1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/firmware/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "hw/xen/start_info.h" 58 #include "ui/qemu-spice.h" 59 #include "exec/memory.h" 60 #include "exec/address-spaces.h" 61 #include "sysemu/arch_init.h" 62 #include "qemu/bitmap.h" 63 #include "qemu/config-file.h" 64 #include "qemu/error-report.h" 65 #include "qemu/option.h" 66 #include "hw/acpi/acpi.h" 67 #include "hw/acpi/cpu_hotplug.h" 68 #include "hw/boards.h" 69 #include "acpi-build.h" 70 #include "hw/mem/pc-dimm.h" 71 #include "qapi/error.h" 72 #include "qapi/qapi-visit-common.h" 73 #include "qapi/visitor.h" 74 #include "qom/cpu.h" 75 #include "hw/nmi.h" 76 #include "hw/usb.h" 77 #include "hw/i386/intel_iommu.h" 78 #include "hw/net/ne2000-isa.h" 79 #include "standard-headers/asm-x86/bootparam.h" 80 81 /* debug PC/ISA interrupts */ 82 //#define DEBUG_IRQ 83 84 #ifdef DEBUG_IRQ 85 #define DPRINTF(fmt, ...) \ 86 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 87 #else 88 #define DPRINTF(fmt, ...) 89 #endif 90 91 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 92 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 93 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 94 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 95 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 96 97 #define E820_NR_ENTRIES 16 98 99 struct e820_entry { 100 uint64_t address; 101 uint64_t length; 102 uint32_t type; 103 } QEMU_PACKED __attribute((__aligned__(4))); 104 105 struct e820_table { 106 uint32_t count; 107 struct e820_entry entry[E820_NR_ENTRIES]; 108 } QEMU_PACKED __attribute((__aligned__(4))); 109 110 static struct e820_table e820_reserve; 111 static struct e820_entry *e820_table; 112 static unsigned e820_entries; 113 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 114 115 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 116 static size_t pvh_start_addr; 117 118 GlobalProperty pc_compat_3_1[] = { 119 { "intel-iommu", "dma-drain", "off" }, 120 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" }, 121 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" }, 122 { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" }, 123 { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" }, 124 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" }, 125 { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" }, 126 { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" }, 127 { "EPYC" "-" TYPE_X86_CPU, "npt", "off" }, 128 { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" }, 129 { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" }, 130 { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" }, 131 { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" }, 132 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" }, 133 { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" }, 134 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" }, 135 { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" }, 136 { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" }, 137 { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" }, 138 { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" }, 139 { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" }, 140 }; 141 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); 142 143 GlobalProperty pc_compat_3_0[] = { 144 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" }, 145 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" }, 146 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" }, 147 }; 148 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0); 149 150 GlobalProperty pc_compat_2_12[] = { 151 { TYPE_X86_CPU, "legacy-cache", "on" }, 152 { TYPE_X86_CPU, "topoext", "off" }, 153 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" }, 154 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" }, 155 }; 156 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12); 157 158 GlobalProperty pc_compat_2_11[] = { 159 { TYPE_X86_CPU, "x-migrate-smi-count", "off" }, 160 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" }, 161 }; 162 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11); 163 164 GlobalProperty pc_compat_2_10[] = { 165 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" }, 166 { "i440FX-pcihost", "x-pci-hole64-fix", "off" }, 167 { "q35-pcihost", "x-pci-hole64-fix", "off" }, 168 }; 169 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10); 170 171 GlobalProperty pc_compat_2_9[] = { 172 { "mch", "extended-tseg-mbytes", "0" }, 173 }; 174 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9); 175 176 GlobalProperty pc_compat_2_8[] = { 177 { TYPE_X86_CPU, "tcg-cpuid", "off" }, 178 { "kvmclock", "x-mach-use-reliable-get-clock", "off" }, 179 { "ICH9-LPC", "x-smi-broadcast", "off" }, 180 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" }, 181 { "Haswell-" TYPE_X86_CPU, "stepping", "1" }, 182 }; 183 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8); 184 185 GlobalProperty pc_compat_2_7[] = { 186 { TYPE_X86_CPU, "l3-cache", "off" }, 187 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" }, 188 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" }, 189 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" }, 190 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" }, 191 { "isa-pcspk", "migrate", "off" }, 192 }; 193 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7); 194 195 GlobalProperty pc_compat_2_6[] = { 196 { TYPE_X86_CPU, "cpuid-0xb", "off" }, 197 { "vmxnet3", "romfile", "" }, 198 { TYPE_X86_CPU, "fill-mtrr-mask", "off" }, 199 { "apic-common", "legacy-instance-id", "on", } 200 }; 201 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6); 202 203 GlobalProperty pc_compat_2_5[] = {}; 204 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5); 205 206 GlobalProperty pc_compat_2_4[] = { 207 PC_CPU_MODEL_IDS("2.4.0") 208 { "Haswell-" TYPE_X86_CPU, "abm", "off" }, 209 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" }, 210 { "Broadwell-" TYPE_X86_CPU, "abm", "off" }, 211 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" }, 212 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" }, 