xref: /openbmc/qemu/hw/i386/pc.c (revision 3ef77acab21210b7d0853bf95798f8e0e748e500)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/acpi/cpu_hotplug.h"
57 #include "hw/cpu/icc_bus.h"
58 #include "hw/boards.h"
59 #include "hw/pci/pci_host.h"
60 #include "acpi-build.h"
61 #include "hw/mem/pc-dimm.h"
62 
63 /* debug PC/ISA interrupts */
64 //#define DEBUG_IRQ
65 
66 #ifdef DEBUG_IRQ
67 #define DPRINTF(fmt, ...)                                       \
68     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
69 #else
70 #define DPRINTF(fmt, ...)
71 #endif
72 
73 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
74 #define ACPI_DATA_SIZE       0x10000
75 #define BIOS_CFG_IOPORT 0x510
76 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
77 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
78 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
79 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
80 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
81 
82 #define E820_NR_ENTRIES		16
83 
84 struct e820_entry {
85     uint64_t address;
86     uint64_t length;
87     uint32_t type;
88 } QEMU_PACKED __attribute((__aligned__(4)));
89 
90 struct e820_table {
91     uint32_t count;
92     struct e820_entry entry[E820_NR_ENTRIES];
93 } QEMU_PACKED __attribute((__aligned__(4)));
94 
95 static struct e820_table e820_reserve;
96 static struct e820_entry *e820_table;
97 static unsigned e820_entries;
98 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
99 
100 void gsi_handler(void *opaque, int n, int level)
101 {
102     GSIState *s = opaque;
103 
104     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
105     if (n < ISA_NUM_IRQS) {
106         qemu_set_irq(s->i8259_irq[n], level);
107     }
108     qemu_set_irq(s->ioapic_irq[n], level);
109 }
110 
111 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
112                            unsigned size)
113 {
114 }
115 
116 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
117 {
118     return 0xffffffffffffffffULL;
119 }
120 
121 /* MSDOS compatibility mode FPU exception support */
122 static qemu_irq ferr_irq;
123 
124 void pc_register_ferr_irq(qemu_irq irq)
125 {
126     ferr_irq = irq;
127 }
128 
129 /* XXX: add IGNNE support */
130 void cpu_set_ferr(CPUX86State *s)
131 {
132     qemu_irq_raise(ferr_irq);
133 }
134 
135 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
136                            unsigned size)
137 {
138     qemu_irq_lower(ferr_irq);
139 }
140 
141 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
142 {
143     return 0xffffffffffffffffULL;
144 }
145 
146 /* TSC handling */
147 uint64_t cpu_get_tsc(CPUX86State *env)
148 {
149     return cpu_get_ticks();
150 }
151 
152 /* SMM support */
153 
154 static cpu_set_smm_t smm_set;
155 static void *smm_arg;
156 
157 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
158 {
159     assert(smm_set == NULL);
160     assert(smm_arg == NULL);
161     smm_set = callback;
162     smm_arg = arg;
163 }
164 
165 void cpu_smm_update(CPUX86State *env)
166 {
167     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
168         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
169     }
170 }
171 
172 
173 /* IRQ handling */
174 int cpu_get_pic_interrupt(CPUX86State *env)
175 {
176     X86CPU *cpu = x86_env_get_cpu(env);
177     int intno;
178 
179     intno = apic_get_interrupt(cpu->apic_state);
180     if (intno >= 0) {
181         return intno;
182     }
183     /* read the irq from the PIC */
184     if (!apic_accept_pic_intr(cpu->apic_state)) {
185         return -1;
186     }
187 
188     intno = pic_read_irq(isa_pic);
189     return intno;
190 }
191 
192 static void pic_irq_request(void *opaque, int irq, int level)
193 {
194     CPUState *cs = first_cpu;
195     X86CPU *cpu = X86_CPU(cs);
196 
197     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
198     if (cpu->apic_state) {
199         CPU_FOREACH(cs) {
200             cpu = X86_CPU(cs);
201             if (apic_accept_pic_intr(cpu->apic_state)) {
202                 apic_deliver_pic_intr(cpu->apic_state, level);
203             }
204         }
205     } else {
206         if (level) {
207             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
208         } else {
209             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
210         }
211     }
212 }
213 
214 /* PC cmos mappings */
215 
216 #define REG_EQUIPMENT_BYTE          0x14
217 
218 static int cmos_get_fd_drive_type(FDriveType fd0)
219 {
220     int val;
221 
222     switch (fd0) {
223     case FDRIVE_DRV_144:
224         /* 1.44 Mb 3"5 drive */
225         val = 4;
226         break;
227     case FDRIVE_DRV_288:
228         /* 2.88 Mb 3"5 drive */
229         val = 5;
230         break;
231     case FDRIVE_DRV_120:
232         /* 1.2 Mb 5"5 drive */
233         val = 2;
234         break;
235     case FDRIVE_DRV_NONE:
236     default:
237         val = 0;
238         break;
239     }
240     return val;
241 }
242 
243 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
244                          int16_t cylinders, int8_t heads, int8_t sectors)
245 {
246     rtc_set_memory(s, type_ofs, 47);
247     rtc_set_memory(s, info_ofs, cylinders);
248     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
249     rtc_set_memory(s, info_ofs + 2, heads);
250     rtc_set_memory(s, info_ofs + 3, 0xff);
251     rtc_set_memory(s, info_ofs + 4, 0xff);
252     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
253     rtc_set_memory(s, info_ofs + 6, cylinders);
254     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
255     rtc_set_memory(s, info_ofs + 8, sectors);
256 }
257 
258 /* convert boot_device letter to something recognizable by the bios */
259 static int boot_device2nibble(char boot_device)
260 {
261     switch(boot_device) {
262     case 'a':
263     case 'b':
264         return 0x01; /* floppy boot */
265     case 'c':
266         return 0x02; /* hard drive boot */
267     case 'd':
268         return 0x03; /* CD-ROM boot */
269     case 'n':
