xref: /openbmc/qemu/hw/i386/pc.c (revision 2e142114)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/cpu/icc_bus.h"
57 #include "hw/boards.h"
58 #include "hw/pci/pci_host.h"
59 
60 /* debug PC/ISA interrupts */
61 //#define DEBUG_IRQ
62 
63 #ifdef DEBUG_IRQ
64 #define DPRINTF(fmt, ...)                                       \
65     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
66 #else
67 #define DPRINTF(fmt, ...)
68 #endif
69 
70 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
71 #define ACPI_DATA_SIZE       0x10000
72 #define BIOS_CFG_IOPORT 0x510
73 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
74 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
75 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
76 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
77 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
78 
79 #define E820_NR_ENTRIES		16
80 
81 struct e820_entry {
82     uint64_t address;
83     uint64_t length;
84     uint32_t type;
85 } QEMU_PACKED __attribute((__aligned__(4)));
86 
87 struct e820_table {
88     uint32_t count;
89     struct e820_entry entry[E820_NR_ENTRIES];
90 } QEMU_PACKED __attribute((__aligned__(4)));
91 
92 static struct e820_table e820_table;
93 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
94 
95 void gsi_handler(void *opaque, int n, int level)
96 {
97     GSIState *s = opaque;
98 
99     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
100     if (n < ISA_NUM_IRQS) {
101         qemu_set_irq(s->i8259_irq[n], level);
102     }
103     qemu_set_irq(s->ioapic_irq[n], level);
104 }
105 
106 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
107                            unsigned size)
108 {
109 }
110 
111 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
112 {
113     return 0xffffffffffffffffULL;
114 }
115 
116 /* MSDOS compatibility mode FPU exception support */
117 static qemu_irq ferr_irq;
118 
119 void pc_register_ferr_irq(qemu_irq irq)
120 {
121     ferr_irq = irq;
122 }
123 
124 /* XXX: add IGNNE support */
125 void cpu_set_ferr(CPUX86State *s)
126 {
127     qemu_irq_raise(ferr_irq);
128 }
129 
130 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
131                            unsigned size)
132 {
133     qemu_irq_lower(ferr_irq);
134 }
135 
136 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
137 {
138     return 0xffffffffffffffffULL;
139 }
140 
141 /* TSC handling */
142 uint64_t cpu_get_tsc(CPUX86State *env)
143 {
144     return cpu_get_ticks();
145 }
146 
147 /* SMM support */
148 
149 static cpu_set_smm_t smm_set;
150 static void *smm_arg;
151 
152 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
153 {
154     assert(smm_set == NULL);
155     assert(smm_arg == NULL);
156     smm_set = callback;
157     smm_arg = arg;
158 }
159 
160 void cpu_smm_update(CPUX86State *env)
161 {
162     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
163         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
164     }
165 }
166 
167 
168 /* IRQ handling */
169 int cpu_get_pic_interrupt(CPUX86State *env)
170 {
171     int intno;
172 
173     intno = apic_get_interrupt(env->apic_state);
174     if (intno >= 0) {
175         return intno;
176     }
177     /* read the irq from the PIC */
178     if (!apic_accept_pic_intr(env->apic_state)) {
179         return -1;
180     }
181 
182     intno = pic_read_irq(isa_pic);
183     return intno;
184 }
185 
186 static void pic_irq_request(void *opaque, int irq, int level)
187 {
188     CPUState *cs = first_cpu;
189     X86CPU *cpu = X86_CPU(cs);
190     CPUX86State *env = &cpu->env;
191 
192     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
193     if (env->apic_state) {
194         while (cs) {
195             cpu = X86_CPU(cs);
196             env = &cpu->env;
197             if (apic_accept_pic_intr(env->apic_state)) {
198                 apic_deliver_pic_intr(env->apic_state, level);
199             }
200             cs = cs->next_cpu;
201         }
202     } else {
203         if (level) {
204             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
205         } else {
206             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
207         }
208     }
209 }
210 
211 /* PC cmos mappings */
212 
213 #define REG_EQUIPMENT_BYTE          0x14
214 
215 static int cmos_get_fd_drive_type(FDriveType fd0)
216 {
217     int val;
218 
219     switch (fd0) {
220     case FDRIVE_DRV_144:
221         /* 1.44 Mb 3"5 drive */
222         val = 4;
223         break;
224     case FDRIVE_DRV_288:
225         /* 2.88 Mb 3"5 drive */
226         val = 5;
227         break;
228     case FDRIVE_DRV_120:
229         /* 1.2 Mb 5"5 drive */
230         val = 2;
231         break;
232     case FDRIVE_DRV_NONE:
233     default:
234         val = 0;
235         break;
236     }
237     return val;
238 }
239 
240 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
241                          int16_t cylinders, int8_t heads, int8_t sectors)
242 {
243     rtc_set_memory(s, type_ofs, 47);
244     rtc_set_memory(s, info_ofs, cylinders);
245     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
246     rtc_set_memory(s, info_ofs + 2, heads);
247     rtc_set_memory(s, info_ofs + 3, 0xff);
248     rtc_set_memory(s, info_ofs + 4, 0xff);
249     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
250     rtc_set_memory(s, info_ofs + 6, cylinders);
