xref: /openbmc/qemu/hw/i386/pc.c (revision 2a78636b)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/cpu/icc_bus.h"
57 #include "hw/boards.h"
58 
59 /* debug PC/ISA interrupts */
60 //#define DEBUG_IRQ
61 
62 #ifdef DEBUG_IRQ
63 #define DPRINTF(fmt, ...)                                       \
64     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define DPRINTF(fmt, ...)
67 #endif
68 
69 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
70 #define ACPI_DATA_SIZE       0x10000
71 #define BIOS_CFG_IOPORT 0x510
72 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
73 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
74 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
75 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
76 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
77 
78 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000
79 
80 #define E820_NR_ENTRIES		16
81 
82 struct e820_entry {
83     uint64_t address;
84     uint64_t length;
85     uint32_t type;
86 } QEMU_PACKED __attribute((__aligned__(4)));
87 
88 struct e820_table {
89     uint32_t count;
90     struct e820_entry entry[E820_NR_ENTRIES];
91 } QEMU_PACKED __attribute((__aligned__(4)));
92 
93 static struct e820_table e820_table;
94 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
95 
96 void gsi_handler(void *opaque, int n, int level)
97 {
98     GSIState *s = opaque;
99 
100     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
101     if (n < ISA_NUM_IRQS) {
102         qemu_set_irq(s->i8259_irq[n], level);
103     }
104     qemu_set_irq(s->ioapic_irq[n], level);
105 }
106 
107 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
108                            unsigned size)
109 {
110 }
111 
112 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
113 {
114     return 0xffffffffffffffffULL;
115 }
116 
117 /* MSDOS compatibility mode FPU exception support */
118 static qemu_irq ferr_irq;
119 
120 void pc_register_ferr_irq(qemu_irq irq)
121 {
122     ferr_irq = irq;
123 }
124 
125 /* XXX: add IGNNE support */
126 void cpu_set_ferr(CPUX86State *s)
127 {
128     qemu_irq_raise(ferr_irq);
129 }
130 
131 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
132                            unsigned size)
133 {
134     qemu_irq_lower(ferr_irq);
135 }
136 
137 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
138 {
139     return 0xffffffffffffffffULL;
140 }
141 
142 /* TSC handling */
143 uint64_t cpu_get_tsc(CPUX86State *env)
144 {
145     return cpu_get_ticks();
146 }
147 
148 /* SMM support */
149 
150 static cpu_set_smm_t smm_set;
151 static void *smm_arg;
152 
153 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
154 {
155     assert(smm_set == NULL);
156     assert(smm_arg == NULL);
157     smm_set = callback;
158     smm_arg = arg;
159 }
160 
161 void cpu_smm_update(CPUX86State *env)
162 {
163     if (smm_set && smm_arg && env == first_cpu)
164         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
165 }
166 
167 
168 /* IRQ handling */
169 int cpu_get_pic_interrupt(CPUX86State *env)
170 {
171     int intno;
172 
173     intno = apic_get_interrupt(env->apic_state);
174     if (intno >= 0) {
175         return intno;
176     }
177     /* read the irq from the PIC */
178     if (!apic_accept_pic_intr(env->apic_state)) {
179         return -1;
180     }
181 
182     intno = pic_read_irq(isa_pic);
183     return intno;
184 }
185 
186 static void pic_irq_request(void *opaque, int irq, int level)
187 {
188     CPUX86State *env = first_cpu;
189 
190     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191     if (env->apic_state) {
192         while (env) {
193             if (apic_accept_pic_intr(env->apic_state)) {
194                 apic_deliver_pic_intr(env->apic_state, level);
195             }
196             env = env->next_cpu;
197         }
198     } else {
199         CPUState *cs = CPU(x86_env_get_cpu(env));
200         if (level) {
201             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
202         } else {
203             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
204         }
205     }
206 }
207 
208 /* PC cmos mappings */
209 
210 #define REG_EQUIPMENT_BYTE          0x14
211 
212 static int cmos_get_fd_drive_type(FDriveType fd0)
213 {
214     int val;
215 
216     switch (fd0) {
217     case FDRIVE_DRV_144:
218         /* 1.44 Mb 3"5 drive */
219         val = 4;
220         break;
221     case FDRIVE_DRV_288:
222         /* 2.88 Mb 3"5 drive */
223         val = 5;
224         break;
225     case FDRIVE_DRV_120:
226         /* 1.2 Mb 5"5 drive */
227         val = 2;
228         break;
229     case FDRIVE_DRV_NONE:
230     default:
231         val = 0;
232         break;
233     }
234     return val;
235 }
236 
237 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
238                          int16_t cylinders, int8_t heads, int8_t sectors)
239 {
240     rtc_set_memory(s, type_ofs, 47);
241     rtc_set_memory(s, info_ofs, cylinders);
242     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
243     rtc_set_memory(s, info_ofs + 2, heads);
244     rtc_set_memory(s, info_ofs + 3, 0xff);
245     rtc_set_memory(s, info_ofs + 4, 0xff);
246     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
247     rtc_set_memory(s, info_ofs + 6, cylinders);
248     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
249     rtc_set_memory(s, info_ofs + 8, sectors);
250 }
251 
252 /* convert boot_device letter to something recognizable by the bios */
253 static int boot_device2nibble(char boot_device)
254 {
255     switch(boot_device) {
256     case 'a':
257     case 'b':
258         return 0x01; /* floppy boot */
259     case 'c':
260         return 0x02; /* hard drive boot */
261     case 'd':
262         return 0x03; /* CD-ROM boot */
263     case 'n':
264         return 0x04; /* Network boot */
265     }
266     return 0;
267 }
268 
269 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
270 {
271 #define PC_MAX_BOOT_DEVICES 3
272     int nbds, bds[3] = { 0, };
273     int i;
274 
275     nbds = strlen(boot_device);
276     if (nbds > PC_MAX_BOOT_DEVICES) {
277         error_report("Too many boot devices for PC");
278         return(1);
279     }
280     for (i = 0; i < nbds; i++) {
281         bds[i] = boot_device2nibble(boot_device[i]);
282         if (bds[i] == 0) {
283             error_report("Invalid boot device for PC: '%c'",
284                          boot_device[i]);
285             return(1);
286         }
287     }
288     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
289     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
290     return(0);
291 }
292 
293 static int pc_boot_set(void *opaque, const char *boot_device)
294 {
295     return set_boot_dev(opaque, boot_device, 0);
296 }
297 
298 typedef struct pc_cmos_init_late_arg {
299     ISADevice *rtc_state;
300     BusState *idebus[2];
301 } pc_cmos_init_late_arg;
302 
303 static void pc_cmos_init_late(void *opaque)
304 {
305     pc_cmos_init_late_arg *arg = opaque;
306     ISADevice *s = arg->rtc_state;
307     int16_t cylinders;
308     int8_t heads, sectors;
309     int val;
310     int i, trans;
311 
312     val = 0;
313     if (ide_get_geometry(arg->idebus[0], 0,
314                          &cylinders, &heads, &sectors) >= 0) {
315         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
316         val |= 0xf0;
317     }
318     if (ide_get_geometry(arg->idebus[0], 1,
319                          &cylinders, &heads, &sectors) >= 0) {
320         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
321         val |= 0x0f;
322     }
323     rtc_set_memory(s, 0x12, val);
324 
325     val = 0;
326     for (i = 0; i < 4; i++) {
327         /* NOTE: ide_get_geometry() returns the physical
328            geometry.  It is always such that: 1 <= sects <= 63, 1
329            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
330            geometry can be different if a translation is done. */
331         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
332                              &cylinders, &heads, &sectors) >= 0) {
333             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
334             assert((trans & ~3) == 0);
335             val |= trans << (i * 2);
336         }
337     }
338     rtc_set_memory(s, 0x39, val);
339 
340     qemu_unregister_reset(pc_cmos_init_late, opaque);
341 }
342 
343 typedef struct RTCCPUHotplugArg {
344     Notifier cpu_added_notifier;
345     ISADevice *rtc_state;
346 } RTCCPUHotplugArg;
347 
348 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
349 {
350     RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
351                                          cpu_added_notifier);
352     ISADevice *s = arg->rtc_state;
353 
354     /* increment the number of CPUs */
355     rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
356 }
357 
