xref: /openbmc/qemu/hw/i386/pc.c (revision 3e8031525a7431bef796692cc626b2a69a697018)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77 
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80 
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...)                                       \
83     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87 
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93 
94 #define E820_NR_ENTRIES		16
95 
96 struct e820_entry {
97     uint64_t address;
98     uint64_t length;
99     uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101 
102 struct e820_table {
103     uint32_t count;
104     struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106 
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111 
112 GlobalProperty pc_compat_3_1[] = {
113     {
114         .driver   = "intel-iommu",
115         .property = "dma-drain",
116         .value    = "off",
117     },
118 };
119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
120 
121 GlobalProperty pc_compat_3_0[] = {
122     {
123         .driver   = TYPE_X86_CPU,
124         .property = "x-hv-synic-kvm-only",
125         .value    = "on",
126     },{
127         .driver   = "Skylake-Server" "-" TYPE_X86_CPU,
128         .property = "pku",
129         .value    = "off",
130     },{
131         .driver   = "Skylake-Server-IBRS" "-" TYPE_X86_CPU,
132         .property = "pku",
133         .value    = "off",
134     },
135 };
136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
137 
138 GlobalProperty pc_compat_2_12[] = {
139     {
140         .driver   = TYPE_X86_CPU,
141         .property = "legacy-cache",
142         .value    = "on",
143     },{
144         .driver   = TYPE_X86_CPU,
145         .property = "topoext",
146         .value    = "off",
147     },{
148         .driver   = "EPYC-" TYPE_X86_CPU,
149         .property = "xlevel",
150         .value    = stringify(0x8000000a),
151     },{
152         .driver   = "EPYC-IBPB-" TYPE_X86_CPU,
153         .property = "xlevel",
154         .value    = stringify(0x8000000a),
155     },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158 
159 GlobalProperty pc_compat_2_11[] = {
160     {
161         .driver   = TYPE_X86_CPU,
162         .property = "x-migrate-smi-count",
163         .value    = "off",
164     },{
165         .driver   = "Skylake-Server" "-" TYPE_X86_CPU,
166         .property = "clflushopt",
167         .value    = "off",
168     },
169 };
170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
171 
172 GlobalProperty pc_compat_2_10[] = {
173     {
174         .driver   = TYPE_X86_CPU,
175         .property = "x-hv-max-vps",
176         .value    = "0x40",
177     },{
178         .driver   = "i440FX-pcihost",
179         .property = "x-pci-hole64-fix",
180         .value    = "off",
181     },{
182         .driver   = "q35-pcihost",
183         .property = "x-pci-hole64-fix",
184         .value    = "off",
185     },
186 };
187 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
188 
189 GlobalProperty pc_compat_2_9[] = {
190     {
191         .driver   = "mch",
192         .property = "extended-tseg-mbytes",
193         .value    = stringify(0),
194     },
195 };
196 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
197 
198 void gsi_handler(void *opaque, int n, int level)
199 {
200     GSIState *s = opaque;
201 
202     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
203     if (n < ISA_NUM_IRQS) {
204         qemu_set_irq(s->i8259_irq[n], level);
205     }
206     qemu_set_irq(s->ioapic_irq[n], level);
207 }
208 
209 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
210                            unsigned size)
211 {
212 }
213 
214 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
215 {
216     return 0xffffffffffffffffULL;
217 }
218 
219 /* MSDOS compatibility mode FPU exception support */
220 static qemu_irq ferr_irq;
221 
222 void pc_register_ferr_irq(qemu_irq irq)
223 {
224     ferr_irq = irq;
225 }
226 
227 /* XXX: add IGNNE support */
228 void cpu_set_ferr(CPUX86State *s)
229 {
230     qemu_irq_raise(ferr_irq);
231 }
232 
233 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
234                            unsigned size)
235 {
236     qemu_irq_lower(ferr_irq);
237 }
238 
239 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
240 {
241     return 0xffffffffffffffffULL;
242 }
243 
244 /* TSC handling */
245 uint64_t cpu_get_tsc(CPUX86State *env)
246 {
247     return cpu_get_ticks();
248 }
249 
250 /* IRQ handling */
251 int cpu_get_pic_interrupt(CPUX86State *env)
252 {
253     X86CPU *cpu = x86_env_get_cpu(env);
254     int intno;
255 
256     if (!kvm_irqchip_in_kernel()) {
257         intno = apic_get_interrupt(cpu->apic_state);
258         if (intno >= 0) {
259             return intno;
260         }
261         /* read the irq from the PIC */
262         if (!apic_accept_pic_intr(cpu->apic_state)) {
263             return -1;
264         }
265     }
266 
267     intno = pic_read_irq(isa_pic);
268     return intno;
269 }
270 
271 static void pic_irq_request(void *opaque, int irq, int level)
272 {
273     CPUState *cs = first_cpu;
274     X86CPU *cpu = X86_CPU(cs);
275 
276     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
277     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
278         CPU_FOREACH(cs) {
279             cpu = X86_CPU(cs);
280             if (apic_accept_pic_intr(cpu->apic_state)) {
281                 apic_deliver_pic_intr(cpu->apic_state, level);
282             }
283         }
284     } else {
285         if (level) {
286             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
287         } else {
288             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
289         }
290     }
291 }
292 
293 /* PC cmos mappings */
294 
295 #define REG_EQUIPMENT_BYTE          0x14
296 
297 int cmos_get_fd_drive_type(FloppyDriveType fd0)
298 {
299     int val;
300 
301     switch (fd0) {
302     case FLOPPY_DRIVE_TYPE_144:
303         /* 1.44 Mb 3"5 drive */
304         val = 4;
305         break;
306     case FLOPPY_DRIVE_TYPE_288:
307         /* 2.88 Mb 3"5 drive */
308         val = 5;
309         break;
310     case FLOPPY_DRIVE_TYPE_120:
311         /* 1.2 Mb 5"5 drive */
312         val = 2;
313         break;
314     case FLOPPY_DRIVE_TYPE_NONE:
315     default:
316         val = 0;
317         break;
318     }
319     return val;
320 }
321 
322 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
323                          int16_t cylinders, int8_t heads, int8_t sectors)
324 {
325     rtc_set_memory(s, type_ofs, 47);
326     rtc_set_memory(s, info_ofs, cylinders);
327     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
328     rtc_set_memory(s, info_ofs + 2, heads);
329     rtc_set_memory(s, info_ofs + 3, 0xff);
330     rtc_set_memory(s, info_ofs + 4, 0xff);
331     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
332     rtc_set_memory(s, info_ofs + 6, cylinders);
333     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
334     rtc_set_memory(s, info_ofs + 8, sectors);
335 }
336 
337 /* convert boot_device letter to something recognizable by the bios */
338 static int boot_device2nibble(char boot_device)
339 {
340     switch(boot_device) {
341     case 'a':
342     case 'b':
343         return 0x01; /* floppy boot */
344     case 'c':
345         return 0x02; /* hard drive boot */
346     case 'd':
347         return 0x03; /* CD-ROM boot */
348     case 'n':
349         return 0x04; /* Network boot */
350     }
351     return 0;
352 }
353 
354 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
355 {
356 #define PC_MAX_BOOT_DEVICES 3
357     int nbds, bds[3] = { 0, };
358     int i;
359 
360     nbds = strlen(boot_device);
361     if (nbds > PC_MAX_BOOT_DEVICES) {
362         error_setg(errp, "Too many boot devices for PC");
363         return;
364     }
365     for (i = 0; i < nbds; i++) {
366         bds[i] = boot_device2nibble(boot_device[i]);
367         if (bds[i] == 0) {
368             error_setg(errp, "Invalid boot device for PC: '%c'",
369                        boot_device[i]);
370             return;
371         }
372     }
373     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
374     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
375 }
376 
377 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
378 {
379     set_boot_dev(opaque, boot_device, errp);
380 }
381 
382 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
383 {
384     int val, nb, i;
385     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
386                                    FLOPPY_DRIVE_TYPE_NONE };
387 
388     /* floppy type */
389     if (floppy) {
390         for (i = 0; i < 2; i++) {
391             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
392         }
393     }
394     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
395         cmos_get_fd_drive_type(fd_type[1]);
396     rtc_set_memory(rtc_state, 0x10, val);
397 
398     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
399     nb = 0;
400     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
401         nb++;
402     }
403     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
404         nb++;
405     }
406     switch (nb) {
407     case 0:
408         break;
409     case 1:
410         val |= 0x01; /* 1 drive, ready for boot */
411         break;
412     case 2:
413         val |= 0x41; /* 2 drives, ready for boot */
414         break;
415     }
416     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
417 }
418 
419 typedef struct pc_cmos_init_late_arg {
420     ISADevice *rtc_state;
421     BusState *idebus[2];
422 } pc_cmos_init_late_arg;
423 
424 typedef struct check_fdc_state {
425     ISADevice *floppy;
426     bool multiple;
427 } CheckFdcState;
428 
429 static int check_fdc(Object *obj, void *opaque)
430 {
431     CheckFdcState *state = opaque;
432     Object *fdc;
433     uint32_t iobase;
434     Error *local_err = NULL;
435 
436     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
437     if (!fdc) {
438         return 0;
439     }
440 
441     iobase = object_property_get_uint(obj, "iobase", &local_err);
442     if (local_err || iobase != 0x3f0) {
443         error_free(local_err);
444         return 0;
445     }
446 
447     if (state->floppy) {
448         state->multiple = true;
449     } else {
450         state->floppy = ISA_DEVICE(obj);
451     }
452     return 0;
453 }
454 
455 static const char * const fdc_container_path[] = {
456     "/unattached", "/peripheral", "/peripheral-anon"
457 };
458 
459 /*
460  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
461  * and ACPI objects.