270         return 0x04; /* Network boot */
271     }
272     return 0;
273 }
274 
275 static int set_boot_dev(ISADevice *s, const char *boot_device)
276 {
277 #define PC_MAX_BOOT_DEVICES 3
278     int nbds, bds[3] = { 0, };
279     int i;
280 
281     nbds = strlen(boot_device);
282     if (nbds > PC_MAX_BOOT_DEVICES) {
283         error_report("Too many boot devices for PC");
284         return(1);
285     }
286     for (i = 0; i < nbds; i++) {
287         bds[i] = boot_device2nibble(boot_device[i]);
288         if (bds[i] == 0) {
289             error_report("Invalid boot device for PC: '%c'",
290                          boot_device[i]);
291             return(1);
292         }
293     }
294     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
295     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
296     return(0);
297 }
298 
299 static int pc_boot_set(void *opaque, const char *boot_device)
300 {
301     return set_boot_dev(opaque, boot_device);
302 }
303 
304 typedef struct pc_cmos_init_late_arg {
305     ISADevice *rtc_state;
306     BusState *idebus[2];
307 } pc_cmos_init_late_arg;
308 
309 static void pc_cmos_init_late(void *opaque)
310 {
311     pc_cmos_init_late_arg *arg = opaque;
312     ISADevice *s = arg->rtc_state;
313     int16_t cylinders;
314     int8_t heads, sectors;
315     int val;
316     int i, trans;
317 
318     val = 0;
319     if (ide_get_geometry(arg->idebus[0], 0,
320                          &cylinders, &heads, &sectors) >= 0) {
321         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
322         val |= 0xf0;
323     }
324     if (ide_get_geometry(arg->idebus[0], 1,
325                          &cylinders, &heads, &sectors) >= 0) {
326         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
327         val |= 0x0f;
328     }
329     rtc_set_memory(s, 0x12, val);
330 
331     val = 0;
332     for (i = 0; i < 4; i++) {
333         /* NOTE: ide_get_geometry() returns the physical
334            geometry.  It is always such that: 1 <= sects <= 63, 1
335            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
336            geometry can be different if a translation is done. */
337         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
338                              &cylinders, &heads, &sectors) >= 0) {
339             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
340             assert((trans & ~3) == 0);
341             val |= trans << (i * 2);
342         }
343     }
344     rtc_set_memory(s, 0x39, val);
345 
346     qemu_unregister_reset(pc_cmos_init_late, opaque);
347 }
348 
349 typedef struct RTCCPUHotplugArg {
350     Notifier cpu_added_notifier;
351     ISADevice *rtc_state;
352 } RTCCPUHotplugArg;
353 
354 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
355 {
356     RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
357                                          cpu_added_notifier);
358     ISADevice *s = arg->rtc_state;
359 
360     /* increment the number of CPUs */
361     rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
362 }
363 
364 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
365                   const char *boot_device,
366                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
367                   ISADevice *s)
368 {
369     int val, nb, i;
370     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
371     static pc_cmos_init_late_arg arg;
372     static RTCCPUHotplugArg cpu_hotplug_cb;
373 
374     /* various important CMOS locations needed by PC/Bochs bios */
375 
376     /* memory size */
377     /* base memory (first MiB) */
378     val = MIN(ram_size / 1024, 640);
379     rtc_set_memory(s, 0x15, val);
380     rtc_set_memory(s, 0x16, val >> 8);
381     /* extended memory (next 64MiB) */
382     if (ram_size > 1024 * 1024) {
383         val = (ram_size - 1024 * 1024) / 1024;
384     } else {
385         val = 0;
386     }
387     if (val > 65535)
388         val = 65535;
389     rtc_set_memory(s, 0x17, val);
390     rtc_set_memory(s, 0x18, val >> 8);
391     rtc_set_memory(s, 0x30, val);
392     rtc_set_memory(s, 0x31, val >> 8);
393     /* memory between 16MiB and 4GiB */
394     if (ram_size > 16 * 1024 * 1024) {
395         val = (ram_size - 16 * 1024 * 1024) / 65536;
396     } else {
397         val = 0;
398     }
399     if (val > 65535)
400         val = 65535;
401     rtc_set_memory(s, 0x34, val);
402     rtc_set_memory(s, 0x35, val >> 8);
403     /* memory above 4GiB */
404     val = above_4g_mem_size / 65536;
405     rtc_set_memory(s, 0x5b, val);
406     rtc_set_memory(s, 0x5c, val >> 8);
407     rtc_set_memory(s, 0x5d, val >> 16);
408 
409     /* set the number of CPU */
410     rtc_set_memory(s, 0x5f, smp_cpus - 1);
411     /* init CPU hotplug notifier */
412     cpu_hotplug_cb.rtc_state = s;
413     cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
414     qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
415 
416     if (set_boot_dev(s, boot_device)) {
417         exit(1);
418     }
419 
420     /* floppy type */
421     if (floppy) {
422         for (i = 0; i < 2; i++) {
423             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
424         }
425     }
426     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
427         cmos_get_fd_drive_type(fd_type[1]);
428     rtc_set_memory(s, 0x10, val);
429 
430     val = 0;
431     nb = 0;
432     if (fd_type[0] < FDRIVE_DRV_NONE) {
433         nb++;
434     }
435     if (fd_type[1] < FDRIVE_DRV_NONE) {
436         nb++;
437     }
438     switch (nb) {
439     case 0:
440         break;
441     case 1:
442         val |= 0x01; /* 1 drive, ready for boot */
443         break;
444     case 2:
445         val |= 0x41; /* 2 drives, ready for boot */
446         break;
447     }
448     val |= 0x02; /* FPU is there */
449     val |= 0x04; /* PS/2 mouse installed */
450     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
451 
452     /* hard drives */
453     arg.rtc_state = s;
454     arg.idebus[0] = idebus0;