251     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
252     rtc_set_memory(s, info_ofs + 8, sectors);
253 }
254 
255 /* convert boot_device letter to something recognizable by the bios */
256 static int boot_device2nibble(char boot_device)
257 {
258     switch(boot_device) {
259     case 'a':
260     case 'b':
261         return 0x01; /* floppy boot */
262     case 'c':
263         return 0x02; /* hard drive boot */
264     case 'd':
265         return 0x03; /* CD-ROM boot */
266     case 'n':
267         return 0x04; /* Network boot */
268     }
269     return 0;
270 }
271 
272 static int set_boot_dev(ISADevice *s, const char *boot_device)
273 {
274 #define PC_MAX_BOOT_DEVICES 3
275     int nbds, bds[3] = { 0, };
276     int i;
277 
278     nbds = strlen(boot_device);
279     if (nbds > PC_MAX_BOOT_DEVICES) {
280         error_report("Too many boot devices for PC");
281         return(1);
282     }
283     for (i = 0; i < nbds; i++) {
284         bds[i] = boot_device2nibble(boot_device[i]);
285         if (bds[i] == 0) {
286             error_report("Invalid boot device for PC: '%c'",
287                          boot_device[i]);
288             return(1);
289         }
290     }
291     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
292     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
293     return(0);
294 }
295 
296 static int pc_boot_set(void *opaque, const char *boot_device)
297 {
298     return set_boot_dev(opaque, boot_device);
299 }
300 
301 typedef struct pc_cmos_init_late_arg {
302     ISADevice *rtc_state;
303     BusState *idebus[2];
304 } pc_cmos_init_late_arg;
305 
306 static void pc_cmos_init_late(void *opaque)
307 {
308     pc_cmos_init_late_arg *arg = opaque;
309     ISADevice *s = arg->rtc_state;
310     int16_t cylinders;
311     int8_t heads, sectors;
312     int val;
313     int i, trans;
314 
315     val = 0;
316     if (ide_get_geometry(arg->idebus[0], 0,
317                          &cylinders, &heads, &sectors) >= 0) {
318         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
319         val |= 0xf0;
320     }
321     if (ide_get_geometry(arg->idebus[0], 1,
322                          &cylinders, &heads, &sectors) >= 0) {
323         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
324         val |= 0x0f;
325     }
326     rtc_set_memory(s, 0x12, val);
327 
328     val = 0;
329     for (i = 0; i < 4; i++) {
330         /* NOTE: ide_get_geometry() returns the physical
331            geometry.  It is always such that: 1 <= sects <= 63, 1
332            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
333            geometry can be different if a translation is done. */
334         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
335                              &cylinders, &heads, &sectors) >= 0) {
336             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
337             assert((trans & ~3) == 0);
338             val |= trans << (i * 2);
339         }
340     }
341     rtc_set_memory(s, 0x39, val);
342 
343     qemu_unregister_reset(pc_cmos_init_late, opaque);
344 }
345 
346 typedef struct RTCCPUHotplugArg {
347     Notifier cpu_added_notifier;
348     ISADevice *rtc_state;
349 } RTCCPUHotplugArg;
350 
351 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
352 {
353     RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
354                                          cpu_added_notifier);
355     ISADevice *s = arg->rtc_state;
356 
357     /* increment the number of CPUs */
358     rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
359 }
360 
361 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
362                   const char *boot_device,
363                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
364                   ISADevice *s)
365 {
366     int val, nb, i;
367     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
368     static pc_cmos_init_late_arg arg;
369     static RTCCPUHotplugArg cpu_hotplug_cb;
370 
371     /* various important CMOS locations needed by PC/Bochs bios */
372 
373     /* memory size */
374     /* base memory (first MiB) */
375     val = MIN(ram_size / 1024, 640);
376     rtc_set_memory(s, 0x15, val);
377     rtc_set_memory(s, 0x16, val >> 8);
378     /* extended memory (next 64MiB) */
379     if (ram_size > 1024 * 1024) {
380         val = (ram_size - 1024 * 1024) / 1024;
381     } else {
382         val = 0;
383     }
384     if (val > 65535)
385         val = 65535;
386     rtc_set_memory(s, 0x17, val);
387     rtc_set_memory(s, 0x18, val >> 8);
388     rtc_set_memory(s, 0x30, val);
389     rtc_set_memory(s, 0x31, val >> 8);
390     /* memory between 16MiB and 4GiB */
391     if (ram_size > 16 * 1024 * 1024) {
392         val = (ram_size - 16 * 1024 * 1024) / 65536;
393     } else {
394         val = 0;
395     }
396     if (val > 65535)
397         val = 65535;
398     rtc_set_memory(s, 0x34, val);
399     rtc_set_memory(s, 0x35, val >> 8);
400     /* memory above 4GiB */
401     val = above_4g_mem_size / 65536;
402     rtc_set_memory(s, 0x5b, val);
403     rtc_set_memory(s, 0x5c, val >> 8);
404     rtc_set_memory(s, 0x5d, val >> 16);
405 
406     /* set the number of CPU */
407     rtc_set_memory(s, 0x5f, smp_cpus - 1);
408     /* init CPU hotplug notifier */
409     cpu_hotplug_cb.rtc_state = s;