462  */
463 ISADevice *pc_find_fdc0(void)
464 {
465     int i;
466     Object *container;
467     CheckFdcState state = { 0 };
468 
469     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
470         container = container_get(qdev_get_machine(), fdc_container_path[i]);
471         object_child_foreach(container, check_fdc, &state);
472     }
473 
474     if (state.multiple) {
475         warn_report("multiple floppy disk controllers with "
476                     "iobase=0x3f0 have been found");
477         error_printf("the one being picked for CMOS setup might not reflect "
478                      "your intent");
479     }
480 
481     return state.floppy;
482 }
483 
484 static void pc_cmos_init_late(void *opaque)
485 {
486     pc_cmos_init_late_arg *arg = opaque;
487     ISADevice *s = arg->rtc_state;
488     int16_t cylinders;
489     int8_t heads, sectors;
490     int val;
491     int i, trans;
492 
493     val = 0;
494     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
495                                            &cylinders, &heads, &sectors) >= 0) {
496         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
497         val |= 0xf0;
498     }
499     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
500                                            &cylinders, &heads, &sectors) >= 0) {
501         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
502         val |= 0x0f;
503     }
504     rtc_set_memory(s, 0x12, val);
505 
506     val = 0;
507     for (i = 0; i < 4; i++) {
508         /* NOTE: ide_get_geometry() returns the physical
509            geometry.  It is always such that: 1 <= sects <= 63, 1
510            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
511            geometry can be different if a translation is done. */
512         if (arg->idebus[i / 2] &&
513             ide_get_geometry(arg->idebus[i / 2], i % 2,
514                              &cylinders, &heads, &sectors) >= 0) {
515             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
516             assert((trans & ~3) == 0);
517             val |= trans << (i * 2);
518         }
519     }
520     rtc_set_memory(s, 0x39, val);
521 
522     pc_cmos_init_floppy(s, pc_find_fdc0());
523 
524     qemu_unregister_reset(pc_cmos_init_late, opaque);
525 }
526 
527 void pc_cmos_init(PCMachineState *pcms,
528                   BusState *idebus0, BusState *idebus1,
529                   ISADevice *s)
530 {
531     int val;
532     static pc_cmos_init_late_arg arg;
533 
534     /* various important CMOS locations needed by PC/Bochs bios */
535 
536     /* memory size */
537     /* base memory (first MiB) */
538     val = MIN(pcms->below_4g_mem_size / KiB, 640);
539     rtc_set_memory(s, 0x15, val);
540     rtc_set_memory(s, 0x16, val >> 8);
541     /* extended memory (next 64MiB) */
542     if (pcms->below_4g_mem_size > 1 * MiB) {
543         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
544     } else {
545         val = 0;
546     }
547     if (val > 65535)
548         val = 65535;
549     rtc_set_memory(s, 0x17, val);
550     rtc_set_memory(s, 0x18, val >> 8);
551     rtc_set_memory(s, 0x30, val);
552     rtc_set_memory(s, 0x31, val >> 8);
553     /* memory between 16MiB and 4GiB */
554     if (pcms->below_4g_mem_size > 16 * MiB) {
555         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
556     } else {
557         val = 0;
558     }
559     if (val > 65535)
560         val = 65535;
561     rtc_set_memory(s, 0x34, val);
562     rtc_set_memory(s, 0x35, val >> 8);
563     /* memory above 4GiB */
564     val = pcms->above_4g_mem_size / 65536;
565     rtc_set_memory(s, 0x5b, val);
566     rtc_set_memory(s, 0x5c, val >> 8);
567     rtc_set_memory(s, 0x5d, val >> 16);
568 
569     object_property_add_link(OBJECT(pcms), "rtc_state",
570                              TYPE_ISA_DEVICE,
571                              (Object **)&pcms->rtc,
572                              object_property_allow_set_link,
573                              OBJ_PROP_LINK_STRONG, &error_abort);
574     object_property_set_link(OBJECT(pcms), OBJECT(s),
575                              "rtc_state", &error_abort);
576 
577     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
578 
579     val = 0;
580     val |= 0x02; /* FPU is there */
581     val |= 0x04; /* PS/2 mouse installed */
582     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
583 
584     /* hard drives and FDC */
585     arg.rtc_state = s;
586     arg.idebus[0] = idebus0;
587     arg.idebus[1] = idebus1;
588     qemu_register_reset(pc_cmos_init_late, &arg);
589 }
590 
591 #define TYPE_PORT92 "port92"
592 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
593 
594 /* port 92 stuff: could be split off */
595 typedef struct Port92State {
596     ISADevice parent_obj;
597 
598     MemoryRegion io;
599     uint8_t outport;
600     qemu_irq a20_out;
601 } Port92State;
602 
603 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
604                          unsigned size)
605 {
606     Port92State *s = opaque;
607     int oldval = s->outport;
608 
609     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
610     s->outport = val;
611     qemu_set_irq(s->a20_out, (val >> 1) & 1);
612     if ((val & 1) && !(oldval & 1)) {
613         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
614     }
615 }
616 
617 static uint64_t port92_read(void *opaque, hwaddr addr,
618                             unsigned size)
619 {
620     Port92State *s = opaque;
621     uint32_t ret;
622 
623     ret = s->outport;
624     DPRINTF("port92: read 0x%02x\n", ret);
625     return ret;
626 }
627 
628 static void port92_init(ISADevice *dev, qemu_irq a20_out)
629 {
630     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
631 }
632 
633 static const VMStateDescription vmstate_port92_isa = {
634     .name = "port92",
635     .version_id = 1,
636     .minimum_version_id = 1,
637     .fields = (VMStateField[]) {
638         VMSTATE_UINT8(outport, Port92State),
639         VMSTATE_END_OF_LIST()
640     }
641 };
642 
643 static void port92_reset(DeviceState *d)
644 {
645     Port92State *s = PORT92(d);
646 
647     s->outport &= ~1;
648 }
649 
650 static const MemoryRegionOps port92_ops = {
651     .read = port92_read,
652     .write = port92_write,
653     .impl = {
654         .min_access_size = 1,
655         .max_access_size = 1,
656     },
657     .endianness = DEVICE_LITTLE_ENDIAN,
658 };
659 
660 static void port92_initfn(Object *obj)
661 {
662     Port92State *s = PORT92(obj);
663 
664     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
665 
666     s->outport = 0;
667 
668     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
669 }
670 
671 static void port92_realizefn(DeviceState *dev, Error **errp)
672 {
673     ISADevice *isadev = ISA_DEVICE(dev);
674     Port92State *s = PORT92(dev);
675 
676     isa_register_ioport(isadev, &s->io, 0x92);
677 }
678 
679 static void port92_class_initfn(ObjectClass *klass, void *data)
680 {
681     DeviceClass *dc = DEVICE_CLASS(klass);
682 
683     dc->realize = port92_realizefn;
684     dc->reset = port92_reset;
685     dc->vmsd = &vmstate_port92_isa;
686     /*
687      * Reason: unlike ordinary ISA devices, this one needs additional
688      * wiring: its A20 output line needs to be wired up by
689      * port92_init().
