xref: /openbmc/qemu/hw/i386/pc.c (revision 3753c75d)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 #include "hw/i386/intel_iommu.h"
72 
73 /* debug PC/ISA interrupts */
74 //#define DEBUG_IRQ
75 
76 #ifdef DEBUG_IRQ
77 #define DPRINTF(fmt, ...)                                       \
78     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...)
81 #endif
82 
83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88 
89 #define E820_NR_ENTRIES		16
90 
91 struct e820_entry {
92     uint64_t address;
93     uint64_t length;
94     uint32_t type;
95 } QEMU_PACKED __attribute((__aligned__(4)));
96 
97 struct e820_table {
98     uint32_t count;
99     struct e820_entry entry[E820_NR_ENTRIES];
100 } QEMU_PACKED __attribute((__aligned__(4)));
101 
102 static struct e820_table e820_reserve;
103 static struct e820_entry *e820_table;
104 static unsigned e820_entries;
105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106 
107 void gsi_handler(void *opaque, int n, int level)
108 {
109     GSIState *s = opaque;
110 
111     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
112     if (n < ISA_NUM_IRQS) {
113         qemu_set_irq(s->i8259_irq[n], level);
114     }
115     qemu_set_irq(s->ioapic_irq[n], level);
116 }
117 
118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
119                            unsigned size)
120 {
121 }
122 
123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 {
125     return 0xffffffffffffffffULL;
126 }
127 
128 /* MSDOS compatibility mode FPU exception support */
129 static qemu_irq ferr_irq;
130 
131 void pc_register_ferr_irq(qemu_irq irq)
132 {
133     ferr_irq = irq;
134 }
135 
136 /* XXX: add IGNNE support */
137 void cpu_set_ferr(CPUX86State *s)
138 {
139     qemu_irq_raise(ferr_irq);
140 }
141 
142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
143                            unsigned size)
144 {
145     qemu_irq_lower(ferr_irq);
146 }
147 
148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 {
150     return 0xffffffffffffffffULL;
151 }
152 
153 /* TSC handling */
154 uint64_t cpu_get_tsc(CPUX86State *env)
155 {
156     return cpu_get_ticks();
157 }
158 
159 /* IRQ handling */
160 int cpu_get_pic_interrupt(CPUX86State *env)
161 {
162     X86CPU *cpu = x86_env_get_cpu(env);
163     int intno;
164 
165     if (!kvm_irqchip_in_kernel()) {
166         intno = apic_get_interrupt(cpu->apic_state);
167         if (intno >= 0) {
168             return intno;
169         }
170         /* read the irq from the PIC */
171         if (!apic_accept_pic_intr(cpu->apic_state)) {
172             return -1;
173         }
174     }
175 
176     intno = pic_read_irq(isa_pic);
177     return intno;
178 }
179 
180 static void pic_irq_request(void *opaque, int irq, int level)
181 {
182     CPUState *cs = first_cpu;
183     X86CPU *cpu = X86_CPU(cs);
184 
185     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
186     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
187         CPU_FOREACH(cs) {
188             cpu = X86_CPU(cs);
189             if (apic_accept_pic_intr(cpu->apic_state)) {
190                 apic_deliver_pic_intr(cpu->apic_state, level);
191             }
192         }
193     } else {
194         if (level) {
195             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
196         } else {
197             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
198         }
199     }
200 }
201 
202 /* PC cmos mappings */
203 
204 #define REG_EQUIPMENT_BYTE          0x14
205 
206 int cmos_get_fd_drive_type(FloppyDriveType fd0)
207 {
208     int val;
209 
210     switch (fd0) {
211     case FLOPPY_DRIVE_TYPE_144:
212         /* 1.44 Mb 3"5 drive */
213         val = 4;
214         break;
215     case FLOPPY_DRIVE_TYPE_288:
216         /* 2.88 Mb 3"5 drive */
217         val = 5;
218         break;
219     case FLOPPY_DRIVE_TYPE_120:
220         /* 1.2 Mb 5"5 drive */
221         val = 2;
222         break;
223     case FLOPPY_DRIVE_TYPE_NONE:
224     default:
225         val = 0;
226         break;
227     }
228     return val;
229 }
230 
231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
232                          int16_t cylinders, int8_t heads, int8_t sectors)
233 {
234     rtc_set_memory(s, type_ofs, 47);
235     rtc_set_memory(s, info_ofs, cylinders);
236     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
237     rtc_set_memory(s, info_ofs + 2, heads);
238     rtc_set_memory(s, info_ofs + 3, 0xff);
239     rtc_set_memory(s, info_ofs + 4, 0xff);
240     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
241     rtc_set_memory(s, info_ofs + 6, cylinders);
242     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
243     rtc_set_memory(s, info_ofs + 8, sectors);
244 }
245 
246 /* convert boot_device letter to something recognizable by the bios */
247 static int boot_device2nibble(char boot_device)
248 {
249     switch(boot_device) {
250     case 'a':
251     case 'b':
252         return 0x01; /* floppy boot */
253     case 'c':
254         return 0x02; /* hard drive boot */
255     case 'd':
256         return 0x03; /* CD-ROM boot */
257     case 'n':
258         return 0x04; /* Network boot */
259     }
260     return 0;
261 }
262 
263 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
264 {
265 #define PC_MAX_BOOT_DEVICES 3
266     int nbds, bds[3] = { 0, };
267     int i;
268 
269     nbds = strlen(boot_device);
270     if (nbds > PC_MAX_BOOT_DEVICES) {
271         error_setg(errp, "Too many boot devices for PC");
272         return;
273     }
274     for (i = 0; i < nbds; i++) {
275         bds[i] = boot_device2nibble(boot_device[i]);
276         if (bds[i] == 0) {
277             error_setg(errp, "Invalid boot device for PC: '%c'",
278                        boot_device[i]);
279             return;
280         }
281     }
282     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
283     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
284 }
285 
286 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
287 {
288     set_boot_dev(opaque, boot_device, errp);
289 }
290 
291 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
292 {
293     int val, nb, i;
294     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
295                                    FLOPPY_DRIVE_TYPE_NONE };
296 
297     /* floppy type */
298     if (floppy) {
299         for (i = 0; i < 2; i++) {
300             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
301         }
302     }
303     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
304         cmos_get_fd_drive_type(fd_type[1]);
305     rtc_set_memory(rtc_state, 0x10, val);
306 
307     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
308     nb = 0;
309     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
310         nb++;
311     }
312     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
313         nb++;
314     }
315     switch (nb) {
316     case 0:
317         break;
318     case 1:
319         val |= 0x01; /* 1 drive, ready for boot */
320         break;
321     case 2:
322         val |= 0x41; /* 2 drives, ready for boot */
323         break;
324     }
325     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
326 }
327 
328 typedef struct pc_cmos_init_late_arg {
329     ISADevice *rtc_state;
330     BusState *idebus[2];
331 } pc_cmos_init_late_arg;
332 
333 typedef struct check_fdc_state {
334     ISADevice *floppy;
335     bool multiple;
336 } CheckFdcState;
337 
338 static int check_fdc(Object *obj, void *opaque)
339 {
340     CheckFdcState *state = opaque;
341     Object *fdc;
342     uint32_t iobase;
343     Error *local_err = NULL;
344 
345     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
346     if (!fdc) {
347         return 0;
348     }
349 
350     iobase = object_property_get_int(obj, "iobase", &local_err);
351     if (local_err || iobase != 0x3f0) {
352         error_free(local_err);
353         return 0;
354     }
355 
356     if (state->floppy) {
357         state->multiple = true;
358     } else {
359         state->floppy = ISA_DEVICE(obj);
360     }
361     return 0;
362 }
363 
364 static const char * const fdc_container_path[] = {
365     "/unattached", "/peripheral", "/peripheral-anon"
366 };
367 
368 /*
369  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
370  * and ACPI objects.