455     arg.idebus[1] = idebus1;
456     qemu_register_reset(pc_cmos_init_late, &arg);
457 }
458 
459 #define TYPE_PORT92 "port92"
460 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
461 
462 /* port 92 stuff: could be split off */
463 typedef struct Port92State {
464     ISADevice parent_obj;
465 
466     MemoryRegion io;
467     uint8_t outport;
468     qemu_irq *a20_out;
469 } Port92State;
470 
471 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
472                          unsigned size)
473 {
474     Port92State *s = opaque;
475     int oldval = s->outport;
476 
477     DPRINTF("port92: write 0x%02x\n", val);
478     s->outport = val;
479     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
480     if ((val & 1) && !(oldval & 1)) {
481         qemu_system_reset_request();
482     }
483 }
484 
485 static uint64_t port92_read(void *opaque, hwaddr addr,
486                             unsigned size)
487 {
488     Port92State *s = opaque;
489     uint32_t ret;
490 
491     ret = s->outport;
492     DPRINTF("port92: read 0x%02x\n", ret);
493     return ret;
494 }
495 
496 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
497 {
498     Port92State *s = PORT92(dev);
499 
500     s->a20_out = a20_out;
501 }
502 
503 static const VMStateDescription vmstate_port92_isa = {
504     .name = "port92",
505     .version_id = 1,
506     .minimum_version_id = 1,
507     .fields = (VMStateField[]) {
508         VMSTATE_UINT8(outport, Port92State),
509         VMSTATE_END_OF_LIST()
510     }
511 };
512 
513 static void port92_reset(DeviceState *d)
514 {
515     Port92State *s = PORT92(d);
516 
517     s->outport &= ~1;
518 }
519 
520 static const MemoryRegionOps port92_ops = {
521     .read = port92_read,
522     .write = port92_write,
523     .impl = {
524         .min_access_size = 1,
525         .max_access_size = 1,
526     },
527     .endianness = DEVICE_LITTLE_ENDIAN,
528 };
529 
530 static void port92_initfn(Object *obj)
531 {
532     Port92State *s = PORT92(obj);
533 
534     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
535 
536     s->outport = 0;
537 }
538 
539 static void port92_realizefn(DeviceState *dev, Error **errp)
540 {
541     ISADevice *isadev = ISA_DEVICE(dev);
542     Port92State *s = PORT92(dev);
543 
544     isa_register_ioport(isadev, &s->io, 0x92);
545 }
546 
547 static void port92_class_initfn(ObjectClass *klass, void *data)
548 {
549     DeviceClass *dc = DEVICE_CLASS(klass);
550 
551     dc->realize = port92_realizefn;
552     dc->reset = port92_reset;
553     dc->vmsd = &vmstate_port92_isa;
554     /*
555      * Reason: unlike ordinary ISA devices, this one needs additional
556      * wiring: its A20 output line needs to be wired up by
557      * port92_init().
558      */
559     dc->cannot_instantiate_with_device_add_yet = true;
560 }
561 
562 static const TypeInfo port92_info = {
563     .name          = TYPE_PORT92,
564     .parent        = TYPE_ISA_DEVICE,
565     .instance_size = sizeof(Port92State),
566     .instance_init = port92_initfn,
567     .class_init    = port92_class_initfn,
568 };
569 
570 static void port92_register_types(void)
571 {
572     type_register_static(&port92_info);
573 }
574 
575 type_init(port92_register_types)
576 
577 static void handle_a20_line_change(void *opaque, int irq, int level)
578 {
579     X86CPU *cpu = opaque;
580 
581     /* XXX: send to all CPUs ? */
582     /* XXX: add logic to handle multiple A20 line sources */
583     x86_cpu_set_a20(cpu, level);
584 }
585 
586 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
587 {
588     int index = le32_to_cpu(e820_reserve.count);
589     struct e820_entry *entry;
590 
591     if (type != E820_RAM) {
592         /* old FW_CFG_E820_TABLE entry -- reservations only */
593         if (index >= E820_NR_ENTRIES) {
594             return -EBUSY;
595         }
596         entry = &e820_reserve.entry[index++];
597 
598         entry->address = cpu_to_le64(address);
599         entry->length = cpu_to_le64(length);
600         entry->type = cpu_to_le32(type);
601 
602         e820_reserve.count = cpu_to_le32(index);
603     }
604 
605     /* new "etc/e820" file -- include ram too */
606     e820_table = g_realloc(e820_table,
607                            sizeof(struct e820_entry) * (e820_entries+1));
608     e820_table[e820_entries].address = cpu_to_le64(address);
609     e820_table[e820_entries].length = cpu_to_le64(length);
610     e820_table[e820_entries].type = cpu_to_le32(type);
611     e820_entries++;
612 
613     return e820_entries;
614 }
615 
616 int e820_get_num_entries(void)
617 {
618     return e820_entries;
619 }
620 
621 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
622 {
623     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
624         *address = le64_to_cpu(e820_table[idx].address);
625         *length = le64_to_cpu(e820_table[idx].length);
626         return true;
627     }
628     return false;
629 }
630 
631 /* Calculates the limit to CPU APIC ID values
632  *
633  * This function returns the limit for the APIC ID value, so that all
634  * CPU APIC IDs are < pc_apic_id_limit().
635  *
636  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
637  */
638 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
639 {
640     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
641 }
642 
643 static FWCfgState *bochs_bios_init(void)
644 {
645     FWCfgState *fw_cfg;
646     uint8_t *smbios_tables, *smbios_anchor;
647     size_t smbios_tables_len, smbios_anchor_len;
648     uint64_t *numa_fw_cfg;
649     int i, j;
650     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
651 
652     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
653     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
654      *
655      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
656      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
657      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
658      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
659      * may see".