358 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
359                   const char *boot_device,
360                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
361                   ISADevice *s)
362 {
363     int val, nb, i;
364     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
365     static pc_cmos_init_late_arg arg;
366     static RTCCPUHotplugArg cpu_hotplug_cb;
367 
368     /* various important CMOS locations needed by PC/Bochs bios */
369 
370     /* memory size */
371     /* base memory (first MiB) */
372     val = MIN(ram_size / 1024, 640);
373     rtc_set_memory(s, 0x15, val);
374     rtc_set_memory(s, 0x16, val >> 8);
375     /* extended memory (next 64MiB) */
376     if (ram_size > 1024 * 1024) {
377         val = (ram_size - 1024 * 1024) / 1024;
378     } else {
379         val = 0;
380     }
381     if (val > 65535)
382         val = 65535;
383     rtc_set_memory(s, 0x17, val);
384     rtc_set_memory(s, 0x18, val >> 8);
385     rtc_set_memory(s, 0x30, val);
386     rtc_set_memory(s, 0x31, val >> 8);
387     /* memory between 16MiB and 4GiB */
388     if (ram_size > 16 * 1024 * 1024) {
389         val = (ram_size - 16 * 1024 * 1024) / 65536;
390     } else {
391         val = 0;
392     }
393     if (val > 65535)
394         val = 65535;
395     rtc_set_memory(s, 0x34, val);
396     rtc_set_memory(s, 0x35, val >> 8);
397     /* memory above 4GiB */
398     val = above_4g_mem_size / 65536;
399     rtc_set_memory(s, 0x5b, val);
400     rtc_set_memory(s, 0x5c, val >> 8);
401     rtc_set_memory(s, 0x5d, val >> 16);
402 
403     /* set the number of CPU */
404     rtc_set_memory(s, 0x5f, smp_cpus - 1);
405     /* init CPU hotplug notifier */
406     cpu_hotplug_cb.rtc_state = s;
407     cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
408     qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
409 
410     /* set boot devices, and disable floppy signature check if requested */
411     if (set_boot_dev(s, boot_device, fd_bootchk)) {
412         exit(1);
413     }
414 
415     /* floppy type */
416     if (floppy) {
417         for (i = 0; i < 2; i++) {
418             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
419         }
420     }
421     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
422         cmos_get_fd_drive_type(fd_type[1]);
423     rtc_set_memory(s, 0x10, val);
424 
425     val = 0;
426     nb = 0;
427     if (fd_type[0] < FDRIVE_DRV_NONE) {
428         nb++;
429     }
430     if (fd_type[1] < FDRIVE_DRV_NONE) {
431         nb++;
432     }
433     switch (nb) {
434     case 0:
435         break;
436     case 1:
437         val |= 0x01; /* 1 drive, ready for boot */
438         break;
439     case 2:
440         val |= 0x41; /* 2 drives, ready for boot */
441         break;
442     }
443     val |= 0x02; /* FPU is there */
444     val |= 0x04; /* PS/2 mouse installed */
445     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
446 
447     /* hard drives */
448     arg.rtc_state = s;
449     arg.idebus[0] = idebus0;
450     arg.idebus[1] = idebus1;
451     qemu_register_reset(pc_cmos_init_late, &arg);
452 }
453 
454 #define TYPE_PORT92 "port92"
455 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
456 
457 /* port 92 stuff: could be split off */
458 typedef struct Port92State {
459     ISADevice parent_obj;
460 
461     MemoryRegion io;
462     uint8_t outport;
463     qemu_irq *a20_out;
464 } Port92State;
465 
466 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
467                          unsigned size)
468 {
469     Port92State *s = opaque;
470 
471     DPRINTF("port92: write 0x%02x\n", val);
472     s->outport = val;
473     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
474     if (val & 1) {
475         qemu_system_reset_request();
476     }
477 }
478 
479 static uint64_t port92_read(void *opaque, hwaddr addr,
480                             unsigned size)
481 {
482     Port92State *s = opaque;
483     uint32_t ret;
484 
485     ret = s->outport;
486     DPRINTF("port92: read 0x%02x\n", ret);
487     return ret;
488 }
489 
490 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
491 {
492     Port92State *s = PORT92(dev);
493 
494     s->a20_out = a20_out;
495 }
496 
497 static const VMStateDescription vmstate_port92_isa = {
498     .name = "port92",
499     .version_id = 1,
500     .minimum_version_id = 1,
501     .minimum_version_id_old = 1,
502     .fields      = (VMStateField []) {
