xref: /openbmc/qemu/hw/i386/pc.c (revision 2f99b9c273ded76211ddb445b273ce854d469033)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77 
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80 
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...)                                       \
83     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87 
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93 
94 #define E820_NR_ENTRIES		16
95 
96 struct e820_entry {
97     uint64_t address;
98     uint64_t length;
99     uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101 
102 struct e820_table {
103     uint32_t count;
104     struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106 
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111 
112 GlobalProperty pc_compat_3_1[] = {
113     {
114         .driver   = "intel-iommu",
115         .property = "dma-drain",
116         .value    = "off",
117     },
118 };
119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
120 
121 GlobalProperty pc_compat_3_0[] = {
122     {
123         .driver   = TYPE_X86_CPU,
124         .property = "x-hv-synic-kvm-only",
125         .value    = "on",
126     },{
127         .driver   = "Skylake-Server" "-" TYPE_X86_CPU,
128         .property = "pku",
129         .value    = "off",
130     },{
131         .driver   = "Skylake-Server-IBRS" "-" TYPE_X86_CPU,
132         .property = "pku",
133         .value    = "off",
134     },
135 };
136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
137 
138 GlobalProperty pc_compat_2_12[] = {
139     {
140         .driver   = TYPE_X86_CPU,
141         .property = "legacy-cache",
142         .value    = "on",
143     },{
144         .driver   = TYPE_X86_CPU,
145         .property = "topoext",
146         .value    = "off",
147     },{
148         .driver   = "EPYC-" TYPE_X86_CPU,
149         .property = "xlevel",
150         .value    = stringify(0x8000000a),
151     },{
152         .driver   = "EPYC-IBPB-" TYPE_X86_CPU,
153         .property = "xlevel",
154         .value    = stringify(0x8000000a),
155     },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158 
159 GlobalProperty pc_compat_2_11[] = {
160     {
161         .driver   = TYPE_X86_CPU,
162         .property = "x-migrate-smi-count",
163         .value    = "off",
164     },{
165         .driver   = "Skylake-Server" "-" TYPE_X86_CPU,
166         .property = "clflushopt",
167         .value    = "off",
168     },
169 };
170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
171 
172 GlobalProperty pc_compat_2_10[] = {
173     {
174         .driver   = TYPE_X86_CPU,
175         .property = "x-hv-max-vps",
176         .value    = "0x40",
177     },{
178         .driver   = "i440FX-pcihost",
179         .property = "x-pci-hole64-fix",
180         .value    = "off",
181     },{
182         .driver   = "q35-pcihost",
183         .property = "x-pci-hole64-fix",
184         .value    = "off",
185     },
186 };
187 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
188 
189 GlobalProperty pc_compat_2_9[] = {
190     {
191         .driver   = "mch",
192         .property = "extended-tseg-mbytes",
193         .value    = stringify(0),
194     },
195 };
196 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
197 
198 GlobalProperty pc_compat_2_8[] = {
199     {
200         .driver   = TYPE_X86_CPU,
201         .property = "tcg-cpuid",
202         .value    = "off",
203     },
204     {
205         .driver   = "kvmclock",
206         .property = "x-mach-use-reliable-get-clock",
207         .value    = "off",
208     },
209     {
210         .driver   = "ICH9-LPC",
211         .property = "x-smi-broadcast",
212         .value    = "off",
213     },
214     {
215         .driver   = TYPE_X86_CPU,
216         .property = "vmware-cpuid-freq",
217         .value    = "off",
218     },
219     {
220         .driver   = "Haswell-" TYPE_X86_CPU,
221         .property = "stepping",
222         .value    = "1",
223     },
224 };
225 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
226 
227 GlobalProperty pc_compat_2_7[] = {
228     {
229         .driver   = TYPE_X86_CPU,
230         .property = "l3-cache",
231         .value    = "off",
232     },
233     {
234         .driver   = TYPE_X86_CPU,
235         .property = "full-cpuid-auto-level",
236         .value    = "off",
237     },
238     {
239         .driver   = "Opteron_G3" "-" TYPE_X86_CPU,
240         .property = "family",
241         .value    = "15",
242     },
243     {
244         .driver   = "Opteron_G3" "-" TYPE_X86_CPU,
245         .property = "model",
246         .value    = "6",
247     },
248     {
249         .driver   = "Opteron_G3" "-" TYPE_X86_CPU,
250         .property = "stepping",
251         .value    = "1",
252     },
253     {
254         .driver   = "isa-pcspk",
255         .property = "migrate",
256         .value    = "off",
257     },
258 };
259 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
260 
261 GlobalProperty pc_compat_2_6[] = {
262     {
263         .driver   = TYPE_X86_CPU,
264         .property = "cpuid-0xb",
265         .value    = "off",
266     },{
267         .driver   = "vmxnet3",
268         .property = "romfile",
269         .value    = "",
270     },
271     {
272         .driver = TYPE_X86_CPU,
273         .property = "fill-mtrr-mask",
274         .value = "off",
275     },
276     {
277         .driver   = "apic-common",
278         .property = "legacy-instance-id",
279         .value    = "on",
280     }
281 };
282 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
283 
284 GlobalProperty pc_compat_2_5[] = {};
285 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
286 
287 GlobalProperty pc_compat_2_4[] = {
288     PC_CPU_MODEL_IDS("2.4.0")
289     {
290         .driver   = "Haswell-" TYPE_X86_CPU,
291         .property = "abm",
292         .value    = "off",
293     },
294     {
295         .driver   = "Haswell-noTSX-" TYPE_X86_CPU,
296         .property = "abm",
297         .value    = "off",
298     },
299     {
300         .driver   = "Broadwell-" TYPE_X86_CPU,
301         .property = "abm",
302         .value    = "off",
303     },
304     {
305         .driver   = "Broadwell-noTSX-" TYPE_X86_CPU,
306         .property = "abm",
307         .value    = "off",
308     },
309     {
310         .driver   = "host" "-" TYPE_X86_CPU,
311         .property = "host-cache-info",
312         .value    = "on",
313     },
314     {
315         .driver   = TYPE_X86_CPU,
316         .property = "check",
317         .value    = "off",
318     },
319     {
320         .driver   = "qemu64" "-" TYPE_X86_CPU,
321         .property = "sse4a",
322         .value    = "on",
323     },
324     {
325         .driver   = "qemu64" "-" TYPE_X86_CPU,
326         .property = "abm",
327         .value    = "on",
328     },
329     {
330         .driver   = "qemu64" "-" TYPE_X86_CPU,
331         .property = "popcnt",
332         .value    = "on",
333     },
334     {
335         .driver   = "qemu32" "-" TYPE_X86_CPU,
336         .property = "popcnt",
337         .value    = "on",
338     },{
339         .driver   = "Opteron_G2" "-" TYPE_X86_CPU,
340         .property = "rdtscp",
341         .value    = "on",
342     },{
343         .driver   = "Opteron_G3" "-" TYPE_X86_CPU,
344         .property = "rdtscp",
345         .value    = "on",
346     },{
347         .driver   = "Opteron_G4" "-" TYPE_X86_CPU,
348         .property = "rdtscp",
349         .value    = "on",
350     },{
351         .driver   = "Opteron_G5" "-" TYPE_X86_CPU,
352         .property = "rdtscp",
353         .value    = "on",
354     }
355 };
356 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
357 
358 void gsi_handler(void *opaque, int n, int level)
359 {
360     GSIState *s = opaque;
361 
362     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
363     if (n < ISA_NUM_IRQS) {
364         qemu_set_irq(s->i8259_irq[n], level);
365     }
366     qemu_set_irq(s->ioapic_irq[n], level);
367 }
368 
369 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
370                            unsigned size)
371 {
372 }
373 
374 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
375 {
376     return 0xffffffffffffffffULL;
377 }
378 
379 /* MSDOS compatibility mode FPU exception support */
380 static qemu_irq ferr_irq;
381 
382 void pc_register_ferr_irq(qemu_irq irq)
383 {
384     ferr_irq = irq;
385 }
386 
387 /* XXX: add IGNNE support */
388 void cpu_set_ferr(CPUX86State *s)
389 {
390     qemu_irq_raise(ferr_irq);
391 }
392 
393 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
394                            unsigned size)
395 {
396     qemu_irq_lower(ferr_irq);
397 }
398 
399 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
400 {
401     return 0xffffffffffffffffULL;
402 }
403 
404 /* TSC handling */
405 uint64_t cpu_get_tsc(CPUX86State *env)
406 {
407     return cpu_get_ticks();
408 }
409 
410 /* IRQ handling */
411 int cpu_get_pic_interrupt(CPUX86State *env)
412 {
413     X86CPU *cpu = x86_env_get_cpu(env);
414     int intno;
415 
416     if (!kvm_irqchip_in_kernel()) {
417         intno = apic_get_interrupt(cpu->apic_state);
418         if (intno >= 0) {
419             return intno;
420         }
421         /* read the irq from the PIC */
422         if (!apic_accept_pic_intr(cpu->apic_state)) {
423             return -1;
424         }
425     }
426 
427     intno = pic_read_irq(isa_pic);
428     return intno;
429 }
430 
431 static void pic_irq_request(void *opaque, int irq, int level)
432 {
433     CPUState *cs = first_cpu;
434     X86CPU *cpu = X86_CPU(cs);
435 
436     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
437     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
