .max_access_size = 1, 561 }, 562 .endianness = DEVICE_LITTLE_ENDIAN, 563 }; 564 565 static void port92_initfn(Object *obj) 566 { 567 Port92State *s = PORT92(obj); 568 569 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 570 571 s->outport = 0; 572 573 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 574 } 575 576 static void port92_realizefn(DeviceState *dev, Error **errp) 577 { 578 ISADevice *isadev = ISA_DEVICE(dev); 579 Port92State *s = PORT92(dev); 580 581 isa_register_ioport(isadev, &s->io, 0x92); 582 } 583 584 static void port92_class_initfn(ObjectClass *klass, void *data) 585 { 586 DeviceClass *dc = DEVICE_CLASS(klass); 587 588 dc->realize = port92_realizefn; 589 dc->reset = port92_reset; 590 dc->vmsd = &vmstate_port92_isa; 591 /* 592 * Reason: unlike ordinary ISA devices, this one needs additional 593 * wiring: its A20 output line needs to be wired up by 594 * port92_init(). 595 */ 596 dc->cannot_instantiate_with_device_add_yet = true; 597 } 598 599 static const TypeInfo port92_info = { 600 .name = TYPE_PORT92, 601 .parent = TYPE_ISA_DEVICE, 602 .instance_size = sizeof(Port92State), 603 .instance_init = port92_initfn, 604 .class_init = port92_class_initfn, 605 }; 606 607 static void port92_register_types(void) 608 { 609 type_register_static(&port92_info); 610 } 611 612 type_init(port92_register_types) 613 614 static void handle_a20_line_change(void *opaque, int irq, int level) 615 { 616 X86CPU *cpu = opaque; 617 618 /* XXX: send to all CPUs ? */ 619 /* XXX: add logic to handle multiple A20 line sources */ 620 x86_cpu_set_a20(cpu, level); 621 } 622 623 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 624 { 625 int index = le32_to_cpu(e820_reserve.count); 626 struct e820_entry *entry; 627 628 if (type != E820_RAM) { 629 /* old FW_CFG_E820_TABLE entry -- reservations only */ 630 if (index >= E820_NR_ENTRIES) { 631 return -EBUSY; 632 } 633 entry = &e820_reserve.entry[index++]; 634 635 entry->address = cpu_to_le64(address); 636 entry->length = cpu_to_le64(length); 637 entry->type = cpu_to_le32(type); 638 639 e820_reserve.count = cpu_to_le32(index); 640 } 641 642 /* new "etc/e820" file -- include ram too */ 643 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 644 e820_table[e820_entries].address = cpu_to_le64(address); 645 e820_table[e820_entries].length = cpu_to_le64(length); 646 e820_table[e820_entries].type = cpu_to_le32(type); 647 e820_entries++; 648 649 return e820_entries; 650 } 651 652 int e820_get_num_entries(void) 653 { 654 return e820_entries; 655 } 656 657 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 658 { 659 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 660 *address = le64_to_cpu(e820_table[idx].address); 661 *length = le64_to_cpu(e820_table[idx].length); 662 return true; 663 } 664 return false; 665 } 666 667 /* Enables contiguous-apic-ID mode, for compatibility */ 668 static bool compat_apic_id_mode; 669 670 void enable_compat_apic_id_mode(void) 671 { 672 compat_apic_id_mode = true; 673 } 674 675 /* Calculates initial APIC ID for a specific CPU index 676 * 677 * Currently we need to be able to calculate the APIC ID from the CPU index 678 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 679 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 680 * all CPUs up to max_cpus. 681 */ 682 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 683 { 684 uint32_t correct_id; 685 static bool warned; 686 687 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 688 if (compat_apic_id_mode) { 689 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 690 error_report("APIC IDs set in compatibility mode, " 691 "CPU topology won't match the configuration"); 692 warned = true; 693 } 694 return cpu_index; 695 } else { 696 return correct_id; 697 } 698 } 699 700 static void pc_build_smbios(FWCfgState *fw_cfg) 701 { 702 uint8_t *smbios_tables, *smbios_anchor; 703 size_t smbios_tables_len, smbios_anchor_len; 704 struct smbios_phys_mem_area *mem_array; 705 unsigned i, array_count; 706 707 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 708 if (smbios_tables) { 709 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 710 smbios_tables, smbios_tables_len); 711 } 712 713 /* build the array of physical mem area from e820 table */ 714 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 715 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 716 uint64_t addr, len; 717 718 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 719 mem_array[array_count].address = addr; 720 mem_array[array_count].length = len; 721 array_count++; 722 } 723 } 724 smbios_get_tables(mem_array, array_count, 725 &smbios_tables, &smbios_tables_len, 726 &smbios_anchor, &smbios_anchor_len); 727 g_free(mem_array); 728 729 if (smbios_anchor) { 730 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 731 smbios_tables, smbios_tables_len); 732 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 733 smbios_anchor, smbios_anchor_len); 734 } 735 } 736 737 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 738 { 739 FWCfgState *fw_cfg; 740 uint64_t *numa_fw_cfg; 741 int i, j; 742 743 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 744 745 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 746 * 747 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug 748 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC 749 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the 750 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS 751 * may see". 752 * 753 * So, this means we must not use max_cpus, here, but the maximum possible 754 * APIC ID value, plus one. 755 * 756 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is 757 * the APIC ID, not the "CPU index" 758 */ 759 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 760 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 761 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 762 acpi_tables, acpi_tables_len); 763 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 764 765 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 766 &e820_reserve, sizeof(e820_reserve)); 767 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 768 sizeof(struct e820_entry) * e820_entries); 769 770 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 771 /* allocate memory for the NUMA channel: one (64bit) word for the number 772 * of nodes, one word for each VCPU->node and one word for each node to 773 * hold the amount of memory. 