503         VMSTATE_UINT8(outport, Port92State),
504         VMSTATE_END_OF_LIST()
505     }
506 };
507 
508 static void port92_reset(DeviceState *d)
509 {
510     Port92State *s = PORT92(d);
511 
512     s->outport &= ~1;
513 }
514 
515 static const MemoryRegionOps port92_ops = {
516     .read = port92_read,
517     .write = port92_write,
518     .impl = {
519         .min_access_size = 1,
520         .max_access_size = 1,
521     },
522     .endianness = DEVICE_LITTLE_ENDIAN,
523 };
524 
525 static int port92_initfn(ISADevice *dev)
526 {
527     Port92State *s = PORT92(dev);
528 
529     memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
530     isa_register_ioport(dev, &s->io, 0x92);
531 
532     s->outport = 0;
533     return 0;
534 }
535 
536 static void port92_class_initfn(ObjectClass *klass, void *data)
537 {
538     DeviceClass *dc = DEVICE_CLASS(klass);
539     ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
540     ic->init = port92_initfn;
541     dc->no_user = 1;
542     dc->reset = port92_reset;
543     dc->vmsd = &vmstate_port92_isa;
544 }
545 
546 static const TypeInfo port92_info = {
547     .name          = TYPE_PORT92,
548     .parent        = TYPE_ISA_DEVICE,
549     .instance_size = sizeof(Port92State),
550     .class_init    = port92_class_initfn,
551 };
552 
553 static void port92_register_types(void)
554 {
555     type_register_static(&port92_info);
556 }
557 
558 type_init(port92_register_types)
559 
560 static void handle_a20_line_change(void *opaque, int irq, int level)
561 {
562     X86CPU *cpu = opaque;
563 
564     /* XXX: send to all CPUs ? */
565     /* XXX: add logic to handle multiple A20 line sources */
566     x86_cpu_set_a20(cpu, level);
567 }
568 
569 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
570 {
571     int index = le32_to_cpu(e820_table.count);
572     struct e820_entry *entry;
573 
574     if (index >= E820_NR_ENTRIES)
575         return -EBUSY;
576     entry = &e820_table.entry[index++];
577 
578     entry->address = cpu_to_le64(address);
579     entry->length = cpu_to_le64(length);
580     entry->type = cpu_to_le32(type);
581 
582     e820_table.count = cpu_to_le32(index);
583     return index;
584 }
585 
586 /* Calculates the limit to CPU APIC ID values
587  *
588  * This function returns the limit for the APIC ID value, so that all
589  * CPU APIC IDs are < pc_apic_id_limit().
590  *
591  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
592  */
593 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
594 {
595     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
596 }
597 
598 static FWCfgState *bochs_bios_init(void)
599 {
600     FWCfgState *fw_cfg;
601     uint8_t *smbios_table;
602     size_t smbios_len;
603     uint64_t *numa_fw_cfg;
604     int i, j;
605     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
606 
607     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
608     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
609      *
610      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
611      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
612      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
613      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
614      * may see".
615      *
616      * So, this means we must not use max_cpus, here, but the maximum possible
617      * APIC ID value, plus one.
618      *
619      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
620      *     the APIC ID, not the "CPU index"
621      */
622     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
623     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
624     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
625     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
626                      acpi_tables, acpi_tables_len);
627     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
628 
629     smbios_table = smbios_get_table(&smbios_len);
630     if (smbios_table)
631         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
632                          smbios_table, smbios_len);
633     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
634                      &e820_table, sizeof(e820_table));
635 
636     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
637     /* allocate memory for the NUMA channel: one (64bit) word for the number
638      * of nodes, one word for each VCPU->node and one word for each node to
639      * hold the amount of memory.