438         CPU_FOREACH(cs) {
439             cpu = X86_CPU(cs);
440             if (apic_accept_pic_intr(cpu->apic_state)) {
441                 apic_deliver_pic_intr(cpu->apic_state, level);
442             }
443         }
444     } else {
445         if (level) {
446             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
447         } else {
448             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
449         }
450     }
451 }
452 
453 /* PC cmos mappings */
454 
455 #define REG_EQUIPMENT_BYTE          0x14
456 
457 int cmos_get_fd_drive_type(FloppyDriveType fd0)
458 {
459     int val;
460 
461     switch (fd0) {
462     case FLOPPY_DRIVE_TYPE_144:
463         /* 1.44 Mb 3"5 drive */
464         val = 4;
465         break;
466     case FLOPPY_DRIVE_TYPE_288:
467         /* 2.88 Mb 3"5 drive */
468         val = 5;
469         break;
470     case FLOPPY_DRIVE_TYPE_120:
471         /* 1.2 Mb 5"5 drive */
472         val = 2;
473         break;
474     case FLOPPY_DRIVE_TYPE_NONE:
475     default:
476         val = 0;
477         break;
478     }
479     return val;
480 }
481 
482 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
483                          int16_t cylinders, int8_t heads, int8_t sectors)
484 {
485     rtc_set_memory(s, type_ofs, 47);
486     rtc_set_memory(s, info_ofs, cylinders);
487     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
488     rtc_set_memory(s, info_ofs + 2, heads);
489     rtc_set_memory(s, info_ofs + 3, 0xff);
490     rtc_set_memory(s, info_ofs + 4, 0xff);
491     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
492     rtc_set_memory(s, info_ofs + 6, cylinders);
493     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
494     rtc_set_memory(s, info_ofs + 8, sectors);
495 }
496 
497 /* convert boot_device letter to something recognizable by the bios */
498 static int boot_device2nibble(char boot_device)
499 {
500     switch(boot_device) {
501     case 'a':
502     case 'b':
503         return 0x01; /* floppy boot */
504     case 'c':
505         return 0x02; /* hard drive boot */
506     case 'd':
507         return 0x03; /* CD-ROM boot */
508     case 'n':
509         return 0x04; /* Network boot */
510     }
511     return 0;
512 }
513 
514 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
515 {
516 #define PC_MAX_BOOT_DEVICES 3
517     int nbds, bds[3] = { 0, };
518     int i;
519 
520     nbds = strlen(boot_device);
521     if (nbds > PC_MAX_BOOT_DEVICES) {
522         error_setg(errp, "Too many boot devices for PC");
523         return;
524     }
525     for (i = 0; i < nbds; i++) {
526         bds[i] = boot_device2nibble(boot_device[i]);
527         if (bds[i] == 0) {
528             error_setg(errp, "Invalid boot device for PC: '%c'",
529                        boot_device[i]);
530             return;
531         }
532     }
533     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
534     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
535 }
536 
537 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
538 {
539     set_boot_dev(opaque, boot_device, errp);
540 }
541 
542 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
543 {
544     int val, nb, i;
545     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
546                                    FLOPPY_DRIVE_TYPE_NONE };
547 
548     /* floppy type */
549     if (floppy) {
550         for (i = 0; i < 2; i++) {
551             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
552         }
553     }
554     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
555         cmos_get_fd_drive_type(fd_type[1]);
556     rtc_set_memory(rtc_state, 0x10, val);
557 
558     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
559     nb = 0;
560     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
561         nb++;
562     }
563     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
564         nb++;
565     }
566     switch (nb) {
567     case 0:
568         break;
569     case 1:
570         val |= 0x01; /* 1 drive, ready for boot */
571         break;
572     case 2:
573         val |= 0x41; /* 2 drives, ready for boot */
574         break;
575     }
576     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
577 }
578 
579 typedef struct pc_cmos_init_late_arg {
580     ISADevice *rtc_state;
581     BusState *idebus[2];
582 } pc_cmos_init_late_arg;
583 
584 typedef struct check_fdc_state {
585     ISADevice *floppy;
586     bool multiple;
587 } CheckFdcState;
588 
589 static int check_fdc(Object *obj, void *opaque)
590 {
591     CheckFdcState *state = opaque;
592     Object *fdc;
593     uint32_t iobase;
594     Error *local_err = NULL;
595 
596     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
597     if (!fdc) {
598         return 0;
599     }
600 
601     iobase = object_property_get_uint(obj, "iobase", &local_err);
602     if (local_err || iobase != 0x3f0) {
603         error_free(local_err);
604         return 0;
605     }
606 
607     if (state->floppy) {
608         state->multiple = true;
609     } else {
610         state->floppy = ISA_DEVICE(obj);
611     }
612     return 0;
613 }
614 
615 static const char * const fdc_container_path[] = {
616     "/unattached", "/peripheral", "/peripheral-anon"
617 };
618 
619 /*
620  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
621  * and ACPI objects.
622  */
623 ISADevice *pc_find_fdc0(void)
624 {
625     int i;
626     Object *container;
627     CheckFdcState state = { 0 };
628 
629     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
630         container = container_get(qdev_get_machine(), fdc_container_path[i]);
631         object_child_foreach(container, check_fdc, &state);
632     }
633 
634     if (state.multiple) {
635         warn_report("multiple floppy disk controllers with "
636                     "iobase=0x3f0 have been found");
637         error_printf("the one being picked for CMOS setup might not reflect "
638                      "your intent");
639     }
640 
641     return state.floppy;
642 }
643 
644 static void pc_cmos_init_late(void *opaque)
645 {
646     pc_cmos_init_late_arg *arg = opaque;
647     ISADevice *s = arg->rtc_state;
648     int16_t cylinders;
649     int8_t heads, sectors;
650     int val;
651     int i, trans;
652 
653     val = 0;
654     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
655                                            &cylinders, &heads, &sectors) >= 0) {
656         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
657         val |= 0xf0;
658     }
659     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
660                                            &cylinders, &heads, &sectors) >= 0) {
661         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
662         val |= 0x0f;
663     }
664     rtc_set_memory(s, 0x12, val);
665 
666     val = 0;
667     for (i = 0; i < 4; i++) {
668         /* NOTE: ide_get_geometry() returns the physical
669            geometry.  It is always such that: 1 <= sects <= 63, 1
670            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
671            geometry can be different if a translation is done. */
672         if (arg->idebus[i / 2] &&
673             ide_get_geometry(arg->idebus[i / 2], i % 2,
674                              &cylinders, &heads, &sectors) >= 0) {
675             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
676             assert((trans & ~3) == 0);
677             val |= trans << (i * 2);
678         }
679     }
680     rtc_set_memory(s, 0x39, val);
681 
682     pc_cmos_init_floppy(s, pc_find_fdc0());
683 
684     qemu_unregister_reset(pc_cmos_init_late, opaque);
685 }
686 
687 void pc_cmos_init(PCMachineState *pcms,
688                   BusState *idebus0, BusState *idebus1,
689                   ISADevice *s)
690 {
691     int val;
692     static pc_cmos_init_late_arg arg;
693 
694     /* various important CMOS locations needed by PC/Bochs bios */
695 
696     /* memory size */
697     /* base memory (first MiB) */
698     val = MIN(pcms->below_4g_mem_size / KiB, 640);
699     rtc_set_memory(s, 0x15, val);
700     rtc_set_memory(s, 0x16, val >> 8);
701     /* extended memory (next 64MiB) */
702     if (pcms->below_4g_mem_size > 1 * MiB) {
703         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
704     } else {
705         val = 0;
706     }
707     if (val > 65535)
708         val = 65535;
709     rtc_set_memory(s, 0x17, val);
710     rtc_set_memory(s, 0x18, val >> 8);
711     rtc_set_memory(s, 0x30, val);
712     rtc_set_memory(s, 0x31, val >> 8);
713     /* memory between 16MiB and 4GiB */
714     if (pcms->below_4g_mem_size > 16 * MiB) {
715         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
716     } else {
717         val = 0;
718     }
719     if (val > 65535)
720         val = 65535;
721     rtc_set_memory(s, 0x34, val);
722     rtc_set_memory(s, 0x35, val >> 8);
723     /* memory above 4GiB */
724     val = pcms->above_4g_mem_size / 65536;
725     rtc_set_memory(s, 0x5b, val);
726     rtc_set_memory(s, 0x5c, val >> 8);
727     rtc_set_memory(s, 0x5d, val >> 16);
728 
729     object_property_add_link(OBJECT(pcms), "rtc_state",
730                              TYPE_ISA_DEVICE,
731                              (Object **)&pcms->rtc,
732                              object_property_allow_set_link,
733                              OBJ_PROP_LINK_STRONG, &error_abort);
734     object_property_set_link(OBJECT(pcms), OBJECT(s),
735                              "rtc_state", &error_abort);
736 
737     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
738 
739     val = 0;
740     val |= 0x02; /* FPU is there */
741     val |= 0x04; /* PS/2 mouse installed */