774 */ 775 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 776 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 777 for (i = 0; i < max_cpus; i++) { 778 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 779 assert(apic_id < pcms->apic_id_limit); 780 for (j = 0; j < nb_numa_nodes; j++) { 781 if (test_bit(i, numa_info[j].node_cpu)) { 782 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); 783 break; 784 } 785 } 786 } 787 for (i = 0; i < nb_numa_nodes; i++) { 788 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 789 cpu_to_le64(numa_info[i].node_mem); 790 } 791 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 792 (1 + pcms->apic_id_limit + nb_numa_nodes) * 793 sizeof(*numa_fw_cfg)); 794 795 return fw_cfg; 796 } 797 798 static long get_file_size(FILE *f) 799 { 800 long where, size; 801 802 /* XXX: on Unix systems, using fstat() probably makes more sense */ 803 804 where = ftell(f); 805 fseek(f, 0, SEEK_END); 806 size = ftell(f); 807 fseek(f, where, SEEK_SET); 808 809 return size; 810 } 811 812 /* setup_data types */ 813 #define SETUP_NONE 0 814 #define SETUP_E820_EXT 1 815 #define SETUP_DTB 2 816 #define SETUP_PCI 3 817 #define SETUP_EFI 4 818 819 struct setup_data { 820 uint64_t next; 821 uint32_t type; 822 uint32_t len; 823 uint8_t data[0]; 824 } __attribute__((packed)); 825 826 static void load_linux(PCMachineState *pcms, 827 FWCfgState *fw_cfg) 828 { 829 uint16_t protocol; 830 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 831 int dtb_size, setup_data_offset; 832 uint32_t initrd_max; 833 uint8_t header[8192], *setup, *kernel, *initrd_data; 834 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 835 FILE *f; 836 char *vmode; 837 MachineState *machine = MACHINE(pcms); 838 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 839 struct setup_data *setup_data; 840 const char *kernel_filename = machine->kernel_filename; 841 const char *initrd_filename = machine->initrd_filename; 842 const char *dtb_filename = machine->dtb; 843 const char *kernel_cmdline = machine->kernel_cmdline; 844 845 /* Align to 16 bytes as a paranoia measure */ 846 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 847 848 /* load the kernel header */ 849 f = fopen(kernel_filename, "rb"); 850 if (!f || !(kernel_size = get_file_size(f)) || 851 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 852 MIN(ARRAY_SIZE(header), kernel_size)) { 853 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 854 kernel_filename, strerror(errno)); 855 exit(1); 856 } 857 858 /* kernel protocol version */ 859 #if 0 860 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 861 #endif 862 if (ldl_p(header+0x202) == 0x53726448) { 863 protocol = lduw_p(header+0x206); 864 } else { 865 /* This looks like a multiboot kernel. If it is, let's stop 866 treating it like a Linux kernel. */ 867 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 868 kernel_cmdline, kernel_size, header)) { 869 return; 870 } 871 protocol = 0; 872 } 873 874 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 875 /* Low kernel */ 876 real_addr = 0x90000; 877 cmdline_addr = 0x9a000 - cmdline_size; 878 prot_addr = 0x10000; 879 } else if (protocol < 0x202) { 880 /* High but ancient kernel */ 881 real_addr = 0x90000; 882 cmdline_addr = 0x9a000 - cmdline_size; 883 prot_addr = 0x100000; 884 } else { 885 /* High and recent kernel */ 886 real_addr = 0x10000; 887 cmdline_addr = 0x20000; 888 prot_addr = 0x100000; 889 } 890 891 #if 0 892 fprintf(stderr, 893 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 894 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 895 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 896 real_addr, 897 cmdline_addr, 898 prot_addr); 899 #endif 900 901 /* highest address for loading the initrd */ 902 if (protocol >= 0x203) { 903 initrd_max = ldl_p(header+0x22c); 904 } else { 905 initrd_max = 0x37ffffff; 906 } 907 908 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 909 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 910 } 911 912 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 913 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 914 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 915 916 if (protocol >= 0x202) { 917 stl_p(header+0x228, cmdline_addr); 918 } else { 919 stw_p(header+0x20, 0xA33F); 920 stw_p(header+0x22, cmdline_addr-real_addr); 921 } 922 923 /* handle vga= parameter */ 924 vmode = strstr(kernel_cmdline, "vga="); 925 if (vmode) { 926 unsigned int video_mode; 927 /* skip "vga=" */ 928 vmode += 4; 929 if (!strncmp(vmode, "normal", 6)) { 930 video_mode = 0xffff; 931 } else if (!strncmp(vmode, "ext", 3)) { 932 video_mode = 0xfffe; 933 } else if (!strncmp(vmode, "ask", 3)) { 934 video_mode = 0xfffd; 935 } else { 936 video_mode = strtol(vmode, NULL, 0); 937 } 938 stw_p(header+0x1fa, video_mode); 939 } 940 941 /* loader type */ 942 /* High nybble = B reserved for QEMU; low nybble is revision number. 943 If this code is substantially changed, you may want to consider 944 incrementing the revision. */ 945 if (protocol >= 0x200) { 946 header[0x210] = 0xB0; 947 } 948 /* heap */ 949 if (protocol >= 0x201) { 950 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 951 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 952 } 953 954 /* load initrd */ 955 if (initrd_filename) { 956 if (protocol < 0x200) { 957 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 958 exit(1); 959 } 960 961 initrd_size = get_image_size(initrd_filename); 962 if (initrd_size < 0) { 963 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 964 initrd_filename, strerror(errno)); 965 exit(1); 966 } 967 968 initrd_addr = (initrd_max-initrd_size) & ~4095; 969 970 initrd_data = g_malloc(initrd_size); 971 load_image(initrd_filename, initrd_data); 972 973 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 974 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 975 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 976 977 stl_p(header+0x218, initrd_addr); 978 stl_p(header+0x21c, initrd_size); 979 } 980 981 /* load kernel and setup */ 982 setup_size = header[0x1f1]; 983 if (setup_size == 0) { 984 setup_size = 4; 985 } 986 setup_size = (setup_size+1)*512; 987 if (setup_size > kernel_size) { 988 fprintf(stderr, "qemu: invalid kernel header\n"); 989 exit(1); 990 } 991 kernel_size -= setup_size; 992 993 setup = g_malloc(setup_size); 994 kernel = g_malloc(kernel_size); 995 fseek(f, 0, SEEK_SET); 996 if (fread(setup, 1, setup_size, f) != setup_size) { 997 fprintf(stderr, "fread() failed\n"); 998 exit(1); 999 } 1000 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1001 fprintf(stderr, "fread() failed\n"); 1002 exit(1); 1003 } 1004 fclose(f); 1005 1006 /* append dtb to kernel */ 1007 if (dtb_filename) { 1008 if (protocol < 0x209) { 1009 