371  */
372 ISADevice *pc_find_fdc0(void)
373 {
374     int i;
375     Object *container;
376     CheckFdcState state = { 0 };
377 
378     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
379         container = container_get(qdev_get_machine(), fdc_container_path[i]);
380         object_child_foreach(container, check_fdc, &state);
381     }
382 
383     if (state.multiple) {
384         error_report("warning: multiple floppy disk controllers with "
385                      "iobase=0x3f0 have been found");
386         error_printf("the one being picked for CMOS setup might not reflect "
387                      "your intent\n");
388     }
389 
390     return state.floppy;
391 }
392 
393 static void pc_cmos_init_late(void *opaque)
394 {
395     pc_cmos_init_late_arg *arg = opaque;
396     ISADevice *s = arg->rtc_state;
397     int16_t cylinders;
398     int8_t heads, sectors;
399     int val;
400     int i, trans;
401 
402     val = 0;
403     if (ide_get_geometry(arg->idebus[0], 0,
404                          &cylinders, &heads, &sectors) >= 0) {
405         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
406         val |= 0xf0;
407     }
408     if (ide_get_geometry(arg->idebus[0], 1,
409                          &cylinders, &heads, &sectors) >= 0) {
410         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
411         val |= 0x0f;
412     }
413     rtc_set_memory(s, 0x12, val);
414 
415     val = 0;
416     for (i = 0; i < 4; i++) {
417         /* NOTE: ide_get_geometry() returns the physical
418            geometry.  It is always such that: 1 <= sects <= 63, 1
419            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
420            geometry can be different if a translation is done. */
421         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
422                              &cylinders, &heads, &sectors) >= 0) {
423             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
424             assert((trans & ~3) == 0);
425             val |= trans << (i * 2);
426         }
427     }
428     rtc_set_memory(s, 0x39, val);
429 
430     pc_cmos_init_floppy(s, pc_find_fdc0());
431 
432     qemu_unregister_reset(pc_cmos_init_late, opaque);
433 }
434 
435 void pc_cmos_init(PCMachineState *pcms,
436                   BusState *idebus0, BusState *idebus1,
437                   ISADevice *s)
438 {
439     int val;
440     static pc_cmos_init_late_arg arg;
441 
442     /* various important CMOS locations needed by PC/Bochs bios */
443 
444     /* memory size */
445     /* base memory (first MiB) */
446     val = MIN(pcms->below_4g_mem_size / 1024, 640);
447     rtc_set_memory(s, 0x15, val);
448     rtc_set_memory(s, 0x16, val >> 8);
449     /* extended memory (next 64MiB) */
450     if (pcms->below_4g_mem_size > 1024 * 1024) {
451         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
452     } else {
453         val = 0;
454     }
455     if (val > 65535)
456         val = 65535;
457     rtc_set_memory(s, 0x17, val);
458     rtc_set_memory(s, 0x18, val >> 8);
459     rtc_set_memory(s, 0x30, val);
460     rtc_set_memory(s, 0x31, val >> 8);
461     /* memory between 16MiB and 4GiB */
462     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
463         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
464     } else {
465         val = 0;
466     }
467     if (val > 65535)
468         val = 65535;
469     rtc_set_memory(s, 0x34, val);
470     rtc_set_memory(s, 0x35, val >> 8);
471     /* memory above 4GiB */
472     val = pcms->above_4g_mem_size / 65536;
473     rtc_set_memory(s, 0x5b, val);
474     rtc_set_memory(s, 0x5c, val >> 8);
475     rtc_set_memory(s, 0x5d, val >> 16);
476 
477     object_property_add_link(OBJECT(pcms), "rtc_state",
478                              TYPE_ISA_DEVICE,
479                              (Object **)&pcms->rtc,
480                              object_property_allow_set_link,
481                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
482     object_property_set_link(OBJECT(pcms), OBJECT(s),
483                              "rtc_state", &error_abort);
484 
485     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
486 
487     val = 0;
488     val |= 0x02; /* FPU is there */
489     val |= 0x04; /* PS/2 mouse installed */
490     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
491 
492     /* hard drives and FDC */
493     arg.rtc_state = s;
494     arg.idebus[0] = idebus0;
495     arg.idebus[1] = idebus1;
496     qemu_register_reset(pc_cmos_init_late, &arg);
497 }
498 
499 #define TYPE_PORT92 "port92"
500 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
501 
502 /* port 92 stuff: could be split off */
503 typedef struct Port92State {
504     ISADevice parent_obj;
505 
506     MemoryRegion io;
507     uint8_t outport;
508     qemu_irq a20_out;
509 } Port92State;
510 
511 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
512                          unsigned size)
513 {
514     Port92State *s = opaque;
515     int oldval = s->outport;
516 
517     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
518     s->outport = val;
519     qemu_set_irq(s->a20_out, (val >> 1) & 1);
520     if ((val & 1) && !(oldval & 1)) {
521         qemu_system_reset_request();
522     }
523 }
524 
525 static uint64_t port92_read(void *opaque, hwaddr addr,
526                             unsigned size)
527 {
528     Port92State *s = opaque;
529     uint32_t ret;
530 
531     ret = s->outport;
532     DPRINTF("port92: read 0x%02x\n", ret);
533     return ret;
534 }
535 
536 static void port92_init(ISADevice *dev, qemu_irq a20_out)
537 {
538     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
539 }
540 
541 static const VMStateDescription vmstate_port92_isa = {
542     .name = "port92",
543     .version_id = 1,
544     .minimum_version_id = 1,
545     .fields = (VMStateField[]) {
546         VMSTATE_UINT8(outport, Port92State),
547         VMSTATE_END_OF_LIST()
548     }
549 };
550 
551 static void port92_reset(DeviceState *d)
552 {
553     Port92State *s = PORT92(d);
554 
555     s->outport &= ~1;
556 }
557 
558 static const MemoryRegionOps port92_ops = {
559     .read = port92_read,
560     .write = port92_write,
561     .impl = {
562         .min_access_size = 1,
563         .max_access_size = 1,
564     },
565     .endianness = DEVICE_LITTLE_ENDIAN,
566 };
567 
568 static void port92_initfn(Object *obj)
569 {
570     Port92State *s = PORT92(obj);
571 
572     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
573 
574     s->outport = 0;
575 
576     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
577 }
578 
579 static void port92_realizefn(DeviceState *dev, Error **errp)
580 {
581     ISADevice *isadev = ISA_DEVICE(dev);
582     Port92State *s = PORT92(dev);
583 
584     isa_register_ioport(isadev, &s->io, 0x92);
585 }
586 
587 static void port92_class_initfn(ObjectClass *klass, void *data)
588 {
589     DeviceClass *dc = DEVICE_CLASS(klass);
590 
591     dc->realize = port92_realizefn;
592     dc->reset = port92_reset;
593     dc->vmsd = &vmstate_port92_isa;
594     /*
595      * Reason: unlike ordinary ISA devices, this one needs additional
596      * wiring: its A20 output line needs to be wired up by
597      * port92_init().
598      */
599     dc->cannot_instantiate_with_device_add_yet = true;
600 }
601 
602 static const TypeInfo port92_info = {
603     .name          = TYPE_PORT92,
604     .parent        = TYPE_ISA_DEVICE,
605     .instance_size = sizeof(Port92State),
606     .instance_init = port92_initfn,
607     .class_init    = port92_class_initfn,
608 };
609 
610 static void port92_register_types(void)
611 {
612     type_register_static(&port92_info);
613 }
614 
615 type_init(port92_register_types)
616 
617 static void handle_a20_line_change(void *opaque, int irq, int level)
618 {
619     X86CPU *cpu = opaque;
620 
621     /* XXX: send to all CPUs ? */
622     /* XXX: add logic to handle multiple A20 line sources */
623     x86_cpu_set_a20(cpu, level);
624 }
625 
626 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
627 {
628     int index = le32_to_cpu(e820_reserve.count);
629     struct e820_entry *entry;
630 
631     if (type != E820_RAM) {
632         /* old FW_CFG_E820_TABLE entry -- reservations only */
633         if (index >= E820_NR_ENTRIES) {
634             return -EBUSY;
635         }
636         entry = &e820_reserve.entry[index++];
637 
638         entry->address = cpu_to_le64(address);
639         entry->length = cpu_to_le64(length);
640         entry->type = cpu_to_le32(type);
641 
642         e820_reserve.count = cpu_to_le32(index);
643     }
644 
645     /* new "etc/e820" file -- include ram too */
646     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
647     e820_table[e820_entries].address = cpu_to_le64(address);
648     e820_table[e820_entries].length = cpu_to_le64(length);
649     e820_table[e820_entries].type = cpu_to_le32(type);
650     e820_entries++;
651 
652     return e820_entries;
653 }
654 
655 int e820_get_num_entries(void)
656 {
657     return e820_entries;
658 }
659 
660 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
661 {
662     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
663         *address = le64_to_cpu(e820_table[idx].address);
664         *length = le64_to_cpu(e820_table[idx].length);
665         return true;
666     }
667     return false;
668 }
669 
670 /* Enables contiguous-apic-ID mode, for compatibility */
671 static bool compat_apic_id_mode;
672 
673 void enable_compat_apic_id_mode(void)
674 {
675     compat_apic_id_mode = true;
676 }
677 
678 /* Calculates initial APIC ID for a specific CPU index
679  *
680  * Currently we need to be able to calculate the APIC ID from the CPU index
681  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
682  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
683  * all CPUs up to max_cpus.