742     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
743 
744     /* hard drives and FDC */
745     arg.rtc_state = s;
746     arg.idebus[0] = idebus0;
747     arg.idebus[1] = idebus1;
748     qemu_register_reset(pc_cmos_init_late, &arg);
749 }
750 
751 #define TYPE_PORT92 "port92"
752 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
753 
754 /* port 92 stuff: could be split off */
755 typedef struct Port92State {
756     ISADevice parent_obj;
757 
758     MemoryRegion io;
759     uint8_t outport;
760     qemu_irq a20_out;
761 } Port92State;
762 
763 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
764                          unsigned size)
765 {
766     Port92State *s = opaque;
767     int oldval = s->outport;
768 
769     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
770     s->outport = val;
771     qemu_set_irq(s->a20_out, (val >> 1) & 1);
772     if ((val & 1) && !(oldval & 1)) {
773         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
774     }
775 }
776 
777 static uint64_t port92_read(void *opaque, hwaddr addr,
778                             unsigned size)
779 {
780     Port92State *s = opaque;
781     uint32_t ret;
782 
783     ret = s->outport;
784     DPRINTF("port92: read 0x%02x\n", ret);
785     return ret;
786 }
787 
788 static void port92_init(ISADevice *dev, qemu_irq a20_out)
789 {
790     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
791 }
792 
793 static const VMStateDescription vmstate_port92_isa = {
794     .name = "port92",
795     .version_id = 1,
796     .minimum_version_id = 1,
797     .fields = (VMStateField[]) {
798         VMSTATE_UINT8(outport, Port92State),
799         VMSTATE_END_OF_LIST()
800     }
801 };
802 
803 static void port92_reset(DeviceState *d)
804 {
805     Port92State *s = PORT92(d);
806 
807     s->outport &= ~1;
808 }
809 
810 static const MemoryRegionOps port92_ops = {
811     .read = port92_read,
812     .write = port92_write,
813     .impl = {
814         .min_access_size = 1,
815         .max_access_size = 1,
816     },
817     .endianness = DEVICE_LITTLE_ENDIAN,
818 };
819 
820 static void port92_initfn(Object *obj)
821 {
822     Port92State *s = PORT92(obj);
823 
824     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
825 
826     s->outport = 0;
827 
828     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
829 }
830 
831 static void port92_realizefn(DeviceState *dev, Error **errp)
832 {
833     ISADevice *isadev = ISA_DEVICE(dev);
834     Port92State *s = PORT92(dev);
835 
836     isa_register_ioport(isadev, &s->io, 0x92);
837 }
838 
839 static void port92_class_initfn(ObjectClass *klass, void *data)
840 {
841     DeviceClass *dc = DEVICE_CLASS(klass);
842 
843     dc->realize = port92_realizefn;
844     dc->reset = port92_reset;
845     dc->vmsd = &vmstate_port92_isa;
846     /*
847      * Reason: unlike ordinary ISA devices, this one needs additional
848      * wiring: its A20 output line needs to be wired up by
849      * port92_init().
850      */
851     dc->user_creatable = false;
852 }
853 
854 static const TypeInfo port92_info = {
855     .name          = TYPE_PORT92,
856     .parent        = TYPE_ISA_DEVICE,
857     .instance_size = sizeof(Port92State),
858     .instance_init = port92_initfn,
859     .class_init    = port92_class_initfn,
860 };
861 
862 static void port92_register_types(void)
863 {
864     type_register_static(&port92_info);
865 }
866 
867 type_init(port92_register_types)
868 
869 static void handle_a20_line_change(void *opaque, int irq, int level)
870 {
871     X86CPU *cpu = opaque;
872 
873     /* XXX: send to all CPUs ? */
874     /* XXX: add logic to handle multiple A20 line sources */
875     x86_cpu_set_a20(cpu, level);
876 }
877 
878 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
879 {
880     int index = le32_to_cpu(e820_reserve.count);
881     struct e820_entry *entry;
882 
883     if (type != E820_RAM) {
884         /* old FW_CFG_E820_TABLE entry -- reservations only */
885         if (index >= E820_NR_ENTRIES) {
886             return -EBUSY;
887         }
888         entry = &e820_reserve.entry[index++];
889 
890         entry->address = cpu_to_le64(address);
891         entry->length = cpu_to_le64(length);
892         entry->type = cpu_to_le32(type);
893 
894         e820_reserve.count = cpu_to_le32(index);
895     }
896 
897     /* new "etc/e820" file -- include ram too */
898     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
899     e820_table[e820_entries].address = cpu_to_le64(address);
900     e820_table[e820_entries].length = cpu_to_le64(length);
901     e820_table[e820_entries].type = cpu_to_le32(type);
902     e820_entries++;
903 
904     return e820_entries;
905 }
906 
907 int e820_get_num_entries(void)
908 {
909     return e820_entries;
910 }
911 
912 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
913 {
914     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
915         *address = le64_to_cpu(e820_table[idx].address);
916         *length = le64_to_cpu(e820_table[idx].length);
917         return true;
918     }
919     return false;
920 }
921 
922 /* Enables contiguous-apic-ID mode, for compatibility */
923 static bool compat_apic_id_mode;
924 
925 void enable_compat_apic_id_mode(void)
926 {
927     compat_apic_id_mode = true;
928 }
929 
930 /* Calculates initial APIC ID for a specific CPU index
931  *
932  * Currently we need to be able to calculate the APIC ID from the CPU index
933  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
934  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
935  * all CPUs up to max_cpus.
936  */
937 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
938 {
939     uint32_t correct_id;
940     static bool warned;
941 
942     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
943     if (compat_apic_id_mode) {
944         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
945             error_report("APIC IDs set in compatibility mode, "
946                          "CPU topology won't match the configuration");
947             warned = true;
948         }
949         return cpu_index;
950     } else {
951         return correct_id;
952     }
953 }
954 
955 static void pc_build_smbios(PCMachineState *pcms)
956 {
957     uint8_t *smbios_tables, *smbios_anchor;
958     size_t smbios_tables_len, smbios_anchor_len;
959     struct smbios_phys_mem_area *mem_array;
960     unsigned i, array_count;
961     MachineState *ms = MACHINE(pcms);
962     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
963 
964     /* tell smbios about cpuid version and features */
965     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
966 
967     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
968     if (smbios_tables) {
969         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
970                          smbios_tables, smbios_tables_len);
971     }
972 
973     /* build the array of physical mem area from e820 table */
974     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
975     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
976         uint64_t addr, len;
977 
978         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
979             mem_array[array_count].address = addr;
980             mem_array[array_count].length = len;
981             array_count++;
982         }
983     }
984     smbios_get_tables(mem_array, array_count,
985                       &smbios_tables, &smbios_tables_len,
986                       &smbios_anchor, &smbios_anchor_len);
987     g_free(mem_array);
988 
989     if (smbios_anchor) {
990         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
991                         smbios_tables, smbios_tables_len);
992         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
993                         smbios_anchor, smbios_anchor_len);
994     }
995 }
996 
997 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
998 {
999     FWCfgState *fw_cfg;
1000     uint64_t *numa_fw_cfg;
1001     int i;
1002     const CPUArchIdList *cpus;
1003     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1004 
1005     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1006     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1007 
1008     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1009      *
1010      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1011      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1012      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1013      * for CPU hotplug also uses APIC ID and not "CPU index".
1014      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1015      * but the "limit to the APIC ID values SeaBIOS may see".
1016      *
1017      * So for compatibility reasons with old BIOSes we are stuck with
1018      * "etc/max-cpus" actually being apic_id_limit
1019      */
1020     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1021     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1022     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1023                      acpi_tables, acpi_tables_len);
1024     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1025 
1026     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1027                      &e820_reserve, sizeof(e820_reserve));
1028     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1029                     sizeof(struct e820_entry) * e820_entries);
1030 
1031     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1032     /* allocate memory for the NUMA channel: one (64bit) word for the number
1033      * of nodes, one word for each VCPU->node and one word for each node to
1034      * hold the amount of memory.