690      */
691     dc->user_creatable = false;
692 }
693 
694 static const TypeInfo port92_info = {
695     .name          = TYPE_PORT92,
696     .parent        = TYPE_ISA_DEVICE,
697     .instance_size = sizeof(Port92State),
698     .instance_init = port92_initfn,
699     .class_init    = port92_class_initfn,
700 };
701 
702 static void port92_register_types(void)
703 {
704     type_register_static(&port92_info);
705 }
706 
707 type_init(port92_register_types)
708 
709 static void handle_a20_line_change(void *opaque, int irq, int level)
710 {
711     X86CPU *cpu = opaque;
712 
713     /* XXX: send to all CPUs ? */
714     /* XXX: add logic to handle multiple A20 line sources */
715     x86_cpu_set_a20(cpu, level);
716 }
717 
718 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
719 {
720     int index = le32_to_cpu(e820_reserve.count);
721     struct e820_entry *entry;
722 
723     if (type != E820_RAM) {
724         /* old FW_CFG_E820_TABLE entry -- reservations only */
725         if (index >= E820_NR_ENTRIES) {
726             return -EBUSY;
727         }
728         entry = &e820_reserve.entry[index++];
729 
730         entry->address = cpu_to_le64(address);
731         entry->length = cpu_to_le64(length);
732         entry->type = cpu_to_le32(type);
733 
734         e820_reserve.count = cpu_to_le32(index);
735     }
736 
737     /* new "etc/e820" file -- include ram too */
738     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
739     e820_table[e820_entries].address = cpu_to_le64(address);
740     e820_table[e820_entries].length = cpu_to_le64(length);
741     e820_table[e820_entries].type = cpu_to_le32(type);
742     e820_entries++;
743 
744     return e820_entries;
745 }
746 
747 int e820_get_num_entries(void)
748 {
749     return e820_entries;
750 }
751 
752 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
753 {
754     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
755         *address = le64_to_cpu(e820_table[idx].address);
756         *length = le64_to_cpu(e820_table[idx].length);
757         return true;
758     }
759     return false;
760 }
761 
762 /* Enables contiguous-apic-ID mode, for compatibility */
763 static bool compat_apic_id_mode;
764 
765 void enable_compat_apic_id_mode(void)
766 {
767     compat_apic_id_mode = true;
768 }
769 
770 /* Calculates initial APIC ID for a specific CPU index
771  *
772  * Currently we need to be able to calculate the APIC ID from the CPU index
773  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
774  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
775  * all CPUs up to max_cpus.
776  */
777 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
778 {
779     uint32_t correct_id;
780     static bool warned;
781 
782     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
783     if (compat_apic_id_mode) {
784         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
785             error_report("APIC IDs set in compatibility mode, "
786                          "CPU topology won't match the configuration");
787             warned = true;
788         }
789         return cpu_index;
790     } else {
791         return correct_id;
792     }
793 }
794 
795 static void pc_build_smbios(PCMachineState *pcms)
796 {
797     uint8_t *smbios_tables, *smbios_anchor;
798     size_t smbios_tables_len, smbios_anchor_len;
799     struct smbios_phys_mem_area *mem_array;
800     unsigned i, array_count;
801     MachineState *ms = MACHINE(pcms);
802     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
803 
804     /* tell smbios about cpuid version and features */
805     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
806 
807     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
808     if (smbios_tables) {
809         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
810                          smbios_tables, smbios_tables_len);
811     }
812 
813     /* build the array of physical mem area from e820 table */
814     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
815     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
816         uint64_t addr, len;
817 
818         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
819             mem_array[array_count].address = addr;
820             mem_array[array_count].length = len;
821             array_count++;
822         }
823     }
824     smbios_get_tables(mem_array, array_count,
825                       &smbios_tables, &smbios_tables_len,
826                       &smbios_anchor, &smbios_anchor_len);
827     g_free(mem_array);
828 
829     if (smbios_anchor) {
830         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
831                         smbios_tables, smbios_tables_len);
832         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
833                         smbios_anchor, smbios_anchor_len);
834     }
835 }
836 
837 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
838 {
839     FWCfgState *fw_cfg;
840     uint64_t *numa_fw_cfg;
841     int i;
842     const CPUArchIdList *cpus;
843     MachineClass *mc = MACHINE_GET_CLASS(pcms);
844 
845     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
846     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
847 
848     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
849      *
850      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
851      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
852      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
853      * for CPU hotplug also uses APIC ID and not "CPU index".
854      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
855      * but the "limit to the APIC ID values SeaBIOS may see".
856      *
857      * So for compatibility reasons with old BIOSes we are stuck with
858      * "etc/max-cpus" actually being apic_id_limit
859      */
860     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
861     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
862     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
863                      acpi_tables, acpi_tables_len);
864     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
865 
866     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
867                      &e820_reserve, sizeof(e820_reserve));
868     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
869                     sizeof(struct e820_entry) * e820_entries);
870 
871     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
872     /* allocate memory for the NUMA channel: one (64bit) word for the number
873      * of nodes, one word for each VCPU->node and one word for each node to
874      * hold the amount of memory.
875      */
876     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
877     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
878     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
879     for (i = 0; i < cpus->len; i++) {
880         unsigned int apic_id = cpus->cpus[i].arch_id;
881         assert(apic_id < pcms->apic_id_limit);
882         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
883     }
884     for (i = 0; i < nb_numa_nodes; i++) {
885         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
886             cpu_to_le64(numa_info[i].node_mem);
887     }
888     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
889                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
890                      sizeof(*numa_fw_cfg));
891 
892     return fw_cfg;
893 }
894 
895 static long get_file_size(FILE *f)
896 {
897     long where, size;
898 
899     /* XXX: on Unix systems, using fstat() probably makes more sense */
900 
901     where = ftell(f);
902     fseek(f, 0, SEEK_END);
903     size = ftell(f);
904     fseek(f, where, SEEK_SET);
905 
906     return size;
907 }
908 
909 /* setup_data types */
910 #define SETUP_NONE     0
911 #define SETUP_E820_EXT 1
912 #define SETUP_DTB      2
913 #define SETUP_PCI      3
914 #define SETUP_EFI      4
915 
916 struct setup_data {
917     uint64_t next;
918     uint32_t type;
919     uint32_t len;
920     uint8_t data[0];
921 } __attribute__((packed));
922 
923 static void load_linux(PCMachineState *pcms,
924                        FWCfgState *fw_cfg)
925 {
926     uint16_t protocol;
927     int setup_size, kernel_size, cmdline_size;
928     int dtb_size, setup_data_offset;
929     uint32_t initrd_max;
930     uint8_t header[8192], *setup, *kernel;
931     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
932     FILE *f;
933     char *vmode;
934     MachineState *machine = MACHINE(pcms);
935     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
936     struct setup_data *setup_data;
937     const char *kernel_filename = machine->kernel_filename;
938     const char *initrd_filename = machine->initrd_filename;
939     const char *dtb_filename = machine->dtb;
940     const char *kernel_cmdline = machine->kernel_cmdline;
941 
942     /* Align to 16 bytes as a paranoia measure */
943     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
944 
945     /* load the kernel header */
946     f = fopen(kernel_filename, "rb");
947     if (!f || !(kernel_size = get_file_size(f)) ||
948         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
949         MIN(ARRAY_SIZE(header), kernel_size)) {
950         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
951                 kernel_filename, strerror(errno));
952         exit(1);
953     }
954 
955     /* kernel protocol version */
956 #if 0
957     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
958 #endif
959     if (ldl_p(header+0x202) == 0x53726448) {
960         protocol = lduw_p(header+0x206);
961     } else {
962         /* This looks like a multiboot kernel. If it is, let's stop
963            treating it like a Linux kernel. */
964         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
965                            kernel_cmdline, kernel_size, header)) {
966             return;
967         }
968         protocol = 0;
969     }
970 
971     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
972         /* Low kernel */
973         real_addr    = 0x90000;
974         cmdline_addr = 0x9a000 - cmdline_size;
975         prot_addr    = 0x10000;
976     } else if (protocol < 0x202) {
977         /* High but ancient kernel */
978         real_addr    = 0x90000;
979         cmdline_addr = 0x9a000 - cmdline_size;
980         prot_addr    = 0x100000;
981     } else {
982         /* High and recent kernel */
983         real_addr    = 0x10000;
984         cmdline_addr = 0x20000;
985         prot_addr    = 0x100000;
986     }
987 
988 #if 0
989     fprintf(stderr,
990             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
991             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
992             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
993             real_addr,
994             cmdline_addr,
995             prot_addr);
996 #endif
997 
998     /* highest address for loading the initrd */
999     if (protocol >= 0x203) {
1000         initrd_max = ldl_p(header+0x22c);
1001     } else {
1002         initrd_max = 0x37ffffff;
1003     }
1004 
1005     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1006         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1007     }
1008 
1009     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1010     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1011     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1012 
1013     if (protocol >= 0x202) {
1014         stl_p(header+0x228, cmdline_addr);
1015     } else {
1016         stw_p(header+0x20, 0xA33F);
1017         stw_p(header+0x22, cmdline_addr-real_addr);
1018     }
1019 
1020     /* handle vga= parameter */
1021     vmode = strstr(kernel_cmdline, "vga=");
1022     if (vmode) {
1023         unsigned int video_mode;
1024         /* skip "vga=" */
1025         vmode += 4;
1026         if (!strncmp(vmode, "normal", 6)) {
1027             video_mode = 0xffff;
1028         } else if (!strncmp(vmode, "ext", 3)) {
1029             video_mode = 0xfffe;
1030         } else if (!strncmp(vmode, "ask", 3)) {
1031             video_mode = 0xfffd;
1032         } else {
1033             video_mode = strtol(vmode, NULL, 0);
1034         }
1035         stw_p(header+0x1fa, video_mode);
1036     }
1037 
1038     /* loader type */
1039     /* High nybble = B reserved for QEMU; low nybble is revision number.