684  */
685 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
686 {
687     uint32_t correct_id;
688     static bool warned;
689 
690     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
691     if (compat_apic_id_mode) {
692         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
693             error_report("APIC IDs set in compatibility mode, "
694                          "CPU topology won't match the configuration");
695             warned = true;
696         }
697         return cpu_index;
698     } else {
699         return correct_id;
700     }
701 }
702 
703 static void pc_build_smbios(FWCfgState *fw_cfg)
704 {
705     uint8_t *smbios_tables, *smbios_anchor;
706     size_t smbios_tables_len, smbios_anchor_len;
707     struct smbios_phys_mem_area *mem_array;
708     unsigned i, array_count;
709 
710     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
711     if (smbios_tables) {
712         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
713                          smbios_tables, smbios_tables_len);
714     }
715 
716     /* build the array of physical mem area from e820 table */
717     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
718     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
719         uint64_t addr, len;
720 
721         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
722             mem_array[array_count].address = addr;
723             mem_array[array_count].length = len;
724             array_count++;
725         }
726     }
727     smbios_get_tables(mem_array, array_count,
728                       &smbios_tables, &smbios_tables_len,
729                       &smbios_anchor, &smbios_anchor_len);
730     g_free(mem_array);
731 
732     if (smbios_anchor) {
733         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
734                         smbios_tables, smbios_tables_len);
735         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
736                         smbios_anchor, smbios_anchor_len);
737     }
738 }
739 
740 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
741 {
742     FWCfgState *fw_cfg;
743     uint64_t *numa_fw_cfg;
744     int i, j;
745 
746     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
747     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
748 
749     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
750      *
751      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
752      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
753      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
754      * for CPU hotplug also uses APIC ID and not "CPU index".
755      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
756      * but the "limit to the APIC ID values SeaBIOS may see".
757      *
758      * So for compatibility reasons with old BIOSes we are stuck with
759      * "etc/max-cpus" actually being apic_id_limit
760      */
761     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
762     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
763     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
764                      acpi_tables, acpi_tables_len);
765     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
766 
767     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
768                      &e820_reserve, sizeof(e820_reserve));
769     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
770                     sizeof(struct e820_entry) * e820_entries);
771 
772     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
773     /* allocate memory for the NUMA channel: one (64bit) word for the number
774      * of nodes, one word for each VCPU->node and one word for each node to
775      * hold the amount of memory.
776      */
777     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
778     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
779     for (i = 0; i < max_cpus; i++) {
780         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
781         assert(apic_id < pcms->apic_id_limit);
782         j = numa_get_node_for_cpu(i);
783         if (j < nb_numa_nodes) {
784             numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
785         }
786     }
787     for (i = 0; i < nb_numa_nodes; i++) {
788         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
789             cpu_to_le64(numa_info[i].node_mem);
790     }
791     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
792                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
793                      sizeof(*numa_fw_cfg));
794 
795     return fw_cfg;
796 }
797 
798 static long get_file_size(FILE *f)
799 {
800     long where, size;
801 
802     /* XXX: on Unix systems, using fstat() probably makes more sense */
803 
804     where = ftell(f);
805     fseek(f, 0, SEEK_END);
806     size = ftell(f);
807     fseek(f, where, SEEK_SET);
808 
809     return size;
810 }
811 
812 /* setup_data types */
813 #define SETUP_NONE     0
814 #define SETUP_E820_EXT 1
815 #define SETUP_DTB      2
816 #define SETUP_PCI      3
817 #define SETUP_EFI      4
818 
819 struct setup_data {
820     uint64_t next;
821     uint32_t type;
822     uint32_t len;
823     uint8_t data[0];
824 } __attribute__((packed));
825 
826 static void load_linux(PCMachineState *pcms,
827                        FWCfgState *fw_cfg)
828 {
829     uint16_t protocol;
830     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
831     int dtb_size, setup_data_offset;
832     uint32_t initrd_max;
833     uint8_t header[8192], *setup, *kernel, *initrd_data;
834     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
835     FILE *f;
836     char *vmode;
837     MachineState *machine = MACHINE(pcms);
838     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
839     struct setup_data *setup_data;
840     const char *kernel_filename = machine->kernel_filename;
841     const char *initrd_filename = machine->initrd_filename;
842     const char *dtb_filename = machine->dtb;
843     const char *kernel_cmdline = machine->kernel_cmdline;
844 
845     /* Align to 16 bytes as a paranoia measure */
846     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
847 
848     /* load the kernel header */
849     f = fopen(kernel_filename, "rb");
850     if (!f || !(kernel_size = get_file_size(f)) ||
851         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
852         MIN(ARRAY_SIZE(header), kernel_size)) {
853         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
854                 kernel_filename, strerror(errno));
855         exit(1);
856     }
857 
858     /* kernel protocol version */
859 #if 0
860     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
861 #endif
862     if (ldl_p(header+0x202) == 0x53726448) {
863         protocol = lduw_p(header+0x206);
864     } else {
865         /* This looks like a multiboot kernel. If it is, let's stop
866            treating it like a Linux kernel. */
867         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
868                            kernel_cmdline, kernel_size, header)) {
869             return;
870         }
871         protocol = 0;
872     }
873 
874     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
875         /* Low kernel */
876         real_addr    = 0x90000;
877         cmdline_addr = 0x9a000 - cmdline_size;
878         prot_addr    = 0x10000;
879     } else if (protocol < 0x202) {
880         /* High but ancient kernel */
881         real_addr    = 0x90000;
882         cmdline_addr = 0x9a000 - cmdline_size;
883         prot_addr    = 0x100000;
884     } else {
885         /* High and recent kernel */
886         real_addr    = 0x10000;
887         cmdline_addr = 0x20000;
888         prot_addr    = 0x100000;
889     }
890 
891 #if 0
892     fprintf(stderr,
893             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
894             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
895             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
896             real_addr,
897             cmdline_addr,
898             prot_addr);
899 #endif
900 
901     /* highest address for loading the initrd */
902     if (protocol >= 0x203) {
903         initrd_max = ldl_p(header+0x22c);
904     } else {
905         initrd_max = 0x37ffffff;
906     }
907 
908     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
909         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
910     }
911 
912     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
913     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
914     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
915 
916     if (protocol >= 0x202) {
917         stl_p(header+0x228, cmdline_addr);
918     } else {
919         stw_p(header+0x20, 0xA33F);
920         stw_p(header+0x22, cmdline_addr-real_addr);
921     }
922 
923     /* handle vga= parameter */
924     vmode = strstr(kernel_cmdline, "vga=");
925     if (vmode) {
926         unsigned int video_mode;
927         /* skip "vga=" */
928         vmode += 4;
929         if (!strncmp(vmode, "normal", 6)) {
930             video_mode = 0xffff;
931         } else if (!strncmp(vmode, "ext", 3)) {
932             video_mode = 0xfffe;
933         } else if (!strncmp(vmode, "ask", 3)) {
934             video_mode = 0xfffd;
935         } else {
936             video_mode = strtol(vmode, NULL, 0);
937         }
938         stw_p(header+0x1fa, video_mode);
939     }
940 
941     /* loader type */
942     /* High nybble = B reserved for QEMU; low nybble is revision number.
