xref: /openbmc/qemu/hw/i386/pc.c (revision 33decbd2d3d51742269a78c1d6da3068c61c60d7)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "hw/i386/fw_cfg.h"
34 #include "sysemu/cpus.h"
35 #include "hw/block/fdc.h"
36 #include "hw/ide.h"
37 #include "hw/pci/pci.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/nvram/fw_cfg.h"
40 #include "hw/timer/hpet.h"
41 #include "hw/firmware/smbios.h"
42 #include "hw/loader.h"
43 #include "elf.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/audio/pcspk.h"
50 #include "hw/pci/msi.h"
51 #include "hw/sysbus.h"
52 #include "sysemu/sysemu.h"
53 #include "sysemu/tcg.h"
54 #include "sysemu/numa.h"
55 #include "sysemu/kvm.h"
56 #include "sysemu/qtest.h"
57 #include "kvm_i386.h"
58 #include "hw/xen/xen.h"
59 #include "hw/xen/start_info.h"
60 #include "ui/qemu-spice.h"
61 #include "exec/memory.h"
62 #include "exec/address-spaces.h"
63 #include "sysemu/arch_init.h"
64 #include "qemu/bitmap.h"
65 #include "qemu/config-file.h"
66 #include "qemu/error-report.h"
67 #include "qemu/option.h"
68 #include "hw/acpi/acpi.h"
69 #include "hw/acpi/cpu_hotplug.h"
70 #include "hw/boards.h"
71 #include "acpi-build.h"
72 #include "hw/mem/pc-dimm.h"
73 #include "qapi/error.h"
74 #include "qapi/qapi-visit-common.h"
75 #include "qapi/visitor.h"
76 #include "qom/cpu.h"
77 #include "hw/nmi.h"
78 #include "hw/usb.h"
79 #include "hw/i386/intel_iommu.h"
80 #include "hw/net/ne2000-isa.h"
81 #include "standard-headers/asm-x86/bootparam.h"
82 #include "hw/virtio/virtio-pmem-pci.h"
83 #include "hw/mem/memory-device.h"
84 
85 /* debug PC/ISA interrupts */
86 //#define DEBUG_IRQ
87 
88 #ifdef DEBUG_IRQ
89 #define DPRINTF(fmt, ...)                                       \
90     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
91 #else
92 #define DPRINTF(fmt, ...)
93 #endif
94 
95 #define E820_NR_ENTRIES		16
96 
97 struct e820_entry {
98     uint64_t address;
99     uint64_t length;
100     uint32_t type;
101 } QEMU_PACKED __attribute((__aligned__(4)));
102 
103 struct e820_table {
104     uint32_t count;
105     struct e820_entry entry[E820_NR_ENTRIES];
106 } QEMU_PACKED __attribute((__aligned__(4)));
107 
108 static struct e820_table e820_reserve;
109 static struct e820_entry *e820_table;
110 static unsigned e820_entries;
111 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
112 
113 /* Physical Address of PVH entry point read from kernel ELF NOTE */
114 static size_t pvh_start_addr;
115 
116 GlobalProperty pc_compat_4_0[] = {};
117 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
118 
119 GlobalProperty pc_compat_3_1[] = {
120     { "intel-iommu", "dma-drain", "off" },
121     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
122     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
123     { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
124     { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
125     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
126     { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
127     { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
128     { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
129     { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
130     { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
131     { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
132     { "Skylake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
133     { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
134     { "Skylake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
135     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
136     { "Cascadelake-Server" "-" TYPE_X86_CPU,  "mpx", "on" },
137     { "Icelake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
138     { "Icelake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
139     { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
140     { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
141 };
142 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
143 
144 GlobalProperty pc_compat_3_0[] = {
145     { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
146     { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
147     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
148 };
149 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
150 
151 GlobalProperty pc_compat_2_12[] = {
152     { TYPE_X86_CPU, "legacy-cache", "on" },
153     { TYPE_X86_CPU, "topoext", "off" },
154     { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
155     { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158 
159 GlobalProperty pc_compat_2_11[] = {
160     { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
161     { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
162 };
163 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
164 
165 GlobalProperty pc_compat_2_10[] = {
166     { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
167     { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
168     { "q35-pcihost", "x-pci-hole64-fix", "off" },
169 };
170 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
171 
172 GlobalProperty pc_compat_2_9[] = {
173     { "mch", "extended-tseg-mbytes", "0" },
174 };
175 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
176 
177 GlobalProperty pc_compat_2_8[] = {
178     { TYPE_X86_CPU, "tcg-cpuid", "off" },
179     { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
180     { "ICH9-LPC", "x-smi-broadcast", "off" },
181     { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
182     { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
183 };
184 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
185 
186 GlobalProperty pc_compat_2_7[] = {
187     { TYPE_X86_CPU, "l3-cache", "off" },
188     { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
189     { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
190     { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
191     { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
192     { "isa-pcspk", "migrate", "off" },
193 };
194 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
195 
196 GlobalProperty pc_compat_2_6[] = {
197     { TYPE_X86_CPU, "cpuid-0xb", "off" },
198     { "vmxnet3", "romfile", "" },
199     { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
200     { "apic-common", "legacy-instance-id", "on", }
201 };
202 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
203 
204 GlobalProperty pc_compat_2_5[] = {};
205 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
206 
207 GlobalProperty pc_compat_2_4[] = {
208     PC_CPU_MODEL_IDS("2.4.0")
209     { "Haswell-" TYPE_X86_CPU, "abm", "off" },
210     { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
211     { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
212     { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
213     { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
214     { TYPE_X86_CPU, "check", "off" },
215     { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
216     { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
217     { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
218     { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
219     { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
220     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
221     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
222     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
223 };
224 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
225 
226 GlobalProperty pc_compat_2_3[] = {
227     PC_CPU_MODEL_IDS("2.3.0")
228     { TYPE_X86_CPU, "arat", "off" },
229     { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
230     { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
231     { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
232     { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
233     { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
234     { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
235     { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
236     { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
237     { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
238     { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239     { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240     { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241     { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242     { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243     { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244     { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245     { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246     { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247     { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
248 };
249 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
250 
251 GlobalProperty pc_compat_2_2[] = {
252     PC_CPU_MODEL_IDS("2.2.0")
253     { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
254     { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
255     { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
256     { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
257     { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
258     { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
259     { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
260     { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
261     { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
262     { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
263     { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
264     { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
265     { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
266     { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
267     { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
268     { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
269     { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
270     { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
271 };
272 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
273 
274 GlobalProperty pc_compat_2_1[] = {
275     PC_CPU_MODEL_IDS("2.1.0")
276     { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
277     { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
278 };
279 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
280 
281 GlobalProperty pc_compat_2_0[] = {
282     PC_CPU_MODEL_IDS("2.0.0")
283     { "virtio-scsi-pci", "any_layout", "off" },
284     { "PIIX4_PM", "memory-hotplug-support", "off" },
285     { "apic", "version", "0x11" },
286     { "nec-usb-xhci", "superspeed-ports-first", "off" },
287     { "nec-usb-xhci", "force-pcie-endcap", "on" },
288     { "pci-serial", "prog_if", "0" },
289     { "pci-serial-2x", "prog_if", "0" },
290     { "pci-serial-4x", "prog_if", "0" },
291     { "virtio-net-pci", "guest_announce", "off" },
292     { "ICH9-LPC", "memory-hotplug-support", "off" },
293     { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
294     { "ioh3420", COMPAT_PROP_PCP, "off" },
295 };
296 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
297 
298 GlobalProperty pc_compat_1_7[] = {
299     PC_CPU_MODEL_IDS("1.7.0")
300     { TYPE_USB_DEVICE, "msos-desc", "no" },
301     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
302     { "hpet", HPET_INTCAP, "4" },
303 };
304 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
305 
306 GlobalProperty pc_compat_1_6[] = {
307     PC_CPU_MODEL_IDS("1.6.0")
308     { "e1000", "mitigation", "off" },
309     { "qemu64-" TYPE_X86_CPU, "model", "2" },
310     { "qemu32-" TYPE_X86_CPU, "model", "3" },
311     { "i440FX-pcihost", "short_root_bus", "1" },
312     { "q35-pcihost", "short_root_bus", "1" },
313 };
314 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
315 
316 GlobalProperty pc_compat_1_5[] = {
317     PC_CPU_MODEL_IDS("1.5.0")
318     { "Conroe-" TYPE_X86_CPU, "model", "2" },
319     { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
320     { "Penryn-" TYPE_X86_CPU, "model", "2" },
321     { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
322     { "Nehalem-" TYPE_X86_CPU, "model", "2" },
323     { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
324     { "virtio-net-pci", "any_layout", "off" },
325     { TYPE_X86_CPU, "pmu", "on" },
326     { "i440FX-pcihost", "short_root_bus", "0" },
327     { "q35-pcihost", "short_root_bus", "0" },
328 };