1040        If this code is substantially changed, you may want to consider
1041        incrementing the revision. */
1042     if (protocol >= 0x200) {
1043         header[0x210] = 0xB0;
1044     }
1045     /* heap */
1046     if (protocol >= 0x201) {
1047         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
1048         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1049     }
1050 
1051     /* load initrd */
1052     if (initrd_filename) {
1053         gsize initrd_size;
1054         gchar *initrd_data;
1055         GError *gerr = NULL;
1056 
1057         if (protocol < 0x200) {
1058             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1059             exit(1);
1060         }
1061 
1062         if (!g_file_get_contents(initrd_filename, &initrd_data,
1063                                  &initrd_size, &gerr)) {
1064             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1065                     initrd_filename, gerr->message);
1066             exit(1);
1067         }
1068         if (initrd_size >= initrd_max) {
1069             fprintf(stderr, "qemu: initrd is too large, cannot support."
1070                     "(max: %"PRIu32", need %"PRId64")\n",
1071                     initrd_max, (uint64_t)initrd_size);
1072             exit(1);
1073         }
1074 
1075         initrd_addr = (initrd_max-initrd_size) & ~4095;
1076 
1077         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1078         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1079         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1080 
1081         stl_p(header+0x218, initrd_addr);
1082         stl_p(header+0x21c, initrd_size);
1083     }
1084 
1085     /* load kernel and setup */
1086     setup_size = header[0x1f1];
1087     if (setup_size == 0) {
1088         setup_size = 4;
1089     }
1090     setup_size = (setup_size+1)*512;
1091     if (setup_size > kernel_size) {
1092         fprintf(stderr, "qemu: invalid kernel header\n");
1093         exit(1);
1094     }
1095     kernel_size -= setup_size;
1096 
1097     setup  = g_malloc(setup_size);
1098     kernel = g_malloc(kernel_size);
1099     fseek(f, 0, SEEK_SET);
1100     if (fread(setup, 1, setup_size, f) != setup_size) {
1101         fprintf(stderr, "fread() failed\n");
1102         exit(1);
1103     }
1104     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1105         fprintf(stderr, "fread() failed\n");
1106         exit(1);
1107     }
1108     fclose(f);
1109 
1110     /* append dtb to kernel */
1111     if (dtb_filename) {
1112         if (protocol < 0x209) {
1113             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1114             exit(1);
1115         }
1116 
1117         dtb_size = get_image_size(dtb_filename);
1118         if (dtb_size <= 0) {
1119             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1120                     dtb_filename, strerror(errno));
1121             exit(1);
1122         }
1123 
1124         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1125         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1126         kernel = g_realloc(kernel, kernel_size);
1127 
1128         stq_p(header+0x250, prot_addr + setup_data_offset);
1129 
1130         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1131         setup_data->next = 0;
1132         setup_data->type = cpu_to_le32(SETUP_DTB);
1133         setup_data->len = cpu_to_le32(dtb_size);
1134 
1135         load_image_size(dtb_filename, setup_data->data, dtb_size);
1136     }
1137 
1138     memcpy(setup, header, MIN(sizeof(header), setup_size));
1139 
1140     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1141     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1142     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1143 
1144     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1145     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1146     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1147 
1148     option_rom[nb_option_roms].bootindex = 0;
1149     option_rom[nb_option_roms].name = "linuxboot.bin";
1150     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1151         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1152     }
1153     nb_option_roms++;
1154 }
1155 
1156 #define NE2000_NB_MAX 6
1157 
1158 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1159                                               0x280, 0x380 };
1160 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1161 
1162 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1163 {
1164     static int nb_ne2k = 0;
1165 
1166     if (nb_ne2k == NE2000_NB_MAX)
1167         return;
1168     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1169                     ne2000_irq[nb_ne2k], nd);
1170     nb_ne2k++;
1171 }
1172 
1173 DeviceState *cpu_get_current_apic(void)
1174 {
1175     if (current_cpu) {
1176         X86CPU *cpu = X86_CPU(current_cpu);
1177         return cpu->apic_state;
1178     } else {
1179         return NULL;
1180     }
1181 }
1182 
1183 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1184 {
1185     X86CPU *cpu = opaque;
1186 
1187     if (level) {
1188         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1189     }
1190 }
1191 
1192 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1193 {
1194     Object *cpu = NULL;
1195     Error *local_err = NULL;
1196 
1197     cpu = object_new(typename);
1198 
1199     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1200     object_property_set_bool(cpu, true, "realized", &local_err);
1201 
1202     object_unref(cpu);
1203     error_propagate(errp, local_err);
1204 }
1205 
1206 void pc_hot_add_cpu(const int64_t id, Error **errp)
1207 {
1208     MachineState *ms = MACHINE(qdev_get_machine());
1209     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1210     Error *local_err = NULL;
1211 
1212     if (id < 0) {
1213         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1214         return;
1215     }
1216 
1217     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1218         error_setg(errp, "Unable to add CPU: %" PRIi64
1219                    ", resulting APIC ID (%" PRIi64 ") is too large",
1220                    id, apic_id);
1221         return;
1222     }
1223 
1224     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1225     if (local_err) {
1226         error_propagate(errp, local_err);
1227         return;
1228     }
1229 }
1230 
1231 void pc_cpus_init(PCMachineState *pcms)
1232 {
1233     int i;
1234     const CPUArchIdList *possible_cpus;
1235     MachineState *ms = MACHINE(pcms);
1236     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1237 
1238     /* Calculates the limit to CPU APIC ID values
1239      *
1240      * Limit for the APIC ID value, so that all
1241      * CPU APIC IDs are < pcms->apic_id_limit.
1242      *
1243      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1244      */
1245     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1246     possible_cpus = mc->possible_cpu_arch_ids(ms);
1247     for (i = 0; i < smp_cpus; i++) {
1248         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1249                    &error_fatal);
1250     }
1251 }
1252 
1253 static void pc_build_feature_control_file(PCMachineState *pcms)
1254 {
1255     MachineState *ms = MACHINE(pcms);
1256     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1257     CPUX86State *env = &cpu->env;
1258     uint32_t unused, ecx, edx;
1259     uint64_t feature_control_bits = 0;
1260     uint64_t *val;
1261 
1262     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1263     if (ecx & CPUID_EXT_VMX) {
1264         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1265     }
1266 
1267     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1268         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1269         (env->mcg_cap & MCG_LMCE_P)) {
1270         feature_control_bits |= FEATURE_CONTROL_LMCE;
1271     }
1272 
1273     if (!feature_control_bits) {
1274         return;
1275     }
1276 
1277     val = g_malloc(sizeof(*val));
1278     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1279     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1280 }
1281 
1282 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1283 {
1284     if (cpus_count > 0xff) {
1285         /* If the number of CPUs can't be represented in 8 bits, the
1286          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1287          * to make old BIOSes fail more predictably.