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1010 exit(1); 1011 } 1012 1013 dtb_size = get_image_size(dtb_filename); 1014 if (dtb_size <= 0) { 1015 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1016 dtb_filename, strerror(errno)); 1017 exit(1); 1018 } 1019 1020 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1021 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1022 kernel = g_realloc(kernel, kernel_size); 1023 1024 stq_p(header+0x250, prot_addr + setup_data_offset); 1025 1026 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1027 setup_data->next = 0; 1028 setup_data->type = cpu_to_le32(SETUP_DTB); 1029 setup_data->len = cpu_to_le32(dtb_size); 1030 1031 load_image_size(dtb_filename, setup_data->data, dtb_size); 1032 } 1033 1034 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1035 1036 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1037 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1038 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1039 1040 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1041 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1042 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1043 1044 if (fw_cfg_dma_enabled(fw_cfg)) { 1045 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1046 option_rom[nb_option_roms].bootindex = 0; 1047 } else { 1048 option_rom[nb_option_roms].name = "linuxboot.bin"; 1049 option_rom[nb_option_roms].bootindex = 0; 1050 } 1051 nb_option_roms++; 1052 } 1053 1054 #define NE2000_NB_MAX 6 1055 1056 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1057 0x280, 0x380 }; 1058 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1059 1060 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1061 { 1062 static int nb_ne2k = 0; 1063 1064 if (nb_ne2k == NE2000_NB_MAX) 1065 return; 1066 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1067 ne2000_irq[nb_ne2k], nd); 1068 nb_ne2k++; 1069 } 1070 1071 DeviceState *cpu_get_current_apic(void) 1072 { 1073 if (current_cpu) { 1074 X86CPU *cpu = X86_CPU(current_cpu); 1075 return cpu->apic_state; 1076 } else { 1077 return NULL; 1078 } 1079 } 1080 1081 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1082 { 1083 X86CPU *cpu = opaque; 1084 1085 if (level) { 1086 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1087 } 1088 } 1089 1090 static int pc_present_cpus_count(PCMachineState *pcms) 1091 { 1092 int i, boot_cpus = 0; 1093 for (i = 0; i < pcms->possible_cpus->len; i++) { 1094 if (pcms->possible_cpus->cpus[i].cpu) { 1095 boot_cpus++; 1096 } 1097 } 1098 return boot_cpus; 1099 } 1100 1101 static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id, 1102 Error **errp) 1103 { 1104 X86CPU *cpu = NULL; 1105 Error *local_err = NULL; 1106 1107 cpu = X86_CPU(object_new(typename)); 1108 1109 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); 1110 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); 1111 1112 if (local_err) { 1113 error_propagate(errp, local_err); 1114 object_unref(OBJECT(cpu)); 1115 cpu = NULL; 1116 } 1117 return cpu; 1118 } 1119 1120 void pc_hot_add_cpu(const int64_t id, Error **errp) 1121 { 1122 X86CPU *cpu; 1123 ObjectClass *oc; 1124 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1125 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1126 Error *local_err = NULL; 1127 1128 if (id < 0) { 1129 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1130 return; 1131 } 1132 1133 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1134 error_setg(errp, "Unable to add CPU: %" PRIi64 1135 ", resulting APIC ID (%" PRIi64 ") is too large", 1136 id, apic_id); 1137 return; 1138 } 1139 1140 assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */ 1141 oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu)); 1142 cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err); 1143 if (local_err) { 1144 error_propagate(errp, local_err); 1145 return; 1146 } 1147 object_unref(OBJECT(cpu)); 1148 } 1149 1150 void pc_cpus_init(PCMachineState *pcms) 1151 { 1152 int i; 1153 CPUClass *cc; 1154 ObjectClass *oc; 1155 const char *typename; 1156 gchar **model_pieces; 1157 X86CPU *cpu = NULL; 1158 MachineState *machine = MACHINE(pcms); 1159 1160 /* init CPUs */ 1161 if (machine->cpu_model == NULL) { 1162 #ifdef TARGET_X86_64 1163 machine->cpu_model = "qemu64"; 1164 #else 1165 machine->cpu_model = "qemu32"; 1166 #endif 1167 } 1168 1169 model_pieces = g_strsplit(machine->cpu_model, ",", 2); 1170 if (!model_pieces[0]) { 1171 error_report("Invalid/empty CPU model name"); 1172 exit(1); 1173 } 1174 1175 oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]); 1176 if (oc == NULL) { 1177 error_report("Unable to find CPU definition: %s", model_pieces[0]); 1178 exit(1); 1179 } 1180 typename = object_class_get_name(oc); 1181 cc = CPU_CLASS(oc); 1182 cc->parse_features(typename, model_pieces[1], &error_fatal); 1183 g_strfreev(model_pieces); 1184 1185 /* Calculates the limit to CPU APIC ID values 1186 * 1187 * Limit for the APIC ID value, so that all 1188 * CPU APIC IDs are < pcms->apic_id_limit. 1189 * 1190 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1191 */ 1192 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1193 if (pcms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) { 1194 error_report("max_cpus is too large. APIC ID of last CPU is %u", 1195 pcms->apic_id_limit - 1); 1196 exit(1); 1197 } 1198 1199 pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1200 sizeof(CPUArchId) * max_cpus); 1201 for (i = 0; i < max_cpus; i++) { 1202 pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 1203 pcms->possible_cpus->len++; 1204 if (i < smp_cpus) { 1205 cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i), 1206 &error_fatal); 1207 object_unref(OBJECT(cpu)); 1208 } 1209 } 1210 1211 /* tell smbios about cpuid version and features */ 1212 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 1213 } 1214 1215 static void pc_build_feature_control_file(PCMachineState *pcms) 1216 { 1217 X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu); 1218 CPUX86State *env = &cpu->env; 1219 uint32_t unused, ecx, edx; 1220 uint64_t feature_control_bits = 0; 1221 uint64_t *val; 1222 1223 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1224 if (ecx & CPUID_EXT_VMX) { 1225 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1226 } 1227 1228 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1229 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1230 (env->mcg_cap & MCG_LMCE_P)) { 1231 feature_control_bits |= FEATURE_CONTROL_LMCE; 1232 } 1233 1234 if (!feature_control_bits) { 1235 return; 1236 } 1237 1238 val = g_malloc(sizeof(*val)); 1239 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1240 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1241 } 1242 1243 static 1244 void pc_machine_done(Notifier *notifier, void *data) 1245 { 1246 PCMachineState *pcms = container_of(notifier, 1247 PCMachineState, machine_done); 1248 PCIBus *bus = pcms->bus; 1249 1250 /* set the number of CPUs */ 1251 rtc_set_memory(pcms->rtc, 0x5f, pc_present_cpus_count(pcms) - 1); 1252 1253 if (bus) { 1254 int extra_hosts = 0; 1255 1256 QLIST_FOREACH(bus, &bus->child, sibling) { 1257 /* look for expander root buses */ 1258 if (pci_bus_is_root(bus)) { 1259 extra_hosts++; 1260 } 1261 } 1262 if (extra_hosts && pcms->fw_cfg) { 1263 uint64_t *val = g_malloc(sizeof(*val)); 1264 *val = cpu_to_le64(extra_hosts); 1265 fw_cfg_add_file(pcms->fw_cfg, 1266 "etc/extra-pci-roots", val, sizeof(*val)); 1267 } 1268 } 1269 1270 acpi_setup(); 1271 if (pcms->fw_cfg) { 1272 pc_build_smbios(pcms->fw_cfg); 1273 pc_build_feature_control_file(pcms); 1274 } 1275 } 1276 1277 void pc_guest_info_init(PCMachineState *pcms) 1278 { 1279 int i; 1280 1281 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1282 pcms->numa_nodes = nb_numa_nodes; 1283 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1284 sizeof *pcms->node_mem); 1285 for (i = 0; i < nb_numa_nodes; i++) { 1286 pcms->node_mem[i] = numa_info[i].node_mem; 1287 } 1288 1289 pcms->machine_done.notify = pc_machine_done; 1290 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1291 } 1292 1293 /* setup pci memory address space mapping into system address space */ 1294 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1295 MemoryRegion *pci_address_space) 1296 { 1297 /* Set to lower priority than RAM */ 1298 memory_region_add_subregion_overlap(system_memory, 0x0, 1299 pci_address_space, -1); 1300 } 1301 1302 void pc_acpi_init(const char *default_dsdt) 1303 { 1304 char *filename; 1305 1306 if (acpi_tables != NULL) { 1307 /* manually set via -acpitable, leave it alone */ 1308 return; 1309 } 1310 1311 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1312 if (filename == NULL) { 1313 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 1314 } else { 1315 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1316 &error_abort); 1317 Error *err = NULL; 1318 1319 qemu_opt_set(opts, "file", filename, &error_abort); 1320 1321 acpi_table_add_builtin(opts, &err); 1322 if (err) { 1323 error_reportf_err(err, "WARNING: failed to load %s: ", 1324 filename); 1325 } 1326 g_free(filename); 1327 } 1328 } 1329 1330 void xen_load_linux(PCMachineState *pcms) 1331 { 1332 int i; 1333 FWCfgState *fw_cfg; 1334 1335 assert(MACHINE(pcms)->kernel_filename != NULL); 1336 1337 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1338 rom_set_fw(fw_cfg); 1339 1340 load_linux(pcms, fw_cfg); 1341 for (i = 0; i < nb_option_roms; i++) { 1342 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1343 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1344 !strcmp(option_rom[i].name, "multiboot.bin")); 1345 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1346 } 1347 pcms->fw_cfg = fw_cfg; 1348 } 1349 1350 void pc_memory_init(PCMachineState *pcms, 1351 MemoryRegion *system_memory, 1352 MemoryRegion *rom_memory, 1353 MemoryRegion **ram_memory) 1354 { 1355 int linux_boot, i; 1356 MemoryRegion *ram, *option_rom_mr; 1357 MemoryRegion *ram_below_4g, *ram_above_4g; 1358 FWCfgState *fw_cfg; 1359 MachineState *machine = MACHINE(pcms); 1360 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1361 1362 assert(machine->ram_size == pcms->below_4g_mem_size + 1363 pcms->above_4g_mem_size); 1364 1365 linux_boot = (machine->kernel_filename != NULL); 1366 1367 /* Allocate RAM. We allocate it as a single memory region and use 1368 * aliases to address portions of it, mostly for backwards compatibility 1369 * with older qemus that used qemu_ram_alloc(). 1370 */ 1371 ram = g_malloc(sizeof(*ram)); 1372 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1373 machine->ram_size); 1374 *ram_memory = ram; 1375 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1376 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1377 0, pcms->below_4g_mem_size); 1378 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1379 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1380 if (pcms->above_4g_mem_size > 0) { 1381 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1382 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1383 pcms->below_4g_mem_size, 1384 pcms->above_4g_mem_size); 1385 memory_region_add_subregion(system_memory, 0x100000000ULL, 1386 ram_above_4g); 1387 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1388 } 1389 1390 if (!pcmc->has_reserved_memory && 1391 (machine->ram_slots || 1392 (machine->maxram_size > machine->ram_size))) { 1393 MachineClass *mc = MACHINE_GET_CLASS(machine); 1394 1395 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1396 mc->name); 1397 exit(EXIT_FAILURE); 1398 } 1399 1400 /* initialize hotplug memory address space */ 1401 if (pcmc->has_reserved_memory && 1402 (machine->ram_size < machine->maxram_size)) { 1403 ram_addr_t hotplug_mem_size = 1404 machine->maxram_size - machine->ram_size; 1405 1406 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1407 error_report("unsupported amount of memory slots: %"PRIu64, 1408 machine->ram_slots); 1409 exit(EXIT_FAILURE); 1410 } 1411 1412 if (QEMU_ALIGN_UP(machine->maxram_size, 1413 TARGET_PAGE_SIZE) != machine->maxram_size) { 1414 error_report("maximum memory size must by aligned to multiple of " 1415 "%d bytes", TARGET_PAGE_SIZE); 1416 exit(EXIT_FAILURE); 1417 } 1418 1419 pcms->hotplug_memory.base = 1420 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30); 1421 1422 if (pcmc->enforce_aligned_dimm) { 1423 /* size hotplug region assuming 1G page max alignment per slot */ 1424 hotplug_mem_size += (1ULL << 30) * machine->ram_slots; 1425 } 1426 1427 if ((pcms->hotplug_memory.base + hotplug_mem_size) < 1428 hotplug_mem_size) { 1429 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1430 machine->maxram_size); 1431 exit(EXIT_FAILURE); 1432 } 1433 1434 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms), 1435 "hotplug-memory", hotplug_mem_size); 1436 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base, 1437 &pcms->hotplug_memory.mr); 1438 } 1439 1440 /* Initialize PC system firmware */ 1441 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1442 1443 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1444 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1445 &error_fatal); 1446 vmstate_register_ram_global(option_rom_mr); 