943        If this code is substantially changed, you may want to consider
944        incrementing the revision. */
945     if (protocol >= 0x200) {
946         header[0x210] = 0xB0;
947     }
948     /* heap */
949     if (protocol >= 0x201) {
950         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
951         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
952     }
953 
954     /* load initrd */
955     if (initrd_filename) {
956         if (protocol < 0x200) {
957             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
958             exit(1);
959         }
960 
961         initrd_size = get_image_size(initrd_filename);
962         if (initrd_size < 0) {
963             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
964                     initrd_filename, strerror(errno));
965             exit(1);
966         }
967 
968         initrd_addr = (initrd_max-initrd_size) & ~4095;
969 
970         initrd_data = g_malloc(initrd_size);
971         load_image(initrd_filename, initrd_data);
972 
973         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
974         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
975         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
976 
977         stl_p(header+0x218, initrd_addr);
978         stl_p(header+0x21c, initrd_size);
979     }
980 
981     /* load kernel and setup */
982     setup_size = header[0x1f1];
983     if (setup_size == 0) {
984         setup_size = 4;
985     }
986     setup_size = (setup_size+1)*512;
987     if (setup_size > kernel_size) {
988         fprintf(stderr, "qemu: invalid kernel header\n");
989         exit(1);
990     }
991     kernel_size -= setup_size;
992 
993     setup  = g_malloc(setup_size);
994     kernel = g_malloc(kernel_size);
995     fseek(f, 0, SEEK_SET);
996     if (fread(setup, 1, setup_size, f) != setup_size) {
997         fprintf(stderr, "fread() failed\n");
998         exit(1);
999     }
1000     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1001         fprintf(stderr, "fread() failed\n");
1002         exit(1);
1003     }
1004     fclose(f);
1005 
1006     /* append dtb to kernel */
1007     if (dtb_filename) {
1008         if (protocol < 0x209) {
1009             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1010             exit(1);
1011         }
1012 
1013         dtb_size = get_image_size(dtb_filename);
1014         if (dtb_size <= 0) {
1015             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1016                     dtb_filename, strerror(errno));
1017             exit(1);
1018         }
1019 
1020         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1021         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1022         kernel = g_realloc(kernel, kernel_size);
1023 
1024         stq_p(header+0x250, prot_addr + setup_data_offset);
1025 
1026         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1027         setup_data->next = 0;
1028         setup_data->type = cpu_to_le32(SETUP_DTB);
1029         setup_data->len = cpu_to_le32(dtb_size);
1030 
1031         load_image_size(dtb_filename, setup_data->data, dtb_size);
1032     }
1033 
1034     memcpy(setup, header, MIN(sizeof(header), setup_size));
1035 
1036     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1037     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1038     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1039 
1040     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1041     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1042     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1043 
1044     if (fw_cfg_dma_enabled(fw_cfg)) {
1045         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1046         option_rom[nb_option_roms].bootindex = 0;
1047     } else {
1048         option_rom[nb_option_roms].name = "linuxboot.bin";
1049         option_rom[nb_option_roms].bootindex = 0;
1050     }
1051     nb_option_roms++;
1052 }
1053 
1054 #define NE2000_NB_MAX 6
1055 
1056 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1057                                               0x280, 0x380 };
1058 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1059 
1060 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1061 {
1062     static int nb_ne2k = 0;
1063 
1064     if (nb_ne2k == NE2000_NB_MAX)
1065         return;
1066     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1067                     ne2000_irq[nb_ne2k], nd);
1068     nb_ne2k++;
1069 }
1070 
1071 DeviceState *cpu_get_current_apic(void)
1072 {
1073     if (current_cpu) {
1074         X86CPU *cpu = X86_CPU(current_cpu);
1075         return cpu->apic_state;
1076     } else {
1077         return NULL;
1078     }
1079 }
1080 
1081 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1082 {
1083     X86CPU *cpu = opaque;
1084 
1085     if (level) {
1086         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1087     }
1088 }
1089 
1090 static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id,
1091                           Error **errp)
1092 {
1093     X86CPU *cpu = NULL;
1094     Error *local_err = NULL;
1095 
1096     cpu = X86_CPU(object_new(typename));
1097 
1098     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1099     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1100 
1101     if (local_err) {
1102         error_propagate(errp, local_err);
1103         object_unref(OBJECT(cpu));
1104         cpu = NULL;
1105     }
1106     return cpu;
1107 }
1108 
1109 void pc_hot_add_cpu(const int64_t id, Error **errp)
1110 {
1111     X86CPU *cpu;
1112     ObjectClass *oc;
1113     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1114     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1115     Error *local_err = NULL;
1116 
1117     if (id < 0) {
1118         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1119         return;
1120     }
1121 
1122     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1123         error_setg(errp, "Unable to add CPU: %" PRIi64
1124                    ", resulting APIC ID (%" PRIi64 ") is too large",
1125                    id, apic_id);
1126         return;
1127     }
1128 
1129     assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1130     oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu));
1131     cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1132     if (local_err) {
1133         error_propagate(errp, local_err);
1134         return;
1135     }
1136     object_unref(OBJECT(cpu));
1137 }
1138 
1139 void pc_cpus_init(PCMachineState *pcms)
1140 {
1141     int i;
1142     CPUClass *cc;
1143     ObjectClass *oc;
1144     const char *typename;
1145     gchar **model_pieces;
1146     X86CPU *cpu = NULL;
1147     MachineState *machine = MACHINE(pcms);
1148 
1149     /* init CPUs */
1150     if (machine->cpu_model == NULL) {
1151 #ifdef TARGET_X86_64
1152         machine->cpu_model = "qemu64";
1153 #else
1154         machine->cpu_model = "qemu32";
1155 #endif
1156     }
1157 
1158     model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1159     if (!model_pieces[0]) {
1160         error_report("Invalid/empty CPU model name");
1161         exit(1);
1162     }
1163 
1164     oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1165     if (oc == NULL) {
1166         error_report("Unable to find CPU definition: %s", model_pieces[0]);
1167         exit(1);
1168     }
1169     typename = object_class_get_name(oc);
1170     cc = CPU_CLASS(oc);
1171     cc->parse_features(typename, model_pieces[1], &error_fatal);
1172     g_strfreev(model_pieces);
1173 
1174     /* Calculates the limit to CPU APIC ID values
1175      *
1176      * Limit for the APIC ID value, so that all
1177      * CPU APIC IDs are < pcms->apic_id_limit.
1178      *
1179      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1180      */
1181     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1182     pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1183                                     sizeof(CPUArchId) * max_cpus);
1184     for (i = 0; i < max_cpus; i++) {
1185         pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1186         pcms->possible_cpus->len++;
1187         if (i < smp_cpus) {
1188             cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i),
1189                              &error_fatal);
1190             object_unref(OBJECT(cpu));
1191         }
1192     }
1193 
1194     /* tell smbios about cpuid version and features */
1195     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1196 }
1197 
1198 static void pc_build_feature_control_file(PCMachineState *pcms)
1199 {
1200     X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
1201     CPUX86State *env = &cpu->env;
1202     uint32_t unused, ecx, edx;
1203     uint64_t feature_control_bits = 0;
1204     uint64_t *val;
1205 
1206     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1207     if (ecx & CPUID_EXT_VMX) {
1208         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1209     }
1210 
1211     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1212         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1213         (env->mcg_cap & MCG_LMCE_P)) {
1214         feature_control_bits |= FEATURE_CONTROL_LMCE;
1215     }
1216 
1217     if (!feature_control_bits) {
1218         return;
1219     }
1220 
1221     val = g_malloc(sizeof(*val));
1222     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1223     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1224 }
1225 
1226 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1227 {
1228     if (cpus_count > 0xff) {
1229         /* If the number of CPUs can't be represented in 8 bits, the
1230          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1231          * to make old BIOSes fail more predictably.