1288          */
1289         rtc_set_memory(rtc, 0x5f, 0);
1290     } else {
1291         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1292     }
1293 }
1294 
1295 static
1296 void pc_machine_done(Notifier *notifier, void *data)
1297 {
1298     PCMachineState *pcms = container_of(notifier,
1299                                         PCMachineState, machine_done);
1300     PCIBus *bus = pcms->bus;
1301 
1302     /* set the number of CPUs */
1303     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1304 
1305     if (bus) {
1306         int extra_hosts = 0;
1307 
1308         QLIST_FOREACH(bus, &bus->child, sibling) {
1309             /* look for expander root buses */
1310             if (pci_bus_is_root(bus)) {
1311                 extra_hosts++;
1312             }
1313         }
1314         if (extra_hosts && pcms->fw_cfg) {
1315             uint64_t *val = g_malloc(sizeof(*val));
1316             *val = cpu_to_le64(extra_hosts);
1317             fw_cfg_add_file(pcms->fw_cfg,
1318                     "etc/extra-pci-roots", val, sizeof(*val));
1319         }
1320     }
1321 
1322     acpi_setup();
1323     if (pcms->fw_cfg) {
1324         pc_build_smbios(pcms);
1325         pc_build_feature_control_file(pcms);
1326         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1327         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1328     }
1329 
1330     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1331         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1332 
1333         if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1334             iommu->intr_eim != ON_OFF_AUTO_ON) {
1335             error_report("current -smp configuration requires "
1336                          "Extended Interrupt Mode enabled. "
1337                          "You can add an IOMMU using: "
1338                          "-device intel-iommu,intremap=on,eim=on");
1339             exit(EXIT_FAILURE);
1340         }
1341     }
1342 }
1343 
1344 void pc_guest_info_init(PCMachineState *pcms)
1345 {
1346     int i;
1347 
1348     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1349     pcms->numa_nodes = nb_numa_nodes;
1350     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1351                                     sizeof *pcms->node_mem);
1352     for (i = 0; i < nb_numa_nodes; i++) {
1353         pcms->node_mem[i] = numa_info[i].node_mem;
1354     }
1355 
1356     pcms->machine_done.notify = pc_machine_done;
1357     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1358 }
1359 
1360 /* setup pci memory address space mapping into system address space */
1361 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1362                             MemoryRegion *pci_address_space)
1363 {
1364     /* Set to lower priority than RAM */
1365     memory_region_add_subregion_overlap(system_memory, 0x0,
1366                                         pci_address_space, -1);
1367 }
1368 
1369 void pc_acpi_init(const char *default_dsdt)
1370 {
1371     char *filename;
1372 
1373     if (acpi_tables != NULL) {
1374         /* manually set via -acpitable, leave it alone */
1375         return;
1376     }
1377 
1378     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1379     if (filename == NULL) {
1380         warn_report("failed to find %s", default_dsdt);
1381     } else {
1382         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1383                                           &error_abort);
1384         Error *err = NULL;
1385 
1386         qemu_opt_set(opts, "file", filename, &error_abort);
1387 
1388         acpi_table_add_builtin(opts, &err);
1389         if (err) {
1390             warn_reportf_err(err, "failed to load %s: ", filename);
1391         }
1392         g_free(filename);
1393     }
1394 }
1395 
1396 void xen_load_linux(PCMachineState *pcms)
1397 {
1398     int i;
1399     FWCfgState *fw_cfg;
1400 
1401     assert(MACHINE(pcms)->kernel_filename != NULL);
1402 
1403     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1404     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1405     rom_set_fw(fw_cfg);
1406 
1407     load_linux(pcms, fw_cfg);
1408     for (i = 0; i < nb_option_roms; i++) {
1409         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1410                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1411                !strcmp(option_rom[i].name, "multiboot.bin"));
1412         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1413     }
1414     pcms->fw_cfg = fw_cfg;
1415 }
1416 
1417 void pc_memory_init(PCMachineState *pcms,
1418                     MemoryRegion *system_memory,
1419                     MemoryRegion *rom_memory,
1420                     MemoryRegion **ram_memory)
1421 {
1422     int linux_boot, i;
1423     MemoryRegion *ram, *option_rom_mr;
1424     MemoryRegion *ram_below_4g, *ram_above_4g;
1425     FWCfgState *fw_cfg;
1426     MachineState *machine = MACHINE(pcms);
1427     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1428 
1429     assert(machine->ram_size == pcms->below_4g_mem_size +
1430                                 pcms->above_4g_mem_size);
1431 
1432     linux_boot = (machine->kernel_filename != NULL);
1433 
1434     /* Allocate RAM.  We allocate it as a single memory region and use
1435      * aliases to address portions of it, mostly for backwards compatibility
1436      * with older qemus that used qemu_ram_alloc().
1437      */
1438     ram = g_malloc(sizeof(*ram));
1439     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1440                                          machine->ram_size);
1441     *ram_memory = ram;
1442     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1443     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1444                              0, pcms->below_4g_mem_size);
1445     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1446     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1447     if (pcms->above_4g_mem_size > 0) {
1448         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1449         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1450                                  pcms->below_4g_mem_size,
1451                                  pcms->above_4g_mem_size);
1452         memory_region_add_subregion(system_memory, 0x100000000ULL,
1453                                     ram_above_4g);
1454         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1455     }
1456 
1457     if (!pcmc->has_reserved_memory &&
1458         (machine->ram_slots ||
1459          (machine->maxram_size > machine->ram_size))) {
1460         MachineClass *mc = MACHINE_GET_CLASS(machine);
1461 
1462         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1463                      mc->name);
1464         exit(EXIT_FAILURE);
1465     }
1466 
1467     /* always allocate the device memory information */
1468     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1469 
1470     /* initialize device memory address space */
1471     if (pcmc->has_reserved_memory &&
1472         (machine->ram_size < machine->maxram_size)) {
1473         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1474 
1475         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1476             error_report("unsupported amount of memory slots: %"PRIu64,
1477                          machine->ram_slots);
1478             exit(EXIT_FAILURE);
1479         }
1480 
1481         if (QEMU_ALIGN_UP(machine->maxram_size,
1482                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1483             error_report("maximum memory size must by aligned to multiple of "
1484                          "%d bytes", TARGET_PAGE_SIZE);
1485             exit(EXIT_FAILURE);
1486         }
1487 
1488         machine->device_memory->base =
1489             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1490 
1491         if (pcmc->enforce_aligned_dimm) {
1492             /* size device region assuming 1G page max alignment per slot */
1493             device_mem_size += (1 * GiB) * machine->ram_slots;
1494         }
1495 
1496         if ((machine->device_memory->base + device_mem_size) <
1497             device_mem_size) {
1498             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1499                          machine->maxram_size);
1500             exit(EXIT_FAILURE);
1501         }
1502 
1503         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1504                            "device-memory", device_mem_size);
1505         memory_region_add_subregion(system_memory, machine->device_memory->base,
1506                                     &machine->device_memory->mr);
1507     }
1508 
1509     /* Initialize PC system firmware */
1510     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1511 
1512     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1513     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1514                            &error_fatal);
1515     if (pcmc->pci_enabled) {
1516         memory_region_set_readonly(option_rom_mr, true);
1517     }
1518     memory_region_add_subregion_overlap(rom_memory,
1519                                         PC_ROM_MIN_VGA,
1520                                         option_rom_mr,
1521                                         1);
1522 
1523     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1524 
1525     rom_set_fw(fw_cfg);
1526 
1527     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1528         uint64_t *val = g_malloc(sizeof(*val));
1529         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1530         uint64_t res_mem_end = machine->device_memory->base;
1531 
1532         if (!pcmc->broken_reserved_end) {
1533             res_mem_end += memory_region_size(&machine->device_memory->mr);
1534         }
1535         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1536         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1537     }
1538 
1539     if (linux_boot) {
1540         load_linux(pcms, fw_cfg);
1541     }
1542 
1543     for (i = 0; i < nb_option_roms; i++) {
1544         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1545     }
1546     pcms->fw_cfg = fw_cfg;
1547 
1548     /* Init default IOAPIC address space */
1549     pcms->ioapic_as = &address_space_memory;
1550 }
1551 
1552 /*
1553  * The 64bit pci hole starts after "above 4G RAM" and
1554  * potentially the space reserved for memory hotplug.