329 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
330 
331 GlobalProperty pc_compat_1_4[] = {
332     PC_CPU_MODEL_IDS("1.4.0")
333     { "scsi-hd", "discard_granularity", "0" },
334     { "scsi-cd", "discard_granularity", "0" },
335     { "scsi-disk", "discard_granularity", "0" },
336     { "ide-hd", "discard_granularity", "0" },
337     { "ide-cd", "discard_granularity", "0" },
338     { "ide-drive", "discard_granularity", "0" },
339     { "virtio-blk-pci", "discard_granularity", "0" },
340     /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
341     { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
342     { "virtio-net-pci", "ctrl_guest_offloads", "off" },
343     { "e1000", "romfile", "pxe-e1000.rom" },
344     { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
345     { "pcnet", "romfile", "pxe-pcnet.rom" },
346     { "rtl8139", "romfile", "pxe-rtl8139.rom" },
347     { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
348     { "486-" TYPE_X86_CPU, "model", "0" },
349     { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
350     { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
351 };
352 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
353 
354 void gsi_handler(void *opaque, int n, int level)
355 {
356     GSIState *s = opaque;
357 
358     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
359     if (n < ISA_NUM_IRQS) {
360         qemu_set_irq(s->i8259_irq[n], level);
361     }
362     qemu_set_irq(s->ioapic_irq[n], level);
363 }
364 
365 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
366                            unsigned size)
367 {
368 }
369 
370 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
371 {
372     return 0xffffffffffffffffULL;
373 }
374 
375 /* MSDOS compatibility mode FPU exception support */
376 static qemu_irq ferr_irq;
377 
378 void pc_register_ferr_irq(qemu_irq irq)
379 {
380     ferr_irq = irq;
381 }
382 
383 /* XXX: add IGNNE support */
384 void cpu_set_ferr(CPUX86State *s)
385 {
386     qemu_irq_raise(ferr_irq);
387 }
388 
389 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
390                            unsigned size)
391 {
392     qemu_irq_lower(ferr_irq);
393 }
394 
395 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
396 {
397     return 0xffffffffffffffffULL;
398 }
399 
400 /* TSC handling */
401 uint64_t cpu_get_tsc(CPUX86State *env)
402 {
403     return cpu_get_ticks();
404 }
405 
406 /* IRQ handling */
407 int cpu_get_pic_interrupt(CPUX86State *env)
408 {
409     X86CPU *cpu = env_archcpu(env);
410     int intno;
411 
412     if (!kvm_irqchip_in_kernel()) {
413         intno = apic_get_interrupt(cpu->apic_state);
414         if (intno >= 0) {
415             return intno;
416         }
417         /* read the irq from the PIC */
418         if (!apic_accept_pic_intr(cpu->apic_state)) {
419             return -1;
420         }
421     }
422 
423     intno = pic_read_irq(isa_pic);
424     return intno;
425 }
426 
427 static void pic_irq_request(void *opaque, int irq, int level)
428 {
429     CPUState *cs = first_cpu;
430     X86CPU *cpu = X86_CPU(cs);
431 
432     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
433     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
434         CPU_FOREACH(cs) {
435             cpu = X86_CPU(cs);
436             if (apic_accept_pic_intr(cpu->apic_state)) {
437                 apic_deliver_pic_intr(cpu->apic_state, level);
438             }
439         }
440     } else {
441         if (level) {
442             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
443         } else {
444             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
445         }
446     }
447 }
448 
449 /* PC cmos mappings */
450 
451 #define REG_EQUIPMENT_BYTE          0x14
452 
453 int cmos_get_fd_drive_type(FloppyDriveType fd0)
454 {
455     int val;
456 
457     switch (fd0) {
458     case FLOPPY_DRIVE_TYPE_144:
459         /* 1.44 Mb 3"5 drive */
460         val = 4;
461         break;
462     case FLOPPY_DRIVE_TYPE_288:
463         /* 2.88 Mb 3"5 drive */
464         val = 5;
465         break;
466     case FLOPPY_DRIVE_TYPE_120:
467         /* 1.2 Mb 5"5 drive */
468         val = 2;
469         break;
470     case FLOPPY_DRIVE_TYPE_NONE:
471     default:
472         val = 0;
473         break;
474     }
475     return val;
476 }
477 
478 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
479                          int16_t cylinders, int8_t heads, int8_t sectors)
480 {
481     rtc_set_memory(s, type_ofs, 47);
482     rtc_set_memory(s, info_ofs, cylinders);
483     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
484     rtc_set_memory(s, info_ofs + 2, heads);
485     rtc_set_memory(s, info_ofs + 3, 0xff);
486     rtc_set_memory(s, info_ofs + 4, 0xff);
487     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
488     rtc_set_memory(s, info_ofs + 6, cylinders);
489     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
490     rtc_set_memory(s, info_ofs + 8, sectors);
491 }
492 
493 /* convert boot_device letter to something recognizable by the bios */
494 static int boot_device2nibble(char boot_device)
495 {
496     switch(boot_device) {
497     case 'a':
498     case 'b':
499         return 0x01; /* floppy boot */
500     case 'c':
501         return 0x02; /* hard drive boot */
502     case 'd':
503         return 0x03; /* CD-ROM boot */
504     case 'n':
505         return 0x04; /* Network boot */
506     }
507     return 0;
508 }
509 
510 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
511 {
512 #define PC_MAX_BOOT_DEVICES 3
513     int nbds, bds[3] = { 0, };
514     int i;
515 
516     nbds = strlen(boot_device);
517     if (nbds > PC_MAX_BOOT_DEVICES) {
518         error_setg(errp, "Too many boot devices for PC");
519         return;
520     }
521     for (i = 0; i < nbds; i++) {
522         bds[i] = boot_device2nibble(boot_device[i]);
523         if (bds[i] == 0) {
524             error_setg(errp, "Invalid boot device for PC: '%c'",
525                        boot_device[i]);
526             return;
527         }
528     }
529     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
530     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
531 }
532 
533 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
534 {
535     set_boot_dev(opaque, boot_device, errp);
536 }
537 
538 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
539 {
540     int val, nb, i;
541     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
542                                    FLOPPY_DRIVE_TYPE_NONE };
543 
544     /* floppy type */
545     if (floppy) {
546         for (i = 0; i < 2; i++) {
547             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
548         }
549     }
550     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
551         cmos_get_fd_drive_type(fd_type[1]);
552     rtc_set_memory(rtc_state, 0x10, val);
553 
554     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
555     nb = 0;
556     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
557         nb++;
558     }
559     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
560         nb++;
561     }
562     switch (nb) {
563     case 0:
564         break;
565     case 1:
566         val |= 0x01; /* 1 drive, ready for boot */
567         break;
568     case 2:
569         val |= 0x41; /* 2 drives, ready for boot */
570         break;
571     }
572     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
573 }
574 
575 typedef struct pc_cmos_init_late_arg {
576     ISADevice *rtc_state;
577     BusState *idebus[2];
578 } pc_cmos_init_late_arg;
579 
580 typedef struct check_fdc_state {
581     ISADevice *floppy;
582     bool multiple;
583 } CheckFdcState;
584 
585 static int check_fdc(Object *obj, void *opaque)
586 {
587     CheckFdcState *state = opaque;
588     Object *fdc;
589     uint32_t iobase;
590     Error *local_err = NULL;
591 
592     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
593     if (!fdc) {
594         return 0;
595     }
596 
597     iobase = object_property_get_uint(obj, "iobase", &local_err);
598     if (local_err || iobase != 0x3f0) {
599         error_free(local_err);
600         return 0;
601     }
602 
603     if (state->floppy) {
604         state->multiple = true;
605     } else {
606         state->floppy = ISA_DEVICE(obj);
607     }
608     return 0;
609 }
610 
611 static const char * const fdc_container_path[] = {
612     "/unattached", "/peripheral", "/peripheral-anon"
613 };
614 
615 /*
616  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
617  * and ACPI objects.
618  */
619 ISADevice *pc_find_fdc0(void)
620 {
621     int i;
622     Object *container;
623     CheckFdcState state = { 0 };
624 
625     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
626         container = container_get(qdev_get_machine(), fdc_container_path[i]);
627         object_child_foreach(container, check_fdc, &state);
628     }
629 
630     if (state.multiple) {
631         warn_report("multiple floppy disk controllers with "
632                     "iobase=0x3f0 have been found");
633         error_printf("the one being picked for CMOS setup might not reflect "
634                      "your intent");
635     }
636 
637     return state.floppy;
638 }
639 
640 static void pc_cmos_init_late(void *opaque)
641 {
642     pc_cmos_init_late_arg *arg = opaque;
643     ISADevice *s = arg->rtc_state;
644     int16_t cylinders;
645     int8_t heads, sectors;
646     int val;
647     int i, trans;
648 
649     val = 0;
650     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
651                                            &cylinders, &heads, &sectors) >= 0) {
652         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
653         val |= 0xf0;
654     }
655     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
656                                            &cylinders, &heads, &sectors) >= 0) {
657         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
658         val |= 0x0f;
659     }
660     rtc_set_memory(s, 0x12, val);
661 
662     val = 0;
663     for (i = 0; i < 4; i++) {
664         /* NOTE: ide_get_geometry() returns the physical
665            geometry.  It is always such that: 1 <= sects <= 63, 1
666            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
667            geometry can be different if a translation is done. */
668         if (arg->idebus[i / 2] &&
669             ide_get_geometry(arg->idebus[i / 2], i % 2,
670                              &cylinders, &heads, &sectors) >= 0) {
671             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
672             assert((trans & ~3) == 0);
673             val |= trans << (i * 2);
674         }
675     }
676     rtc_set_memory(s, 0x39, val);
677 
678     pc_cmos_init_floppy(s, pc_find_fdc0());
679 
680     qemu_unregister_reset(pc_cmos_init_late, opaque);
681 }
682 
683 void pc_cmos_init(PCMachineState *pcms,
684                   BusState *idebus0, BusState *idebus1,
685                   ISADevice *s)
686 {
687     int val;
688     static pc_cmos_init_late_arg arg;
689 
690     /* various important CMOS locations needed by PC/Bochs bios */
691 
692     /* memory size */
693     /* base memory (first MiB) */
694     val = MIN(pcms->below_4g_mem_size / KiB, 640);
695     rtc_set_memory(s, 0x15, val);
696     rtc_set_memory(s, 0x16, val >> 8);
697     /* extended memory (next 64MiB) */
698     if (pcms->below_4g_mem_size > 1 * MiB) {
699         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
700     } else {
701         val = 0;
702     }
703     if (val > 65535)
704         val = 65535;
705     rtc_set_memory(s, 0x17, val);
706     rtc_set_memory(s, 0x18, val >> 8);
707     rtc_set_memory(s, 0x30, val);
708     rtc_set_memory(s, 0x31, val >> 8);
709     /* memory between 16MiB and 4GiB */
710     if (pcms->below_4g_mem_size > 16 * MiB) {
711         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
712     } else {
713         val = 0;
714     }
715     if (val > 65535)
716         val = 65535;
717     rtc_set_memory(s, 0x34, val);
718     rtc_set_memory(s, 0x35, val >> 8);
719     /* memory above 4GiB */
720     val = pcms->above_4g_mem_size / 65536;
721     rtc_set_memory(s, 0x5b, val);
722     rtc_set_memory(s, 0x5c, val >> 8);
723     rtc_set_memory(s, 0x5d, val >> 16);
724 
725     object_property_add_link(OBJECT(pcms), "rtc_state",
726                              TYPE_ISA_DEVICE,