1232          */
1233         rtc_set_memory(rtc, 0x5f, 0);
1234     } else {
1235         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1236     }
1237 }
1238 
1239 static
1240 void pc_machine_done(Notifier *notifier, void *data)
1241 {
1242     PCMachineState *pcms = container_of(notifier,
1243                                         PCMachineState, machine_done);
1244     PCIBus *bus = pcms->bus;
1245 
1246     /* set the number of CPUs */
1247     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1248 
1249     if (bus) {
1250         int extra_hosts = 0;
1251 
1252         QLIST_FOREACH(bus, &bus->child, sibling) {
1253             /* look for expander root buses */
1254             if (pci_bus_is_root(bus)) {
1255                 extra_hosts++;
1256             }
1257         }
1258         if (extra_hosts && pcms->fw_cfg) {
1259             uint64_t *val = g_malloc(sizeof(*val));
1260             *val = cpu_to_le64(extra_hosts);
1261             fw_cfg_add_file(pcms->fw_cfg,
1262                     "etc/extra-pci-roots", val, sizeof(*val));
1263         }
1264     }
1265 
1266     acpi_setup();
1267     if (pcms->fw_cfg) {
1268         pc_build_smbios(pcms->fw_cfg);
1269         pc_build_feature_control_file(pcms);
1270         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1271         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1272     }
1273 
1274     if (pcms->apic_id_limit > 255) {
1275         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1276 
1277         if (!iommu || !iommu->x86_iommu.intr_supported ||
1278             iommu->intr_eim != ON_OFF_AUTO_ON) {
1279             error_report("current -smp configuration requires "
1280                          "Extended Interrupt Mode enabled. "
1281                          "You can add an IOMMU using: "
1282                          "-device intel-iommu,intremap=on,eim=on");
1283             exit(EXIT_FAILURE);
1284         }
1285     }
1286 }
1287 
1288 void pc_guest_info_init(PCMachineState *pcms)
1289 {
1290     int i;
1291 
1292     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1293     pcms->numa_nodes = nb_numa_nodes;
1294     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1295                                     sizeof *pcms->node_mem);
1296     for (i = 0; i < nb_numa_nodes; i++) {
1297         pcms->node_mem[i] = numa_info[i].node_mem;
1298     }
1299 
1300     pcms->machine_done.notify = pc_machine_done;
1301     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1302 }
1303 
1304 /* setup pci memory address space mapping into system address space */
1305 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1306                             MemoryRegion *pci_address_space)
1307 {
1308     /* Set to lower priority than RAM */
1309     memory_region_add_subregion_overlap(system_memory, 0x0,
1310                                         pci_address_space, -1);
1311 }
1312 
1313 void pc_acpi_init(const char *default_dsdt)
1314 {
1315     char *filename;
1316 
1317     if (acpi_tables != NULL) {
1318         /* manually set via -acpitable, leave it alone */
1319         return;
1320     }
1321 
1322     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1323     if (filename == NULL) {
1324         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1325     } else {
1326         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1327                                           &error_abort);
1328         Error *err = NULL;
1329 
1330         qemu_opt_set(opts, "file", filename, &error_abort);
1331 
1332         acpi_table_add_builtin(opts, &err);
1333         if (err) {
1334             error_reportf_err(err, "WARNING: failed to load %s: ",
1335                               filename);
1336         }
1337         g_free(filename);
1338     }
1339 }
1340 
1341 void xen_load_linux(PCMachineState *pcms)
1342 {
1343     int i;
1344     FWCfgState *fw_cfg;
1345 
1346     assert(MACHINE(pcms)->kernel_filename != NULL);
1347 
1348     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1349     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1350     rom_set_fw(fw_cfg);
1351 
1352     load_linux(pcms, fw_cfg);
1353     for (i = 0; i < nb_option_roms; i++) {
1354         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1355                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1356                !strcmp(option_rom[i].name, "multiboot.bin"));
1357         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1358     }
1359     pcms->fw_cfg = fw_cfg;
1360 }
1361 
1362 void pc_memory_init(PCMachineState *pcms,
1363                     MemoryRegion *system_memory,
1364                     MemoryRegion *rom_memory,
1365                     MemoryRegion **ram_memory)
1366 {
1367     int linux_boot, i;
1368     MemoryRegion *ram, *option_rom_mr;
1369     MemoryRegion *ram_below_4g, *ram_above_4g;
1370     FWCfgState *fw_cfg;
1371     MachineState *machine = MACHINE(pcms);
1372     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1373 
1374     assert(machine->ram_size == pcms->below_4g_mem_size +
1375                                 pcms->above_4g_mem_size);
1376 
1377     linux_boot = (machine->kernel_filename != NULL);
1378 
1379     /* Allocate RAM.  We allocate it as a single memory region and use
1380      * aliases to address portions of it, mostly for backwards compatibility
1381      * with older qemus that used qemu_ram_alloc().
1382      */
1383     ram = g_malloc(sizeof(*ram));
1384     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1385                                          machine->ram_size);
1386     *ram_memory = ram;
1387     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1388     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1389                              0, pcms->below_4g_mem_size);
1390     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1391     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1392     if (pcms->above_4g_mem_size > 0) {
1393         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1394         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1395                                  pcms->below_4g_mem_size,
1396                                  pcms->above_4g_mem_size);
1397         memory_region_add_subregion(system_memory, 0x100000000ULL,
1398                                     ram_above_4g);
1399         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1400     }
1401 
1402     if (!pcmc->has_reserved_memory &&
1403         (machine->ram_slots ||
1404          (machine->maxram_size > machine->ram_size))) {
1405         MachineClass *mc = MACHINE_GET_CLASS(machine);
1406 
1407         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1408                      mc->name);
1409         exit(EXIT_FAILURE);
1410     }
1411 
1412     /* initialize hotplug memory address space */
1413     if (pcmc->has_reserved_memory &&
1414         (machine->ram_size < machine->maxram_size)) {
1415         ram_addr_t hotplug_mem_size =
1416             machine->maxram_size - machine->ram_size;
1417 
1418         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1419             error_report("unsupported amount of memory slots: %"PRIu64,
1420                          machine->ram_slots);
1421             exit(EXIT_FAILURE);
1422         }
1423 
1424         if (QEMU_ALIGN_UP(machine->maxram_size,
1425                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1426             error_report("maximum memory size must by aligned to multiple of "
1427                          "%d bytes", TARGET_PAGE_SIZE);
1428             exit(EXIT_FAILURE);
1429         }
1430 
1431         pcms->hotplug_memory.base =
1432             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1433 
1434         if (pcmc->enforce_aligned_dimm) {
1435             /* size hotplug region assuming 1G page max alignment per slot */
1436             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1437         }
1438 
1439         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1440             hotplug_mem_size) {
1441             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1442                          machine->maxram_size);
1443             exit(EXIT_FAILURE);
1444         }
1445 
1446         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1447                            "hotplug-memory", hotplug_mem_size);
1448         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1449                                     &pcms->hotplug_memory.mr);
1450     }
1451 
1452     /* Initialize PC system firmware */
1453     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1454 
1455     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1456     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1457                            &error_fatal);
1458     vmstate_register_ram_global(option_rom_mr);
1459     memory_region_add_subregion_overlap(rom_memory,
1460                                         PC_ROM_MIN_VGA,
1461                                         option_rom_mr,
1462                                         1);
1463 
1464     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1465 
1466     rom_set_fw(fw_cfg);
1467 
1468     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1469         uint64_t *val = g_malloc(sizeof(*val));
1470         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1471         uint64_t res_mem_end = pcms->hotplug_memory.base;
1472 
1473         if (!pcmc->broken_reserved_end) {
1474             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1475         }
1476         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1477         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1478     }
1479 
1480     if (linux_boot) {
1481         load_linux(pcms, fw_cfg);
1482     }
1483 
1484     for (i = 0; i < nb_option_roms; i++) {
1485         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1486     }
1487     pcms->fw_cfg = fw_cfg;
1488 
1489     /* Init default IOAPIC address space */
1490     pcms->ioapic_as = &address_space_memory;
1491 }
1492 
1493 qemu_irq pc_allocate_cpu_irq(void)
1494 {
1495     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1496 }
1497 
1498 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1499 {
1500     DeviceState *dev = NULL;
1501 
1502     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1503     if (pci_bus) {
1504         PCIDevice *pcidev = pci_vga_init(pci_bus);
1505         dev = pcidev ? &pcidev->qdev : NULL;
1506     } else if (isa_bus) {
1507         ISADevice *isadev = isa_vga_init(isa_bus);
1508         dev = isadev ? DEVICE(isadev) : NULL;
1509     }
1510     rom_reset_order_override();
1511     return dev;
1512 }
1513 
1514 static const MemoryRegionOps ioport80_io_ops = {
1515     .write = ioport80_write,
1516     .read = ioport80_read,
1517     .endianness = DEVICE_NATIVE_ENDIAN,
1518     .impl = {
1519         .min_access_size = 1,
1520         .max_access_size = 1,
1521     },
1522 };
1523 
1524 static const MemoryRegionOps ioportF0_io_ops = {
1525     .write = ioportF0_write,
1526     .read = ioportF0_read,
1527     .endianness = DEVICE_NATIVE_ENDIAN,
1528     .impl = {
1529         .min_access_size = 1,
1530         .max_access_size = 1,
1531     },
1532 };
1533 
1534 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1535                           ISADevice **rtc_state,
1536                           bool create_fdctrl,
1537                           bool no_vmport,
1538                           uint32_t hpet_irqs)
1539 {
1540     int i;
1541     DriveInfo *fd[MAX_FD];
1542     DeviceState *hpet = NULL;
1543     int pit_isa_irq = 0;
1544     qemu_irq pit_alt_irq = NULL;
1545     qemu_irq rtc_irq = NULL;
1546     qemu_irq *a20_line;
1547     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1548     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1549     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1550 
1551     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1552     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1553 
1554     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1555     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1556 
1557     /*
1558      * Check if an HPET shall be created.