1447 memory_region_add_subregion_overlap(rom_memory, 1448 PC_ROM_MIN_VGA, 1449 option_rom_mr, 1450 1); 1451 1452 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1453 1454 rom_set_fw(fw_cfg); 1455 1456 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1457 uint64_t *val = g_malloc(sizeof(*val)); 1458 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1459 uint64_t res_mem_end = pcms->hotplug_memory.base; 1460 1461 if (!pcmc->broken_reserved_end) { 1462 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr); 1463 } 1464 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30)); 1465 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1466 } 1467 1468 if (linux_boot) { 1469 load_linux(pcms, fw_cfg); 1470 } 1471 1472 for (i = 0; i < nb_option_roms; i++) { 1473 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1474 } 1475 pcms->fw_cfg = fw_cfg; 1476 1477 /* Init default IOAPIC address space */ 1478 pcms->ioapic_as = &address_space_memory; 1479 } 1480 1481 qemu_irq pc_allocate_cpu_irq(void) 1482 { 1483 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1484 } 1485 1486 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1487 { 1488 DeviceState *dev = NULL; 1489 1490 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1491 if (pci_bus) { 1492 PCIDevice *pcidev = pci_vga_init(pci_bus); 1493 dev = pcidev ? &pcidev->qdev : NULL; 1494 } else if (isa_bus) { 1495 ISADevice *isadev = isa_vga_init(isa_bus); 1496 dev = isadev ? DEVICE(isadev) : NULL; 1497 } 1498 rom_reset_order_override(); 1499 return dev; 1500 } 1501 1502 static const MemoryRegionOps ioport80_io_ops = { 1503 .write = ioport80_write, 1504 .read = ioport80_read, 1505 .endianness = DEVICE_NATIVE_ENDIAN, 1506 .impl = { 1507 .min_access_size = 1, 1508 .max_access_size = 1, 1509 }, 1510 }; 1511 1512 static const MemoryRegionOps ioportF0_io_ops = { 1513 .write = ioportF0_write, 1514 .read = ioportF0_read, 1515 .endianness = DEVICE_NATIVE_ENDIAN, 1516 .impl = { 1517 .min_access_size = 1, 1518 .max_access_size = 1, 1519 }, 1520 }; 1521 1522 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1523 ISADevice **rtc_state, 1524 bool create_fdctrl, 1525 bool no_vmport, 1526 uint32_t hpet_irqs) 1527 { 1528 int i; 1529 DriveInfo *fd[MAX_FD]; 1530 DeviceState *hpet = NULL; 1531 int pit_isa_irq = 0; 1532 qemu_irq pit_alt_irq = NULL; 1533 qemu_irq rtc_irq = NULL; 1534 qemu_irq *a20_line; 1535 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1536 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1537 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1538 1539 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1540 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1541 1542 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1543 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1544 1545 /* 1546 * Check if an HPET shall be created. 1547 * 1548 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1549 * when the HPET wants to take over. Thus we have to disable the latter. 1550 */ 1551 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1552 /* In order to set property, here not using sysbus_try_create_simple */ 1553 hpet = qdev_try_create(NULL, TYPE_HPET); 1554 if (hpet) { 1555 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1556 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1557 * IRQ8 and IRQ2. 1558 */ 1559 uint8_t compat = object_property_get_int(OBJECT(hpet), 1560 HPET_INTCAP, NULL); 1561 if (!compat) { 1562 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1563 } 1564 qdev_init_nofail(hpet); 1565 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1566 1567 for (i = 0; i < GSI_NUM_PINS; i++) { 1568 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1569 } 1570 pit_isa_irq = -1; 1571 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1572 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1573 } 1574 } 1575 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1576 1577 qemu_register_boot_set(pc_boot_set, *rtc_state); 1578 1579 if (!xen_enabled()) { 1580 if (kvm_pit_in_kernel()) { 1581 pit = kvm_pit_init(isa_bus, 0x40); 1582 } else { 1583 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1584 } 1585 if (hpet) { 1586 /* connect PIT to output control line of the HPET */ 1587 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1588 } 1589 pcspk_init(isa_bus, pit); 1590 } 1591 1592 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS); 1593 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1594 1595 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1596 i8042 = isa_create_simple(isa_bus, "i8042"); 1597 i8042_setup_a20_line(i8042, a20_line[0]); 1598 if (!no_vmport) { 1599 vmport_init(isa_bus); 1600 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1601 } else { 1602 vmmouse = NULL; 1603 } 1604 if (vmmouse) { 1605 DeviceState *dev = DEVICE(vmmouse); 1606 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1607 qdev_init_nofail(dev); 1608 } 1609 port92 = isa_create_simple(isa_bus, "port92"); 1610 port92_init(port92, a20_line[1]); 1611 g_free(a20_line); 1612 1613 DMA_init(isa_bus, 0); 1614 1615 for(i = 0; i < MAX_FD; i++) { 1616 fd[i] = drive_get(IF_FLOPPY, 0, i); 1617 create_fdctrl |= !!fd[i]; 1618 } 1619 if (create_fdctrl) { 1620 fdctrl_init_isa(isa_bus, fd); 1621 } 1622 } 1623 1624 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1625 { 1626 int i; 1627 1628 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1629 for (i = 0; i < nb_nics; i++) { 1630 NICInfo *nd = &nd_table[i]; 1631 1632 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1633 pc_init_ne2k_isa(isa_bus, nd); 1634 } else { 1635 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1636 } 1637 } 1638 rom_reset_order_override(); 1639 } 1640 1641 void pc_pci_device_init(PCIBus *pci_bus) 1642 { 1643 int max_bus; 1644 int bus; 1645 1646 max_bus = drive_get_max_bus(IF_SCSI); 1647 for (bus = 0; bus <= max_bus; bus++) { 1648 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1649 } 1650 } 1651 1652 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1653 { 1654 DeviceState *dev; 1655 SysBusDevice *d; 1656 unsigned int i; 1657 1658 if (kvm_ioapic_in_kernel()) { 1659 dev = qdev_create(NULL, "kvm-ioapic"); 1660 } else { 1661 dev = qdev_create(NULL, "ioapic"); 1662 } 1663 if (parent_name) { 1664 object_property_add_child(object_resolve_path(parent_name, NULL), 1665 "ioapic", OBJECT(dev), NULL); 1666 } 1667 qdev_init_nofail(dev); 1668 d = SYS_BUS_DEVICE(dev); 1669 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1670 1671 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1672 