640      */
641     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
642     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
643     for (i = 0; i < max_cpus; i++) {
644         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
645         assert(apic_id < apic_id_limit);
646         for (j = 0; j < nb_numa_nodes; j++) {
647             if (test_bit(i, node_cpumask[j])) {
648                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
649                 break;
650             }
651         }
652     }
653     for (i = 0; i < nb_numa_nodes; i++) {
654         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
655     }
656     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
657                      (1 + apic_id_limit + nb_numa_nodes) *
658                      sizeof(*numa_fw_cfg));
659 
660     return fw_cfg;
661 }
662 
663 static long get_file_size(FILE *f)
664 {
665     long where, size;
666 
667     /* XXX: on Unix systems, using fstat() probably makes more sense */
668 
669     where = ftell(f);
670     fseek(f, 0, SEEK_END);
671     size = ftell(f);
672     fseek(f, where, SEEK_SET);
673 
674     return size;
675 }
676 
677 static void load_linux(FWCfgState *fw_cfg,
678                        const char *kernel_filename,
679                        const char *initrd_filename,
680                        const char *kernel_cmdline,
681                        hwaddr max_ram_size)
682 {
683     uint16_t protocol;
684     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
685     uint32_t initrd_max;
686     uint8_t header[8192], *setup, *kernel, *initrd_data;
687     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
688     FILE *f;
689     char *vmode;
690 
691     /* Align to 16 bytes as a paranoia measure */
692     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
693 
694     /* load the kernel header */
695     f = fopen(kernel_filename, "rb");
696     if (!f || !(kernel_size = get_file_size(f)) ||
697         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
698         MIN(ARRAY_SIZE(header), kernel_size)) {
699         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
700                 kernel_filename, strerror(errno));
701         exit(1);
702     }
703 
704     /* kernel protocol version */
705 #if 0
706     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
707 #endif
708     if (ldl_p(header+0x202) == 0x53726448) {
709         protocol = lduw_p(header+0x206);
710     } else {
711         /* This looks like a multiboot kernel. If it is, let's stop
712            treating it like a Linux kernel. */
713         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
714                            kernel_cmdline, kernel_size, header)) {
715             return;
716         }
717         protocol = 0;
718     }
719 
720     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
721         /* Low kernel */
722         real_addr    = 0x90000;
723         cmdline_addr = 0x9a000 - cmdline_size;
724         prot_addr    = 0x10000;
725     } else if (protocol < 0x202) {
726         /* High but ancient kernel */
727         real_addr    = 0x90000;
728         cmdline_addr = 0x9a000 - cmdline_size;
729         prot_addr    = 0x100000;
730     } else {
731         /* High and recent kernel */
732         real_addr    = 0x10000;
733         cmdline_addr = 0x20000;
734         prot_addr    = 0x100000;
735     }
736 
737 #if 0
738     fprintf(stderr,
739             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
740             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
741             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
742             real_addr,
743             cmdline_addr,
744             prot_addr);
745 #endif
746 
747     /* highest address for loading the initrd */
748     if (protocol >= 0x203) {
749         initrd_max = ldl_p(header+0x22c);
750     } else {
751         initrd_max = 0x37ffffff;
752     }
753 
754     if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
755     	initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
756 
757     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
758     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
759     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
760 
761     if (protocol >= 0x202) {
762         stl_p(header+0x228, cmdline_addr);
763     } else {
764         stw_p(header+0x20, 0xA33F);
765         stw_p(header+0x22, cmdline_addr-real_addr);
766     }
767 
768     /* handle vga= parameter */
769     vmode = strstr(kernel_cmdline, "vga=");
770     if (vmode) {
771         unsigned int video_mode;
772         /* skip "vga=" */
773         vmode += 4;
774         if (!strncmp(vmode, "normal", 6)) {
775             video_mode = 0xffff;
776         } else if (!strncmp(vmode, "ext", 3)) {
777             video_mode = 0xfffe;
778         } else if (!strncmp(vmode, "ask", 3)) {
779             video_mode = 0xfffd;
780         } else {
781             video_mode = strtol(vmode, NULL, 0);
782         }
783         stw_p(header+0x1fa, video_mode);
784     }
785 
786     /* loader type */
787     /* High nybble = B reserved for QEMU; low nybble is revision number.