410     cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
411     qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
412 
413     if (set_boot_dev(s, boot_device)) {
414         exit(1);
415     }
416 
417     /* floppy type */
418     if (floppy) {
419         for (i = 0; i < 2; i++) {
420             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
421         }
422     }
423     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
424         cmos_get_fd_drive_type(fd_type[1]);
425     rtc_set_memory(s, 0x10, val);
426 
427     val = 0;
428     nb = 0;
429     if (fd_type[0] < FDRIVE_DRV_NONE) {
430         nb++;
431     }
432     if (fd_type[1] < FDRIVE_DRV_NONE) {
433         nb++;
434     }
435     switch (nb) {
436     case 0:
437         break;
438     case 1:
439         val |= 0x01; /* 1 drive, ready for boot */
440         break;
441     case 2:
442         val |= 0x41; /* 2 drives, ready for boot */
443         break;
444     }
445     val |= 0x02; /* FPU is there */
446     val |= 0x04; /* PS/2 mouse installed */
447     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
448 
449     /* hard drives */
450     arg.rtc_state = s;
451     arg.idebus[0] = idebus0;
452     arg.idebus[1] = idebus1;
453     qemu_register_reset(pc_cmos_init_late, &arg);
454 }
455 
456 #define TYPE_PORT92 "port92"
457 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
458 
459 /* port 92 stuff: could be split off */
460 typedef struct Port92State {
461     ISADevice parent_obj;
462 
463     MemoryRegion io;
464     uint8_t outport;
465     qemu_irq *a20_out;
466 } Port92State;
467 
468 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
469                          unsigned size)
470 {
471     Port92State *s = opaque;
472 
473     DPRINTF("port92: write 0x%02x\n", val);
474     s->outport = val;
475     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
476     if (val & 1) {
477         qemu_system_reset_request();
478     }
479 }
480 
481 static uint64_t port92_read(void *opaque, hwaddr addr,
482                             unsigned size)
483 {
484     Port92State *s = opaque;
485     uint32_t ret;
486 
487     ret = s->outport;
488     DPRINTF("port92: read 0x%02x\n", ret);
489     return ret;
490 }
491 
492 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
493 {
494     Port92State *s = PORT92(dev);
495 
496     s->a20_out = a20_out;
497 }
498 
499 static const VMStateDescription vmstate_port92_isa = {
500     .name = "port92",
501     .version_id = 1,
502     .minimum_version_id = 1,
503     .minimum_version_id_old = 1,
504     .fields      = (VMStateField []) {
505         VMSTATE_UINT8(outport, Port92State),
506         VMSTATE_END_OF_LIST()
507     }
508 };
509 
510 static void port92_reset(DeviceState *d)
511 {
512     Port92State *s = PORT92(d);
513 
514     s->outport &= ~1;
515 }
516 
517 static const MemoryRegionOps port92_ops = {
518     .read = port92_read,
519     .write = port92_write,
520     .impl = {
521         .min_access_size = 1,
522         .max_access_size = 1,
523     },
524     .endianness = DEVICE_LITTLE_ENDIAN,
525 };
526 
527 static void port92_initfn(Object *obj)
528 {
529     Port92State *s = PORT92(obj);
530 
531     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
532 
533     s->outport = 0;
534 }
535 
536 static void port92_realizefn(DeviceState *dev, Error **errp)
537 {
538     ISADevice *isadev = ISA_DEVICE(dev);
539     Port92State *s = PORT92(dev);
540 
541     isa_register_ioport(isadev, &s->io, 0x92);
542 }
543 
544 static void port92_class_initfn(ObjectClass *klass, void *data)
545 {
546     DeviceClass *dc = DEVICE_CLASS(klass);
547 
548     dc->no_user = 1;
549     dc->realize = port92_realizefn;
550     dc->reset = port92_reset;
551     dc->vmsd = &vmstate_port92_isa;
552 }
553 
554 static const TypeInfo port92_info = {
555     .name          = TYPE_PORT92,
556     .parent        = TYPE_ISA_DEVICE,
557     .instance_size = sizeof(Port92State),
558     .instance_init = port92_initfn,
559     .class_init    = port92_class_initfn,
560 };
561 
562 static void port92_register_types(void)
563 {
564     type_register_static(&port92_info);
565 }
566 
567 type_init(port92_register_types)
568 
569 static void handle_a20_line_change(void *opaque, int irq, int level)
570 {
571     X86CPU *cpu = opaque;
572 
573     /* XXX: send to all CPUs ? */
574     /* XXX: add logic to handle multiple A20 line sources */
575     x86_cpu_set_a20(cpu, level);
576 }
577 
578 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
579 {
580     int index = le32_to_cpu(e820_table.count);
581     struct e820_entry *entry;
582 
583     if (index >= E820_NR_ENTRIES)
584         return -EBUSY;
585     entry = &e820_table.entry[index++];
586 
587     entry->address = cpu_to_le64(address);
588     entry->length = cpu_to_le64(length);
589     entry->type = cpu_to_le32(type);
590 
591     e820_table.count = cpu_to_le32(index);
592     return index;
593 }
594 
595 /* Calculates the limit to CPU APIC ID values
596  *
597  * This function returns the limit for the APIC ID value, so that all
598  * CPU APIC IDs are < pc_apic_id_limit().
599  *
600  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
601  */
602 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
603 {
604     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
605 }
606 
607 static FWCfgState *bochs_bios_init(void)