1035      */
1036     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1037     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1038     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1039     for (i = 0; i < cpus->len; i++) {
1040         unsigned int apic_id = cpus->cpus[i].arch_id;
1041         assert(apic_id < pcms->apic_id_limit);
1042         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1043     }
1044     for (i = 0; i < nb_numa_nodes; i++) {
1045         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1046             cpu_to_le64(numa_info[i].node_mem);
1047     }
1048     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1049                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
1050                      sizeof(*numa_fw_cfg));
1051 
1052     return fw_cfg;
1053 }
1054 
1055 static long get_file_size(FILE *f)
1056 {
1057     long where, size;
1058 
1059     /* XXX: on Unix systems, using fstat() probably makes more sense */
1060 
1061     where = ftell(f);
1062     fseek(f, 0, SEEK_END);
1063     size = ftell(f);
1064     fseek(f, where, SEEK_SET);
1065 
1066     return size;
1067 }
1068 
1069 /* setup_data types */
1070 #define SETUP_NONE     0
1071 #define SETUP_E820_EXT 1
1072 #define SETUP_DTB      2
1073 #define SETUP_PCI      3
1074 #define SETUP_EFI      4
1075 
1076 struct setup_data {
1077     uint64_t next;
1078     uint32_t type;
1079     uint32_t len;
1080     uint8_t data[0];
1081 } __attribute__((packed));
1082 
1083 static void load_linux(PCMachineState *pcms,
1084                        FWCfgState *fw_cfg)
1085 {
1086     uint16_t protocol;
1087     int setup_size, kernel_size, cmdline_size;
1088     int dtb_size, setup_data_offset;
1089     uint32_t initrd_max;
1090     uint8_t header[8192], *setup, *kernel;
1091     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1092     FILE *f;
1093     char *vmode;
1094     MachineState *machine = MACHINE(pcms);
1095     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1096     struct setup_data *setup_data;
1097     const char *kernel_filename = machine->kernel_filename;
1098     const char *initrd_filename = machine->initrd_filename;
1099     const char *dtb_filename = machine->dtb;
1100     const char *kernel_cmdline = machine->kernel_cmdline;
1101 
1102     /* Align to 16 bytes as a paranoia measure */
1103     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1104 
1105     /* load the kernel header */
1106     f = fopen(kernel_filename, "rb");
1107     if (!f || !(kernel_size = get_file_size(f)) ||
1108         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1109         MIN(ARRAY_SIZE(header), kernel_size)) {
1110         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1111                 kernel_filename, strerror(errno));
1112         exit(1);
1113     }
1114 
1115     /* kernel protocol version */
1116 #if 0
1117     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1118 #endif
1119     if (ldl_p(header+0x202) == 0x53726448) {
1120         protocol = lduw_p(header+0x206);
1121     } else {
1122         /* This looks like a multiboot kernel. If it is, let's stop
1123            treating it like a Linux kernel. */
1124         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1125                            kernel_cmdline, kernel_size, header)) {
1126             return;
1127         }
1128         protocol = 0;
1129     }
1130 
1131     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1132         /* Low kernel */
1133         real_addr    = 0x90000;
1134         cmdline_addr = 0x9a000 - cmdline_size;
1135         prot_addr    = 0x10000;
1136     } else if (protocol < 0x202) {
1137         /* High but ancient kernel */
1138         real_addr    = 0x90000;
1139         cmdline_addr = 0x9a000 - cmdline_size;
1140         prot_addr    = 0x100000;
1141     } else {
1142         /* High and recent kernel */
1143         real_addr    = 0x10000;
1144         cmdline_addr = 0x20000;
1145         prot_addr    = 0x100000;
1146     }
1147 
1148 #if 0
1149     fprintf(stderr,
1150             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
1151             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
1152             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
1153             real_addr,
1154             cmdline_addr,
1155             prot_addr);
1156 #endif
1157 
1158     /* highest address for loading the initrd */
1159     if (protocol >= 0x203) {
1160         initrd_max = ldl_p(header+0x22c);
1161     } else {
1162         initrd_max = 0x37ffffff;
1163     }
1164 
1165     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1166         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1167     }
1168 
1169     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1170     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1171     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1172 
1173     if (protocol >= 0x202) {
1174         stl_p(header+0x228, cmdline_addr);
1175     } else {
1176         stw_p(header+0x20, 0xA33F);
1177         stw_p(header+0x22, cmdline_addr-real_addr);
1178     }
1179 
1180     /* handle vga= parameter */
1181     vmode = strstr(kernel_cmdline, "vga=");
1182     if (vmode) {
1183         unsigned int video_mode;
1184         /* skip "vga=" */
1185         vmode += 4;
1186         if (!strncmp(vmode, "normal", 6)) {
1187             video_mode = 0xffff;
1188         } else if (!strncmp(vmode, "ext", 3)) {
1189             video_mode = 0xfffe;
1190         } else if (!strncmp(vmode, "ask", 3)) {
1191             video_mode = 0xfffd;
1192         } else {
1193             video_mode = strtol(vmode, NULL, 0);
1194         }
1195         stw_p(header+0x1fa, video_mode);
1196     }
1197 
1198     /* loader type */
1199     /* High nybble = B reserved for QEMU; low nybble is revision number.
1200        If this code is substantially changed, you may want to consider
1201        incrementing the revision. */
1202     if (protocol >= 0x200) {
1203         header[0x210] = 0xB0;
1204     }
1205     /* heap */
1206     if (protocol >= 0x201) {
1207         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
1208         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1209     }
1210 
1211     /* load initrd */
1212     if (initrd_filename) {
1213         gsize initrd_size;
1214         gchar *initrd_data;
1215         GError *gerr = NULL;
1216 
1217         if (protocol < 0x200) {
1218             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1219             exit(1);
1220         }
1221 
1222         if (!g_file_get_contents(initrd_filename, &initrd_data,
1223                                  &initrd_size, &gerr)) {
1224             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1225                     initrd_filename, gerr->message);
1226             exit(1);
1227         }
1228         if (initrd_size >= initrd_max) {
1229             fprintf(stderr, "qemu: initrd is too large, cannot support."
1230                     "(max: %"PRIu32", need %"PRId64")\n",
1231                     initrd_max, (uint64_t)initrd_size);
1232             exit(1);
1233         }
1234 
1235         initrd_addr = (initrd_max-initrd_size) & ~4095;
1236 
1237         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1238         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1239         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1240 
1241         stl_p(header+0x218, initrd_addr);
1242         stl_p(header+0x21c, initrd_size);
1243     }
1244 
1245     /* load kernel and setup */
1246     setup_size = header[0x1f1];
1247     if (setup_size == 0) {
1248         setup_size = 4;
1249     }
1250     setup_size = (setup_size+1)*512;
1251     if (setup_size > kernel_size) {
1252         fprintf(stderr, "qemu: invalid kernel header\n");
1253         exit(1);
1254     }
1255     kernel_size -= setup_size;
1256 
1257     setup  = g_malloc(setup_size);
1258     kernel = g_malloc(kernel_size);
1259     fseek(f, 0, SEEK_SET);
1260     if (fread(setup, 1, setup_size, f) != setup_size) {
1261         fprintf(stderr, "fread() failed\n");
1262         exit(1);
1263     }
1264     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1265         fprintf(stderr, "fread() failed\n");
1266         exit(1);
1267     }
1268     fclose(f);
1269 
1270     /* append dtb to kernel */
1271     if (dtb_filename) {
1272         if (protocol < 0x209) {
1273             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1274             exit(1);
1275         }
1276 
1277         dtb_size = get_image_size(dtb_filename);
1278         if (dtb_size <= 0) {
1279             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1280                     dtb_filename, strerror(errno));
1281             exit(1);
1282         }
1283 
1284         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1285         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1286         kernel = g_realloc(kernel, kernel_size);
1287 
1288         stq_p(header+0x250, prot_addr + setup_data_offset);
1289 
1290         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1291         setup_data->next = 0;
1292         setup_data->type = cpu_to_le32(SETUP_DTB);
1293         setup_data->len = cpu_to_le32(dtb_size);
1294 
1295         load_image_size(dtb_filename, setup_data->data, dtb_size);
1296     }
1297 
1298     memcpy(setup, header, MIN(sizeof(header), setup_size));
1299 
1300     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1301     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1302     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1303 
1304     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1305     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1306     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1307 
1308     option_rom[nb_option_roms].bootindex = 0;
1309     option_rom[nb_option_roms].name = "linuxboot.bin";
1310     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1311         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1312     }
1313     nb_option_roms++;
1314 }
1315 
1316 #define NE2000_NB_MAX 6
1317 
1318 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1319                                               0x280, 0x380 };
1320 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1321 
1322 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1323 {
1324     static int nb_ne2k = 0;
1325 
1326     if (nb_ne2k == NE2000_NB_MAX)
1327         return;
1328     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1329                     ne2000_irq[nb_ne2k], nd);
1330     nb_ne2k++;
1331 }
1332 
1333 DeviceState *cpu_get_current_apic(void)
1334 {
1335     if (current_cpu) {
1336         X86CPU *cpu = X86_CPU(current_cpu);
1337         return cpu->apic_state;
1338     } else {
1339         return NULL;
1340     }
1341 }
1342 
1343 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1344 {
1345     X86CPU *cpu = opaque;
1346 
1347     if (level) {
1348         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1349     }
1350 }
1351 
1352 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1353 {
1354     Object *cpu = NULL;
1355     Error *local_err = NULL;
1356 
1357     cpu = object_new(typename);
1358 
1359     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1360     object_property_set_bool(cpu, true, "realized", &local_err);
1361 
1362     object_unref(cpu);
1363     error_propagate(errp, local_err);
1364 }
1365 
1366 void pc_hot_add_cpu(const int64_t id, Error **errp)
1367 {
1368     MachineState *ms = MACHINE(qdev_get_machine());
1369     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1370     Error *local_err = NULL;
1371 
1372     if (id < 0) {
1373         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1374         return;
1375     }
1376 
1377     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1378         error_setg(errp, "Unable to add CPU: %" PRIi64
1379                    ", resulting APIC ID (%" PRIi64 ") is too large",
1380                    id, apic_id);
1381         return;
1382     }
1383 
1384     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1385     if (local_err) {
1386         error_propagate(errp, local_err);
1387         return;
1388     }
1389 }
1390 
1391 void pc_cpus_init(PCMachineState *pcms)
1392 {
1393     int i;
1394     const CPUArchIdList *possible_cpus;
1395     MachineState *ms = MACHINE(pcms);
1396     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1397 
1398     /* Calculates the limit to CPU APIC ID values
1399      *
1400      * Limit for the APIC ID value, so that all
1401      * CPU APIC IDs are < pcms->apic_id_limit.