660      *
661      * So, this means we must not use max_cpus, here, but the maximum possible
662      * APIC ID value, plus one.
663      *
664      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
665      *     the APIC ID, not the "CPU index"
666      */
667     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
668     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
669     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
670     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
671                      acpi_tables, acpi_tables_len);
672     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
673 
674     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
675     if (smbios_tables) {
676         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
677                          smbios_tables, smbios_tables_len);
678     }
679 
680     smbios_get_tables(&smbios_tables, &smbios_tables_len,
681                       &smbios_anchor, &smbios_anchor_len);
682     if (smbios_anchor) {
683         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
684                         smbios_tables, smbios_tables_len);
685         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
686                         smbios_anchor, smbios_anchor_len);
687     }
688 
689     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
690                      &e820_reserve, sizeof(e820_reserve));
691     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
692                     sizeof(struct e820_entry) * e820_entries);
693 
694     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
695     /* allocate memory for the NUMA channel: one (64bit) word for the number
696      * of nodes, one word for each VCPU->node and one word for each node to
697      * hold the amount of memory.
698      */
699     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
700     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
701     for (i = 0; i < max_cpus; i++) {
702         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
703         assert(apic_id < apic_id_limit);
704         for (j = 0; j < nb_numa_nodes; j++) {
705             if (test_bit(i, node_cpumask[j])) {
706                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
707                 break;
708             }
709         }
710     }
711     for (i = 0; i < nb_numa_nodes; i++) {
712         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
713     }
714     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
715                      (1 + apic_id_limit + nb_numa_nodes) *
716                      sizeof(*numa_fw_cfg));
717 
718     return fw_cfg;
719 }
720 
721 static long get_file_size(FILE *f)
722 {
723     long where, size;
724 
725     /* XXX: on Unix systems, using fstat() probably makes more sense */
726 
727     where = ftell(f);
728     fseek(f, 0, SEEK_END);
729     size = ftell(f);
730     fseek(f, where, SEEK_SET);
731 
732     return size;
733 }
734 
735 static void load_linux(FWCfgState *fw_cfg,
736                        const char *kernel_filename,
737                        const char *initrd_filename,
738                        const char *kernel_cmdline,
739                        hwaddr max_ram_size)
740 {
741     uint16_t protocol;
742     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
743     uint32_t initrd_max;
744     uint8_t header[8192], *setup, *kernel, *initrd_data;
745     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
746     FILE *f;
747     char *vmode;
748 
749     /* Align to 16 bytes as a paranoia measure */
750     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
751 
752     /* load the kernel header */
753     f = fopen(kernel_filename, "rb");
754     if (!f || !(kernel_size = get_file_size(f)) ||
755         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
756         MIN(ARRAY_SIZE(header), kernel_size)) {
757         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
758                 kernel_filename, strerror(errno));
759         exit(1);
760     }
761 
762     /* kernel protocol version */
763 #if 0
764     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
765 #endif
766     if (ldl_p(header+0x202) == 0x53726448) {
767         protocol = lduw_p(header+0x206);
768     } else {
769         /* This looks like a multiboot kernel. If it is, let's stop
770            treating it like a Linux kernel. */
771         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
772                            kernel_cmdline, kernel_size, header)) {
773             return;
774         }
775         protocol = 0;
776     }
777 
778     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
779         /* Low kernel */
780         real_addr    = 0x90000;
781         cmdline_addr = 0x9a000 - cmdline_size;
782         prot_addr    = 0x10000;
783     } else if (protocol < 0x202) {
784         /* High but ancient kernel */
785         real_addr    = 0x90000;
786         cmdline_addr = 0x9a000 - cmdline_size;
787         prot_addr    = 0x100000;
788     } else {
789         /* High and recent kernel */
790         real_addr    = 0x10000;
791         cmdline_addr = 0x20000;
792         prot_addr    = 0x100000;
793     }
794 
795 #if 0
796     fprintf(stderr,
797             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
798             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
799             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
800             real_addr,
801             cmdline_addr,
802             prot_addr);
803 #endif
804 
805     /* highest address for loading the initrd */
806     if (protocol >= 0x203) {
807         initrd_max = ldl_p(header+0x22c);
808     } else {
809         initrd_max = 0x37ffffff;
810     }
811 
812     if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
813     	initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
814 
815     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
816     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
817     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
818 
819     if (protocol >= 0x202) {
820         stl_p(header+0x228, cmdline_addr);
821     } else {
822         stw_p(header+0x20, 0xA33F);
823         stw_p(header+0x22, cmdline_addr-real_addr);
824     }
825 
826     /* handle vga= parameter */
827     vmode = strstr(kernel_cmdline, "vga=");
828     if (vmode) {
829         unsigned int video_mode;
830         /* skip "vga=" */
831         vmode += 4;
832         if (!strncmp(vmode, "normal", 6)) {
833             video_mode = 0xffff;
834         } else if (!strncmp(vmode, "ext", 3)) {
835             video_mode = 0xfffe;
836         } else if (!strncmp(vmode, "ask", 3)) {
837             video_mode = 0xfffd;
838         } else {
839             video_mode = strtol(vmode, NULL, 0);
840         }
841         stw_p(header+0x1fa, video_mode);
842     }
843 
844     /* loader type */
845     /* High nybble = B reserved for QEMU; low nybble is revision number.