608 {
609     FWCfgState *fw_cfg;
610     uint8_t *smbios_table;
611     size_t smbios_len;
612     uint64_t *numa_fw_cfg;
613     int i, j;
614     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
615 
616     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
617     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
618      *
619      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
620      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
621      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
622      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
623      * may see".
624      *
625      * So, this means we must not use max_cpus, here, but the maximum possible
626      * APIC ID value, plus one.
627      *
628      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
629      *     the APIC ID, not the "CPU index"
630      */
631     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
632     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
633     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
634     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
635                      acpi_tables, acpi_tables_len);
636     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
637 
638     smbios_table = smbios_get_table(&smbios_len);
639     if (smbios_table)
640         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
641                          smbios_table, smbios_len);
642     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
643                      &e820_table, sizeof(e820_table));
644 
645     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
646     /* allocate memory for the NUMA channel: one (64bit) word for the number
647      * of nodes, one word for each VCPU->node and one word for each node to
648      * hold the amount of memory.
649      */
650     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
651     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
652     for (i = 0; i < max_cpus; i++) {
653         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
654         assert(apic_id < apic_id_limit);
655         for (j = 0; j < nb_numa_nodes; j++) {
656             if (test_bit(i, node_cpumask[j])) {
657                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
658                 break;
659             }
660         }
661     }
662     for (i = 0; i < nb_numa_nodes; i++) {
663         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
664     }
665     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
666                      (1 + apic_id_limit + nb_numa_nodes) *
667                      sizeof(*numa_fw_cfg));
668 
669     return fw_cfg;
670 }
671 
672 static long get_file_size(FILE *f)
673 {
674     long where, size;
675 
676     /* XXX: on Unix systems, using fstat() probably makes more sense */
677 
678     where = ftell(f);
679     fseek(f, 0, SEEK_END);
680     size = ftell(f);
681     fseek(f, where, SEEK_SET);
682 
683     return size;
684 }
685 
686 static void load_linux(FWCfgState *fw_cfg,
687                        const char *kernel_filename,
688                        const char *initrd_filename,
689                        const char *kernel_cmdline,
690                        hwaddr max_ram_size)
691 {
692     uint16_t protocol;
693     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
694     uint32_t initrd_max;
695     uint8_t header[8192], *setup, *kernel, *initrd_data;
696     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
697     FILE *f;
698     char *vmode;
699 
700     /* Align to 16 bytes as a paranoia measure */
701     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
702 
703     /* load the kernel header */
704     f = fopen(kernel_filename, "rb");
705     if (!f || !(kernel_size = get_file_size(f)) ||
706         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
707         MIN(ARRAY_SIZE(header), kernel_size)) {
708         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
709                 kernel_filename, strerror(errno));
710         exit(1);
711     }
712 
713     /* kernel protocol version */
714 #if 0
715     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
716 #endif
717     if (ldl_p(header+0x202) == 0x53726448) {
718         protocol = lduw_p(header+0x206);
719     } else {
720         /* This looks like a multiboot kernel. If it is, let's stop
721            treating it like a Linux kernel. */
722         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
723                            kernel_cmdline, kernel_size, header)) {
724             return;
725         }
726         protocol = 0;
727     }
728 
729     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
730         /* Low kernel */
731         real_addr    = 0x90000;
732         cmdline_addr = 0x9a000 - cmdline_size;
733         prot_addr    = 0x10000;
734     } else if (protocol < 0x202) {
735         /* High but ancient kernel */
736         real_addr    = 0x90000;
737         cmdline_addr = 0x9a000 - cmdline_size;
738         prot_addr    = 0x100000;
739     } else {
740         /* High and recent kernel */
741         real_addr    = 0x10000;
742         cmdline_addr = 0x20000;
743         prot_addr    = 0x100000;
744     }
745 
746 #if 0
747     fprintf(stderr,
748             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