727                              (Object **)&pcms->rtc,
728                              object_property_allow_set_link,
729                              OBJ_PROP_LINK_STRONG, &error_abort);
730     object_property_set_link(OBJECT(pcms), OBJECT(s),
731                              "rtc_state", &error_abort);
732 
733     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
734 
735     val = 0;
736     val |= 0x02; /* FPU is there */
737     val |= 0x04; /* PS/2 mouse installed */
738     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
739 
740     /* hard drives and FDC */
741     arg.rtc_state = s;
742     arg.idebus[0] = idebus0;
743     arg.idebus[1] = idebus1;
744     qemu_register_reset(pc_cmos_init_late, &arg);
745 }
746 
747 #define TYPE_PORT92 "port92"
748 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
749 
750 /* port 92 stuff: could be split off */
751 typedef struct Port92State {
752     ISADevice parent_obj;
753 
754     MemoryRegion io;
755     uint8_t outport;
756     qemu_irq a20_out;
757 } Port92State;
758 
759 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
760                          unsigned size)
761 {
762     Port92State *s = opaque;
763     int oldval = s->outport;
764 
765     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
766     s->outport = val;
767     qemu_set_irq(s->a20_out, (val >> 1) & 1);
768     if ((val & 1) && !(oldval & 1)) {
769         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
770     }
771 }
772 
773 static uint64_t port92_read(void *opaque, hwaddr addr,
774                             unsigned size)
775 {
776     Port92State *s = opaque;
777     uint32_t ret;
778 
779     ret = s->outport;
780     DPRINTF("port92: read 0x%02x\n", ret);
781     return ret;
782 }
783 
784 static void port92_init(ISADevice *dev, qemu_irq a20_out)
785 {
786     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
787 }
788 
789 static const VMStateDescription vmstate_port92_isa = {
790     .name = "port92",
791     .version_id = 1,
792     .minimum_version_id = 1,
793     .fields = (VMStateField[]) {
794         VMSTATE_UINT8(outport, Port92State),
795         VMSTATE_END_OF_LIST()
796     }
797 };
798 
799 static void port92_reset(DeviceState *d)
800 {
801     Port92State *s = PORT92(d);
802 
803     s->outport &= ~1;
804 }
805 
806 static const MemoryRegionOps port92_ops = {
807     .read = port92_read,
808     .write = port92_write,
809     .impl = {
810         .min_access_size = 1,
811         .max_access_size = 1,
812     },
813     .endianness = DEVICE_LITTLE_ENDIAN,
814 };
815 
816 static void port92_initfn(Object *obj)
817 {
818     Port92State *s = PORT92(obj);
819 
820     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
821 
822     s->outport = 0;
823 
824     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
825 }
826 
827 static void port92_realizefn(DeviceState *dev, Error **errp)
828 {
829     ISADevice *isadev = ISA_DEVICE(dev);
830     Port92State *s = PORT92(dev);
831 
832     isa_register_ioport(isadev, &s->io, 0x92);
833 }
834 
835 static void port92_class_initfn(ObjectClass *klass, void *data)
836 {
837     DeviceClass *dc = DEVICE_CLASS(klass);
838 
839     dc->realize = port92_realizefn;
840     dc->reset = port92_reset;
841     dc->vmsd = &vmstate_port92_isa;
842     /*
843      * Reason: unlike ordinary ISA devices, this one needs additional
844      * wiring: its A20 output line needs to be wired up by
845      * port92_init().
846      */
847     dc->user_creatable = false;
848 }
849 
850 static const TypeInfo port92_info = {
851     .name          = TYPE_PORT92,
852     .parent        = TYPE_ISA_DEVICE,
853     .instance_size = sizeof(Port92State),
854     .instance_init = port92_initfn,
855     .class_init    = port92_class_initfn,
856 };
857 
858 static void port92_register_types(void)
859 {
860     type_register_static(&port92_info);
861 }
862 
863 type_init(port92_register_types)
864 
865 static void handle_a20_line_change(void *opaque, int irq, int level)
866 {
867     X86CPU *cpu = opaque;
868 
869     /* XXX: send to all CPUs ? */
870     /* XXX: add logic to handle multiple A20 line sources */
871     x86_cpu_set_a20(cpu, level);
872 }
873 
874 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
875 {
876     int index = le32_to_cpu(e820_reserve.count);
877     struct e820_entry *entry;
878 
879     if (type != E820_RAM) {
880         /* old FW_CFG_E820_TABLE entry -- reservations only */
881         if (index >= E820_NR_ENTRIES) {
882             return -EBUSY;
883         }
884         entry = &e820_reserve.entry[index++];
885 
886         entry->address = cpu_to_le64(address);
887         entry->length = cpu_to_le64(length);
888         entry->type = cpu_to_le32(type);
889 
890         e820_reserve.count = cpu_to_le32(index);
891     }
892 
893     /* new "etc/e820" file -- include ram too */
894     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
895     e820_table[e820_entries].address = cpu_to_le64(address);
896     e820_table[e820_entries].length = cpu_to_le64(length);
897     e820_table[e820_entries].type = cpu_to_le32(type);
898     e820_entries++;
899 
900     return e820_entries;
901 }
902 
903 int e820_get_num_entries(void)
904 {
905     return e820_entries;
906 }
907 
908 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
909 {
910     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
911         *address = le64_to_cpu(e820_table[idx].address);
912         *length = le64_to_cpu(e820_table[idx].length);
913         return true;
914     }
915     return false;
916 }
917 
918 /* Calculates initial APIC ID for a specific CPU index
919  *
920  * Currently we need to be able to calculate the APIC ID from the CPU index
921  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
922  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
923  * all CPUs up to max_cpus.
924  */
925 static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
926                                            unsigned int cpu_index)
927 {
928     MachineState *ms = MACHINE(pcms);
929     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
930     uint32_t correct_id;
931     static bool warned;
932 
933     correct_id = x86_apicid_from_cpu_idx(ms->smp.cores,
934                                          ms->smp.threads, cpu_index);
935     if (pcmc->compat_apic_id_mode) {
936         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
937             error_report("APIC IDs set in compatibility mode, "
938                          "CPU topology won't match the configuration");
939             warned = true;
940         }
941         return cpu_index;
942     } else {
943         return correct_id;
944     }
945 }
946 
947 static void pc_build_smbios(PCMachineState *pcms)
948 {
949     uint8_t *smbios_tables, *smbios_anchor;
950     size_t smbios_tables_len, smbios_anchor_len;
951     struct smbios_phys_mem_area *mem_array;
952     unsigned i, array_count;
953     MachineState *ms = MACHINE(pcms);
954     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
955 
956     /* tell smbios about cpuid version and features */
957     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
958 
959     smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
960     if (smbios_tables) {
961         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
962                          smbios_tables, smbios_tables_len);
963     }
964 
965     /* build the array of physical mem area from e820 table */
966     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
967     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
968         uint64_t addr, len;
969 
970         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
971             mem_array[array_count].address = addr;
972             mem_array[array_count].length = len;
973             array_count++;
974         }
975     }
976     smbios_get_tables(ms, mem_array, array_count,
977                       &smbios_tables, &smbios_tables_len,
978                       &smbios_anchor, &smbios_anchor_len);
979     g_free(mem_array);
980 
981     if (smbios_anchor) {
982         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
983                         smbios_tables, smbios_tables_len);
984         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
985                         smbios_anchor, smbios_anchor_len);
986     }
987 }
988 
989 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
990 {
991     FWCfgState *fw_cfg;
992     uint64_t *numa_fw_cfg;
993     int i;
994     const CPUArchIdList *cpus;
995     MachineClass *mc = MACHINE_GET_CLASS(pcms);
996 
997     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
998     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
999 
1000     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1001      *
1002      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1003      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1004      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1005      * for CPU hotplug also uses APIC ID and not "CPU index".
1006      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1007      * but the "limit to the APIC ID values SeaBIOS may see".
1008      *
1009      * So for compatibility reasons with old BIOSes we are stuck with
1010      * "etc/max-cpus" actually being apic_id_limit
1011      */
1012     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1013     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1014     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1015                      acpi_tables, acpi_tables_len);
1016     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1017 
1018     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1019                      &e820_reserve, sizeof(e820_reserve));
1020     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1021                     sizeof(struct e820_entry) * e820_entries);
1022 
1023     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1024     /* allocate memory for the NUMA channel: one (64bit) word for the number
1025      * of nodes, one word for each VCPU->node and one word for each node to
1026      * hold the amount of memory.
1027      */
1028     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1029     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1030     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1031     for (i = 0; i < cpus->len; i++) {
1032         unsigned int apic_id = cpus->cpus[i].arch_id;
1033         assert(apic_id < pcms->apic_id_limit);
1034         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1035     }
1036     for (i = 0; i < nb_numa_nodes; i++) {
1037         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1038             cpu_to_le64(numa_info[i].node_mem);
1039     }
1040     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1041                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
1042                      sizeof(*numa_fw_cfg));
1043 
1044     return fw_cfg;
1045 }
1046 
1047 static long get_file_size(FILE *f)
1048 {
1049     long where, size;
1050 
1051     /* XXX: on Unix systems, using fstat() probably makes more sense */
1052 
1053     where = ftell(f);
1054     fseek(f, 0, SEEK_END);
1055     size = ftell(f);
1056     fseek(f, where, SEEK_SET);
1057 
1058     return size;
1059 }
1060 
1061 struct setup_data {
1062     uint64_t next;
1063     uint32_t type;
1064     uint32_t len;
1065     uint8_t data[0];
1066 } __attribute__((packed));
1067 
1068 
1069 /*
1070  * The entry point into the kernel for PVH boot is different from
1071  * the native entry point.  The PVH entry is defined by the x86/HVM
1072  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1073  *
1074  * This function is passed to load_elf() when it is called from
1075  * load_elfboot() which then additionally checks for an ELF Note of
1076  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1077  * parse the PVH entry address from the ELF Note.
1078  *
1079  * Due to trickery in elf_opts.h, load_elf() is actually available as
1080  * load_elf32() or load_elf64() and this routine needs to be able
1081  * to deal with being called as 32 or 64 bit.
1082  *
1083  * The address of the PVH entry point is saved to the 'pvh_start_addr'
1084  * global variable.  (although the entry point is 32-bit, the kernel
1085  * binary can be either 32-bit or 64-bit).