846        If this code is substantially changed, you may want to consider
847        incrementing the revision. */
848     if (protocol >= 0x200) {
849         header[0x210] = 0xB0;
850     }
851     /* heap */
852     if (protocol >= 0x201) {
853         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
854         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
855     }
856 
857     /* load initrd */
858     if (initrd_filename) {
859         if (protocol < 0x200) {
860             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
861             exit(1);
862         }
863 
864         initrd_size = get_image_size(initrd_filename);
865         if (initrd_size < 0) {
866             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
867                     initrd_filename, strerror(errno));
868             exit(1);
869         }
870 
871         initrd_addr = (initrd_max-initrd_size) & ~4095;
872 
873         initrd_data = g_malloc(initrd_size);
874         load_image(initrd_filename, initrd_data);
875 
876         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
877         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
878         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
879 
880         stl_p(header+0x218, initrd_addr);
881         stl_p(header+0x21c, initrd_size);
882     }
883 
884     /* load kernel and setup */
885     setup_size = header[0x1f1];
886     if (setup_size == 0) {
887         setup_size = 4;
888     }
889     setup_size = (setup_size+1)*512;
890     kernel_size -= setup_size;
891 
892     setup  = g_malloc(setup_size);
893     kernel = g_malloc(kernel_size);
894     fseek(f, 0, SEEK_SET);
895     if (fread(setup, 1, setup_size, f) != setup_size) {
896         fprintf(stderr, "fread() failed\n");
897         exit(1);
898     }
899     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
900         fprintf(stderr, "fread() failed\n");
901         exit(1);
902     }
903     fclose(f);
904     memcpy(setup, header, MIN(sizeof(header), setup_size));
905 
906     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
907     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
908     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
909 
910     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
911     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
912     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
913 
914     option_rom[nb_option_roms].name = "linuxboot.bin";
915     option_rom[nb_option_roms].bootindex = 0;
916     nb_option_roms++;
917 }
918 
919 #define NE2000_NB_MAX 6
920 
921 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
922                                               0x280, 0x380 };
923 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
924 
925 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
926 {
927     static int nb_ne2k = 0;
928 
929     if (nb_ne2k == NE2000_NB_MAX)
930         return;
931     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
932                     ne2000_irq[nb_ne2k], nd);
933     nb_ne2k++;
934 }
935 
936 DeviceState *cpu_get_current_apic(void)
937 {
938     if (current_cpu) {
939         X86CPU *cpu = X86_CPU(current_cpu);
940         return cpu->apic_state;
941     } else {
942         return NULL;
943     }
944 }
945 
946 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
947 {
948     X86CPU *cpu = opaque;
949 
950     if (level) {
951         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
952     }
953 }
954 
955 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
956                           DeviceState *icc_bridge, Error **errp)
957 {
958     X86CPU *cpu;
959     Error *local_err = NULL;
960 
961     cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
962     if (local_err != NULL) {
963         error_propagate(errp, local_err);
964         return NULL;
965     }
966 
967     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
968     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
969 
970     if (local_err) {
971         error_propagate(errp, local_err);
972         object_unref(OBJECT(cpu));
973         cpu = NULL;
974     }
975     return cpu;
976 }
977 
978 static const char *current_cpu_model;
979 
980 void pc_hot_add_cpu(const int64_t id, Error **errp)
981 {
982     DeviceState *icc_bridge;
983     int64_t apic_id = x86_cpu_apic_id_from_index(id);
984 
985     if (id < 0) {
986         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
987         return;
988     }
989 
990     if (cpu_exists(apic_id)) {
991         error_setg(errp, "Unable to add CPU: %" PRIi64
992                    ", it already exists", id);
993         return;
994     }
995 
996     if (id >= max_cpus) {
997         error_setg(errp, "Unable to add CPU: %" PRIi64
998                    ", max allowed: %d", id, max_cpus - 1);
999         return;
1000     }
1001 
1002     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1003         error_setg(errp, "Unable to add CPU: %" PRIi64
1004                    ", resulting APIC ID (%" PRIi64 ") is too large",
1005                    id, apic_id);
1006         return;
1007     }
1008 
1009     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1010                                                  TYPE_ICC_BRIDGE, NULL));
1011     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1012 }
1013 
1014 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1015 {
1016     int i;
1017     X86CPU *cpu = NULL;
1018     Error *error = NULL;
1019     unsigned long apic_id_limit;
1020 
1021     /* init CPUs */
1022     if (cpu_model == NULL) {
1023 #ifdef TARGET_X86_64
1024         cpu_model = "qemu64";
1025 #else
1026         cpu_model = "qemu32";
1027 #endif
1028     }
1029     current_cpu_model = cpu_model;
1030 
1031     apic_id_limit = pc_apic_id_limit(max_cpus);
1032     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1033         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1034                      apic_id_limit - 1);
1035         exit(1);
1036     }
1037 
1038     for (i = 0; i < smp_cpus; i++) {
1039         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1040                          icc_bridge, &error);
1041         if (error) {
1042             error_report("%s", error_get_pretty(error));
1043             error_free(error);
1044             exit(1);
1045         }
1046     }
1047 
1048     /* map APIC MMIO area if CPU has APIC */
1049     if (cpu && cpu->apic_state) {
1050         /* XXX: what if the base changes? */
1051         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1052                                 APIC_DEFAULT_ADDRESS, 0x1000);
1053     }
1054 
1055     /* tell smbios about cpuid version and features */
1056     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1057 }
1058 
1059 /* pci-info ROM file. Little endian format */
1060 typedef struct PcRomPciInfo {
1061     uint64_t w32_min;
1062     uint64_t w32_max;
1063     uint64_t w64_min;
1064     uint64_t w64_max;
1065 } PcRomPciInfo;
1066 
1067 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1068 {
1069     PcRomPciInfo *info;
1070     Object *pci_info;
1071     bool ambiguous = false;
1072 
1073     if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1074         return;
1075     }
1076     pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
1077     g_assert(!ambiguous);
1078     if (!pci_info) {
1079         return;
1080     }
1081 
1082     info = g_malloc(sizeof *info);
1083     info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
1084                                 PCI_HOST_PROP_PCI_HOLE_START, NULL));
1085     info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
1086                                 PCI_HOST_PROP_PCI_HOLE_END, NULL));
1087     info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
1088                                 PCI_HOST_PROP_PCI_HOLE64_START, NULL));
1089     info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
1090                                 PCI_HOST_PROP_PCI_HOLE64_END, NULL));
1091     /* Pass PCI hole info to guest via a side channel.