749             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
750             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
751             real_addr,
752             cmdline_addr,
753             prot_addr);
754 #endif
755 
756     /* highest address for loading the initrd */
757     if (protocol >= 0x203) {
758         initrd_max = ldl_p(header+0x22c);
759     } else {
760         initrd_max = 0x37ffffff;
761     }
762 
763     if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
764     	initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
765 
766     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
767     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
768     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
769 
770     if (protocol >= 0x202) {
771         stl_p(header+0x228, cmdline_addr);
772     } else {
773         stw_p(header+0x20, 0xA33F);
774         stw_p(header+0x22, cmdline_addr-real_addr);
775     }
776 
777     /* handle vga= parameter */
778     vmode = strstr(kernel_cmdline, "vga=");
779     if (vmode) {
780         unsigned int video_mode;
781         /* skip "vga=" */
782         vmode += 4;
783         if (!strncmp(vmode, "normal", 6)) {
784             video_mode = 0xffff;
785         } else if (!strncmp(vmode, "ext", 3)) {
786             video_mode = 0xfffe;
787         } else if (!strncmp(vmode, "ask", 3)) {
788             video_mode = 0xfffd;
789         } else {
790             video_mode = strtol(vmode, NULL, 0);
791         }
792         stw_p(header+0x1fa, video_mode);
793     }
794 
795     /* loader type */
796     /* High nybble = B reserved for QEMU; low nybble is revision number.
797        If this code is substantially changed, you may want to consider
798        incrementing the revision. */
799     if (protocol >= 0x200) {
800         header[0x210] = 0xB0;
801     }
802     /* heap */
803     if (protocol >= 0x201) {
804         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
805         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
806     }
807 
808     /* load initrd */
809     if (initrd_filename) {
810         if (protocol < 0x200) {
811             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
812             exit(1);
813         }
814 
815         initrd_size = get_image_size(initrd_filename);
816         if (initrd_size < 0) {
817             fprintf(stderr, "qemu: error reading initrd %s\n",
818                     initrd_filename);
819             exit(1);
820         }
821 
822         initrd_addr = (initrd_max-initrd_size) & ~4095;
823 
824         initrd_data = g_malloc(initrd_size);
825         load_image(initrd_filename, initrd_data);
826 
827         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
828         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
829         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
830 
831         stl_p(header+0x218, initrd_addr);
832         stl_p(header+0x21c, initrd_size);
833     }
834 
835     /* load kernel and setup */
836     setup_size = header[0x1f1];
837     if (setup_size == 0) {
838         setup_size = 4;
839     }
840     setup_size = (setup_size+1)*512;
841     kernel_size -= setup_size;
842 
843     setup  = g_malloc(setup_size);
844     kernel = g_malloc(kernel_size);
845     fseek(f, 0, SEEK_SET);
846     if (fread(setup, 1, setup_size, f) != setup_size) {
847         fprintf(stderr, "fread() failed\n");
848         exit(1);
849     }
850     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
851         fprintf(stderr, "fread() failed\n");
852         exit(1);
853     }
854     fclose(f);
855     memcpy(setup, header, MIN(sizeof(header), setup_size));
856 
857     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
858     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
859     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
860 
861     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
862     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
863     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
864 
865     option_rom[nb_option_roms].name = "linuxboot.bin";
866     option_rom[nb_option_roms].bootindex = 0;
867     nb_option_roms++;
868 }
869 
870 #define NE2000_NB_MAX 6
871 
872 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
873                                               0x280, 0x380 };
874 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
875 
876 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
877 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
878 
879 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
880 {
881     static int nb_ne2k = 0;
882 
883     if (nb_ne2k == NE2000_NB_MAX)
884         return;
885     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
886                     ne2000_irq[nb_ne2k], nd);
887     nb_ne2k++;
888 }
889 
890 DeviceState *cpu_get_current_apic(void)
891 {
892     if (current_cpu) {
893         X86CPU *cpu = X86_CPU(current_cpu);
894         return cpu->env.apic_state;
895     } else {
896         return NULL;
897     }
898 }
899 
900 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
901 {
902     X86CPU *cpu = opaque;
903 
904     if (level) {
905         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
906     }
907 }
908 
909 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