1559      *
1560      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1561      * when the HPET wants to take over. Thus we have to disable the latter.
1562      */
1563     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1564         /* In order to set property, here not using sysbus_try_create_simple */
1565         hpet = qdev_try_create(NULL, TYPE_HPET);
1566         if (hpet) {
1567             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1568              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1569              * IRQ8 and IRQ2.
1570              */
1571             uint8_t compat = object_property_get_int(OBJECT(hpet),
1572                     HPET_INTCAP, NULL);
1573             if (!compat) {
1574                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1575             }
1576             qdev_init_nofail(hpet);
1577             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1578 
1579             for (i = 0; i < GSI_NUM_PINS; i++) {
1580                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1581             }
1582             pit_isa_irq = -1;
1583             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1584             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1585         }
1586     }
1587     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1588 
1589     qemu_register_boot_set(pc_boot_set, *rtc_state);
1590 
1591     if (!xen_enabled()) {
1592         if (kvm_pit_in_kernel()) {
1593             pit = kvm_pit_init(isa_bus, 0x40);
1594         } else {
1595             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1596         }
1597         if (hpet) {
1598             /* connect PIT to output control line of the HPET */
1599             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1600         }
1601         pcspk_init(isa_bus, pit);
1602     }
1603 
1604     serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1605     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1606 
1607     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1608     i8042 = isa_create_simple(isa_bus, "i8042");
1609     i8042_setup_a20_line(i8042, a20_line[0]);
1610     if (!no_vmport) {
1611         vmport_init(isa_bus);
1612         vmmouse = isa_try_create(isa_bus, "vmmouse");
1613     } else {
1614         vmmouse = NULL;
1615     }
1616     if (vmmouse) {
1617         DeviceState *dev = DEVICE(vmmouse);
1618         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1619         qdev_init_nofail(dev);
1620     }
1621     port92 = isa_create_simple(isa_bus, "port92");
1622     port92_init(port92, a20_line[1]);
1623     g_free(a20_line);
1624 
1625     DMA_init(isa_bus, 0);
1626 
1627     for(i = 0; i < MAX_FD; i++) {
1628         fd[i] = drive_get(IF_FLOPPY, 0, i);
1629         create_fdctrl |= !!fd[i];
1630     }
1631     if (create_fdctrl) {
1632         fdctrl_init_isa(isa_bus, fd);
1633     }
1634 }
1635 
1636 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1637 {
1638     int i;
1639 
1640     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1641     for (i = 0; i < nb_nics; i++) {
1642         NICInfo *nd = &nd_table[i];
1643 
1644         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1645             pc_init_ne2k_isa(isa_bus, nd);
1646         } else {
1647             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1648         }
1649     }
1650     rom_reset_order_override();
1651 }
1652 
1653 void pc_pci_device_init(PCIBus *pci_bus)
1654 {
1655     int max_bus;
1656     int bus;
1657 
1658     max_bus = drive_get_max_bus(IF_SCSI);
1659     for (bus = 0; bus <= max_bus; bus++) {
1660         pci_create_simple(pci_bus, -1, "lsi53c895a");
1661     }
1662 }
1663 
1664 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1665 {
1666     DeviceState *dev;
1667     SysBusDevice *d;
1668     unsigned int i;
1669 
1670     if (kvm_ioapic_in_kernel()) {
1671         dev = qdev_create(NULL, "kvm-ioapic");
1672     } else {
1673         dev = qdev_create(NULL, "ioapic");
1674     }
1675     if (parent_name) {
1676         object_property_add_child(object_resolve_path(parent_name, NULL),
1677                                   "ioapic", OBJECT(dev), NULL);
1678     }
1679     qdev_init_nofail(dev);
1680     d = SYS_BUS_DEVICE(dev);
1681     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1682 
1683     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1684         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1685     }
1686 }
1687 
1688 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1689                          DeviceState *dev, Error **errp)
1690 {
1691     HotplugHandlerClass *hhc;
1692     Error *local_err = NULL;
1693     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1694     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1695     PCDIMMDevice *dimm = PC_DIMM(dev);
1696     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1697     MemoryRegion *mr = ddc->get_memory_region(dimm);
1698     uint64_t align = TARGET_PAGE_SIZE;
1699 
1700     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1701         align = memory_region_get_alignment(mr);
1702     }
1703 
1704     if (!pcms->acpi_dev) {
1705         error_setg(&local_err,
1706                    "memory hotplug is not enabled: missing acpi device");
1707         goto out;
1708     }
1709 
1710     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1711     if (local_err) {
1712         goto out;
1713     }
1714 
1715     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1716         nvdimm_plug(&pcms->acpi_nvdimm_state);
1717     }
1718 
1719     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1720     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1721 out:
1722     error_propagate(errp, local_err);
1723 }
1724 
1725 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1726                                    DeviceState *dev, Error **errp)
1727 {
1728     HotplugHandlerClass *hhc;
1729     Error *local_err = NULL;
1730     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1731 
1732     if (!pcms->acpi_dev) {
1733         error_setg(&local_err,
1734                    "memory hotplug is not enabled: missing acpi device");
1735         goto out;
1736     }
1737 
1738     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1739         error_setg(&local_err,
1740                    "nvdimm device hot unplug is not supported yet.");
1741         goto out;
1742     }
1743 
1744     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1745     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1746 
1747 out:
1748     error_propagate(errp, local_err);
1749 }
1750 
1751 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1752                            DeviceState *dev, Error **errp)
1753 {
1754     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1755     PCDIMMDevice *dimm = PC_DIMM(dev);
1756     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1757     MemoryRegion *mr = ddc->get_memory_region(dimm);
1758     HotplugHandlerClass *hhc;
1759     Error *local_err = NULL;
1760 
1761     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1762     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1763 
1764     if (local_err) {
1765         goto out;
1766     }
1767 
1768     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1769     object_unparent(OBJECT(dev));
1770 
1771  out:
1772     error_propagate(errp, local_err);
1773 }
1774 
1775 static int pc_apic_cmp(const void *a, const void *b)
1776 {
1777    CPUArchId *apic_a = (CPUArchId *)a;
1778    CPUArchId *apic_b = (CPUArchId *)b;
1779 
1780    return apic_a->arch_id - apic_b->arch_id;
1781 }
1782 
1783 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1784  * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no
1785  * entry correponding to CPU's apic_id returns NULL.