1555  */
1556 uint64_t pc_pci_hole64_start(void)
1557 {
1558     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1559     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1560     MachineState *ms = MACHINE(pcms);
1561     uint64_t hole64_start = 0;
1562 
1563     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1564         hole64_start = ms->device_memory->base;
1565         if (!pcmc->broken_reserved_end) {
1566             hole64_start += memory_region_size(&ms->device_memory->mr);
1567         }
1568     } else {
1569         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1570     }
1571 
1572     return ROUND_UP(hole64_start, 1 * GiB);
1573 }
1574 
1575 qemu_irq pc_allocate_cpu_irq(void)
1576 {
1577     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1578 }
1579 
1580 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1581 {
1582     DeviceState *dev = NULL;
1583 
1584     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1585     if (pci_bus) {
1586         PCIDevice *pcidev = pci_vga_init(pci_bus);
1587         dev = pcidev ? &pcidev->qdev : NULL;
1588     } else if (isa_bus) {
1589         ISADevice *isadev = isa_vga_init(isa_bus);
1590         dev = isadev ? DEVICE(isadev) : NULL;
1591     }
1592     rom_reset_order_override();
1593     return dev;
1594 }
1595 
1596 static const MemoryRegionOps ioport80_io_ops = {
1597     .write = ioport80_write,
1598     .read = ioport80_read,
1599     .endianness = DEVICE_NATIVE_ENDIAN,
1600     .impl = {
1601         .min_access_size = 1,
1602         .max_access_size = 1,
1603     },
1604 };
1605 
1606 static const MemoryRegionOps ioportF0_io_ops = {
1607     .write = ioportF0_write,
1608     .read = ioportF0_read,
1609     .endianness = DEVICE_NATIVE_ENDIAN,
1610     .impl = {
1611         .min_access_size = 1,
1612         .max_access_size = 1,
1613     },
1614 };
1615 
1616 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1617 {
1618     int i;
1619     DriveInfo *fd[MAX_FD];
1620     qemu_irq *a20_line;
1621     ISADevice *i8042, *port92, *vmmouse;
1622 
1623     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1624     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1625 
1626     for (i = 0; i < MAX_FD; i++) {
1627         fd[i] = drive_get(IF_FLOPPY, 0, i);
1628         create_fdctrl |= !!fd[i];
1629     }
1630     if (create_fdctrl) {
1631         fdctrl_init_isa(isa_bus, fd);
1632     }
1633 
1634     i8042 = isa_create_simple(isa_bus, "i8042");
1635     if (!no_vmport) {
1636         vmport_init(isa_bus);
1637         vmmouse = isa_try_create(isa_bus, "vmmouse");
1638     } else {
1639         vmmouse = NULL;
1640     }
1641     if (vmmouse) {
1642         DeviceState *dev = DEVICE(vmmouse);
1643         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1644         qdev_init_nofail(dev);
1645     }
1646     port92 = isa_create_simple(isa_bus, "port92");
1647 
1648     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1649     i8042_setup_a20_line(i8042, a20_line[0]);
1650     port92_init(port92, a20_line[1]);
1651     g_free(a20_line);
1652 }
1653 
1654 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1655                           ISADevice **rtc_state,
1656                           bool create_fdctrl,
1657                           bool no_vmport,
1658                           bool has_pit,
1659                           uint32_t hpet_irqs)
1660 {
1661     int i;
1662     DeviceState *hpet = NULL;
1663     int pit_isa_irq = 0;
1664     qemu_irq pit_alt_irq = NULL;
1665     qemu_irq rtc_irq = NULL;
1666     ISADevice *pit = NULL;
1667     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1668     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1669 
1670     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1671     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1672 
1673     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1674     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1675 
1676     /*
1677      * Check if an HPET shall be created.
1678      *
1679      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1680      * when the HPET wants to take over. Thus we have to disable the latter.
1681      */
1682     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1683         /* In order to set property, here not using sysbus_try_create_simple */
1684         hpet = qdev_try_create(NULL, TYPE_HPET);
1685         if (hpet) {
1686             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1687              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1688              * IRQ8 and IRQ2.
1689              */
1690             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1691                     HPET_INTCAP, NULL);
1692             if (!compat) {
1693                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1694             }
1695             qdev_init_nofail(hpet);
1696             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1697 
1698             for (i = 0; i < GSI_NUM_PINS; i++) {
1699                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1700             }
1701             pit_isa_irq = -1;
1702             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1703             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1704         }
1705     }
1706     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1707 
1708     qemu_register_boot_set(pc_boot_set, *rtc_state);
1709 
1710     if (!xen_enabled() && has_pit) {
1711         if (kvm_pit_in_kernel()) {
1712             pit = kvm_pit_init(isa_bus, 0x40);
1713         } else {
1714             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1715         }
1716         if (hpet) {
1717             /* connect PIT to output control line of the HPET */
1718             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1719         }
1720         pcspk_init(isa_bus, pit);
1721     }
1722 
1723     i8257_dma_init(isa_bus, 0);
1724 
1725     /* Super I/O */
1726     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1727 }
1728 
1729 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1730 {
1731     int i;
1732 
1733     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1734     for (i = 0; i < nb_nics; i++) {
1735         NICInfo *nd = &nd_table[i];
1736         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1737 
1738         if (g_str_equal(model, "ne2k_isa")) {
1739             pc_init_ne2k_isa(isa_bus, nd);
1740         } else {
1741             pci_nic_init_nofail(nd, pci_bus, model, NULL);
1742         }
1743     }
1744     rom_reset_order_override();
1745 }
1746 
1747 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1748 {
1749     DeviceState *dev;
1750     SysBusDevice *d;
1751     unsigned int i;
1752 
1753     if (kvm_ioapic_in_kernel()) {
1754         dev = qdev_create(NULL, "kvm-ioapic");
1755     } else {
1756         dev = qdev_create(NULL, "ioapic");
1757     }
1758     if (parent_name) {
1759         object_property_add_child(object_resolve_path(parent_name, NULL),
1760                                   "ioapic", OBJECT(dev), NULL);
1761     }
1762     qdev_init_nofail(dev);
1763     d = SYS_BUS_DEVICE(dev);
1764     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1765 
1766     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1767         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1768     }
1769 }
1770 
1771 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1772                                Error **errp)
1773 {
1774     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1775     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1776     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1777     const uint64_t legacy_align = TARGET_PAGE_SIZE;
1778 
1779     /*
1780      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1781      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1782      * addition to cover this case.
1783      */
1784     if (!pcms->acpi_dev || !acpi_enabled) {
1785         error_setg(errp,
1786                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1787         return;
1788     }
1789 
1790     if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1791         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1792         return;
1793     }
1794 
1795     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1796                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1797 }
1798 
1799 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1800                            DeviceState *dev, Error **errp)
1801 {
1802     HotplugHandlerClass *hhc;
1803     Error *local_err = NULL;
1804     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1805     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1806 
1807     pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1808     if (local_err) {
1809         goto out;
1810     }
1811 
1812     if (is_nvdimm) {
1813         nvdimm_plug(&pcms->acpi_nvdimm_state);
1814     }
1815 
1816     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1817     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1818 out:
1819     error_propagate(errp, local_err);
1820 }
1821 
1822 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1823                                      DeviceState *dev, Error **errp)
1824 {
1825     HotplugHandlerClass *hhc;
1826     Error *local_err = NULL;
1827     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1828 
1829     /*
1830      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1831      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1832      * addition to cover this case.
1833      */
1834     if (!pcms->acpi_dev || !acpi_enabled) {
1835         error_setg(&local_err,
1836                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1837         goto out;
1838     }
1839 
1840     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1841         error_setg(&local_err,
1842                    "nvdimm device hot unplug is not supported yet.");
1843         goto out;
1844     }
1845 
1846     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1847     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1848 
1849 out:
1850     error_propagate(errp, local_err);
1851 }
1852 
1853 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1854                              DeviceState *dev, Error **errp)
1855 {
1856     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1857     HotplugHandlerClass *hhc;
1858     Error *local_err = NULL;
1859 
1860     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1861     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1862 
1863     if (local_err) {
1864         goto out;
1865     }
1866 
1867     pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
1868     object_unparent(OBJECT(dev));
1869 
1870  out:
1871     error_propagate(errp, local_err);
1872 }
1873 
1874 static int pc_apic_cmp(const void *a, const void *b)
1875 {
1876    CPUArchId *apic_a = (CPUArchId *)a;
1877    CPUArchId *apic_b = (CPUArchId *)b;
1878 
1879    return apic_a->arch_id - apic_b->arch_id;
1880 }
1881 
1882 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1883  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1884  * entry corresponding to CPU's apic_id returns NULL.