910                           DeviceState *icc_bridge, Error **errp)
911 {
912     X86CPU *cpu;
913     Error *local_err = NULL;
914 
915     cpu = cpu_x86_create(cpu_model, icc_bridge, errp);
916     if (!cpu) {
917         return cpu;
918     }
919 
920     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
921     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
922 
923     if (local_err) {
924         if (cpu != NULL) {
925             object_unref(OBJECT(cpu));
926             cpu = NULL;
927         }
928         error_propagate(errp, local_err);
929     }
930     return cpu;
931 }
932 
933 static const char *current_cpu_model;
934 
935 void pc_hot_add_cpu(const int64_t id, Error **errp)
936 {
937     DeviceState *icc_bridge;
938     int64_t apic_id = x86_cpu_apic_id_from_index(id);
939 
940     if (id < 0) {
941         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
942         return;
943     }
944 
945     if (cpu_exists(apic_id)) {
946         error_setg(errp, "Unable to add CPU: %" PRIi64
947                    ", it already exists", id);
948         return;
949     }
950 
951     if (id >= max_cpus) {
952         error_setg(errp, "Unable to add CPU: %" PRIi64
953                    ", max allowed: %d", id, max_cpus - 1);
954         return;
955     }
956 
957     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
958                                                  TYPE_ICC_BRIDGE, NULL));
959     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
960 }
961 
962 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
963 {
964     int i;
965     X86CPU *cpu = NULL;
966     Error *error = NULL;
967 
968     /* init CPUs */
969     if (cpu_model == NULL) {
970 #ifdef TARGET_X86_64
971         cpu_model = "qemu64";
972 #else
973         cpu_model = "qemu32";
974 #endif
975     }
976     current_cpu_model = cpu_model;
977 
978     for (i = 0; i < smp_cpus; i++) {
979         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
980                          icc_bridge, &error);
981         if (error) {
982             fprintf(stderr, "%s\n", error_get_pretty(error));
983             error_free(error);
984             exit(1);
985         }
986     }
987 
988     /* map APIC MMIO area if CPU has APIC */
989     if (cpu && cpu->env.apic_state) {
990         /* XXX: what if the base changes? */
991         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
992                                 APIC_DEFAULT_ADDRESS, 0x1000);
993     }
994 }
995 
996 /* pci-info ROM file. Little endian format */
997 typedef struct PcRomPciInfo {
998     uint64_t w32_min;
999     uint64_t w32_max;
1000     uint64_t w64_min;
1001     uint64_t w64_max;
1002 } PcRomPciInfo;
1003 
1004 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1005 {
1006     PcRomPciInfo *info;
1007     Object *pci_info;
1008     bool ambiguous = false;
1009 
1010     if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1011         return;
1012     }
1013     pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
1014     g_assert(!ambiguous);
1015     if (!pci_info) {
1016         return;
1017     }
1018 
1019     info = g_malloc(sizeof *info);
1020     info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
1021                                 PCI_HOST_PROP_PCI_HOLE_START, NULL));
1022     info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
1023                                 PCI_HOST_PROP_PCI_HOLE_END, NULL));
1024     info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
1025                                 PCI_HOST_PROP_PCI_HOLE64_START, NULL));
1026     info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
1027                                 PCI_HOST_PROP_PCI_HOLE64_END, NULL));
1028     /* Pass PCI hole info to guest via a side channel.
1029      * Required so guest PCI enumeration does the right thing. */
1030     fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1031 }
1032 
1033 typedef struct PcGuestInfoState {
1034     PcGuestInfo info;
1035     Notifier machine_done;
1036 } PcGuestInfoState;
1037 
1038 static
1039 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1040 {
1041     PcGuestInfoState *guest_info_state = container_of(notifier,
1042                                                       PcGuestInfoState,
1043                                                       machine_done);
1044     pc_fw_cfg_guest_info(&guest_info_state->info);
1045 }
1046 
1047 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1048                                 ram_addr_t above_4g_mem_size)
1049 {
1050     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1051     PcGuestInfo *guest_info = &guest_info_state->info;
1052 
1053     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1054     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1055     return guest_info;
1056 }
1057 
1058 void pc_init_pci64_hole(PcPciInfo *pci_info, uint64_t pci_hole64_start,
1059                         uint64_t pci_hole64_size)
1060 {
1061     if ((sizeof(hwaddr) == 4) || (!pci_hole64_size)) {
1062         return;
1063     }
1064     /*
1065      * BIOS does not set MTRR entries for the 64 bit window, so no need to
1066      * align address to power of two.  Align address at 1G, this makes sure
1067      * it can be exactly covered with a PAT entry even when using huge
1068      * pages.