1086  */
1087 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1088 {
1089     size_t *elf_note_data_addr;
1090 
1091     /* Check if ELF Note header passed in is valid */
1092     if (arg1 == NULL) {
1093         return 0;
1094     }
1095 
1096     if (is64) {
1097         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1098         uint64_t nhdr_size64 = sizeof(struct elf64_note);
1099         uint64_t phdr_align = *(uint64_t *)arg2;
1100         uint64_t nhdr_namesz = nhdr64->n_namesz;
1101 
1102         elf_note_data_addr =
1103             ((void *)nhdr64) + nhdr_size64 +
1104             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1105     } else {
1106         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1107         uint32_t nhdr_size32 = sizeof(struct elf32_note);
1108         uint32_t phdr_align = *(uint32_t *)arg2;
1109         uint32_t nhdr_namesz = nhdr32->n_namesz;
1110 
1111         elf_note_data_addr =
1112             ((void *)nhdr32) + nhdr_size32 +
1113             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1114     }
1115 
1116     pvh_start_addr = *elf_note_data_addr;
1117 
1118     return pvh_start_addr;
1119 }
1120 
1121 static bool load_elfboot(const char *kernel_filename,
1122                    int kernel_file_size,
1123                    uint8_t *header,
1124                    size_t pvh_xen_start_addr,
1125                    FWCfgState *fw_cfg)
1126 {
1127     uint32_t flags = 0;
1128     uint32_t mh_load_addr = 0;
1129     uint32_t elf_kernel_size = 0;
1130     uint64_t elf_entry;
1131     uint64_t elf_low, elf_high;
1132     int kernel_size;
1133 
1134     if (ldl_p(header) != 0x464c457f) {
1135         return false; /* no elfboot */
1136     }
1137 
1138     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1139     flags = elf_is64 ?
1140         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1141 
1142     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1143         error_report("elfboot unsupported flags = %x", flags);
1144         exit(1);
1145     }
1146 
1147     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1148     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1149                            NULL, &elf_note_type, &elf_entry,
1150                            &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1151                            0, 0);
1152 
1153     if (kernel_size < 0) {
1154         error_report("Error while loading elf kernel");
1155         exit(1);
1156     }
1157     mh_load_addr = elf_low;
1158     elf_kernel_size = elf_high - elf_low;
1159 
1160     if (pvh_start_addr == 0) {
1161         error_report("Error loading uncompressed kernel without PVH ELF Note");
1162         exit(1);
1163     }
1164     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1165     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1166     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1167 
1168     return true;
1169 }
1170 
1171 static void load_linux(PCMachineState *pcms,
1172                        FWCfgState *fw_cfg)
1173 {
1174     uint16_t protocol;
1175     int setup_size, kernel_size, cmdline_size;
1176     int dtb_size, setup_data_offset;
1177     uint32_t initrd_max;
1178     uint8_t header[8192], *setup, *kernel;
1179     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1180     FILE *f;
1181     char *vmode;
1182     MachineState *machine = MACHINE(pcms);
1183     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1184     struct setup_data *setup_data;
1185     const char *kernel_filename = machine->kernel_filename;
1186     const char *initrd_filename = machine->initrd_filename;
1187     const char *dtb_filename = machine->dtb;
1188     const char *kernel_cmdline = machine->kernel_cmdline;
1189 
1190     /* Align to 16 bytes as a paranoia measure */
1191     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1192 
1193     /* load the kernel header */
1194     f = fopen(kernel_filename, "rb");
1195     if (!f || !(kernel_size = get_file_size(f)) ||
1196         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1197         MIN(ARRAY_SIZE(header), kernel_size)) {
1198         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1199                 kernel_filename, strerror(errno));
1200         exit(1);
1201     }
1202 
1203     /* kernel protocol version */
1204 #if 0
1205     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1206 #endif
1207     if (ldl_p(header+0x202) == 0x53726448) {
1208         protocol = lduw_p(header+0x206);
1209     } else {
1210         /*
1211          * This could be a multiboot kernel. If it is, let's stop treating it
1212          * like a Linux kernel.
1213          * Note: some multiboot images could be in the ELF format (the same of
1214          * PVH), so we try multiboot first since we check the multiboot magic
1215          * header before to load it.
1216          */
1217         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1218                            kernel_cmdline, kernel_size, header)) {
1219             return;
1220         }
1221         /*
1222          * Check if the file is an uncompressed kernel file (ELF) and load it,
1223          * saving the PVH entry point used by the x86/HVM direct boot ABI.
1224          * If load_elfboot() is successful, populate the fw_cfg info.
1225          */
1226         if (pcmc->pvh_enabled &&
1227             load_elfboot(kernel_filename, kernel_size,
1228                          header, pvh_start_addr, fw_cfg)) {
1229             fclose(f);
1230 
1231             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1232                 strlen(kernel_cmdline) + 1);
1233             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1234 
1235             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1236             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1237                              header, sizeof(header));
1238 
1239             /* load initrd */
1240             if (initrd_filename) {
1241                 gsize initrd_size;
1242                 gchar *initrd_data;
1243                 GError *gerr = NULL;
1244 
1245                 if (!g_file_get_contents(initrd_filename, &initrd_data,
1246                             &initrd_size, &gerr)) {
1247                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1248                             initrd_filename, gerr->message);
1249                     exit(1);
1250                 }
1251 
1252                 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1253                 if (initrd_size >= initrd_max) {
1254                     fprintf(stderr, "qemu: initrd is too large, cannot support."
1255                             "(max: %"PRIu32", need %"PRId64")\n",
1256                             initrd_max, (uint64_t)initrd_size);
1257                     exit(1);
1258                 }
1259 
1260                 initrd_addr = (initrd_max - initrd_size) & ~4095;
1261 
1262                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1263                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1264                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1265                                  initrd_size);
1266             }
1267 
1268             option_rom[nb_option_roms].bootindex = 0;
1269             option_rom[nb_option_roms].name = "pvh.bin";
1270             nb_option_roms++;
1271 
1272             return;
1273         }
1274         protocol = 0;
1275     }
1276 
1277     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1278         /* Low kernel */
1279         real_addr    = 0x90000;
1280         cmdline_addr = 0x9a000 - cmdline_size;
1281         prot_addr    = 0x10000;
1282     } else if (protocol < 0x202) {
1283         /* High but ancient kernel */
1284         real_addr    = 0x90000;
1285         cmdline_addr = 0x9a000 - cmdline_size;
1286         prot_addr    = 0x100000;
1287     } else {
1288         /* High and recent kernel */
1289         real_addr    = 0x10000;
1290         cmdline_addr = 0x20000;
1291         prot_addr    = 0x100000;
1292     }
1293 
1294 #if 0
1295     fprintf(stderr,
1296             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
1297             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
1298             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
1299             real_addr,
1300             cmdline_addr,
1301             prot_addr);
1302 #endif
1303 
1304     /* highest address for loading the initrd */
1305     if (protocol >= 0x20c &&
1306         lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1307         /*
1308          * Linux has supported initrd up to 4 GB for a very long time (2007,
1309          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1310          * though it only sets initrd_max to 2 GB to "work around bootloader
1311          * bugs". Luckily, QEMU firmware(which does something like bootloader)
1312          * has supported this.
1313          *
1314          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1315          * be loaded into any address.
1316          *
1317          * In addition, initrd_max is uint32_t simply because QEMU doesn't
1318          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1319          * field).
1320          *
1321          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1322          */
1323         initrd_max = UINT32_MAX;
1324     } else if (protocol >= 0x203) {
1325         initrd_max = ldl_p(header+0x22c);
1326     } else {
1327         initrd_max = 0x37ffffff;
1328     }
1329 
1330     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1331         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1332     }
1333 
1334     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1335     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1336     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1337 
1338     if (protocol >= 0x202) {
1339         stl_p(header+0x228, cmdline_addr);
1340     } else {
1341         stw_p(header+0x20, 0xA33F);
1342         stw_p(header+0x22, cmdline_addr-real_addr);
1343     }
1344 
1345     /* handle vga= parameter */
1346     vmode = strstr(kernel_cmdline, "vga=");
1347     if (vmode) {
1348         unsigned int video_mode;
1349         /* skip "vga=" */
1350         vmode += 4;
1351         if (!strncmp(vmode, "normal", 6)) {
1352             video_mode = 0xffff;
1353         } else if (!strncmp(vmode, "ext", 3)) {
1354             video_mode = 0xfffe;
1355         } else if (!strncmp(vmode, "ask", 3)) {
1356             video_mode = 0xfffd;
1357         } else {
1358             video_mode = strtol(vmode, NULL, 0);
1359         }
1360         stw_p(header+0x1fa, video_mode);
1361     }
1362 
1363     /* loader type */
1364     /* High nybble = B reserved for QEMU; low nybble is revision number.
1365        If this code is substantially changed, you may want to consider
1366        incrementing the revision. */
1367     if (protocol >= 0x200) {
1368         header[0x210] = 0xB0;
1369     }
1370     /* heap */
1371     if (protocol >= 0x201) {
1372         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
1373         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1374     }
1375 
1376     /* load initrd */
1377     if (initrd_filename) {
1378         gsize initrd_size;
1379         gchar *initrd_data;
1380         GError *gerr = NULL;
1381 
1382         if (protocol < 0x200) {
1383             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1384             exit(1);
1385         }
1386 
1387         if (!g_file_get_contents(initrd_filename, &initrd_data,
1388                                  &initrd_size, &gerr)) {
1389             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1390                     initrd_filename, gerr->message);
1391             exit(1);
1392         }
1393         if (initrd_size >= initrd_max) {
1394             fprintf(stderr, "qemu: initrd is too large, cannot support."