1885  */
1886 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1887 {
1888     CPUArchId apic_id, *found_cpu;
1889 
1890     apic_id.arch_id = id;
1891     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1892         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1893         pc_apic_cmp);
1894     if (found_cpu && idx) {
1895         *idx = found_cpu - ms->possible_cpus->cpus;
1896     }
1897     return found_cpu;
1898 }
1899 
1900 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1901                         DeviceState *dev, Error **errp)
1902 {
1903     CPUArchId *found_cpu;
1904     HotplugHandlerClass *hhc;
1905     Error *local_err = NULL;
1906     X86CPU *cpu = X86_CPU(dev);
1907     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1908 
1909     if (pcms->acpi_dev) {
1910         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1911         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1912         if (local_err) {
1913             goto out;
1914         }
1915     }
1916 
1917     /* increment the number of CPUs */
1918     pcms->boot_cpus++;
1919     if (pcms->rtc) {
1920         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1921     }
1922     if (pcms->fw_cfg) {
1923         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1924     }
1925 
1926     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1927     found_cpu->cpu = OBJECT(dev);
1928 out:
1929     error_propagate(errp, local_err);
1930 }
1931 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1932                                      DeviceState *dev, Error **errp)
1933 {
1934     int idx = -1;
1935     HotplugHandlerClass *hhc;
1936     Error *local_err = NULL;
1937     X86CPU *cpu = X86_CPU(dev);
1938     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1939 
1940     if (!pcms->acpi_dev) {
1941         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1942         goto out;
1943     }
1944 
1945     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1946     assert(idx != -1);
1947     if (idx == 0) {
1948         error_setg(&local_err, "Boot CPU is unpluggable");
1949         goto out;
1950     }
1951 
1952     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1953     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1954 
1955     if (local_err) {
1956         goto out;
1957     }
1958 
1959  out:
1960     error_propagate(errp, local_err);
1961 
1962 }
1963 
1964 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1965                              DeviceState *dev, Error **errp)
1966 {
1967     CPUArchId *found_cpu;
1968     HotplugHandlerClass *hhc;
1969     Error *local_err = NULL;
1970     X86CPU *cpu = X86_CPU(dev);
1971     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1972 
1973     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1974     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1975 
1976     if (local_err) {
1977         goto out;
1978     }
1979 
1980     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1981     found_cpu->cpu = NULL;
1982     object_unparent(OBJECT(dev));
1983 
1984     /* decrement the number of CPUs */
1985     pcms->boot_cpus--;
1986     /* Update the number of CPUs in CMOS */
1987     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1988     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1989  out:
1990     error_propagate(errp, local_err);
1991 }
1992 
1993 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1994                             DeviceState *dev, Error **errp)
1995 {
1996     int idx;
1997     CPUState *cs;
1998     CPUArchId *cpu_slot;
1999     X86CPUTopoInfo topo;
2000     X86CPU *cpu = X86_CPU(dev);
2001     MachineState *ms = MACHINE(hotplug_dev);
2002     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2003 
2004     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2005         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2006                    ms->cpu_type);
2007         return;
2008     }
2009 
2010     /* if APIC ID is not set, set it based on socket/core/thread properties */
2011     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2012         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2013 
2014         if (cpu->socket_id < 0) {
2015             error_setg(errp, "CPU socket-id is not set");
2016             return;
2017         } else if (cpu->socket_id > max_socket) {
2018             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2019                        cpu->socket_id, max_socket);
2020             return;
2021         }
2022         if (cpu->core_id < 0) {
2023             error_setg(errp, "CPU core-id is not set");
2024             return;
2025         } else if (cpu->core_id > (smp_cores - 1)) {
2026             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2027                        cpu->core_id, smp_cores - 1);
2028             return;
2029         }
2030         if (cpu->thread_id < 0) {
2031             error_setg(errp, "CPU thread-id is not set");
2032             return;
2033         } else if (cpu->thread_id > (smp_threads - 1)) {
2034             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2035                        cpu->thread_id, smp_threads - 1);
2036             return;
2037         }
2038 
2039         topo.pkg_id = cpu->socket_id;
2040         topo.core_id = cpu->core_id;
2041         topo.smt_id = cpu->thread_id;
2042         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2043     }
2044 
2045     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2046     if (!cpu_slot) {
2047         MachineState *ms = MACHINE(pcms);
2048 
2049         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2050         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2051                   " APIC ID %" PRIu32 ", valid index range 0:%d",
2052                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2053                    ms->possible_cpus->len - 1);
2054         return;
2055     }
2056 
2057     if (cpu_slot->cpu) {
2058         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2059                    idx, cpu->apic_id);
2060         return;
2061     }
2062 
2063     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2064      * so that machine_query_hotpluggable_cpus would show correct values
2065      */
2066     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2067      * once -smp refactoring is complete and there will be CPU private
2068      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2069     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2070     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2071         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2072             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2073         return;
2074     }
2075     cpu->socket_id = topo.pkg_id;
2076 
2077     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2078         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2079             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2080         return;
2081     }
2082     cpu->core_id = topo.core_id;
2083 
2084     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2085         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2086             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2087         return;
2088     }
2089     cpu->thread_id = topo.smt_id;
2090 
2091     if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2092         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2093         return;
2094     }
2095 
2096     cs = CPU(cpu);
2097     cs->cpu_index = idx;
2098 
2099     numa_cpu_pre_plug(cpu_slot, dev, errp);
2100 }
2101 
2102 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2103                                           DeviceState *dev, Error **errp)
2104 {
2105     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2106         pc_memory_pre_plug(hotplug_dev, dev, errp);
2107     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2108         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2109     }
2110 }
2111 
2112 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2113                                       DeviceState *dev, Error **errp)
2114 {
2115     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2116         pc_memory_plug(hotplug_dev, dev, errp);
2117     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2118         pc_cpu_plug(hotplug_dev, dev, errp);
2119     }
2120 }
2121 
2122 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2123                                                 DeviceState *dev, Error **errp)
2124 {
2125     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2126         pc_memory_unplug_request(hotplug_dev, dev, errp);
2127     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2128         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2129     } else {
2130         error_setg(errp, "acpi: device unplug request for not supported device"
2131                    " type: %s", object_get_typename(OBJECT(dev)));
2132     }
2133 }
2134 
2135 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2136                                         DeviceState *dev, Error **errp)
2137 {
2138     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2139         pc_memory_unplug(hotplug_dev, dev, errp);
2140     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2141         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2142     } else {
2143         error_setg(errp, "acpi: device unplug for not supported device"
2144                    " type: %s", object_get_typename(OBJECT(dev)));
2145     }
2146 }
2147 
2148 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2149                                              DeviceState *dev)
2150 {
2151     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2152         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2153         return HOTPLUG_HANDLER(machine);
2154     }
2155 
2156     return NULL;
2157 }
2158 
2159 static void
2160 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2161                                          const char *name, void *opaque,
2162                                          Error **errp)
2163 {
2164     MachineState *ms = MACHINE(obj);
2165     int64_t value = memory_region_size(&ms->device_memory->mr);
2166 
2167     visit_type_int(v, name, &value, errp);
2168 }
2169 
2170 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2171                                             const char *name, void *opaque,
2172                                             Error **errp)
2173 {
2174     PCMachineState *pcms = PC_MACHINE(obj);
2175     uint64_t value = pcms->max_ram_below_4g;
2176 
2177     visit_type_size(v, name, &value, errp);
2178 }
2179 
2180 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2181                                             const char *name, void *opaque,
2182                                             Error **errp)
2183 {
2184     PCMachineState *pcms = PC_MACHINE(obj);
2185     Error *error = NULL;
2186     uint64_t value;
2187 
2188     visit_type_size(v, name, &value, &error);
2189     if (error) {
2190         error_propagate(errp, error);
2191         return;
2192     }
2193     if (value > 4 * GiB) {
2194         error_setg(&error,
2195                    "Machine option 'max-ram-below-4g=%"PRIu64
2196                    "' expects size less than or equal to 4G", value);
2197         error_propagate(errp, error);
2198         return;
2199     }
2200 
2201     if (value < 1 * MiB) {
2202         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2203                     "BIOS may not work with less than 1MiB", value);
2204     }
2205 
2206     pcms->max_ram_below_4g = value;
2207 }
2208 