1786  */
1787 static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu,
1788                                    int *idx)
1789 {
1790     CPUClass *cc = CPU_GET_CLASS(cpu);
1791     CPUArchId apic_id, *found_cpu;
1792 
1793     apic_id.arch_id = cc->get_arch_id(CPU(cpu));
1794     found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1795         pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1796         pc_apic_cmp);
1797     if (found_cpu && idx) {
1798         *idx = found_cpu - pcms->possible_cpus->cpus;
1799     }
1800     return found_cpu;
1801 }
1802 
1803 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1804                         DeviceState *dev, Error **errp)
1805 {
1806     CPUArchId *found_cpu;
1807     HotplugHandlerClass *hhc;
1808     Error *local_err = NULL;
1809     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1810 
1811     if (pcms->acpi_dev) {
1812         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1813         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1814         if (local_err) {
1815             goto out;
1816         }
1817     }
1818 
1819     /* increment the number of CPUs */
1820     pcms->boot_cpus++;
1821     if (dev->hotplugged) {
1822         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1823         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1824     }
1825 
1826     found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1827     found_cpu->cpu = CPU(dev);
1828 out:
1829     error_propagate(errp, local_err);
1830 }
1831 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1832                                      DeviceState *dev, Error **errp)
1833 {
1834     int idx = -1;
1835     HotplugHandlerClass *hhc;
1836     Error *local_err = NULL;
1837     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1838 
1839     pc_find_cpu_slot(pcms, CPU(dev), &idx);
1840     assert(idx != -1);
1841     if (idx == 0) {
1842         error_setg(&local_err, "Boot CPU is unpluggable");
1843         goto out;
1844     }
1845 
1846     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1847     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1848 
1849     if (local_err) {
1850         goto out;
1851     }
1852 
1853  out:
1854     error_propagate(errp, local_err);
1855 
1856 }
1857 
1858 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1859                              DeviceState *dev, Error **errp)
1860 {
1861     CPUArchId *found_cpu;
1862     HotplugHandlerClass *hhc;
1863     Error *local_err = NULL;
1864     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1865 
1866     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1867     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1868 
1869     if (local_err) {
1870         goto out;
1871     }
1872 
1873     found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1874     found_cpu->cpu = NULL;
1875     object_unparent(OBJECT(dev));
1876 
1877     /* decrement the number of CPUs */
1878     pcms->boot_cpus--;
1879     /* Update the number of CPUs in CMOS */
1880     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1881     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1882  out:
1883     error_propagate(errp, local_err);
1884 }
1885 
1886 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1887                             DeviceState *dev, Error **errp)
1888 {
1889     int idx;
1890     CPUState *cs;
1891     CPUArchId *cpu_slot;
1892     X86CPUTopoInfo topo;
1893     X86CPU *cpu = X86_CPU(dev);
1894     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1895 
1896     /* if APIC ID is not set, set it based on socket/core/thread properties */
1897     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1898         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1899 
1900         if (cpu->socket_id < 0) {
1901             error_setg(errp, "CPU socket-id is not set");
1902             return;
1903         } else if (cpu->socket_id > max_socket) {
1904             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1905                        cpu->socket_id, max_socket);
1906             return;
1907         }
1908         if (cpu->core_id < 0) {
1909             error_setg(errp, "CPU core-id is not set");
1910             return;
1911         } else if (cpu->core_id > (smp_cores - 1)) {
1912             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1913                        cpu->core_id, smp_cores - 1);
1914             return;
1915         }
1916         if (cpu->thread_id < 0) {
1917             error_setg(errp, "CPU thread-id is not set");
1918             return;
1919         } else if (cpu->thread_id > (smp_threads - 1)) {
1920             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1921                        cpu->thread_id, smp_threads - 1);
1922             return;
1923         }
1924 
1925         topo.pkg_id = cpu->socket_id;
1926         topo.core_id = cpu->core_id;
1927         topo.smt_id = cpu->thread_id;
1928         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1929     }
1930 
1931     cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx);
1932     if (!cpu_slot) {
1933         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1934         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1935                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1936                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1937                    pcms->possible_cpus->len - 1);
1938         return;
1939     }
1940 
1941     if (cpu_slot->cpu) {
1942         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1943                    idx, cpu->apic_id);
1944         return;
1945     }
1946 
1947     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1948      * so that query_hotpluggable_cpus would show correct values
1949      */
1950     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1951      * once -smp refactoring is complete and there will be CPU private
1952      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1953     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1954     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1955         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1956             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1957         return;
1958     }
1959     cpu->socket_id = topo.pkg_id;
1960 
1961     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1962         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1963             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1964         return;
1965     }
1966     cpu->core_id = topo.core_id;
1967 
1968     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1969         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1970             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1971         return;
1972     }
1973     cpu->thread_id = topo.smt_id;
1974 
1975     cs = CPU(cpu);
1976     cs->cpu_index = idx;
1977 }
1978 
1979 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1980                                           DeviceState *dev, Error **errp)
1981 {
1982     if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1983         pc_cpu_pre_plug(hotplug_dev, dev, errp);
1984     }
1985 }
1986 
1987 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1988                                       DeviceState *dev, Error **errp)
1989 {
1990     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1991         pc_dimm_plug(hotplug_dev, dev, errp);
1992     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1993         pc_cpu_plug(hotplug_dev, dev, errp);
1994     }
1995 }
1996 
1997 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1998                                                 DeviceState *dev, Error **errp)
1999 {
2000     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2001         pc_dimm_unplug_request(hotplug_dev, dev, errp);
2002     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2003         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2004     } else {
2005         error_setg(errp, "acpi: device unplug request for not supported device"
2006                    " type: %s", object_get_typename(OBJECT(dev)));
2007     }
2008 }
2009 
2010 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2011                                         DeviceState *dev, Error **errp)
2012 {
2013     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2014         pc_dimm_unplug(hotplug_dev, dev, errp);
2015     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2016         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2017     } else {
2018         error_setg(errp, "acpi: device unplug for not supported device"
2019                    " type: %s", object_get_typename(OBJECT(dev)));
2020     }
2021 }
2022 
2023 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2024                                              DeviceState *dev)
2025 {
2026     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2027 
2028     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2029         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2030         return HOTPLUG_HANDLER(machine);
2031     }
2032 
2033     return pcmc->get_hotplug_handler ?