1395                     "(max: %"PRIu32", need %"PRId64")\n",
1396                     initrd_max, (uint64_t)initrd_size);
1397             exit(1);
1398         }
1399 
1400         initrd_addr = (initrd_max-initrd_size) & ~4095;
1401 
1402         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1403         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1404         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1405 
1406         stl_p(header+0x218, initrd_addr);
1407         stl_p(header+0x21c, initrd_size);
1408     }
1409 
1410     /* load kernel and setup */
1411     setup_size = header[0x1f1];
1412     if (setup_size == 0) {
1413         setup_size = 4;
1414     }
1415     setup_size = (setup_size+1)*512;
1416     if (setup_size > kernel_size) {
1417         fprintf(stderr, "qemu: invalid kernel header\n");
1418         exit(1);
1419     }
1420     kernel_size -= setup_size;
1421 
1422     setup  = g_malloc(setup_size);
1423     kernel = g_malloc(kernel_size);
1424     fseek(f, 0, SEEK_SET);
1425     if (fread(setup, 1, setup_size, f) != setup_size) {
1426         fprintf(stderr, "fread() failed\n");
1427         exit(1);
1428     }
1429     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1430         fprintf(stderr, "fread() failed\n");
1431         exit(1);
1432     }
1433     fclose(f);
1434 
1435     /* append dtb to kernel */
1436     if (dtb_filename) {
1437         if (protocol < 0x209) {
1438             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1439             exit(1);
1440         }
1441 
1442         dtb_size = get_image_size(dtb_filename);
1443         if (dtb_size <= 0) {
1444             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1445                     dtb_filename, strerror(errno));
1446             exit(1);
1447         }
1448 
1449         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1450         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1451         kernel = g_realloc(kernel, kernel_size);
1452 
1453         stq_p(header+0x250, prot_addr + setup_data_offset);
1454 
1455         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1456         setup_data->next = 0;
1457         setup_data->type = cpu_to_le32(SETUP_DTB);
1458         setup_data->len = cpu_to_le32(dtb_size);
1459 
1460         load_image_size(dtb_filename, setup_data->data, dtb_size);
1461     }
1462 
1463     memcpy(setup, header, MIN(sizeof(header), setup_size));
1464 
1465     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1466     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1467     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1468 
1469     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1470     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1471     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1472 
1473     option_rom[nb_option_roms].bootindex = 0;
1474     option_rom[nb_option_roms].name = "linuxboot.bin";
1475     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1476         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1477     }
1478     nb_option_roms++;
1479 }
1480 
1481 #define NE2000_NB_MAX 6
1482 
1483 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1484                                               0x280, 0x380 };
1485 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1486 
1487 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1488 {
1489     static int nb_ne2k = 0;
1490 
1491     if (nb_ne2k == NE2000_NB_MAX)
1492         return;
1493     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1494                     ne2000_irq[nb_ne2k], nd);
1495     nb_ne2k++;
1496 }
1497 
1498 DeviceState *cpu_get_current_apic(void)
1499 {
1500     if (current_cpu) {
1501         X86CPU *cpu = X86_CPU(current_cpu);
1502         return cpu->apic_state;
1503     } else {
1504         return NULL;
1505     }
1506 }
1507 
1508 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1509 {
1510     X86CPU *cpu = opaque;
1511 
1512     if (level) {
1513         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1514     }
1515 }
1516 
1517 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1518 {
1519     Object *cpu = NULL;
1520     Error *local_err = NULL;
1521 
1522     cpu = object_new(typename);
1523 
1524     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1525     object_property_set_bool(cpu, true, "realized", &local_err);
1526 
1527     object_unref(cpu);
1528     error_propagate(errp, local_err);
1529 }
1530 
1531 void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp)
1532 {
1533     PCMachineState *pcms = PC_MACHINE(ms);
1534     int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
1535     Error *local_err = NULL;
1536 
1537     if (id < 0) {
1538         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1539         return;
1540     }
1541 
1542     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1543         error_setg(errp, "Unable to add CPU: %" PRIi64
1544                    ", resulting APIC ID (%" PRIi64 ") is too large",
1545                    id, apic_id);
1546         return;
1547     }
1548 
1549     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1550     if (local_err) {
1551         error_propagate(errp, local_err);
1552         return;
1553     }
1554 }
1555 
1556 void pc_cpus_init(PCMachineState *pcms)
1557 {
1558     int i;
1559     const CPUArchIdList *possible_cpus;
1560     MachineState *ms = MACHINE(pcms);
1561     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1562 
1563     /* Calculates the limit to CPU APIC ID values
1564      *
1565      * Limit for the APIC ID value, so that all
1566      * CPU APIC IDs are < pcms->apic_id_limit.
1567      *
1568      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1569      */
1570     pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
1571                                                      ms->smp.max_cpus - 1) + 1;
1572     possible_cpus = mc->possible_cpu_arch_ids(ms);
1573     for (i = 0; i < ms->smp.cpus; i++) {
1574         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1575                    &error_fatal);
1576     }
1577 }
1578 
1579 static void pc_build_feature_control_file(PCMachineState *pcms)
1580 {
1581     MachineState *ms = MACHINE(pcms);
1582     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1583     CPUX86State *env = &cpu->env;
1584     uint32_t unused, ecx, edx;
1585     uint64_t feature_control_bits = 0;
1586     uint64_t *val;
1587 
1588     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1589     if (ecx & CPUID_EXT_VMX) {
1590         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1591     }
1592 
1593     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1594         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1595         (env->mcg_cap & MCG_LMCE_P)) {
1596         feature_control_bits |= FEATURE_CONTROL_LMCE;
1597     }
1598 
1599     if (!feature_control_bits) {
1600         return;
1601     }
1602 
1603     val = g_malloc(sizeof(*val));
1604     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1605     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1606 }
1607 
1608 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1609 {
1610     if (cpus_count > 0xff) {
1611         /* If the number of CPUs can't be represented in 8 bits, the
1612          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1613          * to make old BIOSes fail more predictably.
1614          */
1615         rtc_set_memory(rtc, 0x5f, 0);
1616     } else {
1617         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1618     }
1619 }
1620 
1621 static
1622 void pc_machine_done(Notifier *notifier, void *data)
1623 {
1624     PCMachineState *pcms = container_of(notifier,
1625                                         PCMachineState, machine_done);
1626     PCIBus *bus = pcms->bus;
1627 
1628     /* set the number of CPUs */
1629     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1630 
1631     if (bus) {
1632         int extra_hosts = 0;
1633 
1634         QLIST_FOREACH(bus, &bus->child, sibling) {
1635             /* look for expander root buses */
1636             if (pci_bus_is_root(bus)) {
1637                 extra_hosts++;
1638             }
1639         }
1640         if (extra_hosts && pcms->fw_cfg) {
1641             uint64_t *val = g_malloc(sizeof(*val));
1642             *val = cpu_to_le64(extra_hosts);
1643             fw_cfg_add_file(pcms->fw_cfg,
1644                     "etc/extra-pci-roots", val, sizeof(*val));
1645         }
1646     }
1647 
1648     acpi_setup();
1649     if (pcms->fw_cfg) {
1650         pc_build_smbios(pcms);
1651         pc_build_feature_control_file(pcms);
1652         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1653         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1654     }
1655 
1656     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1657         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1658 
1659         if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1660             iommu->intr_eim != ON_OFF_AUTO_ON) {
1661             error_report("current -smp configuration requires "
1662                          "Extended Interrupt Mode enabled. "
1663                          "You can add an IOMMU using: "
1664                          "-device intel-iommu,intremap=on,eim=on");
1665             exit(EXIT_FAILURE);
1666         }
1667     }
1668 }
1669 
1670 void pc_guest_info_init(PCMachineState *pcms)
1671 {
1672     int i;
1673 
1674     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1675     pcms->numa_nodes = nb_numa_nodes;
1676     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1677                                     sizeof *pcms->node_mem);
1678     for (i = 0; i < nb_numa_nodes; i++) {
1679         pcms->node_mem[i] = numa_info[i].node_mem;
1680     }
1681 
1682     pcms->machine_done.notify = pc_machine_done;
1683     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1684 }
1685 
1686 /* setup pci memory address space mapping into system address space */
1687 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1688                             MemoryRegion *pci_address_space)
1689 {
1690     /* Set to lower priority than RAM */
1691     memory_region_add_subregion_overlap(system_memory, 0x0,
1692                                         pci_address_space, -1);
1693 }
1694 
1695 void xen_load_linux(PCMachineState *pcms)
1696 {
1697     int i;
1698     FWCfgState *fw_cfg;
1699 
1700     assert(MACHINE(pcms)->kernel_filename != NULL);
1701 
1702     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1703     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1704     rom_set_fw(fw_cfg);
1705 
1706     load_linux(pcms, fw_cfg);
1707     for (i = 0; i < nb_option_roms; i++) {
1708         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1709                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1710                !strcmp(option_rom[i].name, "pvh.bin") ||
1711                !strcmp(option_rom[i].name, "multiboot.bin"));
1712         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1713     }
1714     pcms->fw_cfg = fw_cfg;
1715 }
1716 
1717 void pc_memory_init(PCMachineState *pcms,
1718                     MemoryRegion *system_memory,
1719                     MemoryRegion *rom_memory,
1720                     MemoryRegion **ram_memory)
1721 {
1722     int linux_boot, i;
1723     MemoryRegion *ram, *option_rom_mr;
1724     MemoryRegion *ram_below_4g, *ram_above_4g;
1725     FWCfgState *fw_cfg;
1726     MachineState *machine = MACHINE(pcms);
1727     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1728 
1729     assert(machine->ram_size == pcms->below_4g_mem_size +
1730                                 pcms->above_4g_mem_size);
1731 
1732     linux_boot = (machine->kernel_filename != NULL);
1733 
1734     /* Allocate RAM.  We allocate it as a single memory region and use
1735      * aliases to address portions of it, mostly for backwards compatibility
1736      * with older qemus that used qemu_ram_alloc().