1092      * Required so guest PCI enumeration does the right thing. */
1093     fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1094 }
1095 
1096 typedef struct PcGuestInfoState {
1097     PcGuestInfo info;
1098     Notifier machine_done;
1099 } PcGuestInfoState;
1100 
1101 static
1102 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1103 {
1104     PcGuestInfoState *guest_info_state = container_of(notifier,
1105                                                       PcGuestInfoState,
1106                                                       machine_done);
1107     pc_fw_cfg_guest_info(&guest_info_state->info);
1108     acpi_setup(&guest_info_state->info);
1109 }
1110 
1111 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1112                                 ram_addr_t above_4g_mem_size)
1113 {
1114     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1115     PcGuestInfo *guest_info = &guest_info_state->info;
1116     int i, j;
1117 
1118     guest_info->ram_size_below_4g = below_4g_mem_size;
1119     guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1120     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1121     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1122     guest_info->numa_nodes = nb_numa_nodes;
1123     guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes *
1124                                     sizeof *guest_info->node_mem);
1125     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1126                                      sizeof *guest_info->node_cpu);
1127 
1128     for (i = 0; i < max_cpus; i++) {
1129         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1130         assert(apic_id < guest_info->apic_id_limit);
1131         for (j = 0; j < nb_numa_nodes; j++) {
1132             if (test_bit(i, node_cpumask[j])) {
1133                 guest_info->node_cpu[apic_id] = j;
1134                 break;
1135             }
1136         }
1137     }
1138 
1139     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1140     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1141     return guest_info;
1142 }
1143 
1144 /* setup pci memory address space mapping into system address space */
1145 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1146                             MemoryRegion *pci_address_space)
1147 {
1148     /* Set to lower priority than RAM */
1149     memory_region_add_subregion_overlap(system_memory, 0x0,
1150                                         pci_address_space, -1);
1151 }
1152 
1153 void pc_acpi_init(const char *default_dsdt)
1154 {
1155     char *filename;
1156 
1157     if (acpi_tables != NULL) {
1158         /* manually set via -acpitable, leave it alone */
1159         return;
1160     }
1161 
1162     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1163     if (filename == NULL) {
1164         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1165     } else {
1166         char *arg;
1167         QemuOpts *opts;
1168         Error *err = NULL;
1169 
1170         arg = g_strdup_printf("file=%s", filename);
1171 
1172         /* creates a deep copy of "arg" */
1173         opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1174         g_assert(opts != NULL);
1175 
1176         acpi_table_add_builtin(opts, &err);
1177         if (err) {
1178             error_report("WARNING: failed to load %s: %s", filename,
1179                          error_get_pretty(err));
1180             error_free(err);
1181         }
1182         g_free(arg);
1183         g_free(filename);
1184     }
1185 }
1186 
1187 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1188                            const char *kernel_filename,
1189                            const char *kernel_cmdline,
1190                            const char *initrd_filename,
1191                            ram_addr_t below_4g_mem_size,
1192                            ram_addr_t above_4g_mem_size,
1193                            MemoryRegion *rom_memory,
1194                            MemoryRegion **ram_memory,
1195                            PcGuestInfo *guest_info)
1196 {
1197     int linux_boot, i;
1198     MemoryRegion *ram, *option_rom_mr;
1199     MemoryRegion *ram_below_4g, *ram_above_4g;
1200     FWCfgState *fw_cfg;
1201     ram_addr_t ram_size = below_4g_mem_size + above_4g_mem_size;
1202     MachineState *machine = MACHINE(qdev_get_machine());
1203     PCMachineState *pcms = PC_MACHINE(machine);
1204 
1205     linux_boot = (kernel_filename != NULL);
1206 
1207     /* Allocate RAM.  We allocate it as a single memory region and use
1208      * aliases to address portions of it, mostly for backwards compatibility
1209      * with older qemus that used qemu_ram_alloc().