1402      *
1403      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1404      */
1405     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1406     possible_cpus = mc->possible_cpu_arch_ids(ms);
1407     for (i = 0; i < smp_cpus; i++) {
1408         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1409                    &error_fatal);
1410     }
1411 }
1412 
1413 static void pc_build_feature_control_file(PCMachineState *pcms)
1414 {
1415     MachineState *ms = MACHINE(pcms);
1416     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1417     CPUX86State *env = &cpu->env;
1418     uint32_t unused, ecx, edx;
1419     uint64_t feature_control_bits = 0;
1420     uint64_t *val;
1421 
1422     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1423     if (ecx & CPUID_EXT_VMX) {
1424         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1425     }
1426 
1427     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1428         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1429         (env->mcg_cap & MCG_LMCE_P)) {
1430         feature_control_bits |= FEATURE_CONTROL_LMCE;
1431     }
1432 
1433     if (!feature_control_bits) {
1434         return;
1435     }
1436 
1437     val = g_malloc(sizeof(*val));
1438     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1439     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1440 }
1441 
1442 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1443 {
1444     if (cpus_count > 0xff) {
1445         /* If the number of CPUs can't be represented in 8 bits, the
1446          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1447          * to make old BIOSes fail more predictably.
1448          */
1449         rtc_set_memory(rtc, 0x5f, 0);
1450     } else {
1451         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1452     }
1453 }
1454 
1455 static
1456 void pc_machine_done(Notifier *notifier, void *data)
1457 {
1458     PCMachineState *pcms = container_of(notifier,
1459                                         PCMachineState, machine_done);
1460     PCIBus *bus = pcms->bus;
1461 
1462     /* set the number of CPUs */
1463     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1464 
1465     if (bus) {
1466         int extra_hosts = 0;
1467 
1468         QLIST_FOREACH(bus, &bus->child, sibling) {
1469             /* look for expander root buses */
1470             if (pci_bus_is_root(bus)) {
1471                 extra_hosts++;
1472             }
1473         }
1474         if (extra_hosts && pcms->fw_cfg) {
1475             uint64_t *val = g_malloc(sizeof(*val));
1476             *val = cpu_to_le64(extra_hosts);
1477             fw_cfg_add_file(pcms->fw_cfg,
1478                     "etc/extra-pci-roots", val, sizeof(*val));
1479         }
1480     }
1481 
1482     acpi_setup();
1483     if (pcms->fw_cfg) {
1484         pc_build_smbios(pcms);
1485         pc_build_feature_control_file(pcms);
1486         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1487         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1488     }
1489 
1490     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1491         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1492 
1493         if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1494             iommu->intr_eim != ON_OFF_AUTO_ON) {
1495             error_report("current -smp configuration requires "
1496                          "Extended Interrupt Mode enabled. "
1497                          "You can add an IOMMU using: "
1498                          "-device intel-iommu,intremap=on,eim=on");
1499             exit(EXIT_FAILURE);
1500         }
1501     }
1502 }
1503 
1504 void pc_guest_info_init(PCMachineState *pcms)
1505 {
1506     int i;
1507 
1508     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1509     pcms->numa_nodes = nb_numa_nodes;
1510     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1511                                     sizeof *pcms->node_mem);
1512     for (i = 0; i < nb_numa_nodes; i++) {
1513         pcms->node_mem[i] = numa_info[i].node_mem;
1514     }
1515 
1516     pcms->machine_done.notify = pc_machine_done;
1517     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1518 }
1519 
1520 /* setup pci memory address space mapping into system address space */
1521 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1522                             MemoryRegion *pci_address_space)
1523 {
1524     /* Set to lower priority than RAM */
1525     memory_region_add_subregion_overlap(system_memory, 0x0,
1526                                         pci_address_space, -1);
1527 }
1528 
1529 void pc_acpi_init(const char *default_dsdt)
1530 {
1531     char *filename;
1532 
1533     if (acpi_tables != NULL) {
1534         /* manually set via -acpitable, leave it alone */
1535         return;
1536     }
1537 
1538     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1539     if (filename == NULL) {
1540         warn_report("failed to find %s", default_dsdt);
1541     } else {
1542         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1543                                           &error_abort);
1544         Error *err = NULL;
1545 
1546         qemu_opt_set(opts, "file", filename, &error_abort);
1547 
1548         acpi_table_add_builtin(opts, &err);
1549         if (err) {
1550             warn_reportf_err(err, "failed to load %s: ", filename);
1551         }
1552         g_free(filename);
1553     }
1554 }
1555 
1556 void xen_load_linux(PCMachineState *pcms)
1557 {
1558     int i;
1559     FWCfgState *fw_cfg;
1560 
1561     assert(MACHINE(pcms)->kernel_filename != NULL);
1562 
1563     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1564     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1565     rom_set_fw(fw_cfg);
1566 
1567     load_linux(pcms, fw_cfg);
1568     for (i = 0; i < nb_option_roms; i++) {
1569         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1570                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1571                !strcmp(option_rom[i].name, "multiboot.bin"));
1572         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1573     }
1574     pcms->fw_cfg = fw_cfg;
1575 }
1576 
1577 void pc_memory_init(PCMachineState *pcms,
1578                     MemoryRegion *system_memory,
1579                     MemoryRegion *rom_memory,
1580                     MemoryRegion **ram_memory)
1581 {
1582     int linux_boot, i;
1583     MemoryRegion *ram, *option_rom_mr;
1584     MemoryRegion *ram_below_4g, *ram_above_4g;
1585     FWCfgState *fw_cfg;
1586     MachineState *machine = MACHINE(pcms);
1587     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1588 
1589     assert(machine->ram_size == pcms->below_4g_mem_size +
1590                                 pcms->above_4g_mem_size);
1591 
1592     linux_boot = (machine->kernel_filename != NULL);
1593 
1594     /* Allocate RAM.  We allocate it as a single memory region and use
1595      * aliases to address portions of it, mostly for backwards compatibility
1596      * with older qemus that used qemu_ram_alloc().
1597      */
1598     ram = g_malloc(sizeof(*ram));
1599     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1600                                          machine->ram_size);
1601     *ram_memory = ram;
1602     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1603     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1604                              0, pcms->below_4g_mem_size);
1605     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1606     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1607     if (pcms->above_4g_mem_size > 0) {
1608         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1609         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1610                                  pcms->below_4g_mem_size,
1611                                  pcms->above_4g_mem_size);
1612         memory_region_add_subregion(system_memory, 0x100000000ULL,
1613                                     ram_above_4g);
1614         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1615     }
1616 
1617     if (!pcmc->has_reserved_memory &&
1618         (machine->ram_slots ||
1619          (machine->maxram_size > machine->ram_size))) {
1620         MachineClass *mc = MACHINE_GET_CLASS(machine);
1621 
1622         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1623                      mc->name);
1624         exit(EXIT_FAILURE);
1625     }
1626 
1627     /* always allocate the device memory information */
1628     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1629 
1630     /* initialize device memory address space */
1631     if (pcmc->has_reserved_memory &&
1632         (machine->ram_size < machine->maxram_size)) {
1633         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1634 
1635         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1636             error_report("unsupported amount of memory slots: %"PRIu64,
1637                          machine->ram_slots);
1638             exit(EXIT_FAILURE);
1639         }
1640 
1641         if (QEMU_ALIGN_UP(machine->maxram_size,
1642                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1643             error_report("maximum memory size must by aligned to multiple of "
1644                          "%d bytes", TARGET_PAGE_SIZE);
1645             exit(EXIT_FAILURE);
1646         }
1647 
1648         machine->device_memory->base =
1649             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1650 
1651         if (pcmc->enforce_aligned_dimm) {
1652             /* size device region assuming 1G page max alignment per slot */
1653             device_mem_size += (1 * GiB) * machine->ram_slots;
1654         }
1655 
1656         if ((machine->device_memory->base + device_mem_size) <
1657             device_mem_size) {
1658             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1659                          machine->maxram_size);
1660             exit(EXIT_FAILURE);
1661         }
1662 
1663         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1664                            "device-memory", device_mem_size);
1665         memory_region_add_subregion(system_memory, machine->device_memory->base,
1666                                     &machine->device_memory->mr);
1667     }
1668 
1669     /* Initialize PC system firmware */
1670     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1671 
1672     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1673     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1674                            &error_fatal);
1675     if (pcmc->pci_enabled) {
1676         memory_region_set_readonly(option_rom_mr, true);
1677     }
1678     memory_region_add_subregion_overlap(rom_memory,
1679                                         PC_ROM_MIN_VGA,
1680                                         option_rom_mr,
1681                                         1);
1682 
1683     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1684 
1685     rom_set_fw(fw_cfg);
1686 
1687     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1688         uint64_t *val = g_malloc(sizeof(*val));
1689         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1690         uint64_t res_mem_end = machine->device_memory->base;
1691 
1692         if (!pcmc->broken_reserved_end) {
1693             res_mem_end += memory_region_size(&machine->device_memory->mr);
1694         }
1695         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1696         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1697     }
1698 
1699     if (linux_boot) {
1700         load_linux(pcms, fw_cfg);
1701     }
1702 
1703     for (i = 0; i < nb_option_roms; i++) {
1704         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1705     }
1706     pcms->fw_cfg = fw_cfg;
1707 
1708     /* Init default IOAPIC address space */
1709     pcms->ioapic_as = &address_space_memory;
1710 }
1711 
1712 /*
1713  * The 64bit pci hole starts after "above 4G RAM" and
1714  * potentially the space reserved for memory hotplug.