788        If this code is substantially changed, you may want to consider
789        incrementing the revision. */
790     if (protocol >= 0x200) {
791         header[0x210] = 0xB0;
792     }
793     /* heap */
794     if (protocol >= 0x201) {
795         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
796         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
797     }
798 
799     /* load initrd */
800     if (initrd_filename) {
801         if (protocol < 0x200) {
802             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
803             exit(1);
804         }
805 
806         initrd_size = get_image_size(initrd_filename);
807         if (initrd_size < 0) {
808             fprintf(stderr, "qemu: error reading initrd %s\n",
809                     initrd_filename);
810             exit(1);
811         }
812 
813         initrd_addr = (initrd_max-initrd_size) & ~4095;
814 
815         initrd_data = g_malloc(initrd_size);
816         load_image(initrd_filename, initrd_data);
817 
818         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
819         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
820         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
821 
822         stl_p(header+0x218, initrd_addr);
823         stl_p(header+0x21c, initrd_size);
824     }
825 
826     /* load kernel and setup */
827     setup_size = header[0x1f1];
828     if (setup_size == 0) {
829         setup_size = 4;
830     }
831     setup_size = (setup_size+1)*512;
832     kernel_size -= setup_size;
833 
834     setup  = g_malloc(setup_size);
835     kernel = g_malloc(kernel_size);
836     fseek(f, 0, SEEK_SET);
837     if (fread(setup, 1, setup_size, f) != setup_size) {
838         fprintf(stderr, "fread() failed\n");
839         exit(1);
840     }
841     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
842         fprintf(stderr, "fread() failed\n");
843         exit(1);
844     }
845     fclose(f);
846     memcpy(setup, header, MIN(sizeof(header), setup_size));
847 
848     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
849     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
850     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
851 
852     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
853     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
854     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
855 
856     option_rom[nb_option_roms].name = "linuxboot.bin";
857     option_rom[nb_option_roms].bootindex = 0;
858     nb_option_roms++;
859 }
860 
861 #define NE2000_NB_MAX 6
862 
863 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
864                                               0x280, 0x380 };
865 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
866 
867 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
868 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
869 
870 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
871 {
872     static int nb_ne2k = 0;
873 
874     if (nb_ne2k == NE2000_NB_MAX)
875         return;
876     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
877                     ne2000_irq[nb_ne2k], nd);
878     nb_ne2k++;
879 }
880 
881 DeviceState *cpu_get_current_apic(void)
882 {
883     if (cpu_single_env) {
884         return cpu_single_env->apic_state;
885     } else {
886         return NULL;
887     }
888 }
889 
890 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
891 {
892     X86CPU *cpu = opaque;
893 
894     if (level) {
895         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
896     }
897 }
898 
899 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
900                           DeviceState *icc_bridge, Error **errp)
901 {
902     X86CPU *cpu;
903     Error *local_err = NULL;
904 
905     cpu = cpu_x86_create(cpu_model, icc_bridge, errp);
906     if (!cpu) {
907         return cpu;
908     }
909 
910     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
911     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
912 
913     if (local_err) {
914         if (cpu != NULL) {
915             object_unref(OBJECT(cpu));
916             cpu = NULL;
917         }
918         error_propagate(errp, local_err);
919     }
920     return cpu;
921 }
922 
923 static const char *current_cpu_model;
924 
925 void pc_hot_add_cpu(const int64_t id, Error **errp)
926 {
927     DeviceState *icc_bridge;
928     int64_t apic_id = x86_cpu_apic_id_from_index(id);
929 
930     if (id < 0) {
931         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
932         return;
933     }
934 
935     if (cpu_exists(apic_id)) {
936         error_setg(errp, "Unable to add CPU: %" PRIi64
937                    ", it already exists", id);
938         return;
939     }
940 
941     if (id >= max_cpus) {
942         error_setg(errp, "Unable to add CPU: %" PRIi64
943                    ", max allowed: %d", id, max_cpus - 1);
944         return;
945     }
946 
947     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
948                                                  TYPE_ICC_BRIDGE, NULL));
949     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
950 }
951 
952 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
953 {
954     int i;
955     X86CPU *cpu = NULL;
956     Error *error = NULL;
957 
958     /* init CPUs */
959     if (cpu_model == NULL) {
960 #ifdef TARGET_X86_64
961         cpu_model = "qemu64";
962 #else
963         cpu_model = "qemu32";
964 #endif
965     }
966     current_cpu_model = cpu_model;
967 
968     for (i = 0; i < smp_cpus; i++) {
969         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
970                          icc_bridge, &error);
971         if (error) {
972             fprintf(stderr, "%s\n", error_get_pretty(error));
973             error_free(error);
974             exit(1);
975         }
976     }
977 
978     /* map APIC MMIO area if CPU has APIC */
979     if (cpu && cpu->env.apic_state) {
980         /* XXX: what if the base changes? */
981         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