1737      */
1738     ram = g_malloc(sizeof(*ram));
1739     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1740                                          machine->ram_size);
1741     *ram_memory = ram;
1742     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1743     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1744                              0, pcms->below_4g_mem_size);
1745     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1746     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1747     if (pcms->above_4g_mem_size > 0) {
1748         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1749         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1750                                  pcms->below_4g_mem_size,
1751                                  pcms->above_4g_mem_size);
1752         memory_region_add_subregion(system_memory, 0x100000000ULL,
1753                                     ram_above_4g);
1754         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1755     }
1756 
1757     if (!pcmc->has_reserved_memory &&
1758         (machine->ram_slots ||
1759          (machine->maxram_size > machine->ram_size))) {
1760         MachineClass *mc = MACHINE_GET_CLASS(machine);
1761 
1762         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1763                      mc->name);
1764         exit(EXIT_FAILURE);
1765     }
1766 
1767     /* always allocate the device memory information */
1768     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1769 
1770     /* initialize device memory address space */
1771     if (pcmc->has_reserved_memory &&
1772         (machine->ram_size < machine->maxram_size)) {
1773         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1774 
1775         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1776             error_report("unsupported amount of memory slots: %"PRIu64,
1777                          machine->ram_slots);
1778             exit(EXIT_FAILURE);
1779         }
1780 
1781         if (QEMU_ALIGN_UP(machine->maxram_size,
1782                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1783             error_report("maximum memory size must by aligned to multiple of "
1784                          "%d bytes", TARGET_PAGE_SIZE);
1785             exit(EXIT_FAILURE);
1786         }
1787 
1788         machine->device_memory->base =
1789             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1790 
1791         if (pcmc->enforce_aligned_dimm) {
1792             /* size device region assuming 1G page max alignment per slot */
1793             device_mem_size += (1 * GiB) * machine->ram_slots;
1794         }
1795 
1796         if ((machine->device_memory->base + device_mem_size) <
1797             device_mem_size) {
1798             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1799                          machine->maxram_size);
1800             exit(EXIT_FAILURE);
1801         }
1802 
1803         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1804                            "device-memory", device_mem_size);
1805         memory_region_add_subregion(system_memory, machine->device_memory->base,
1806                                     &machine->device_memory->mr);
1807     }
1808 
1809     /* Initialize PC system firmware */
1810     pc_system_firmware_init(pcms, rom_memory);
1811 
1812     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1813     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1814                            &error_fatal);
1815     if (pcmc->pci_enabled) {
1816         memory_region_set_readonly(option_rom_mr, true);
1817     }
1818     memory_region_add_subregion_overlap(rom_memory,
1819                                         PC_ROM_MIN_VGA,
1820                                         option_rom_mr,
1821                                         1);
1822 
1823     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1824 
1825     rom_set_fw(fw_cfg);
1826 
1827     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1828         uint64_t *val = g_malloc(sizeof(*val));
1829         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1830         uint64_t res_mem_end = machine->device_memory->base;
1831 
1832         if (!pcmc->broken_reserved_end) {
1833             res_mem_end += memory_region_size(&machine->device_memory->mr);
1834         }
1835         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1836         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1837     }
1838 
1839     if (linux_boot) {
1840         load_linux(pcms, fw_cfg);
1841     }
1842 
1843     for (i = 0; i < nb_option_roms; i++) {
1844         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1845     }
1846     pcms->fw_cfg = fw_cfg;
1847 
1848     /* Init default IOAPIC address space */
1849     pcms->ioapic_as = &address_space_memory;
1850 }
1851 
1852 /*
1853  * The 64bit pci hole starts after "above 4G RAM" and
1854  * potentially the space reserved for memory hotplug.
1855  */
1856 uint64_t pc_pci_hole64_start(void)
1857 {
1858     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1859     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1860     MachineState *ms = MACHINE(pcms);
1861     uint64_t hole64_start = 0;
1862 
1863     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1864         hole64_start = ms->device_memory->base;
1865         if (!pcmc->broken_reserved_end) {
1866             hole64_start += memory_region_size(&ms->device_memory->mr);
1867         }
1868     } else {
1869         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1870     }
1871 
1872     return ROUND_UP(hole64_start, 1 * GiB);
1873 }
1874 
1875 qemu_irq pc_allocate_cpu_irq(void)
1876 {
1877     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1878 }
1879 
1880 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1881 {
1882     DeviceState *dev = NULL;
1883 
1884     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1885     if (pci_bus) {
1886         PCIDevice *pcidev = pci_vga_init(pci_bus);
1887         dev = pcidev ? &pcidev->qdev : NULL;
1888     } else if (isa_bus) {
1889         ISADevice *isadev = isa_vga_init(isa_bus);
1890         dev = isadev ? DEVICE(isadev) : NULL;
1891     }
1892     rom_reset_order_override();
1893     return dev;
1894 }
1895 
1896 static const MemoryRegionOps ioport80_io_ops = {
1897     .write = ioport80_write,
1898     .read = ioport80_read,
1899     .endianness = DEVICE_NATIVE_ENDIAN,
1900     .impl = {
1901         .min_access_size = 1,
1902         .max_access_size = 1,
1903     },
1904 };
1905 
1906 static const MemoryRegionOps ioportF0_io_ops = {
1907     .write = ioportF0_write,
1908     .read = ioportF0_read,
1909     .endianness = DEVICE_NATIVE_ENDIAN,
1910     .impl = {
1911         .min_access_size = 1,
1912         .max_access_size = 1,
1913     },
1914 };
1915 
1916 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1917 {
1918     int i;
1919     DriveInfo *fd[MAX_FD];
1920     qemu_irq *a20_line;
1921     ISADevice *i8042, *port92, *vmmouse;
1922 
1923     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1924     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1925 
1926     for (i = 0; i < MAX_FD; i++) {
1927         fd[i] = drive_get(IF_FLOPPY, 0, i);
1928         create_fdctrl |= !!fd[i];
1929     }
1930     if (create_fdctrl) {
1931         fdctrl_init_isa(isa_bus, fd);
1932     }
1933 
1934     i8042 = isa_create_simple(isa_bus, "i8042");
1935     if (!no_vmport) {
1936         vmport_init(isa_bus);
1937         vmmouse = isa_try_create(isa_bus, "vmmouse");
1938     } else {
1939         vmmouse = NULL;
1940     }
1941     if (vmmouse) {
1942         DeviceState *dev = DEVICE(vmmouse);
1943         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1944         qdev_init_nofail(dev);
1945     }
1946     port92 = isa_create_simple(isa_bus, "port92");
1947 
1948     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1949     i8042_setup_a20_line(i8042, a20_line[0]);
1950     port92_init(port92, a20_line[1]);
1951     g_free(a20_line);
1952 }
1953 
1954 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1955                           ISADevice **rtc_state,
1956                           bool create_fdctrl,
1957                           bool no_vmport,
1958                           bool has_pit,
1959                           uint32_t hpet_irqs)
1960 {
1961     int i;
1962     DeviceState *hpet = NULL;
1963     int pit_isa_irq = 0;
1964     qemu_irq pit_alt_irq = NULL;
1965     qemu_irq rtc_irq = NULL;
1966     ISADevice *pit = NULL;
1967     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1968     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1969 
1970     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1971     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1972 
1973     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1974     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1975 
1976     /*
1977      * Check if an HPET shall be created.
1978      *
1979      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1980      * when the HPET wants to take over. Thus we have to disable the latter.
1981      */
1982     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1983         /* In order to set property, here not using sysbus_try_create_simple */
1984         hpet = qdev_try_create(NULL, TYPE_HPET);
1985         if (hpet) {
1986             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1987              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1988              * IRQ8 and IRQ2.
1989              */
1990             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1991                     HPET_INTCAP, NULL);
1992             if (!compat) {
1993                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1994             }
1995             qdev_init_nofail(hpet);
1996             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1997 
1998             for (i = 0; i < GSI_NUM_PINS; i++) {
1999                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2000             }
2001             pit_isa_irq = -1;
2002             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2003             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2004         }
2005     }
2006     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2007 
2008     qemu_register_boot_set(pc_boot_set, *rtc_state);
2009 
2010     if (!xen_enabled() && has_pit) {
2011         if (kvm_pit_in_kernel()) {
2012             pit = kvm_pit_init(isa_bus, 0x40);
2013         } else {
2014             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2015         }
2016         if (hpet) {
2017             /* connect PIT to output control line of the HPET */
2018             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2019         }
2020         pcspk_init(isa_bus, pit);
2021     }
2022 
2023     i8257_dma_init(isa_bus, 0);
2024 
2025     /* Super I/O */
2026     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2027 }
2028 
2029 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2030 {
2031     int i;
2032 
2033     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2034     for (i = 0; i < nb_nics; i++) {
2035         NICInfo *nd = &nd_table[i];
2036         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2037 
2038         if (g_str_equal(model, "ne2k_isa")) {
2039             pc_init_ne2k_isa(isa_bus, nd);
2040         } else {
2041             pci_nic_init_nofail(nd, pci_bus, model, NULL);
2042         }
2043     }
2044     rom_reset_order_override();
2045 }
2046 
2047 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2048 {
2049     DeviceState *dev;
2050     SysBusDevice *d;
2051     unsigned int i;
2052 
2053     if (kvm_ioapic_in_kernel()) {
2054         dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2055     } else {
2056         dev = qdev_create(NULL, TYPE_IOAPIC);
2057     }
2058     if (parent_name) {
2059         object_property_add_child(object_resolve_path(parent_name, NULL),
2060                                   "ioapic", OBJECT(dev), NULL);
2061     }
2062     qdev_init_nofail(dev);
2063     d = SYS_BUS_DEVICE(dev);
2064     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2065 
2066     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2067         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2068     }
2069 }
2070 
2071 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2072                                Error **errp)
2073 {
2074     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2075     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2076     const MachineState *ms = MACHINE(hotplug_dev);
2077     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2078     const uint64_t legacy_align = TARGET_PAGE_SIZE;
2079     Error *local_err = NULL;
2080 
2081     /*
2082      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2083      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2084      * addition to cover this case.
2085      */
2086     if (!pcms->acpi_dev || !acpi_enabled) {
2087         error_setg(errp,
2088                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2089         return;
2090     }
2091 
2092     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2093         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2094         return;
2095     }
2096 
2097     hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2098     if (local_err) {
2099         error_propagate(errp, local_err);
2100         return;
2101     }
2102 
2103     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2104                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2105 }
2106 
2107 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2108                            DeviceState *dev, Error **errp)
2109 {
2110     Error *local_err = NULL;
2111     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2112     MachineState *ms = MACHINE(hotplug_dev);
2113     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2114 
2115     pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2116     if (local_err) {
2117         goto out;
2118     }
2119 
2120     if (is_nvdimm) {
2121         nvdimm_plug(ms->nvdimms_state);
2122     }
2123 
2124     hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2125 out:
2126     error_propagate(errp, local_err);
2127 }
2128 
2129 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2130                                      DeviceState *dev, Error **errp)
2131 {
2132     Error *local_err = NULL;
2133     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2134 
2135     /*
2136      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2137      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2138      * addition to cover this case.