1715  */
1716 uint64_t pc_pci_hole64_start(void)
1717 {
1718     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1719     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1720     MachineState *ms = MACHINE(pcms);
1721     uint64_t hole64_start = 0;
1722 
1723     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1724         hole64_start = ms->device_memory->base;
1725         if (!pcmc->broken_reserved_end) {
1726             hole64_start += memory_region_size(&ms->device_memory->mr);
1727         }
1728     } else {
1729         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1730     }
1731 
1732     return ROUND_UP(hole64_start, 1 * GiB);
1733 }
1734 
1735 qemu_irq pc_allocate_cpu_irq(void)
1736 {
1737     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1738 }
1739 
1740 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1741 {
1742     DeviceState *dev = NULL;
1743 
1744     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1745     if (pci_bus) {
1746         PCIDevice *pcidev = pci_vga_init(pci_bus);
1747         dev = pcidev ? &pcidev->qdev : NULL;
1748     } else if (isa_bus) {
1749         ISADevice *isadev = isa_vga_init(isa_bus);
1750         dev = isadev ? DEVICE(isadev) : NULL;
1751     }
1752     rom_reset_order_override();
1753     return dev;
1754 }
1755 
1756 static const MemoryRegionOps ioport80_io_ops = {
1757     .write = ioport80_write,
1758     .read = ioport80_read,
1759     .endianness = DEVICE_NATIVE_ENDIAN,
1760     .impl = {
1761         .min_access_size = 1,
1762         .max_access_size = 1,
1763     },
1764 };
1765 
1766 static const MemoryRegionOps ioportF0_io_ops = {
1767     .write = ioportF0_write,
1768     .read = ioportF0_read,
1769     .endianness = DEVICE_NATIVE_ENDIAN,
1770     .impl = {
1771         .min_access_size = 1,
1772         .max_access_size = 1,
1773     },
1774 };
1775 
1776 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1777 {
1778     int i;
1779     DriveInfo *fd[MAX_FD];
1780     qemu_irq *a20_line;
1781     ISADevice *i8042, *port92, *vmmouse;
1782 
1783     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1784     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1785 
1786     for (i = 0; i < MAX_FD; i++) {
1787         fd[i] = drive_get(IF_FLOPPY, 0, i);
1788         create_fdctrl |= !!fd[i];
1789     }
1790     if (create_fdctrl) {
1791         fdctrl_init_isa(isa_bus, fd);
1792     }
1793 
1794     i8042 = isa_create_simple(isa_bus, "i8042");
1795     if (!no_vmport) {
1796         vmport_init(isa_bus);
1797         vmmouse = isa_try_create(isa_bus, "vmmouse");
1798     } else {
1799         vmmouse = NULL;
1800     }
1801     if (vmmouse) {
1802         DeviceState *dev = DEVICE(vmmouse);
1803         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1804         qdev_init_nofail(dev);
1805     }
1806     port92 = isa_create_simple(isa_bus, "port92");
1807 
1808     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1809     i8042_setup_a20_line(i8042, a20_line[0]);
1810     port92_init(port92, a20_line[1]);
1811     g_free(a20_line);
1812 }
1813 
1814 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1815                           ISADevice **rtc_state,
1816                           bool create_fdctrl,
1817                           bool no_vmport,
1818                           bool has_pit,
1819                           uint32_t hpet_irqs)
1820 {
1821     int i;
1822     DeviceState *hpet = NULL;
1823     int pit_isa_irq = 0;
1824     qemu_irq pit_alt_irq = NULL;
1825     qemu_irq rtc_irq = NULL;
1826     ISADevice *pit = NULL;
1827     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1828     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1829 
1830     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1831     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1832 
1833     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1834     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1835 
1836     /*
1837      * Check if an HPET shall be created.
1838      *
1839      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1840      * when the HPET wants to take over. Thus we have to disable the latter.
1841      */
1842     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1843         /* In order to set property, here not using sysbus_try_create_simple */
1844         hpet = qdev_try_create(NULL, TYPE_HPET);
1845         if (hpet) {
1846             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1847              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1848              * IRQ8 and IRQ2.
1849              */
1850             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1851                     HPET_INTCAP, NULL);
1852             if (!compat) {
1853                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1854             }
1855             qdev_init_nofail(hpet);
1856             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1857 
1858             for (i = 0; i < GSI_NUM_PINS; i++) {
1859                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1860             }
1861             pit_isa_irq = -1;
1862             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1863             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1864         }
1865     }
1866     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1867 
1868     qemu_register_boot_set(pc_boot_set, *rtc_state);
1869 
1870     if (!xen_enabled() && has_pit) {
1871         if (kvm_pit_in_kernel()) {
1872             pit = kvm_pit_init(isa_bus, 0x40);
1873         } else {
1874             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1875         }
1876         if (hpet) {
1877             /* connect PIT to output control line of the HPET */
1878             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1879         }
1880         pcspk_init(isa_bus, pit);
1881     }
1882 
1883     i8257_dma_init(isa_bus, 0);
1884 
1885     /* Super I/O */
1886     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1887 }
1888 
1889 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1890 {
1891     int i;
1892 
1893     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1894     for (i = 0; i < nb_nics; i++) {
1895         NICInfo *nd = &nd_table[i];
1896         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1897 
1898         if (g_str_equal(model, "ne2k_isa")) {
1899             pc_init_ne2k_isa(isa_bus, nd);
1900         } else {
1901             pci_nic_init_nofail(nd, pci_bus, model, NULL);
1902         }
1903     }
1904     rom_reset_order_override();
1905 }
1906 
1907 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1908 {
1909     DeviceState *dev;
1910     SysBusDevice *d;
1911     unsigned int i;
1912 
1913     if (kvm_ioapic_in_kernel()) {
1914         dev = qdev_create(NULL, "kvm-ioapic");
1915     } else {
1916         dev = qdev_create(NULL, "ioapic");
1917     }
1918     if (parent_name) {
1919         object_property_add_child(object_resolve_path(parent_name, NULL),
1920                                   "ioapic", OBJECT(dev), NULL);
1921     }
1922     qdev_init_nofail(dev);
1923     d = SYS_BUS_DEVICE(dev);
1924     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1925 
1926     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1927         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1928     }
1929 }
1930 
1931 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1932                                Error **errp)
1933 {
1934     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1935     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1936     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1937     const uint64_t legacy_align = TARGET_PAGE_SIZE;
1938 
1939     /*
1940      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1941      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1942      * addition to cover this case.
1943      */
1944     if (!pcms->acpi_dev || !acpi_enabled) {
1945         error_setg(errp,
1946                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1947         return;
1948     }
1949 
1950     if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1951         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1952         return;
1953     }
1954 
1955     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1956                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1957 }
1958 
1959 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1960                            DeviceState *dev, Error **errp)
1961 {
1962     HotplugHandlerClass *hhc;
1963     Error *local_err = NULL;
1964     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1965     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1966 
1967     pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1968     if (local_err) {
1969         goto out;
1970     }
1971 
1972     if (is_nvdimm) {
1973         nvdimm_plug(&pcms->acpi_nvdimm_state);
1974     }
1975 
1976     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1977     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1978 out:
1979     error_propagate(errp, local_err);
1980 }
1981 
1982 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1983                                      DeviceState *dev, Error **errp)
1984 {
1985     HotplugHandlerClass *hhc;
1986     Error *local_err = NULL;
1987     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1988 
1989     /*
1990      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1991      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1992      * addition to cover this case.
1993      */
1994     if (!pcms->acpi_dev || !acpi_enabled) {
1995         error_setg(&local_err,
1996                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1997         goto out;
1998     }
1999 
2000     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2001         error_setg(&local_err,
2002                    "nvdimm device hot unplug is not supported yet.");
2003         goto out;
2004     }
2005 
2006     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2007     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2008 
2009 out:
2010     error_propagate(errp, local_err);
2011 }
2012 
2013 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2014                              DeviceState *dev, Error **errp)
2015 {
2016     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2017     HotplugHandlerClass *hhc;
2018     Error *local_err = NULL;
2019 
2020     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2021     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2022 
2023     if (local_err) {
2024         goto out;
2025     }
2026 
2027     pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2028     object_unparent(OBJECT(dev));
2029 
2030  out:
2031     error_propagate(errp, local_err);
2032 }
2033 
2034 static int pc_apic_cmp(const void *a, const void *b)
2035 {
2036    CPUArchId *apic_a = (CPUArchId *)a;
2037    CPUArchId *apic_b = (CPUArchId *)b;
2038 
2039    return apic_a->arch_id - apic_b->arch_id;
2040 }
2041 
2042 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2043  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2044  * entry corresponding to CPU's apic_id returns NULL.