982                                 APIC_DEFAULT_ADDRESS, 0x1000);
983     }
984 }
985 
986 void pc_acpi_init(const char *default_dsdt)
987 {
988     char *filename;
989 
990     if (acpi_tables != NULL) {
991         /* manually set via -acpitable, leave it alone */
992         return;
993     }
994 
995     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
996     if (filename == NULL) {
997         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
998     } else {
999         char *arg;
1000         QemuOpts *opts;
1001         Error *err = NULL;
1002 
1003         arg = g_strdup_printf("file=%s", filename);
1004 
1005         /* creates a deep copy of "arg" */
1006         opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1007         g_assert(opts != NULL);
1008 
1009         acpi_table_add(opts, &err);
1010         if (err) {
1011             fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
1012                     error_get_pretty(err));
1013             error_free(err);
1014         }
1015         g_free(arg);
1016         g_free(filename);
1017     }
1018 }
1019 
1020 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1021                            const char *kernel_filename,
1022                            const char *kernel_cmdline,
1023                            const char *initrd_filename,
1024                            ram_addr_t below_4g_mem_size,
1025                            ram_addr_t above_4g_mem_size,
1026                            MemoryRegion *rom_memory,
1027                            MemoryRegion **ram_memory)
1028 {
1029     int linux_boot, i;
1030     MemoryRegion *ram, *option_rom_mr;
1031     MemoryRegion *ram_below_4g, *ram_above_4g;
1032     FWCfgState *fw_cfg;
1033 
1034     linux_boot = (kernel_filename != NULL);
1035 
1036     /* Allocate RAM.  We allocate it as a single memory region and use
1037      * aliases to address portions of it, mostly for backwards compatibility
1038      * with older qemus that used qemu_ram_alloc().
1039      */
1040     ram = g_malloc(sizeof(*ram));
1041     memory_region_init_ram(ram, "pc.ram",
1042                            below_4g_mem_size + above_4g_mem_size);
1043     vmstate_register_ram_global(ram);
1044     *ram_memory = ram;
1045     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1046     memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
1047                              0, below_4g_mem_size);
1048     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1049     if (above_4g_mem_size > 0) {
1050         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1051         memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
1052                                  below_4g_mem_size, above_4g_mem_size);
1053         memory_region_add_subregion(system_memory, 0x100000000ULL,
1054                                     ram_above_4g);
1055     }
1056 
1057 
1058     /* Initialize PC system firmware */
1059     pc_system_firmware_init(rom_memory);
1060 
1061     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1062     memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
1063     vmstate_register_ram_global(option_rom_mr);
1064     memory_region_add_subregion_overlap(rom_memory,
1065                                         PC_ROM_MIN_VGA,
1066                                         option_rom_mr,
1067                                         1);
1068 
1069     fw_cfg = bochs_bios_init();
1070     rom_set_fw(fw_cfg);
1071 
1072     if (linux_boot) {
1073         load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1074     }
1075 
1076     for (i = 0; i < nb_option_roms; i++) {
1077         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1078     }
1079     return fw_cfg;
1080 }
1081 
1082 qemu_irq *pc_allocate_cpu_irq(void)
1083 {
1084     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1085 }
1086 
1087 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1088 {
1089     DeviceState *dev = NULL;
1090 
1091     if (pci_bus) {
1092         PCIDevice *pcidev = pci_vga_init(pci_bus);
1093         dev = pcidev ? &pcidev->qdev : NULL;
1094     } else if (isa_bus) {
1095         ISADevice *isadev = isa_vga_init(isa_bus);
1096         dev = isadev ? &isadev->qdev : NULL;
1097     }
1098     return dev;
1099 }
1100 
1101 static void cpu_request_exit(void *opaque, int irq, int level)
1102 {
1103     CPUX86State *env = cpu_single_env;
1104 
1105     if (env && level) {
1106         cpu_exit(env);
1107     }
1108 }
1109 
1110 static const MemoryRegionOps ioport80_io_ops = {
1111     .write = ioport80_write,
1112     .read = ioport80_read,
1113     .endianness = DEVICE_NATIVE_ENDIAN,
1114     .impl = {
1115         .min_access_size = 1,
1116         .max_access_size = 1,
1117     },
1118 };
1119 
1120 static const MemoryRegionOps ioportF0_io_ops = {
1121     .write = ioportF0_write,
1122     .read = ioportF0_read,
1123     .endianness = DEVICE_NATIVE_ENDIAN,
1124     .impl = {
1125         .min_access_size = 1,
1126         .max_access_size = 1,
1127     },
1128 };
1129 
1130 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1131                           ISADevice **rtc_state,
1132                           ISADevice **floppy,
1133                           bool no_vmport)
1134 {
1135     int i;
1136     DriveInfo *fd[MAX_FD];
1137     DeviceState *hpet = NULL;
1138     int pit_isa_irq = 0;
1139     qemu_irq pit_alt_irq = NULL;
1140     qemu_irq rtc_irq = NULL;
1141     qemu_irq *a20_line;
1142     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1143     qemu_irq *cpu_exit_irq;
1144     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1145     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1146 
1147     memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1148     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1149 
1150     memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1151     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1152 
1153     /*
1154      * Check if an HPET shall be created.