2139      */
2140     if (!pcms->acpi_dev || !acpi_enabled) {
2141         error_setg(&local_err,
2142                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2143         goto out;
2144     }
2145 
2146     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2147         error_setg(&local_err,
2148                    "nvdimm device hot unplug is not supported yet.");
2149         goto out;
2150     }
2151 
2152     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2153                                    &local_err);
2154 out:
2155     error_propagate(errp, local_err);
2156 }
2157 
2158 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2159                              DeviceState *dev, Error **errp)
2160 {
2161     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2162     Error *local_err = NULL;
2163 
2164     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2165     if (local_err) {
2166         goto out;
2167     }
2168 
2169     pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2170     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2171  out:
2172     error_propagate(errp, local_err);
2173 }
2174 
2175 static int pc_apic_cmp(const void *a, const void *b)
2176 {
2177    CPUArchId *apic_a = (CPUArchId *)a;
2178    CPUArchId *apic_b = (CPUArchId *)b;
2179 
2180    return apic_a->arch_id - apic_b->arch_id;
2181 }
2182 
2183 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2184  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2185  * entry corresponding to CPU's apic_id returns NULL.
2186  */
2187 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2188 {
2189     CPUArchId apic_id, *found_cpu;
2190 
2191     apic_id.arch_id = id;
2192     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2193         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2194         pc_apic_cmp);
2195     if (found_cpu && idx) {
2196         *idx = found_cpu - ms->possible_cpus->cpus;
2197     }
2198     return found_cpu;
2199 }
2200 
2201 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2202                         DeviceState *dev, Error **errp)
2203 {
2204     CPUArchId *found_cpu;
2205     Error *local_err = NULL;
2206     X86CPU *cpu = X86_CPU(dev);
2207     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2208 
2209     if (pcms->acpi_dev) {
2210         hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2211         if (local_err) {
2212             goto out;
2213         }
2214     }
2215 
2216     /* increment the number of CPUs */
2217     pcms->boot_cpus++;
2218     if (pcms->rtc) {
2219         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2220     }
2221     if (pcms->fw_cfg) {
2222         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2223     }
2224 
2225     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2226     found_cpu->cpu = OBJECT(dev);
2227 out:
2228     error_propagate(errp, local_err);
2229 }
2230 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2231                                      DeviceState *dev, Error **errp)
2232 {
2233     int idx = -1;
2234     Error *local_err = NULL;
2235     X86CPU *cpu = X86_CPU(dev);
2236     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2237 
2238     if (!pcms->acpi_dev) {
2239         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2240         goto out;
2241     }
2242 
2243     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2244     assert(idx != -1);
2245     if (idx == 0) {
2246         error_setg(&local_err, "Boot CPU is unpluggable");
2247         goto out;
2248     }
2249 
2250     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2251                                    &local_err);
2252     if (local_err) {
2253         goto out;
2254     }
2255 
2256  out:
2257     error_propagate(errp, local_err);
2258 
2259 }
2260 
2261 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2262                              DeviceState *dev, Error **errp)
2263 {
2264     CPUArchId *found_cpu;
2265     Error *local_err = NULL;
2266     X86CPU *cpu = X86_CPU(dev);
2267     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2268 
2269     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2270     if (local_err) {
2271         goto out;
2272     }
2273 
2274     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2275     found_cpu->cpu = NULL;
2276     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2277 
2278     /* decrement the number of CPUs */
2279     pcms->boot_cpus--;
2280     /* Update the number of CPUs in CMOS */
2281     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2282     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2283  out:
2284     error_propagate(errp, local_err);
2285 }
2286 
2287 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2288                             DeviceState *dev, Error **errp)
2289 {
2290     int idx;
2291     CPUState *cs;
2292     CPUArchId *cpu_slot;
2293     X86CPUTopoInfo topo;
2294     X86CPU *cpu = X86_CPU(dev);
2295     MachineState *ms = MACHINE(hotplug_dev);
2296     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2297     unsigned int smp_cores = ms->smp.cores;
2298     unsigned int smp_threads = ms->smp.threads;
2299 
2300     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2301         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2302                    ms->cpu_type);
2303         return;
2304     }
2305 
2306     /* if APIC ID is not set, set it based on socket/core/thread properties */
2307     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2308         int max_socket = (ms->smp.max_cpus - 1) / smp_threads / smp_cores;
2309 
2310         if (cpu->socket_id < 0) {
2311             error_setg(errp, "CPU socket-id is not set");
2312             return;
2313         } else if (cpu->socket_id > max_socket) {
2314             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2315                        cpu->socket_id, max_socket);
2316             return;
2317         }
2318         if (cpu->core_id < 0) {
2319             error_setg(errp, "CPU core-id is not set");
2320             return;
2321         } else if (cpu->core_id > (smp_cores - 1)) {
2322             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2323                        cpu->core_id, smp_cores - 1);
2324             return;
2325         }
2326         if (cpu->thread_id < 0) {
2327             error_setg(errp, "CPU thread-id is not set");
2328             return;
2329         } else if (cpu->thread_id > (smp_threads - 1)) {
2330             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2331                        cpu->thread_id, smp_threads - 1);
2332             return;
2333         }
2334 
2335         topo.pkg_id = cpu->socket_id;
2336         topo.core_id = cpu->core_id;
2337         topo.smt_id = cpu->thread_id;
2338         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2339     }
2340 
2341     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2342     if (!cpu_slot) {
2343         MachineState *ms = MACHINE(pcms);
2344 
2345         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2346         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2347                   " APIC ID %" PRIu32 ", valid index range 0:%d",
2348                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2349                    ms->possible_cpus->len - 1);
2350         return;
2351     }
2352 
2353     if (cpu_slot->cpu) {
2354         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2355                    idx, cpu->apic_id);
2356         return;
2357     }
2358 
2359     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2360      * so that machine_query_hotpluggable_cpus would show correct values
2361      */
2362     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2363      * once -smp refactoring is complete and there will be CPU private
2364      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2365     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2366     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2367         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2368             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2369         return;
2370     }
2371     cpu->socket_id = topo.pkg_id;
2372 
2373     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2374         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2375             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2376         return;
2377     }
2378     cpu->core_id = topo.core_id;
2379 
2380     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2381         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2382             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2383         return;
2384     }
2385     cpu->thread_id = topo.smt_id;
2386 
2387     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
2388         !kvm_hv_vpindex_settable()) {
2389         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2390         return;
2391     }
2392 
2393     cs = CPU(cpu);
2394     cs->cpu_index = idx;
2395 
2396     numa_cpu_pre_plug(cpu_slot, dev, errp);
2397 }
2398 
2399 static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
2400                                         DeviceState *dev, Error **errp)
2401 {
2402     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2403     Error *local_err = NULL;
2404 
2405     if (!hotplug_dev2) {
2406         /*
2407          * Without a bus hotplug handler, we cannot control the plug/unplug
2408          * order. This should never be the case on x86, however better add
2409          * a safety net.
2410          */
2411         error_setg(errp, "virtio-pmem-pci not supported on this bus.");
2412         return;
2413     }
2414     /*
2415      * First, see if we can plug this memory device at all. If that
2416      * succeeds, branch of to the actual hotplug handler.
2417      */
2418     memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2419                            &local_err);
2420     if (!local_err) {
2421         hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2422     }
2423     error_propagate(errp, local_err);
2424 }
2425 
2426 static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
2427                                     DeviceState *dev, Error **errp)
2428 {
2429     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2430     Error *local_err = NULL;
2431 
2432     /*
2433      * Plug the memory device first and then branch off to the actual
2434      * hotplug handler. If that one fails, we can easily undo the memory
2435      * device bits.