2034         pcmc->get_hotplug_handler(machine, dev) : NULL;
2035 }
2036 
2037 static void
2038 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2039                                           const char *name, void *opaque,
2040                                           Error **errp)
2041 {
2042     PCMachineState *pcms = PC_MACHINE(obj);
2043     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2044 
2045     visit_type_int(v, name, &value, errp);
2046 }
2047 
2048 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2049                                             const char *name, void *opaque,
2050                                             Error **errp)
2051 {
2052     PCMachineState *pcms = PC_MACHINE(obj);
2053     uint64_t value = pcms->max_ram_below_4g;
2054 
2055     visit_type_size(v, name, &value, errp);
2056 }
2057 
2058 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2059                                             const char *name, void *opaque,
2060                                             Error **errp)
2061 {
2062     PCMachineState *pcms = PC_MACHINE(obj);
2063     Error *error = NULL;
2064     uint64_t value;
2065 
2066     visit_type_size(v, name, &value, &error);
2067     if (error) {
2068         error_propagate(errp, error);
2069         return;
2070     }
2071     if (value > (1ULL << 32)) {
2072         error_setg(&error,
2073                    "Machine option 'max-ram-below-4g=%"PRIu64
2074                    "' expects size less than or equal to 4G", value);
2075         error_propagate(errp, error);
2076         return;
2077     }
2078 
2079     if (value < (1ULL << 20)) {
2080         error_report("Warning: small max_ram_below_4g(%"PRIu64
2081                      ") less than 1M.  BIOS may not work..",
2082                      value);
2083     }
2084 
2085     pcms->max_ram_below_4g = value;
2086 }
2087 
2088 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2089                                   void *opaque, Error **errp)
2090 {
2091     PCMachineState *pcms = PC_MACHINE(obj);
2092     OnOffAuto vmport = pcms->vmport;
2093 
2094     visit_type_OnOffAuto(v, name, &vmport, errp);
2095 }
2096 
2097 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2098                                   void *opaque, Error **errp)
2099 {
2100     PCMachineState *pcms = PC_MACHINE(obj);
2101 
2102     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2103 }
2104 
2105 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2106 {
2107     bool smm_available = false;
2108 
2109     if (pcms->smm == ON_OFF_AUTO_OFF) {
2110         return false;
2111     }
2112 
2113     if (tcg_enabled() || qtest_enabled()) {
2114         smm_available = true;
2115     } else if (kvm_enabled()) {
2116         smm_available = kvm_has_smm();
2117     }
2118 
2119     if (smm_available) {
2120         return true;
2121     }
2122 
2123     if (pcms->smm == ON_OFF_AUTO_ON) {
2124         error_report("System Management Mode not supported by this hypervisor.");
2125         exit(1);
2126     }
2127     return false;
2128 }
2129 
2130 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2131                                void *opaque, Error **errp)
2132 {
2133     PCMachineState *pcms = PC_MACHINE(obj);
2134     OnOffAuto smm = pcms->smm;
2135 
2136     visit_type_OnOffAuto(v, name, &smm, errp);
2137 }
2138 
2139 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2140                                void *opaque, Error **errp)
2141 {
2142     PCMachineState *pcms = PC_MACHINE(obj);
2143 
2144     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2145 }
2146 
2147 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2148 {
2149     PCMachineState *pcms = PC_MACHINE(obj);
2150 
2151     return pcms->acpi_nvdimm_state.is_enabled;
2152 }
2153 
2154 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2155 {
2156     PCMachineState *pcms = PC_MACHINE(obj);
2157 
2158     pcms->acpi_nvdimm_state.is_enabled = value;
2159 }
2160 
2161 static void pc_machine_initfn(Object *obj)
2162 {
2163     PCMachineState *pcms = PC_MACHINE(obj);
2164 
2165     pcms->max_ram_below_4g = 0; /* use default */
2166     pcms->smm = ON_OFF_AUTO_AUTO;
2167     pcms->vmport = ON_OFF_AUTO_AUTO;
2168     /* nvdimm is disabled on default. */
2169     pcms->acpi_nvdimm_state.is_enabled = false;
2170     /* acpi build is enabled by default if machine supports it */
2171     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2172 }
2173 
2174 static void pc_machine_reset(void)
2175 {
2176     CPUState *cs;
2177     X86CPU *cpu;
2178 
2179     qemu_devices_reset();
2180 
2181     /* Reset APIC after devices have been reset to cancel
2182      * any changes that qemu_devices_reset() might have done.
2183      */
2184     CPU_FOREACH(cs) {
2185         cpu = X86_CPU(cs);
2186 
2187         if (cpu->apic_state) {
2188             device_reset(cpu->apic_state);
2189         }
2190     }
2191 }
2192 
2193 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2194 {
2195     X86CPUTopoInfo topo;
2196     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2197                           &topo);
2198     return topo.pkg_id;
2199 }
2200 
2201 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
2202 {
2203     PCMachineState *pcms = PC_MACHINE(machine);
2204     int len = sizeof(CPUArchIdList) +
2205               sizeof(CPUArchId) * (pcms->possible_cpus->len);
2206     CPUArchIdList *list = g_malloc(len);
2207 
2208     memcpy(list, pcms->possible_cpus, len);
2209     return list;
2210 }
2211 
2212 static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine)
2213 {
2214     int i;
2215     CPUState *cpu;
2216     HotpluggableCPUList *head = NULL;
2217     PCMachineState *pcms = PC_MACHINE(machine);
2218     const char *cpu_type;
2219 
2220     cpu = pcms->possible_cpus->cpus[0].cpu;
2221     assert(cpu); /* BSP is always present */
2222     cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu)));
2223 
2224     for (i = 0; i < pcms->possible_cpus->len; i++) {
2225         X86CPUTopoInfo topo;
2226         HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2227         HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2228         CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2229         const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id;
2230 
2231         x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo);
2232 
2233         cpu_item->type = g_strdup(cpu_type);
2234         cpu_item->vcpus_count = 1;
2235         cpu_props->has_socket_id = true;
2236         cpu_props->socket_id = topo.pkg_id;
2237         cpu_props->has_core_id = true;
2238         cpu_props->core_id = topo.core_id;
2239         cpu_props->has_thread_id = true;
2240         cpu_props->thread_id = topo.smt_id;
2241         cpu_item->props = cpu_props;
2242 
2243         cpu = pcms->possible_cpus->cpus[i].cpu;
2244         if (cpu) {
2245             cpu_item->has_qom_path = true;
2246             cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu));
2247         }
2248 
2249         list_item->value = cpu_item;
2250         list_item->next = head;
2251         head = list_item;
2252     }
2253     return head;
2254 }
2255 
2256 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2257 {
2258     /* cpu index isn't used */
2259     CPUState *cs;
2260 
2261     CPU_FOREACH(cs) {
2262         X86CPU *cpu = X86_CPU(cs);
2263 
2264         if (!cpu->apic_state) {
2265             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2266         } else {
2267             apic_deliver_nmi(cpu->apic_state);
2268         }
2269     }
2270 }
2271 
2272 static void pc_machine_class_init(ObjectClass *oc, void *data)
2273 {
2274     MachineClass *mc = MACHINE_CLASS(oc);
2275     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2276     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2277     NMIClass *nc = NMI_CLASS(oc);
2278 
2279     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2280     pcmc->pci_enabled = true;
2281     pcmc->has_acpi_build = true;
2282     pcmc->rsdp_in_ram = true;
2283     pcmc->smbios_defaults = true;
2284     pcmc->smbios_uuid_encoded = true;
2285     pcmc->gigabyte_align = true;
2286     pcmc->has_reserved_memory = true;
2287     pcmc->kvmclock_enabled = true;
2288     pcmc->enforce_aligned_dimm = true;
2289     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2290      * to be used at the moment, 32K should be enough for a while.  */
2291     pcmc->acpi_data_size = 0x20000 + 0x8000;
2292     pcmc->save_tsc_khz = true;
2293     mc->get_hotplug_handler = pc_get_hotpug_handler;
2294     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2295     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2296     mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus;
2297     mc->default_boot_order = "cad";
2298     mc->hot_add_cpu = pc_hot_add_cpu;
2299     mc->max_cpus = 255;
2300     mc->reset = pc_machine_reset;
2301     hc->pre_plug = pc_machine_device_pre_plug_cb;
2302     hc->plug = pc_machine_device_plug_cb;
2303     hc->unplug_request = pc_machine_device_unplug_request_cb;
2304     hc->unplug = pc_machine_device_unplug_cb;
2305     nc->nmi_monitor_handler = x86_nmi;
2306 
2307     object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2308         pc_machine_get_hotplug_memory_region_size, NULL,
2309         NULL, NULL, &error_abort);
2310 
2311     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2312         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2313         NULL, NULL, &error_abort);
2314 
2315     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2316         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2317 
2318     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2319         pc_machine_get_smm, pc_machine_set_smm,
2320         NULL, NULL, &error_abort);
2321     object_class_property_set_description(oc, PC_MACHINE_SMM,
2322         "Enable SMM (pc & q35)", &error_abort);
2323 
2324     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2325         pc_machine_get_vmport, pc_machine_set_vmport,
2326         NULL, NULL, &error_abort);
2327     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2328         "Enable vmport (pc & q35)", &error_abort);
2329 
2330     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2331         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2332 }
2333 
2334 static const TypeInfo pc_machine_info = {
2335     .name = TYPE_PC_MACHINE,
2336     .parent = TYPE_MACHINE,
2337     .abstract = true,
2338     .instance_size = sizeof(PCMachineState),
2339     .instance_init = pc_machine_initfn,
2340     .class_size = sizeof(PCMachineClass),
2341     .class_init = pc_machine_class_init,
2342     .interfaces = (InterfaceInfo[]) {
2343          { TYPE_HOTPLUG_HANDLER },
2344          { TYPE_NMI },
2345          { }
2346     },
2347 };
2348 
2349 static void pc_machine_register_types(void)
2350 {
2351     type_register_static(&pc_machine_info);
2352 }
2353 
2354 type_init(pc_machine_register_types)
2355