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1673 } 1674 } 1675 1676 static void pc_dimm_plug(HotplugHandler *hotplug_dev, 1677 DeviceState *dev, Error **errp) 1678 { 1679 HotplugHandlerClass *hhc; 1680 Error *local_err = NULL; 1681 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1682 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1683 PCDIMMDevice *dimm = PC_DIMM(dev); 1684 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1685 MemoryRegion *mr = ddc->get_memory_region(dimm); 1686 uint64_t align = TARGET_PAGE_SIZE; 1687 1688 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) { 1689 align = memory_region_get_alignment(mr); 1690 } 1691 1692 if (!pcms->acpi_dev) { 1693 error_setg(&local_err, 1694 "memory hotplug is not enabled: missing acpi device"); 1695 goto out; 1696 } 1697 1698 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err); 1699 if (local_err) { 1700 goto out; 1701 } 1702 1703 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1704 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1705 out: 1706 error_propagate(errp, local_err); 1707 } 1708 1709 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev, 1710 DeviceState *dev, Error **errp) 1711 { 1712 HotplugHandlerClass *hhc; 1713 Error *local_err = NULL; 1714 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1715 1716 if (!pcms->acpi_dev) { 1717 error_setg(&local_err, 1718 "memory hotplug is not enabled: missing acpi device"); 1719 goto out; 1720 } 1721 1722 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1723 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1724 1725 out: 1726 error_propagate(errp, local_err); 1727 } 1728 1729 static void pc_dimm_unplug(HotplugHandler *hotplug_dev, 1730 DeviceState *dev, Error **errp) 1731 { 1732 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1733 PCDIMMDevice *dimm = PC_DIMM(dev); 1734 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1735 MemoryRegion *mr = ddc->get_memory_region(dimm); 1736 HotplugHandlerClass *hhc; 1737 Error *local_err = NULL; 1738 1739 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1740 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1741 1742 if (local_err) { 1743 goto out; 1744 } 1745 1746 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr); 1747 object_unparent(OBJECT(dev)); 1748 1749 out: 1750 error_propagate(errp, local_err); 1751 } 1752 1753 static int pc_apic_cmp(const void *a, const void *b) 1754 { 1755 CPUArchId *apic_a = (CPUArchId *)a; 1756 CPUArchId *apic_b = (CPUArchId *)b; 1757 1758 return apic_a->arch_id - apic_b->arch_id; 1759 } 1760 1761 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1762 * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no 1763 * entry correponding to CPU's apic_id returns NULL. 1764 */ 1765 static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu, 1766 int *idx) 1767 { 1768 CPUClass *cc = CPU_GET_CLASS(cpu); 1769 CPUArchId apic_id, *found_cpu; 1770 1771 apic_id.arch_id = cc->get_arch_id(CPU(cpu)); 1772 found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus, 1773 pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus), 1774 pc_apic_cmp); 1775 if (found_cpu && idx) { 1776 *idx = found_cpu - pcms->possible_cpus->cpus; 1777 } 1778 return found_cpu; 1779 } 1780 1781 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1782 DeviceState *dev, Error **errp) 1783 { 1784 CPUArchId *found_cpu; 1785 HotplugHandlerClass *hhc; 1786 Error *local_err = NULL; 1787 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1788 1789 if (pcms->acpi_dev) { 1790 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1791 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1792 if (local_err) { 1793 goto out; 1794 } 1795 } 1796 1797 if (dev->hotplugged) { 1798 /* increment the number of CPUs */ 1799 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1); 1800 } 1801 1802 found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL); 1803 found_cpu->cpu = CPU(dev); 1804 out: 1805 error_propagate(errp, local_err); 1806 } 1807 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1808 DeviceState *dev, Error **errp) 1809 { 1810 int idx = -1; 1811 HotplugHandlerClass *hhc; 1812 Error *local_err = NULL; 1813 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1814 1815 pc_find_cpu_slot(pcms, CPU(dev), &idx); 1816 assert(idx != -1); 1817 if (idx == 0) { 1818 error_setg(&local_err, "Boot CPU is unpluggable"); 1819 goto out; 1820 } 1821 1822 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1823 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1824 1825 if (local_err) { 1826 goto out; 1827 } 1828 1829 out: 1830 error_propagate(errp, local_err); 1831 1832 } 1833 1834 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1835 DeviceState *dev, Error **errp) 1836 { 1837 CPUArchId *found_cpu; 1838 HotplugHandlerClass *hhc; 1839 Error *local_err = NULL; 1840 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1841 1842 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1843 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1844 1845 if (local_err) { 1846 goto out; 1847 } 1848 1849 found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL); 1850 found_cpu->cpu = NULL; 1851 object_unparent(OBJECT(dev)); 1852 1853 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) - 1); 1854 out: 1855 error_propagate(errp, local_err); 1856 } 1857 1858 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1859 DeviceState *dev, Error **errp) 1860 { 1861 int idx; 1862 CPUState *cs; 1863 CPUArchId *cpu_slot; 1864 X86CPUTopoInfo topo; 1865 X86CPU *cpu = X86_CPU(dev); 1866 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1867 1868 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1869 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1870 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1871 1872 if (cpu->socket_id < 0) { 1873 error_setg(errp, "CPU socket-id is not set"); 1874 return; 1875 } else if (cpu->socket_id > max_socket) { 1876 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1877 cpu->socket_id, max_socket); 1878 return; 1879 } 1880 if (cpu->core_id < 0) { 1881 error_setg(errp, "CPU core-id is not set"); 1882 return; 1883 } else if (cpu->core_id > (smp_cores - 1)) { 1884 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1885 cpu->core_id, smp_cores - 1); 1886 return; 1887 } 1888 if (cpu->thread_id < 0) { 1889 error_setg(errp, "CPU thread-id is not set"); 1890 return; 1891 } else if (cpu->thread_id > (smp_threads - 1)) { 1892 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1893 cpu->thread_id, smp_threads - 1); 1894 return; 1895 } 1896 1897 