1069      */
1070     pci_info->w64.begin = ROUND_UP(pci_hole64_start, 0x1ULL << 30);
1071     pci_info->w64.end = pci_info->w64.begin + pci_hole64_size;
1072     assert(pci_info->w64.begin <= pci_info->w64.end);
1073 }
1074 
1075 void pc_acpi_init(const char *default_dsdt)
1076 {
1077     char *filename;
1078 
1079     if (acpi_tables != NULL) {
1080         /* manually set via -acpitable, leave it alone */
1081         return;
1082     }
1083 
1084     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1085     if (filename == NULL) {
1086         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1087     } else {
1088         char *arg;
1089         QemuOpts *opts;
1090         Error *err = NULL;
1091 
1092         arg = g_strdup_printf("file=%s", filename);
1093 
1094         /* creates a deep copy of "arg" */
1095         opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1096         g_assert(opts != NULL);
1097 
1098         acpi_table_add(opts, &err);
1099         if (err) {
1100             fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
1101                     error_get_pretty(err));
1102             error_free(err);
1103         }
1104         g_free(arg);
1105         g_free(filename);
1106     }
1107 }
1108 
1109 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1110                            const char *kernel_filename,
1111                            const char *kernel_cmdline,
1112                            const char *initrd_filename,
1113                            ram_addr_t below_4g_mem_size,
1114                            ram_addr_t above_4g_mem_size,
1115                            MemoryRegion *rom_memory,
1116                            MemoryRegion **ram_memory,
1117                            PcGuestInfo *guest_info)
1118 {
1119     int linux_boot, i;
1120     MemoryRegion *ram, *option_rom_mr;
1121     MemoryRegion *ram_below_4g, *ram_above_4g;
1122     FWCfgState *fw_cfg;
1123 
1124     linux_boot = (kernel_filename != NULL);
1125 
1126     /* Allocate RAM.  We allocate it as a single memory region and use
1127      * aliases to address portions of it, mostly for backwards compatibility
1128      * with older qemus that used qemu_ram_alloc().
1129      */
1130     ram = g_malloc(sizeof(*ram));
1131     memory_region_init_ram(ram, NULL, "pc.ram",
1132                            below_4g_mem_size + above_4g_mem_size);
1133     vmstate_register_ram_global(ram);
1134     *ram_memory = ram;
1135     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1136     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1137                              0, below_4g_mem_size);
1138     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1139     if (above_4g_mem_size > 0) {
1140         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1141         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1142                                  below_4g_mem_size, above_4g_mem_size);
1143         memory_region_add_subregion(system_memory, 0x100000000ULL,
1144                                     ram_above_4g);
1145     }
1146 
1147 
1148     /* Initialize PC system firmware */
1149     pc_system_firmware_init(rom_memory);
1150 
1151     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1152     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1153     vmstate_register_ram_global(option_rom_mr);
1154     memory_region_add_subregion_overlap(rom_memory,
1155                                         PC_ROM_MIN_VGA,
1156                                         option_rom_mr,
1157                                         1);
1158 
1159     fw_cfg = bochs_bios_init();
1160     rom_set_fw(fw_cfg);
1161 
1162     if (linux_boot) {
1163         load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1164     }
1165 
1166     for (i = 0; i < nb_option_roms; i++) {
1167         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1168     }
1169     guest_info->fw_cfg = fw_cfg;
1170     return fw_cfg;
1171 }
1172 
1173 qemu_irq *pc_allocate_cpu_irq(void)
1174 {
1175     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1176 }
1177 
1178 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1179 {
1180     DeviceState *dev = NULL;
1181 
1182     if (pci_bus) {
1183         PCIDevice *pcidev = pci_vga_init(pci_bus);
1184         dev = pcidev ? &pcidev->qdev : NULL;
1185     } else if (isa_bus) {
1186         ISADevice *isadev = isa_vga_init(isa_bus);
1187         dev = isadev ? DEVICE(isadev) : NULL;
1188     }
1189     return dev;
1190 }
1191 
1192 static void cpu_request_exit(void *opaque, int irq, int level)
1193 {
1194     CPUState *cpu = current_cpu;
1195 
1196     if (cpu && level) {
1197         cpu_exit(cpu);
1198     }
1199 }
1200 
1201 static const MemoryRegionOps ioport80_io_ops = {
1202     .write = ioport80_write,
1203     .read = ioport80_read,
1204     .endianness = DEVICE_NATIVE_ENDIAN,
1205     .impl = {
1206         .min_access_size = 1,
1207         .max_access_size = 1,
1208     },
1209 };
1210 
1211 static const MemoryRegionOps ioportF0_io_ops = {
1212     .write = ioportF0_write,
1213     .read = ioportF0_read,
1214     .endianness = DEVICE_NATIVE_ENDIAN,
1215     .impl = {
1216         .min_access_size = 1,
1217         .max_access_size = 1,
1218     },
1219 };
1220 
1221 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1222                           ISADevice **rtc_state,
1223                           ISADevice **floppy,
1224                           bool no_vmport)
1225 {
1226     int i;
1227     DriveInfo *fd[MAX_FD];
1228     DeviceState *hpet = NULL;
1229     int pit_isa_irq = 0;
1230     qemu_irq pit_alt_irq = NULL;
1231     qemu_irq rtc_irq = NULL;
1232     qemu_irq *a20_line;
1233     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1234     qemu_irq *cpu_exit_irq;
1235     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1236     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1237 
1238     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1239     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1240 
1241     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1242     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1243 
1244     /*
1245      * Check if an HPET shall be created.