2436      */
2437     memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2438     hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2439     if (local_err) {
2440         memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2441     }
2442     error_propagate(errp, local_err);
2443 }
2444 
2445 static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
2446                                               DeviceState *dev, Error **errp)
2447 {
2448     /* We don't support virtio pmem hot unplug */
2449     error_setg(errp, "virtio pmem device unplug not supported.");
2450 }
2451 
2452 static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
2453                                       DeviceState *dev, Error **errp)
2454 {
2455     /* We don't support virtio pmem hot unplug */
2456 }
2457 
2458 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2459                                           DeviceState *dev, Error **errp)
2460 {
2461     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2462         pc_memory_pre_plug(hotplug_dev, dev, errp);
2463     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2464         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2465     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2466         pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
2467     }
2468 }
2469 
2470 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2471                                       DeviceState *dev, Error **errp)
2472 {
2473     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2474         pc_memory_plug(hotplug_dev, dev, errp);
2475     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2476         pc_cpu_plug(hotplug_dev, dev, errp);
2477     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2478         pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
2479     }
2480 }
2481 
2482 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2483                                                 DeviceState *dev, Error **errp)
2484 {
2485     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2486         pc_memory_unplug_request(hotplug_dev, dev, errp);
2487     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2488         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2489     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2490         pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
2491     } else {
2492         error_setg(errp, "acpi: device unplug request for not supported device"
2493                    " type: %s", object_get_typename(OBJECT(dev)));
2494     }
2495 }
2496 
2497 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2498                                         DeviceState *dev, Error **errp)
2499 {
2500     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2501         pc_memory_unplug(hotplug_dev, dev, errp);
2502     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2503         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2504     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2505         pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
2506     } else {
2507         error_setg(errp, "acpi: device unplug for not supported device"
2508                    " type: %s", object_get_typename(OBJECT(dev)));
2509     }
2510 }
2511 
2512 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2513                                              DeviceState *dev)
2514 {
2515     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2516         object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
2517         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2518         return HOTPLUG_HANDLER(machine);
2519     }
2520 
2521     return NULL;
2522 }
2523 
2524 static void
2525 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2526                                          const char *name, void *opaque,
2527                                          Error **errp)
2528 {
2529     MachineState *ms = MACHINE(obj);
2530     int64_t value = memory_region_size(&ms->device_memory->mr);
2531 
2532     visit_type_int(v, name, &value, errp);
2533 }
2534 
2535 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2536                                             const char *name, void *opaque,
2537                                             Error **errp)
2538 {
2539     PCMachineState *pcms = PC_MACHINE(obj);
2540     uint64_t value = pcms->max_ram_below_4g;
2541 
2542     visit_type_size(v, name, &value, errp);
2543 }
2544 
2545 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2546                                             const char *name, void *opaque,
2547                                             Error **errp)
2548 {
2549     PCMachineState *pcms = PC_MACHINE(obj);
2550     Error *error = NULL;
2551     uint64_t value;
2552 
2553     visit_type_size(v, name, &value, &error);
2554     if (error) {
2555         error_propagate(errp, error);
2556         return;
2557     }
2558     if (value > 4 * GiB) {
2559         error_setg(&error,
2560                    "Machine option 'max-ram-below-4g=%"PRIu64
2561                    "' expects size less than or equal to 4G", value);
2562         error_propagate(errp, error);
2563         return;
2564     }
2565 
2566     if (value < 1 * MiB) {
2567         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2568                     "BIOS may not work with less than 1MiB", value);
2569     }
2570 
2571     pcms->max_ram_below_4g = value;
2572 }
2573 
2574 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2575                                   void *opaque, Error **errp)
2576 {
2577     PCMachineState *pcms = PC_MACHINE(obj);
2578     OnOffAuto vmport = pcms->vmport;
2579 
2580     visit_type_OnOffAuto(v, name, &vmport, errp);
2581 }
2582 
2583 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2584                                   void *opaque, Error **errp)
2585 {
2586     PCMachineState *pcms = PC_MACHINE(obj);
2587 
2588     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2589 }
2590 
2591 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2592 {
2593     bool smm_available = false;
2594 
2595     if (pcms->smm == ON_OFF_AUTO_OFF) {
2596         return false;
2597     }
2598 
2599     if (tcg_enabled() || qtest_enabled()) {
2600         smm_available = true;
2601     } else if (kvm_enabled()) {
2602         smm_available = kvm_has_smm();
2603     }
2604 
2605     if (smm_available) {
2606         return true;
2607     }
2608 
2609     if (pcms->smm == ON_OFF_AUTO_ON) {
2610         error_report("System Management Mode not supported by this hypervisor.");
2611         exit(1);
2612     }
2613     return false;
2614 }
2615 
2616 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2617                                void *opaque, Error **errp)
2618 {
2619     PCMachineState *pcms = PC_MACHINE(obj);
2620     OnOffAuto smm = pcms->smm;
2621 
2622     visit_type_OnOffAuto(v, name, &smm, errp);
2623 }
2624 
2625 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2626                                void *opaque, Error **errp)
2627 {
2628     PCMachineState *pcms = PC_MACHINE(obj);
2629 
2630     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2631 }
2632 
2633 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2634 {
2635     PCMachineState *pcms = PC_MACHINE(obj);
2636 
2637     return pcms->smbus_enabled;
2638 }
2639 
2640 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2641 {
2642     PCMachineState *pcms = PC_MACHINE(obj);
2643 
2644     pcms->smbus_enabled = value;
2645 }
2646 
2647 static bool pc_machine_get_sata(Object *obj, Error **errp)
2648 {
2649     PCMachineState *pcms = PC_MACHINE(obj);
2650 
2651     return pcms->sata_enabled;
2652 }
2653 
2654 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2655 {
2656     PCMachineState *pcms = PC_MACHINE(obj);
2657 
2658     pcms->sata_enabled = value;
2659 }
2660 
2661 static bool pc_machine_get_pit(Object *obj, Error **errp)
2662 {
2663     PCMachineState *pcms = PC_MACHINE(obj);
2664 
2665     return pcms->pit_enabled;
2666 }
2667 
2668 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2669 {
2670     PCMachineState *pcms = PC_MACHINE(obj);
2671 
2672     pcms->pit_enabled = value;
2673 }
2674 
2675 static void pc_machine_initfn(Object *obj)
2676 {
2677     PCMachineState *pcms = PC_MACHINE(obj);
2678 
2679     pcms->max_ram_below_4g = 0; /* use default */
2680     pcms->smm = ON_OFF_AUTO_AUTO;
2681     pcms->vmport = ON_OFF_AUTO_AUTO;
2682     /* acpi build is enabled by default if machine supports it */
2683     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2684     pcms->smbus_enabled = true;
2685     pcms->sata_enabled = true;
2686     pcms->pit_enabled = true;
2687 
2688     pc_system_flash_create(pcms);
2689 }
2690 
2691 static void pc_machine_reset(MachineState *machine)
2692 {
2693     CPUState *cs;
2694     X86CPU *cpu;
2695 
2696     qemu_devices_reset();
2697 
2698     /* Reset APIC after devices have been reset to cancel
2699      * any changes that qemu_devices_reset() might have done.
2700      */
2701     CPU_FOREACH(cs) {
2702         cpu = X86_CPU(cs);
2703 
2704         if (cpu->apic_state) {
2705             device_reset(cpu->apic_state);
2706         }
2707     }
2708 }
2709 
2710 static CpuInstanceProperties
2711 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2712 {
2713     MachineClass *mc = MACHINE_GET_CLASS(ms);
2714     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2715 
2716     assert(cpu_index < possible_cpus->len);
2717     return possible_cpus->cpus[cpu_index].props;
2718 }
2719 
2720 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2721 {
2722    X86CPUTopoInfo topo;
2723 
2724    assert(idx < ms->possible_cpus->len);
2725    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2726                             ms->smp.cores, ms->smp.threads, &topo);
2727    return topo.pkg_id % nb_numa_nodes;
2728 }
2729 
2730 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2731 {
2732     PCMachineState *pcms = PC_MACHINE(ms);
2733     int i;
2734     unsigned int max_cpus = ms->smp.max_cpus;
2735 
2736     if (ms->possible_cpus) {
2737         /*
2738          * make sure that max_cpus hasn't changed since the first use, i.e.
2739          * -smp hasn't been parsed after it
2740         */
2741         assert(ms->possible_cpus->len == max_cpus);
2742         return ms->possible_cpus;
2743     }
2744 
2745     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2746                                   sizeof(CPUArchId) * max_cpus);
2747     ms->possible_cpus->len = max_cpus;
2748     for (i = 0; i < ms->possible_cpus->len; i++) {
2749         X86CPUTopoInfo topo;
2750 
2751         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2752         ms->possible_cpus->cpus[i].vcpus_count = 1;
2753         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
2754         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2755                                  ms->smp.cores, ms->smp.threads, &topo);
2756         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2757         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2758         ms->possible_cpus->cpus[i].props.has_core_id = true;
2759         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2760         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2761         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2762     }
2763     return ms->possible_cpus;
2764 }
2765 
2766 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2767 {
2768     /* cpu index isn't used */
2769     CPUState *cs;
2770 
2771     CPU_FOREACH(cs) {
2772         X86CPU *cpu = X86_CPU(cs);
2773 
2774         if (!cpu->apic_state) {
2775             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2776         } else {
2777             apic_deliver_nmi(cpu->apic_state);
2778         }
2779     }
2780 }
2781 
2782 static void pc_machine_class_init(ObjectClass *oc, void *data)
2783 {
2784     MachineClass *mc = MACHINE_CLASS(oc);
2785     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2786     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2787     NMIClass *nc = NMI_CLASS(oc);
2788 
2789     pcmc->pci_enabled = true;
2790     pcmc->has_acpi_build = true;
2791     pcmc->rsdp_in_ram = true;
2792     pcmc->smbios_defaults = true;
2793     pcmc->smbios_uuid_encoded = true;
2794     pcmc->gigabyte_align = true;
2795     pcmc->has_reserved_memory = true;
2796     pcmc->kvmclock_enabled = true;
2797     pcmc->enforce_aligned_dimm = true;
2798     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2799      * to be used at the moment, 32K should be enough for a while.  */
2800     pcmc->acpi_data_size = 0x20000 + 0x8000;
2801     pcmc->save_tsc_khz = true;
2802     pcmc->linuxboot_dma_enabled = true;
2803     pcmc->pvh_enabled = true;
2804     assert(!mc->get_hotplug_handler);
2805     mc->get_hotplug_handler = pc_get_hotplug_handler;
2806     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2807     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2808     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2809     mc->auto_enable_numa_with_memhp = true;
2810     mc->has_hotpluggable_cpus = true;
2811     mc->default_boot_order = "cad";
2812     mc->hot_add_cpu = pc_hot_add_cpu;
2813     mc->block_default_type = IF_IDE;
2814     mc->max_cpus = 255;
2815     mc->reset = pc_machine_reset;
2816     hc->pre_plug = pc_machine_device_pre_plug_cb;
2817     hc->plug = pc_machine_device_plug_cb;
2818     hc->unplug_request = pc_machine_device_unplug_request_cb;
2819     hc->unplug = pc_machine_device_unplug_cb;
2820     nc->nmi_monitor_handler = x86_nmi;
2821     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2822     mc->nvdimm_supported = true;
2823 
2824     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2825         pc_machine_get_device_memory_region_size, NULL,
2826         NULL, NULL, &error_abort);
2827 
2828     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2829         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2830         NULL, NULL, &error_abort);
2831 
2832     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2833         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2834 
2835     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2836         pc_machine_get_smm, pc_machine_set_smm,
2837         NULL, NULL, &error_abort);
2838     object_class_property_set_description(oc, PC_MACHINE_SMM,
2839         "Enable SMM (pc & q35)", &error_abort);
2840 
2841     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2842         pc_machine_get_vmport, pc_machine_set_vmport,
2843         NULL, NULL, &error_abort);
2844     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2845         "Enable vmport (pc & q35)", &error_abort);
2846 
2847     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2848         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2849 
2850     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2851         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2852 
2853     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2854         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2855 }
2856 
2857 static const TypeInfo pc_machine_info = {
2858     .name = TYPE_PC_MACHINE,
2859     .parent = TYPE_MACHINE,
2860     .abstract = true,
2861     .instance_size = sizeof(PCMachineState),
2862     .instance_init = pc_machine_initfn,
2863     .class_size = sizeof(PCMachineClass),
2864     .class_init = pc_machine_class_init,
2865     .interfaces = (InterfaceInfo[]) {
2866          { TYPE_HOTPLUG_HANDLER },
2867          { TYPE_NMI },
2868          { }
2869     },
2870 };
2871 
2872 static void pc_machine_register_types(void)
2873 {
2874     type_register_static(&pc_machine_info);
2875 }
2876 
2877 type_init(pc_machine_register_types)
2878