2045  */
2046 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2047 {
2048     CPUArchId apic_id, *found_cpu;
2049 
2050     apic_id.arch_id = id;
2051     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2052         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2053         pc_apic_cmp);
2054     if (found_cpu && idx) {
2055         *idx = found_cpu - ms->possible_cpus->cpus;
2056     }
2057     return found_cpu;
2058 }
2059 
2060 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2061                         DeviceState *dev, Error **errp)
2062 {
2063     CPUArchId *found_cpu;
2064     HotplugHandlerClass *hhc;
2065     Error *local_err = NULL;
2066     X86CPU *cpu = X86_CPU(dev);
2067     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2068 
2069     if (pcms->acpi_dev) {
2070         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2071         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2072         if (local_err) {
2073             goto out;
2074         }
2075     }
2076 
2077     /* increment the number of CPUs */
2078     pcms->boot_cpus++;
2079     if (pcms->rtc) {
2080         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2081     }
2082     if (pcms->fw_cfg) {
2083         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2084     }
2085 
2086     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2087     found_cpu->cpu = OBJECT(dev);
2088 out:
2089     error_propagate(errp, local_err);
2090 }
2091 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2092                                      DeviceState *dev, Error **errp)
2093 {
2094     int idx = -1;
2095     HotplugHandlerClass *hhc;
2096     Error *local_err = NULL;
2097     X86CPU *cpu = X86_CPU(dev);
2098     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2099 
2100     if (!pcms->acpi_dev) {
2101         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2102         goto out;
2103     }
2104 
2105     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2106     assert(idx != -1);
2107     if (idx == 0) {
2108         error_setg(&local_err, "Boot CPU is unpluggable");
2109         goto out;
2110     }
2111 
2112     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2113     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2114 
2115     if (local_err) {
2116         goto out;
2117     }
2118 
2119  out:
2120     error_propagate(errp, local_err);
2121 
2122 }
2123 
2124 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2125                              DeviceState *dev, Error **errp)
2126 {
2127     CPUArchId *found_cpu;
2128     HotplugHandlerClass *hhc;
2129     Error *local_err = NULL;
2130     X86CPU *cpu = X86_CPU(dev);
2131     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2132 
2133     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2134     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2135 
2136     if (local_err) {
2137         goto out;
2138     }
2139 
2140     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2141     found_cpu->cpu = NULL;
2142     object_unparent(OBJECT(dev));
2143 
2144     /* decrement the number of CPUs */
2145     pcms->boot_cpus--;
2146     /* Update the number of CPUs in CMOS */
2147     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2148     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2149  out:
2150     error_propagate(errp, local_err);
2151 }
2152 
2153 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2154                             DeviceState *dev, Error **errp)
2155 {
2156     int idx;
2157     CPUState *cs;
2158     CPUArchId *cpu_slot;
2159     X86CPUTopoInfo topo;
2160     X86CPU *cpu = X86_CPU(dev);
2161     MachineState *ms = MACHINE(hotplug_dev);
2162     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2163 
2164     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2165         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2166                    ms->cpu_type);
2167         return;
2168     }
2169 
2170     /* if APIC ID is not set, set it based on socket/core/thread properties */
2171     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2172         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2173 
2174         if (cpu->socket_id < 0) {
2175             error_setg(errp, "CPU socket-id is not set");
2176             return;
2177         } else if (cpu->socket_id > max_socket) {
2178             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2179                        cpu->socket_id, max_socket);
2180             return;
2181         }
2182         if (cpu->core_id < 0) {
2183             error_setg(errp, "CPU core-id is not set");
2184             return;
2185         } else if (cpu->core_id > (smp_cores - 1)) {
2186             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2187                        cpu->core_id, smp_cores - 1);
2188             return;
2189         }
2190         if (cpu->thread_id < 0) {
2191             error_setg(errp, "CPU thread-id is not set");
2192             return;
2193         } else if (cpu->thread_id > (smp_threads - 1)) {
2194             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2195                        cpu->thread_id, smp_threads - 1);
2196             return;
2197         }
2198 
2199         topo.pkg_id = cpu->socket_id;
2200         topo.core_id = cpu->core_id;
2201         topo.smt_id = cpu->thread_id;
2202         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2203     }
2204 
2205     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2206     if (!cpu_slot) {
2207         MachineState *ms = MACHINE(pcms);
2208 
2209         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2210         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2211                   " APIC ID %" PRIu32 ", valid index range 0:%d",
2212                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2213                    ms->possible_cpus->len - 1);
2214         return;
2215     }
2216 
2217     if (cpu_slot->cpu) {
2218         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2219                    idx, cpu->apic_id);
2220         return;
2221     }
2222 
2223     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2224      * so that machine_query_hotpluggable_cpus would show correct values
2225      */
2226     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2227      * once -smp refactoring is complete and there will be CPU private
2228      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2229     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2230     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2231         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2232             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2233         return;
2234     }
2235     cpu->socket_id = topo.pkg_id;
2236 
2237     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2238         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2239             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2240         return;
2241     }
2242     cpu->core_id = topo.core_id;
2243 
2244     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2245         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2246             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2247         return;
2248     }
2249     cpu->thread_id = topo.smt_id;
2250 
2251     if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2252         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2253         return;
2254     }
2255 
2256     cs = CPU(cpu);
2257     cs->cpu_index = idx;
2258 
2259     numa_cpu_pre_plug(cpu_slot, dev, errp);
2260 }
2261 
2262 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2263                                           DeviceState *dev, Error **errp)
2264 {
2265     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2266         pc_memory_pre_plug(hotplug_dev, dev, errp);
2267     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2268         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2269     }
2270 }
2271 
2272 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2273                                       DeviceState *dev, Error **errp)
2274 {
2275     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2276         pc_memory_plug(hotplug_dev, dev, errp);
2277     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2278         pc_cpu_plug(hotplug_dev, dev, errp);
2279     }
2280 }
2281 
2282 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2283                                                 DeviceState *dev, Error **errp)
2284 {
2285     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2286         pc_memory_unplug_request(hotplug_dev, dev, errp);
2287     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2288         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2289     } else {
2290         error_setg(errp, "acpi: device unplug request for not supported device"
2291                    " type: %s", object_get_typename(OBJECT(dev)));
2292     }
2293 }
2294 
2295 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2296                                         DeviceState *dev, Error **errp)
2297 {
2298     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2299         pc_memory_unplug(hotplug_dev, dev, errp);
2300     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2301         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2302     } else {
2303         error_setg(errp, "acpi: device unplug for not supported device"
2304                    " type: %s", object_get_typename(OBJECT(dev)));
2305     }
2306 }
2307 
2308 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2309                                              DeviceState *dev)
2310 {
2311     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2312         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2313         return HOTPLUG_HANDLER(machine);
2314     }
2315 
2316     return NULL;
2317 }
2318 
2319 static void
2320 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2321                                          const char *name, void *opaque,
2322                                          Error **errp)
2323 {
2324     MachineState *ms = MACHINE(obj);
2325     int64_t value = memory_region_size(&ms->device_memory->mr);
2326 
2327     visit_type_int(v, name, &value, errp);
2328 }
2329 
2330 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2331                                             const char *name, void *opaque,
2332                                             Error **errp)
2333 {
2334     PCMachineState *pcms = PC_MACHINE(obj);
2335     uint64_t value = pcms->max_ram_below_4g;
2336 
2337     visit_type_size(v, name, &value, errp);
2338 }
2339 
2340 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2341                                             const char *name, void *opaque,
2342                                             Error **errp)
2343 {
2344     PCMachineState *pcms = PC_MACHINE(obj);
2345     Error *error = NULL;
2346     uint64_t value;
2347 
2348     visit_type_size(v, name, &value, &error);
2349     if (error) {
2350         error_propagate(errp, error);
2351         return;
2352     }
2353     if (value > 4 * GiB) {
2354         error_setg(&error,
2355                    "Machine option 'max-ram-below-4g=%"PRIu64
2356                    "' expects size less than or equal to 4G", value);
2357         error_propagate(errp, error);
2358         return;
2359     }
2360 
2361     if (value < 1 * MiB) {
2362         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2363                     "BIOS may not work with less than 1MiB", value);
2364     }
2365 
2366     pcms->max_ram_below_4g = value;
2367 }
2368 