topo.pkg_id = cpu->socket_id; 1898 topo.core_id = cpu->core_id; 1899 topo.smt_id = cpu->thread_id; 1900 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1901 } 1902 1903 cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx); 1904 if (!cpu_slot) { 1905 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1906 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1907 " APIC ID %" PRIu32 ", valid index range 0:%d", 1908 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1909 pcms->possible_cpus->len - 1); 1910 return; 1911 } 1912 1913 if (cpu_slot->cpu) { 1914 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1915 idx, cpu->apic_id); 1916 return; 1917 } 1918 1919 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1920 * so that query_hotpluggable_cpus would show correct values 1921 */ 1922 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1923 * once -smp refactoring is complete and there will be CPU private 1924 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1925 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1926 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1927 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1928 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1929 return; 1930 } 1931 cpu->socket_id = topo.pkg_id; 1932 1933 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 1934 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 1935 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 1936 return; 1937 } 1938 cpu->core_id = topo.core_id; 1939 1940 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 1941 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 1942 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 1943 return; 1944 } 1945 cpu->thread_id = topo.smt_id; 1946 1947 cs = CPU(cpu); 1948 cs->cpu_index = idx; 1949 } 1950 1951 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 1952 DeviceState *dev, Error **errp) 1953 { 1954 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 1955 pc_cpu_pre_plug(hotplug_dev, dev, errp); 1956 } 1957 } 1958 1959 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1960 DeviceState *dev, Error **errp) 1961 { 1962 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1963 pc_dimm_plug(hotplug_dev, dev, errp); 1964 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 1965 pc_cpu_plug(hotplug_dev, dev, errp); 1966 } 1967 } 1968 1969 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 1970 DeviceState *dev, Error **errp) 1971 { 1972 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1973 pc_dimm_unplug_request(hotplug_dev, dev, errp); 1974 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 1975 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 1976 } else { 1977 error_setg(errp, "acpi: device unplug request for not supported device" 1978 " type: %s", object_get_typename(OBJECT(dev))); 1979 } 1980 } 1981 1982 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 1983 DeviceState *dev, Error **errp) 1984 { 1985 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1986 pc_dimm_unplug(hotplug_dev, dev, errp); 1987 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 1988 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 1989 } else { 1990 error_setg(errp, "acpi: device unplug for not supported device" 1991 " type: %s", object_get_typename(OBJECT(dev))); 1992 } 1993 } 1994 1995 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 1996 DeviceState *dev) 1997 { 1998 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); 1999 2000 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2001 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2002 return HOTPLUG_HANDLER(machine); 2003 } 2004 2005 return pcmc->get_hotplug_handler ? 2006 pcmc->get_hotplug_handler(machine, dev) : NULL; 2007 } 2008 2009 static void 2010 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, 2011 const char *name, void *opaque, 2012 Error **errp) 2013 { 2014 PCMachineState *pcms = PC_MACHINE(obj); 2015 int64_t value = memory_region_size(&pcms->hotplug_memory.mr); 2016 2017 visit_type_int(v, name, &value, errp); 2018 } 2019 2020 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2021 const char *name, void *opaque, 2022 Error **errp) 2023 { 2024 PCMachineState *pcms = PC_MACHINE(obj); 2025 uint64_t value = pcms->max_ram_below_4g; 2026 2027 visit_type_size(v, name, &value, errp); 2028 } 2029 2030 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2031 const char *name, void *opaque, 2032 Error **errp) 2033 { 2034 PCMachineState *pcms = PC_MACHINE(obj); 2035 Error *error = NULL; 2036 uint64_t value; 2037 2038 visit_type_size(v, name, &value, &error); 2039 if (error) { 2040 error_propagate(errp, error); 2041 return; 2042 } 2043 if (value > (1ULL << 32)) { 2044 error_setg(&error, 2045 "Machine option 'max-ram-below-4g=%"PRIu64 2046 "' expects size less than or equal to 4G", value); 2047 error_propagate(errp, error); 2048 return; 2049 } 2050 2051 if (value < (1ULL << 20)) { 2052 error_report("Warning: small max_ram_below_4g(%"PRIu64 2053 ") less than 1M. BIOS may not work..", 2054 value); 2055 } 2056 2057 pcms->max_ram_below_4g = value; 2058 } 2059 2060 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2061 void *opaque, Error **errp) 2062 { 2063 PCMachineState *pcms = PC_MACHINE(obj); 2064 OnOffAuto vmport = pcms->vmport; 2065 2066 visit_type_OnOffAuto(v, name, &vmport, errp); 2067 } 2068 2069 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2070 void *opaque, Error **errp) 2071 { 2072 PCMachineState *pcms = PC_MACHINE(obj); 2073 2074 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2075 } 2076 2077 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2078 { 2079 bool smm_available = false; 2080 2081 if (pcms->smm == ON_OFF_AUTO_OFF) { 2082 return false; 2083 } 2084 2085 if (tcg_enabled() || qtest_enabled()) { 2086 smm_available = true; 2087 } else if (kvm_enabled()) { 2088 smm_available = kvm_has_smm(); 2089 } 2090 2091 if (smm_available) { 2092 return true; 2093 } 2094 2095 if (pcms->smm == ON_OFF_AUTO_ON) { 2096 error_report("System Management Mode not supported by this hypervisor."); 2097 exit(1); 2098 } 2099 return false; 2100 } 2101 2102 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2103 void *opaque, Error **errp) 2104 { 2105 PCMachineState *pcms = PC_MACHINE(obj); 2106 OnOffAuto smm = pcms->smm; 2107 2108 visit_type_OnOffAuto(v, name, &smm, errp); 2109 } 2110 2111 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2112 void *opaque, Error **errp) 2113 { 2114 PCMachineState *pcms = PC_MACHINE(obj); 2115 2116 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2117 } 2118 2119 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2120 { 2121 PCMachineState *pcms = PC_MACHINE(obj); 2122 2123 return pcms->acpi_nvdimm_state.is_enabled; 2124 } 2125 2126 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2127 { 2128 PCMachineState *pcms = PC_MACHINE(obj); 2129 2130 pcms->acpi_nvdimm_state.is_enabled = value; 2131 } 2132 2133 static void pc_machine_initfn(Object *obj) 2134 { 2135 PCMachineState *pcms = PC_MACHINE(obj); 2136 2137 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int", 2138 pc_machine_get_hotplug_memory_region_size, 2139 NULL, NULL, NULL, &error_abort); 2140 2141 pcms->max_ram_below_4g = 0; /* use default */ 2142 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2143 pc_machine_get_max_ram_below_4g, 2144 pc_machine_set_max_ram_below_4g, 2145 NULL, NULL, &error_abort); 2146 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G, 2147 "Maximum ram below the 4G boundary (32bit boundary)", 2148 &error_abort); 2149 2150 pcms->smm = ON_OFF_AUTO_AUTO; 2151 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto", 2152 pc_machine_get_smm, 2153 pc_machine_set_smm, 2154 NULL, NULL, &error_abort); 2155 object_property_set_description(obj, PC_MACHINE_SMM, 2156 "Enable SMM (pc & q35)", 2157 &error_abort); 2158 2159 pcms->vmport = ON_OFF_AUTO_AUTO; 2160 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto", 2161 pc_machine_get_vmport, 2162 pc_machine_set_vmport, 2163 NULL, NULL, &error_abort); 2164 object_property_set_description(obj, PC_MACHINE_VMPORT, 2165 "Enable vmport (pc & q35)", 2166 &error_abort); 2167 2168 /* nvdimm is disabled on default. */ 2169 pcms->acpi_nvdimm_state.is_enabled = false; 2170 object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm, 2171 pc_machine_set_nvdimm, &error_abort); 2172 } 2173 2174 static void pc_machine_reset(void) 2175 { 2176 CPUState *cs; 2177 X86CPU *cpu; 2178 2179 qemu_devices_reset(); 2180 2181 /* Reset APIC after devices have been reset to cancel 2182 * any changes that qemu_devices_reset() might have done. 2183 */ 2184 CPU_FOREACH(cs) { 2185 cpu = X86_CPU(cs); 2186 2187 if (cpu->apic_state) { 2188 device_reset(cpu->apic_state); 2189 } 2190 } 2191 } 2192 2193 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index) 2194 { 2195 X86CPUTopoInfo topo; 2196 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index, 2197 &topo); 2198 return topo.pkg_id; 2199 } 2200 2201 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine) 2202 { 2203 PCMachineState *pcms = PC_MACHINE(machine); 2204 int len = sizeof(CPUArchIdList) + 2205 sizeof(CPUArchId) * (pcms->possible_cpus->len); 2206 CPUArchIdList *list = g_malloc(len); 2207 2208 memcpy(list, pcms->possible_cpus, len); 2209 return list; 2210 } 2211 2212 static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine) 2213 { 2214 int i; 2215 CPUState *cpu; 2216 HotpluggableCPUList *head = NULL; 2217 PCMachineState *pcms = PC_MACHINE(machine); 2218 const char *cpu_type; 2219 2220 cpu = pcms->possible_cpus->cpus[0].cpu; 2221 assert(cpu); /* BSP is always present */ 2222 cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu))); 2223 2224 for (i = 0; i < pcms->possible_cpus->len; i++) { 2225 X86CPUTopoInfo topo; 2226 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1); 2227 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1); 2228 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1); 2229 const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id; 2230 2231 x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo); 2232 2233 cpu_item->type = g_strdup(cpu_type); 2234 cpu_item->vcpus_count = 1; 2235 cpu_props->has_socket_id = true; 2236 cpu_props->socket_id = topo.pkg_id; 2237 cpu_props->has_core_id = true; 2238 cpu_props->core_id = topo.core_id; 2239 cpu_props->has_thread_id = true; 2240 cpu_props->thread_id = topo.smt_id; 2241 cpu_item->props = cpu_props; 2242 2243 cpu = pcms->possible_cpus->cpus[i].cpu; 2244 if (cpu) { 2245 cpu_item->has_qom_path = true; 2246 cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu)); 2247 } 2248 2249 list_item->value = cpu_item; 2250 list_item->next = head; 2251 head = list_item; 2252 } 2253 return head; 2254 } 2255 2256 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2257 { 2258 /* cpu index isn't used */ 2259 CPUState *cs; 2260 2261 CPU_FOREACH(cs) { 2262 X86CPU *cpu = X86_CPU(cs); 2263 2264 if (!cpu->apic_state) { 2265 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2266 } else { 2267 apic_deliver_nmi(cpu->apic_state); 2268 } 2269 } 2270 } 2271 2272 static void pc_machine_class_init(ObjectClass *oc, void *data) 2273 { 2274 MachineClass *mc = MACHINE_CLASS(oc); 2275 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2276 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2277 NMIClass *nc = NMI_CLASS(oc); 2278 2279 pcmc->get_hotplug_handler = mc->get_hotplug_handler; 2280 pcmc->pci_enabled = true; 2281 pcmc->has_acpi_build = true; 2282 pcmc->rsdp_in_ram = true; 2283 pcmc->smbios_defaults = true; 2284 pcmc->smbios_uuid_encoded = true; 2285 pcmc->gigabyte_align = true; 2286 pcmc->has_reserved_memory = true; 2287 pcmc->kvmclock_enabled = true; 2288 pcmc->enforce_aligned_dimm = true; 2289 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2290 * to be used at the moment, 32K should be enough for a while. */ 2291 pcmc->acpi_data_size = 0x20000 + 0x8000; 2292 pcmc->save_tsc_khz = true; 2293 mc->get_hotplug_handler = pc_get_hotpug_handler; 2294 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id; 2295 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2296 mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus; 2297 mc->default_boot_order = "cad"; 2298 mc->hot_add_cpu = pc_hot_add_cpu; 2299 mc->max_cpus = 255; 2300 mc->reset = pc_machine_reset; 2301 hc->pre_plug = pc_machine_device_pre_plug_cb; 2302 hc->plug = pc_machine_device_plug_cb; 2303 hc->unplug_request = pc_machine_device_unplug_request_cb; 2304 hc->unplug = pc_machine_device_unplug_cb; 2305 nc->nmi_monitor_handler = x86_nmi; 2306 } 2307 2308 static const TypeInfo pc_machine_info = { 2309 .name = TYPE_PC_MACHINE, 2310 .parent = TYPE_MACHINE, 2311 .abstract = true, 2312 .instance_size = sizeof(PCMachineState), 2313 .instance_init = pc_machine_initfn, 2314 .class_size = sizeof(PCMachineClass), 2315 .class_init = pc_machine_class_init, 2316 .interfaces = (InterfaceInfo[]) { 2317 { TYPE_HOTPLUG_HANDLER }, 2318 { TYPE_NMI }, 2319 { } 2320 }, 2321 }; 2322 2323 static void pc_machine_register_types(void) 2324 { 2325 type_register_static(&pc_machine_info); 2326 } 2327 2328 type_init(pc_machine_register_types) 2329