2209 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2210                                   void *opaque, Error **errp)
2211 {
2212     PCMachineState *pcms = PC_MACHINE(obj);
2213     OnOffAuto vmport = pcms->vmport;
2214 
2215     visit_type_OnOffAuto(v, name, &vmport, errp);
2216 }
2217 
2218 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2219                                   void *opaque, Error **errp)
2220 {
2221     PCMachineState *pcms = PC_MACHINE(obj);
2222 
2223     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2224 }
2225 
2226 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2227 {
2228     bool smm_available = false;
2229 
2230     if (pcms->smm == ON_OFF_AUTO_OFF) {
2231         return false;
2232     }
2233 
2234     if (tcg_enabled() || qtest_enabled()) {
2235         smm_available = true;
2236     } else if (kvm_enabled()) {
2237         smm_available = kvm_has_smm();
2238     }
2239 
2240     if (smm_available) {
2241         return true;
2242     }
2243 
2244     if (pcms->smm == ON_OFF_AUTO_ON) {
2245         error_report("System Management Mode not supported by this hypervisor.");
2246         exit(1);
2247     }
2248     return false;
2249 }
2250 
2251 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2252                                void *opaque, Error **errp)
2253 {
2254     PCMachineState *pcms = PC_MACHINE(obj);
2255     OnOffAuto smm = pcms->smm;
2256 
2257     visit_type_OnOffAuto(v, name, &smm, errp);
2258 }
2259 
2260 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2261                                void *opaque, Error **errp)
2262 {
2263     PCMachineState *pcms = PC_MACHINE(obj);
2264 
2265     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2266 }
2267 
2268 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2269 {
2270     PCMachineState *pcms = PC_MACHINE(obj);
2271 
2272     return pcms->acpi_nvdimm_state.is_enabled;
2273 }
2274 
2275 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2276 {
2277     PCMachineState *pcms = PC_MACHINE(obj);
2278 
2279     pcms->acpi_nvdimm_state.is_enabled = value;
2280 }
2281 
2282 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2283 {
2284     PCMachineState *pcms = PC_MACHINE(obj);
2285 
2286     return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2287 }
2288 
2289 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2290                                                Error **errp)
2291 {
2292     PCMachineState *pcms = PC_MACHINE(obj);
2293     AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2294 
2295     if (strcmp(value, "cpu") == 0)
2296         nvdimm_state->persistence = 3;
2297     else if (strcmp(value, "mem-ctrl") == 0)
2298         nvdimm_state->persistence = 2;
2299     else {
2300         error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2301                    value);
2302         return;
2303     }
2304 
2305     g_free(nvdimm_state->persistence_string);
2306     nvdimm_state->persistence_string = g_strdup(value);
2307 }
2308 
2309 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2310 {
2311     PCMachineState *pcms = PC_MACHINE(obj);
2312 
2313     return pcms->smbus_enabled;
2314 }
2315 
2316 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2317 {
2318     PCMachineState *pcms = PC_MACHINE(obj);
2319 
2320     pcms->smbus_enabled = value;
2321 }
2322 
2323 static bool pc_machine_get_sata(Object *obj, Error **errp)
2324 {
2325     PCMachineState *pcms = PC_MACHINE(obj);
2326 
2327     return pcms->sata_enabled;
2328 }
2329 
2330 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2331 {
2332     PCMachineState *pcms = PC_MACHINE(obj);
2333 
2334     pcms->sata_enabled = value;
2335 }
2336 
2337 static bool pc_machine_get_pit(Object *obj, Error **errp)
2338 {
2339     PCMachineState *pcms = PC_MACHINE(obj);
2340 
2341     return pcms->pit_enabled;
2342 }
2343 
2344 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2345 {
2346     PCMachineState *pcms = PC_MACHINE(obj);
2347 
2348     pcms->pit_enabled = value;
2349 }
2350 
2351 static void pc_machine_initfn(Object *obj)
2352 {
2353     PCMachineState *pcms = PC_MACHINE(obj);
2354 
2355     pcms->max_ram_below_4g = 0; /* use default */
2356     pcms->smm = ON_OFF_AUTO_AUTO;
2357     pcms->vmport = ON_OFF_AUTO_AUTO;
2358     /* nvdimm is disabled on default. */
2359     pcms->acpi_nvdimm_state.is_enabled = false;
2360     /* acpi build is enabled by default if machine supports it */
2361     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2362     pcms->smbus_enabled = true;
2363     pcms->sata_enabled = true;
2364     pcms->pit_enabled = true;
2365 }
2366 
2367 static void pc_machine_reset(void)
2368 {
2369     CPUState *cs;
2370     X86CPU *cpu;
2371 
2372     qemu_devices_reset();
2373 
2374     /* Reset APIC after devices have been reset to cancel
2375      * any changes that qemu_devices_reset() might have done.
2376      */
2377     CPU_FOREACH(cs) {
2378         cpu = X86_CPU(cs);
2379 
2380         if (cpu->apic_state) {
2381             device_reset(cpu->apic_state);
2382         }
2383     }
2384 }
2385 
2386 static CpuInstanceProperties
2387 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2388 {
2389     MachineClass *mc = MACHINE_GET_CLASS(ms);
2390     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2391 
2392     assert(cpu_index < possible_cpus->len);
2393     return possible_cpus->cpus[cpu_index].props;
2394 }
2395 
2396 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2397 {
2398    X86CPUTopoInfo topo;
2399 
2400    assert(idx < ms->possible_cpus->len);
2401    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2402                             smp_cores, smp_threads, &topo);
2403    return topo.pkg_id % nb_numa_nodes;
2404 }
2405 
2406 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2407 {
2408     int i;
2409 
2410     if (ms->possible_cpus) {
2411         /*
2412          * make sure that max_cpus hasn't changed since the first use, i.e.
2413          * -smp hasn't been parsed after it
2414         */
2415         assert(ms->possible_cpus->len == max_cpus);
2416         return ms->possible_cpus;
2417     }
2418 
2419     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2420                                   sizeof(CPUArchId) * max_cpus);
2421     ms->possible_cpus->len = max_cpus;
2422     for (i = 0; i < ms->possible_cpus->len; i++) {
2423         X86CPUTopoInfo topo;
2424 
2425         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2426         ms->possible_cpus->cpus[i].vcpus_count = 1;
2427         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2428         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2429                                  smp_cores, smp_threads, &topo);
2430         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2431         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2432         ms->possible_cpus->cpus[i].props.has_core_id = true;
2433         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2434         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2435         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2436     }
2437     return ms->possible_cpus;
2438 }
2439 
2440 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2441 {
2442     /* cpu index isn't used */
2443     CPUState *cs;
2444 
2445     CPU_FOREACH(cs) {
2446         X86CPU *cpu = X86_CPU(cs);
2447 
2448         if (!cpu->apic_state) {
2449             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2450         } else {
2451             apic_deliver_nmi(cpu->apic_state);
2452         }
2453     }
2454 }
2455 
2456 static void pc_machine_class_init(ObjectClass *oc, void *data)
2457 {
2458     MachineClass *mc = MACHINE_CLASS(oc);
2459     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2460     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2461     NMIClass *nc = NMI_CLASS(oc);
2462 
2463     pcmc->pci_enabled = true;
2464     pcmc->has_acpi_build = true;
2465     pcmc->rsdp_in_ram = true;
2466     pcmc->smbios_defaults = true;
2467     pcmc->smbios_uuid_encoded = true;
2468     pcmc->gigabyte_align = true;
2469     pcmc->has_reserved_memory = true;
2470     pcmc->kvmclock_enabled = true;
2471     pcmc->enforce_aligned_dimm = true;
2472     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2473      * to be used at the moment, 32K should be enough for a while.  */
2474     pcmc->acpi_data_size = 0x20000 + 0x8000;
2475     pcmc->save_tsc_khz = true;
2476     pcmc->linuxboot_dma_enabled = true;
2477     assert(!mc->get_hotplug_handler);
2478     mc->get_hotplug_handler = pc_get_hotpug_handler;
2479     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2480     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2481     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2482     mc->auto_enable_numa_with_memhp = true;
2483     mc->has_hotpluggable_cpus = true;
2484     mc->default_boot_order = "cad";
2485     mc->hot_add_cpu = pc_hot_add_cpu;
2486     mc->block_default_type = IF_IDE;
2487     mc->max_cpus = 255;
2488     mc->reset = pc_machine_reset;
2489     hc->pre_plug = pc_machine_device_pre_plug_cb;
2490     hc->plug = pc_machine_device_plug_cb;
2491     hc->unplug_request = pc_machine_device_unplug_request_cb;
2492     hc->unplug = pc_machine_device_unplug_cb;
2493     nc->nmi_monitor_handler = x86_nmi;
2494     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2495 
2496     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2497         pc_machine_get_device_memory_region_size, NULL,
2498         NULL, NULL, &error_abort);
2499 
2500     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2501         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2502         NULL, NULL, &error_abort);
2503 
2504     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2505         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2506 
2507     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2508         pc_machine_get_smm, pc_machine_set_smm,
2509         NULL, NULL, &error_abort);
2510     object_class_property_set_description(oc, PC_MACHINE_SMM,
2511         "Enable SMM (pc & q35)", &error_abort);
2512 
2513     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2514         pc_machine_get_vmport, pc_machine_set_vmport,
2515         NULL, NULL, &error_abort);
2516     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2517         "Enable vmport (pc & q35)", &error_abort);
2518 
2519     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2520         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2521 
2522     object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2523         pc_machine_get_nvdimm_persistence,
2524         pc_machine_set_nvdimm_persistence, &error_abort);
2525 
2526     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2527         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2528 
2529     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2530         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2531 
2532     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2533         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2534 }
2535 
2536 static const TypeInfo pc_machine_info = {
2537     .name = TYPE_PC_MACHINE,
2538     .parent = TYPE_MACHINE,
2539     .abstract = true,
2540     .instance_size = sizeof(PCMachineState),
2541     .instance_init = pc_machine_initfn,
2542     .class_size = sizeof(PCMachineClass),
2543     .class_init = pc_machine_class_init,
2544     .interfaces = (InterfaceInfo[]) {
2545          { TYPE_HOTPLUG_HANDLER },
2546          { TYPE_NMI },
2547          { }
2548     },
2549 };
2550 
2551 static void pc_machine_register_types(void)
2552 {
2553     type_register_static(&pc_machine_info);
2554 }
2555 
2556 type_init(pc_machine_register_types)
2557