2369 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2370                                   void *opaque, Error **errp)
2371 {
2372     PCMachineState *pcms = PC_MACHINE(obj);
2373     OnOffAuto vmport = pcms->vmport;
2374 
2375     visit_type_OnOffAuto(v, name, &vmport, errp);
2376 }
2377 
2378 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2379                                   void *opaque, Error **errp)
2380 {
2381     PCMachineState *pcms = PC_MACHINE(obj);
2382 
2383     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2384 }
2385 
2386 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2387 {
2388     bool smm_available = false;
2389 
2390     if (pcms->smm == ON_OFF_AUTO_OFF) {
2391         return false;
2392     }
2393 
2394     if (tcg_enabled() || qtest_enabled()) {
2395         smm_available = true;
2396     } else if (kvm_enabled()) {
2397         smm_available = kvm_has_smm();
2398     }
2399 
2400     if (smm_available) {
2401         return true;
2402     }
2403 
2404     if (pcms->smm == ON_OFF_AUTO_ON) {
2405         error_report("System Management Mode not supported by this hypervisor.");
2406         exit(1);
2407     }
2408     return false;
2409 }
2410 
2411 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2412                                void *opaque, Error **errp)
2413 {
2414     PCMachineState *pcms = PC_MACHINE(obj);
2415     OnOffAuto smm = pcms->smm;
2416 
2417     visit_type_OnOffAuto(v, name, &smm, errp);
2418 }
2419 
2420 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2421                                void *opaque, Error **errp)
2422 {
2423     PCMachineState *pcms = PC_MACHINE(obj);
2424 
2425     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2426 }
2427 
2428 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2429 {
2430     PCMachineState *pcms = PC_MACHINE(obj);
2431 
2432     return pcms->acpi_nvdimm_state.is_enabled;
2433 }
2434 
2435 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2436 {
2437     PCMachineState *pcms = PC_MACHINE(obj);
2438 
2439     pcms->acpi_nvdimm_state.is_enabled = value;
2440 }
2441 
2442 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2443 {
2444     PCMachineState *pcms = PC_MACHINE(obj);
2445 
2446     return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2447 }
2448 
2449 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2450                                                Error **errp)
2451 {
2452     PCMachineState *pcms = PC_MACHINE(obj);
2453     AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2454 
2455     if (strcmp(value, "cpu") == 0)
2456         nvdimm_state->persistence = 3;
2457     else if (strcmp(value, "mem-ctrl") == 0)
2458         nvdimm_state->persistence = 2;
2459     else {
2460         error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2461                    value);
2462         return;
2463     }
2464 
2465     g_free(nvdimm_state->persistence_string);
2466     nvdimm_state->persistence_string = g_strdup(value);
2467 }
2468 
2469 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2470 {
2471     PCMachineState *pcms = PC_MACHINE(obj);
2472 
2473     return pcms->smbus_enabled;
2474 }
2475 
2476 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2477 {
2478     PCMachineState *pcms = PC_MACHINE(obj);
2479 
2480     pcms->smbus_enabled = value;
2481 }
2482 
2483 static bool pc_machine_get_sata(Object *obj, Error **errp)
2484 {
2485     PCMachineState *pcms = PC_MACHINE(obj);
2486 
2487     return pcms->sata_enabled;
2488 }
2489 
2490 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2491 {
2492     PCMachineState *pcms = PC_MACHINE(obj);
2493 
2494     pcms->sata_enabled = value;
2495 }
2496 
2497 static bool pc_machine_get_pit(Object *obj, Error **errp)
2498 {
2499     PCMachineState *pcms = PC_MACHINE(obj);
2500 
2501     return pcms->pit_enabled;
2502 }
2503 
2504 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2505 {
2506     PCMachineState *pcms = PC_MACHINE(obj);
2507 
2508     pcms->pit_enabled = value;
2509 }
2510 
2511 static void pc_machine_initfn(Object *obj)
2512 {
2513     PCMachineState *pcms = PC_MACHINE(obj);
2514 
2515     pcms->max_ram_below_4g = 0; /* use default */
2516     pcms->smm = ON_OFF_AUTO_AUTO;
2517     pcms->vmport = ON_OFF_AUTO_AUTO;
2518     /* nvdimm is disabled on default. */
2519     pcms->acpi_nvdimm_state.is_enabled = false;
2520     /* acpi build is enabled by default if machine supports it */
2521     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2522     pcms->smbus_enabled = true;
2523     pcms->sata_enabled = true;
2524     pcms->pit_enabled = true;
2525 }
2526 
2527 static void pc_machine_reset(void)
2528 {
2529     CPUState *cs;
2530     X86CPU *cpu;
2531 
2532     qemu_devices_reset();
2533 
2534     /* Reset APIC after devices have been reset to cancel
2535      * any changes that qemu_devices_reset() might have done.
2536      */
2537     CPU_FOREACH(cs) {
2538         cpu = X86_CPU(cs);
2539 
2540         if (cpu->apic_state) {
2541             device_reset(cpu->apic_state);
2542         }
2543     }
2544 }
2545 
2546 static CpuInstanceProperties
2547 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2548 {
2549     MachineClass *mc = MACHINE_GET_CLASS(ms);
2550     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2551 
2552     assert(cpu_index < possible_cpus->len);
2553     return possible_cpus->cpus[cpu_index].props;
2554 }
2555 
2556 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2557 {
2558    X86CPUTopoInfo topo;
2559 
2560    assert(idx < ms->possible_cpus->len);
2561    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2562                             smp_cores, smp_threads, &topo);
2563    return topo.pkg_id % nb_numa_nodes;
2564 }
2565 
2566 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2567 {
2568     int i;
2569 
2570     if (ms->possible_cpus) {
2571         /*
2572          * make sure that max_cpus hasn't changed since the first use, i.e.
2573          * -smp hasn't been parsed after it
2574         */
2575         assert(ms->possible_cpus->len == max_cpus);
2576         return ms->possible_cpus;
2577     }
2578 
2579     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2580                                   sizeof(CPUArchId) * max_cpus);
2581     ms->possible_cpus->len = max_cpus;
2582     for (i = 0; i < ms->possible_cpus->len; i++) {
2583         X86CPUTopoInfo topo;
2584 
2585         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2586         ms->possible_cpus->cpus[i].vcpus_count = 1;
2587         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2588         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2589                                  smp_cores, smp_threads, &topo);
2590         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2591         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2592         ms->possible_cpus->cpus[i].props.has_core_id = true;
2593         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2594         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2595         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2596     }
2597     return ms->possible_cpus;
2598 }
2599 
2600 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2601 {
2602     /* cpu index isn't used */
2603     CPUState *cs;
2604 
2605     CPU_FOREACH(cs) {
2606         X86CPU *cpu = X86_CPU(cs);
2607 
2608         if (!cpu->apic_state) {
2609             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2610         } else {
2611             apic_deliver_nmi(cpu->apic_state);
2612         }
2613     }
2614 }
2615 
2616 static void pc_machine_class_init(ObjectClass *oc, void *data)
2617 {
2618     MachineClass *mc = MACHINE_CLASS(oc);
2619     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2620     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2621     NMIClass *nc = NMI_CLASS(oc);
2622 
2623     pcmc->pci_enabled = true;
2624     pcmc->has_acpi_build = true;
2625     pcmc->rsdp_in_ram = true;
2626     pcmc->smbios_defaults = true;
2627     pcmc->smbios_uuid_encoded = true;
2628     pcmc->gigabyte_align = true;
2629     pcmc->has_reserved_memory = true;
2630     pcmc->kvmclock_enabled = true;
2631     pcmc->enforce_aligned_dimm = true;
2632     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2633      * to be used at the moment, 32K should be enough for a while.  */
2634     pcmc->acpi_data_size = 0x20000 + 0x8000;
2635     pcmc->save_tsc_khz = true;
2636     pcmc->linuxboot_dma_enabled = true;
2637     assert(!mc->get_hotplug_handler);
2638     mc->get_hotplug_handler = pc_get_hotpug_handler;
2639     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2640     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2641     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2642     mc->auto_enable_numa_with_memhp = true;
2643     mc->has_hotpluggable_cpus = true;
2644     mc->default_boot_order = "cad";
2645     mc->hot_add_cpu = pc_hot_add_cpu;
2646     mc->block_default_type = IF_IDE;
2647     mc->max_cpus = 255;
2648     mc->reset = pc_machine_reset;
2649     hc->pre_plug = pc_machine_device_pre_plug_cb;
2650     hc->plug = pc_machine_device_plug_cb;
2651     hc->unplug_request = pc_machine_device_unplug_request_cb;
2652     hc->unplug = pc_machine_device_unplug_cb;
2653     nc->nmi_monitor_handler = x86_nmi;
2654     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2655 
2656     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2657         pc_machine_get_device_memory_region_size, NULL,
2658         NULL, NULL, &error_abort);
2659 
2660     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2661         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2662         NULL, NULL, &error_abort);
2663 
2664     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2665         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2666 
2667     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2668         pc_machine_get_smm, pc_machine_set_smm,
2669         NULL, NULL, &error_abort);
2670     object_class_property_set_description(oc, PC_MACHINE_SMM,
2671         "Enable SMM (pc & q35)", &error_abort);
2672 
2673     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2674         pc_machine_get_vmport, pc_machine_set_vmport,
2675         NULL, NULL, &error_abort);
2676     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2677         "Enable vmport (pc & q35)", &error_abort);
2678 
2679     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2680         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2681 
2682     object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2683         pc_machine_get_nvdimm_persistence,
2684         pc_machine_set_nvdimm_persistence, &error_abort);
2685 
2686     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2687         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2688 
2689     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2690         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2691 
2692     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2693         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2694 }
2695 
2696 static const TypeInfo pc_machine_info = {
2697     .name = TYPE_PC_MACHINE,
2698     .parent = TYPE_MACHINE,
2699     .abstract = true,
2700     .instance_size = sizeof(PCMachineState),
2701     .instance_init = pc_machine_initfn,
2702     .class_size = sizeof(PCMachineClass),
2703     .class_init = pc_machine_class_init,
2704     .interfaces = (InterfaceInfo[]) {
2705          { TYPE_HOTPLUG_HANDLER },
2706          { TYPE_NMI },
2707          { }
2708     },
2709 };
2710 
2711 static void pc_machine_register_types(void)
2712 {
2713     type_register_static(&pc_machine_info);
2714 }
2715 
2716 type_init(pc_machine_register_types)
2717