1155      *
1156      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1157      * when the HPET wants to take over. Thus we have to disable the latter.
1158      */
1159     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1160         hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1161 
1162         if (hpet) {
1163             for (i = 0; i < GSI_NUM_PINS; i++) {
1164                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1165             }
1166             pit_isa_irq = -1;
1167             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1168             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1169         }
1170     }
1171     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1172 
1173     qemu_register_boot_set(pc_boot_set, *rtc_state);
1174 
1175     if (!xen_enabled()) {
1176         if (kvm_irqchip_in_kernel()) {
1177             pit = kvm_pit_init(isa_bus, 0x40);
1178         } else {
1179             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1180         }
1181         if (hpet) {
1182             /* connect PIT to output control line of the HPET */
1183             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1184         }
1185         pcspk_init(isa_bus, pit);
1186     }
1187 
1188     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1189         if (serial_hds[i]) {
1190             serial_isa_init(isa_bus, i, serial_hds[i]);
1191         }
1192     }
1193 
1194     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1195         if (parallel_hds[i]) {
1196             parallel_init(isa_bus, i, parallel_hds[i]);
1197         }
1198     }
1199 
1200     a20_line = qemu_allocate_irqs(handle_a20_line_change,
1201                                   x86_env_get_cpu(first_cpu), 2);
1202     i8042 = isa_create_simple(isa_bus, "i8042");
1203     i8042_setup_a20_line(i8042, &a20_line[0]);
1204     if (!no_vmport) {
1205         vmport_init(isa_bus);
1206         vmmouse = isa_try_create(isa_bus, "vmmouse");
1207     } else {
1208         vmmouse = NULL;
1209     }
1210     if (vmmouse) {
1211         qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1212         qdev_init_nofail(&vmmouse->qdev);
1213     }
1214     port92 = isa_create_simple(isa_bus, "port92");
1215     port92_init(port92, &a20_line[1]);
1216 
1217     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1218     DMA_init(0, cpu_exit_irq);
1219 
1220     for(i = 0; i < MAX_FD; i++) {
1221         fd[i] = drive_get(IF_FLOPPY, 0, i);
1222     }
1223     *floppy = fdctrl_init_isa(isa_bus, fd);
1224 }
1225 
1226 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1227 {
1228     int i;
1229 
1230     for (i = 0; i < nb_nics; i++) {
1231         NICInfo *nd = &nd_table[i];
1232 
1233         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1234             pc_init_ne2k_isa(isa_bus, nd);
1235         } else {
1236             pci_nic_init_nofail(nd, "e1000", NULL);
1237         }
1238     }
1239 }
1240 
1241 void pc_pci_device_init(PCIBus *pci_bus)
1242 {
1243     int max_bus;
1244     int bus;
1245 
1246     max_bus = drive_get_max_bus(IF_SCSI);
1247     for (bus = 0; bus <= max_bus; bus++) {
1248         pci_create_simple(pci_bus, -1, "lsi53c895a");
1249     }
1250 }
1251 
1252 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1253 {
1254     DeviceState *dev;
1255     SysBusDevice *d;
1256     unsigned int i;
1257 
1258     if (kvm_irqchip_in_kernel()) {
1259         dev = qdev_create(NULL, "kvm-ioapic");
1260     } else {
1261         dev = qdev_create(NULL, "ioapic");
1262     }
1263     if (parent_name) {
1264         object_property_add_child(object_resolve_path(parent_name, NULL),
1265                                   "ioapic", OBJECT(dev), NULL);
1266     }
1267     qdev_init_nofail(dev);
1268     d = SYS_BUS_DEVICE(dev);
1269     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1270 
1271     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1272         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1273     }
1274 }
1275