1246      *
1247      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1248      * when the HPET wants to take over. Thus we have to disable the latter.
1249      */
1250     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1251         hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1252 
1253         if (hpet) {
1254             for (i = 0; i < GSI_NUM_PINS; i++) {
1255                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1256             }
1257             pit_isa_irq = -1;
1258             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1259             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1260         }
1261     }
1262     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1263 
1264     qemu_register_boot_set(pc_boot_set, *rtc_state);
1265 
1266     if (!xen_enabled()) {
1267         if (kvm_irqchip_in_kernel()) {
1268             pit = kvm_pit_init(isa_bus, 0x40);
1269         } else {
1270             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1271         }
1272         if (hpet) {
1273             /* connect PIT to output control line of the HPET */
1274             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1275         }
1276         pcspk_init(isa_bus, pit);
1277     }
1278 
1279     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1280         if (serial_hds[i]) {
1281             serial_isa_init(isa_bus, i, serial_hds[i]);
1282         }
1283     }
1284 
1285     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1286         if (parallel_hds[i]) {
1287             parallel_init(isa_bus, i, parallel_hds[i]);
1288         }
1289     }
1290 
1291     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1292     i8042 = isa_create_simple(isa_bus, "i8042");
1293     i8042_setup_a20_line(i8042, &a20_line[0]);
1294     if (!no_vmport) {
1295         vmport_init(isa_bus);
1296         vmmouse = isa_try_create(isa_bus, "vmmouse");
1297     } else {
1298         vmmouse = NULL;
1299     }
1300     if (vmmouse) {
1301         DeviceState *dev = DEVICE(vmmouse);
1302         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1303         qdev_init_nofail(dev);
1304     }
1305     port92 = isa_create_simple(isa_bus, "port92");
1306     port92_init(port92, &a20_line[1]);
1307 
1308     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1309     DMA_init(0, cpu_exit_irq);
1310 
1311     for(i = 0; i < MAX_FD; i++) {
1312         fd[i] = drive_get(IF_FLOPPY, 0, i);
1313     }
1314     *floppy = fdctrl_init_isa(isa_bus, fd);
1315 }
1316 
1317 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1318 {
1319     int i;
1320 
1321     for (i = 0; i < nb_nics; i++) {
1322         NICInfo *nd = &nd_table[i];
1323 
1324         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1325             pc_init_ne2k_isa(isa_bus, nd);
1326         } else {
1327             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1328         }
1329     }
1330 }
1331 
1332 void pc_pci_device_init(PCIBus *pci_bus)
1333 {
1334     int max_bus;
1335     int bus;
1336 
1337     max_bus = drive_get_max_bus(IF_SCSI);
1338     for (bus = 0; bus <= max_bus; bus++) {
1339         pci_create_simple(pci_bus, -1, "lsi53c895a");
1340     }
1341 }
1342 
1343 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1344 {
1345     DeviceState *dev;
1346     SysBusDevice *d;
1347     unsigned int i;
1348 
1349     if (kvm_irqchip_in_kernel()) {
1350         dev = qdev_create(NULL, "kvm-ioapic");
1351     } else {
1352         dev = qdev_create(NULL, "ioapic");
1353     }
1354     if (parent_name) {
1355         object_property_add_child(object_resolve_path(parent_name, NULL),
1356                                   "ioapic", OBJECT(dev), NULL);
1357     }
1358     qdev_init_nofail(dev);
1359     d = SYS_BUS_DEVICE(dev);
1360     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1361 
1362     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1363         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1364     }
1365 }
1366