1210      */
1211     ram = g_malloc(sizeof(*ram));
1212     memory_region_init_ram(ram, NULL, "pc.ram", ram_size);
1213     vmstate_register_ram_global(ram);
1214     *ram_memory = ram;
1215     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1216     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1217                              0, below_4g_mem_size);
1218     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1219     e820_add_entry(0, below_4g_mem_size, E820_RAM);
1220     if (above_4g_mem_size > 0) {
1221         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1222         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1223                                  below_4g_mem_size, above_4g_mem_size);
1224         memory_region_add_subregion(system_memory, 0x100000000ULL,
1225                                     ram_above_4g);
1226         e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1227     }
1228 
1229     if (!guest_info->has_reserved_memory &&
1230         (machine->ram_slots ||
1231          (machine->maxram_size > ram_size))) {
1232         MachineClass *mc = MACHINE_GET_CLASS(machine);
1233 
1234         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1235                      mc->name);
1236         exit(EXIT_FAILURE);
1237     }
1238 
1239     /* initialize hotplug memory address space */
1240     if (guest_info->has_reserved_memory &&
1241         (ram_size < machine->maxram_size)) {
1242         ram_addr_t hotplug_mem_size =
1243             machine->maxram_size - ram_size;
1244 
1245         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1246             error_report("unsupported amount of memory slots: %"PRIu64,
1247                          machine->ram_slots);
1248             exit(EXIT_FAILURE);
1249         }
1250 
1251         pcms->hotplug_memory_base =
1252             ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1253 
1254         if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1255             hotplug_mem_size) {
1256             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1257                          machine->maxram_size);
1258             exit(EXIT_FAILURE);
1259         }
1260 
1261         memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1262                            "hotplug-memory", hotplug_mem_size);
1263         memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1264                                     &pcms->hotplug_memory);
1265     }
1266 
1267     /* Initialize PC system firmware */
1268     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1269 
1270     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1271     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1272     vmstate_register_ram_global(option_rom_mr);
1273     memory_region_add_subregion_overlap(rom_memory,
1274                                         PC_ROM_MIN_VGA,
1275                                         option_rom_mr,
1276                                         1);
1277 
1278     fw_cfg = bochs_bios_init();
1279     rom_set_fw(fw_cfg);
1280 
1281     if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1282         uint64_t *val = g_malloc(sizeof(*val));
1283         *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1284         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1285     }
1286 
1287     if (linux_boot) {
1288         load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1289     }
1290 
1291     for (i = 0; i < nb_option_roms; i++) {
1292         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1293     }
1294     guest_info->fw_cfg = fw_cfg;
1295     return fw_cfg;
1296 }
1297 
1298 qemu_irq *pc_allocate_cpu_irq(void)
1299 {
1300     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1301 }
1302 
1303 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1304 {
1305     DeviceState *dev = NULL;
1306 
1307     if (pci_bus) {
1308         PCIDevice *pcidev = pci_vga_init(pci_bus);
1309         dev = pcidev ? &pcidev->qdev : NULL;
1310     } else if (isa_bus) {
1311         ISADevice *isadev = isa_vga_init(isa_bus);
1312         dev = isadev ? DEVICE(isadev) : NULL;
1313     }
1314     return dev;
1315 }
1316 
1317 static void cpu_request_exit(void *opaque, int irq, int level)
1318 {
1319     CPUState *cpu = current_cpu;
1320 
1321     if (cpu && level) {
1322         cpu_exit(cpu);
1323     }
1324 }
1325 
1326 static const MemoryRegionOps ioport80_io_ops = {
1327     .write = ioport80_write,
1328     .read = ioport80_read,
1329     .endianness = DEVICE_NATIVE_ENDIAN,
1330     .impl = {
1331         .min_access_size = 1,
1332         .max_access_size = 1,
1333     },
1334 };
1335 
1336 static const MemoryRegionOps ioportF0_io_ops = {
1337     .write = ioportF0_write,
1338     .read = ioportF0_read,
1339     .endianness = DEVICE_NATIVE_ENDIAN,
1340     .impl = {
1341         .min_access_size = 1,
1342         .max_access_size = 1,
1343     },
1344 };
1345 
1346 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1347                           ISADevice **rtc_state,
1348                           ISADevice **floppy,
1349                           bool no_vmport,
1350                           uint32 hpet_irqs)
1351 {
1352     int i;
1353     DriveInfo *fd[MAX_FD];
1354     DeviceState *hpet = NULL;
1355     int pit_isa_irq = 0;
1356     qemu_irq pit_alt_irq = NULL;
1357     qemu_irq rtc_irq = NULL;
1358     qemu_irq *a20_line;
1359     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1360     qemu_irq *cpu_exit_irq;
1361     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1362     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1363 
1364     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1365     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1366 
1367     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1368     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1369 
1370     /*
1371      * Check if an HPET shall be created.
1372      *
1373      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1374      * when the HPET wants to take over. Thus we have to disable the latter.
1375      */
1376     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1377         /* In order to set property, here not using sysbus_try_create_simple */
1378         hpet = qdev_try_create(NULL, TYPE_HPET);
1379         if (hpet) {
1380             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1381              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1382              * IRQ8 and IRQ2.
1383              */
1384             uint8_t compat = object_property_get_int(OBJECT(hpet),
1385                     HPET_INTCAP, NULL);
1386             if (!compat) {
1387                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1388             }
1389             qdev_init_nofail(hpet);
1390             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1391 
1392             for (i = 0; i < GSI_NUM_PINS; i++) {
1393                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1394             }
1395             pit_isa_irq = -1;
1396             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1397             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1398         }
1399     }
1400     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1401 
1402     qemu_register_boot_set(pc_boot_set, *rtc_state);
1403 
1404     if (!xen_enabled()) {
1405         if (kvm_irqchip_in_kernel()) {
1406             pit = kvm_pit_init(isa_bus, 0x40);
1407         } else {
1408             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1409         }
1410         if (hpet) {
1411             /* connect PIT to output control line of the HPET */
1412             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1413         }
1414         pcspk_init(isa_bus, pit);
1415     }
1416 
1417     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1418         if (serial_hds[i]) {
1419             serial_isa_init(isa_bus, i, serial_hds[i]);
1420         }
1421     }
1422 
1423     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1424         if (parallel_hds[i]) {
1425             parallel_init(isa_bus, i, parallel_hds[i]);
1426         }
1427     }
1428 
1429     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1430     i8042 = isa_create_simple(isa_bus, "i8042");
1431     i8042_setup_a20_line(i8042, &a20_line[0]);
1432     if (!no_vmport) {
1433         vmport_init(isa_bus);
1434         vmmouse = isa_try_create(isa_bus, "vmmouse");
1435     } else {
1436         vmmouse = NULL;
1437     }
1438     if (vmmouse) {
1439         DeviceState *dev = DEVICE(vmmouse);
1440         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1441         qdev_init_nofail(dev);
1442     }
1443     port92 = isa_create_simple(isa_bus, "port92");
1444     port92_init(port92, &a20_line[1]);
1445 
1446     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1447     DMA_init(0, cpu_exit_irq);
1448 
1449     for(i = 0; i < MAX_FD; i++) {
1450         fd[i] = drive_get(IF_FLOPPY, 0, i);
1451     }
1452     *floppy = fdctrl_init_isa(isa_bus, fd);
1453 }
1454 
1455 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1456 {
1457     int i;
1458 
1459     for (i = 0; i < nb_nics; i++) {
1460         NICInfo *nd = &nd_table[i];
1461 
1462         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1463             pc_init_ne2k_isa(isa_bus, nd);
1464         } else {
1465             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1466         }
1467     }
1468 }
1469 
1470 void pc_pci_device_init(PCIBus *pci_bus)
1471 {
1472     int max_bus;
1473     int bus;
1474 
1475     max_bus = drive_get_max_bus(IF_SCSI);
1476     for (bus = 0; bus <= max_bus; bus++) {
1477         pci_create_simple(pci_bus, -1, "lsi53c895a");
1478     }
1479 }
1480 
1481 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1482 {
1483     DeviceState *dev;
1484     SysBusDevice *d;
1485     unsigned int i;
1486 
1487     if (kvm_irqchip_in_kernel()) {
1488         dev = qdev_create(NULL, "kvm-ioapic");
1489     } else {
1490         dev = qdev_create(NULL, "ioapic");
1491     }
1492     if (parent_name) {
1493         object_property_add_child(object_resolve_path(parent_name, NULL),
1494                                   "ioapic", OBJECT(dev), NULL);
1495     }
1496     qdev_init_nofail(dev);
1497     d = SYS_BUS_DEVICE(dev);
1498     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1499 
1500     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1501         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1502     }
1503 }
1504 
1505 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1506 {
1507     MachineClass *mc = MACHINE_CLASS(oc);
1508     QEMUMachine *qm = data;
1509 
1510     mc->name = qm->name;
1511     mc->alias = qm->alias;
1512     mc->desc = qm->desc;
1513     mc->init = qm->init;
1514     mc->reset = qm->reset;
1515     mc->hot_add_cpu = qm->hot_add_cpu;
1516     mc->kvm_type = qm->kvm_type;
1517     mc->block_default_type = qm->block_default_type;
1518     mc->max_cpus = qm->max_cpus;
1519     mc->no_serial = qm->no_serial;
1520     mc->no_parallel = qm->no_parallel;
1521     mc->use_virtcon = qm->use_virtcon;
1522     mc->use_sclp = qm->use_sclp;
1523     mc->no_floppy = qm->no_floppy;
1524     mc->no_cdrom = qm->no_cdrom;
1525     mc->no_sdcard = qm->no_sdcard;
1526     mc->is_default = qm->is_default;
1527     mc->default_machine_opts = qm->default_machine_opts;
1528     mc->default_boot_order = qm->default_boot_order;
1529     mc->compat_props = qm->compat_props;
1530     mc->hw_version = qm->hw_version;
1531 }
1532 
1533 void qemu_register_pc_machine(QEMUMachine *m)
1534 {
1535     char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1536     TypeInfo ti = {
1537         .name       = name,
1538         .parent     = TYPE_PC_MACHINE,
1539         .class_init = pc_generic_machine_class_init,
1540         .class_data = (void *)m,
1541     };
1542 
1543     type_register(&ti);
1544     g_free(name);
1545 }
1546 
1547 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1548                          DeviceState *dev, Error **errp)
1549 {
1550     int slot;
1551     Error *local_err = NULL;
1552     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1553     MachineState *machine = MACHINE(hotplug_dev);
1554     PCDIMMDevice *dimm = PC_DIMM(dev);
1555     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1556     MemoryRegion *mr = ddc->get_memory_region(dimm);
1557     uint64_t addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
1558                                             &local_err);
1559     if (local_err) {
1560         goto out;
1561     }
1562 
1563     addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1564                                  memory_region_size(&pcms->hotplug_memory),
1565                                  !addr ? NULL : &addr,
1566                                  memory_region_size(mr), &local_err);
1567     if (local_err) {
1568         goto out;
1569     }
1570 
1571     object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1572     if (local_err) {
1573         goto out;
1574     }
1575 
1576     slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1577     if (local_err) {
1578         goto out;
1579     }
1580 
1581     slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1582                                  machine->ram_slots, &local_err);
1583     if (local_err) {
1584         goto out;
1585     }
1586     object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1587     if (local_err) {
1588         goto out;
1589     }
1590 
1591     memory_region_add_subregion(&pcms->hotplug_memory,
1592                                 addr - pcms->hotplug_memory_base, mr);
1593     vmstate_register_ram(mr, dev);
1594 out:
1595     error_propagate(errp, local_err);
1596 }
1597 
1598 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1599                                       DeviceState *dev, Error **errp)
1600 {
1601     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1602         pc_dimm_plug(hotplug_dev, dev, errp);
1603     }
1604 }
1605 
1606 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1607                                              DeviceState *dev)
1608 {
1609     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1610 
1611     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1612         return HOTPLUG_HANDLER(machine);
1613     }
1614 
1615     return pcmc->get_hotplug_handler ?
1616         pcmc->get_hotplug_handler(machine, dev) : NULL;
1617 }
1618 
1619 static void pc_machine_class_init(ObjectClass *oc, void *data)
1620 {
1621     MachineClass *mc = MACHINE_CLASS(oc);
1622     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1623     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1624 
1625     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1626     mc->get_hotplug_handler = pc_get_hotpug_handler;
1627     hc->plug = pc_machine_device_plug_cb;
1628 }
1629 
1630 static const TypeInfo pc_machine_info = {
1631     .name = TYPE_PC_MACHINE,
1632     .parent = TYPE_MACHINE,
1633     .abstract = true,
1634     .instance_size = sizeof(PCMachineState),
1635     .class_size = sizeof(PCMachineClass),
1636     .class_init = pc_machine_class_init,
1637     .interfaces = (InterfaceInfo[]) {
1638          { TYPE_HOTPLUG_HANDLER },
1639          { }
1640     },
1641 };
1642 
1643 static void pc_machine_register_types(void)
1644 {
1645     type_register_static(&pc_machine_info);
1646 }
1647 
1648 type_init(pc_machine_register_types)
1649