213 { TYPE_X86_CPU, "check", "off" }, 214 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" }, 215 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" }, 216 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" }, 217 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" }, 218 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" }, 219 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" }, 220 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" }, 221 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", } 222 }; 223 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4); 224 225 GlobalProperty pc_compat_2_3[] = { 226 PC_CPU_MODEL_IDS("2.3.0") 227 { TYPE_X86_CPU, "arat", "off" }, 228 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" }, 229 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" }, 230 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" }, 231 { "n270" "-" TYPE_X86_CPU, "min-level", "5" }, 232 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" }, 233 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" }, 234 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" }, 235 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 236 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 237 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 238 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 239 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 240 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 241 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 242 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 243 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 244 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 245 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, 246 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" }, 247 }; 248 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3); 249 250 GlobalProperty pc_compat_2_2[] = { 251 PC_CPU_MODEL_IDS("2.2.0") 252 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" }, 253 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" }, 254 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" }, 255 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" }, 256 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" }, 257 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" }, 258 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" }, 259 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" }, 260 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" }, 261 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" }, 262 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" }, 263 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" }, 264 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" }, 265 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" }, 266 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" }, 267 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" }, 268 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" }, 269 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" }, 270 }; 271 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2); 272 273 GlobalProperty pc_compat_2_1[] = { 274 PC_CPU_MODEL_IDS("2.1.0") 275 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" }, 276 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" }, 277 }; 278 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1); 279 280 GlobalProperty pc_compat_2_0[] = { 281 PC_CPU_MODEL_IDS("2.0.0") 282 { "virtio-scsi-pci", "any_layout", "off" }, 283 { "PIIX4_PM", "memory-hotplug-support", "off" }, 284 { "apic", "version", "0x11" }, 285 { "nec-usb-xhci", "superspeed-ports-first", "off" }, 286 { "nec-usb-xhci", "force-pcie-endcap", "on" }, 287 { "pci-serial", "prog_if", "0" }, 288 { "pci-serial-2x", "prog_if", "0" }, 289 { "pci-serial-4x", "prog_if", "0" }, 290 { "virtio-net-pci", "guest_announce", "off" }, 291 { "ICH9-LPC", "memory-hotplug-support", "off" }, 292 { "xio3130-downstream", COMPAT_PROP_PCP, "off" }, 293 { "ioh3420", COMPAT_PROP_PCP, "off" }, 294 }; 295 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0); 296 297 GlobalProperty pc_compat_1_7[] = { 298 PC_CPU_MODEL_IDS("1.7.0") 299 { TYPE_USB_DEVICE, "msos-desc", "no" }, 300 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" }, 301 { "hpet", HPET_INTCAP, "4" }, 302 }; 303 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7); 304 305 GlobalProperty pc_compat_1_6[] = { 306 PC_CPU_MODEL_IDS("1.6.0") 307 { "e1000", "mitigation", "off" }, 308 { "qemu64-" TYPE_X86_CPU, "model", "2" }, 309 { "qemu32-" TYPE_X86_CPU, "model", "3" }, 310 { "i440FX-pcihost", "short_root_bus", "1" }, 311 { "q35-pcihost", "short_root_bus", "1" }, 312 }; 313 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6); 314 315 GlobalProperty pc_compat_1_5[] = { 316 PC_CPU_MODEL_IDS("1.5.0") 317 { "Conroe-" TYPE_X86_CPU, "model", "2" }, 318 { "Conroe-" TYPE_X86_CPU, "min-level", "2" }, 319 { "Penryn-" TYPE_X86_CPU, "model", "2" }, 320 { "Penryn-" TYPE_X86_CPU, "min-level", "2" }, 321 { "Nehalem-" TYPE_X86_CPU, "model", "2" }, 322 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" }, 323 { "virtio-net-pci", "any_layout", "off" }, 324 { TYPE_X86_CPU, "pmu", "on" }, 325 { "i440FX-pcihost", "short_root_bus", "0" }, 326 { "q35-pcihost", "short_root_bus", "0" }, 327 }; 328 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5); 329 330 GlobalProperty pc_compat_1_4[] = { 331 PC_CPU_MODEL_IDS("1.4.0") 332 { "scsi-hd", "discard_granularity", "0" }, 333 { "scsi-cd", "discard_granularity", "0" }, 334 { "scsi-disk", "discard_granularity", "0" }, 335 { "ide-hd", "discard_granularity", "0" }, 336 { "ide-cd", "discard_granularity", "0" }, 337 { "ide-drive", "discard_granularity", "0" }, 338 { "virtio-blk-pci", "discard_granularity", "0" }, 339 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */ 340 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" }, 341 { "virtio-net-pci", "ctrl_guest_offloads", "off" }, 342 { "e1000", "romfile", "pxe-e1000.rom" }, 343 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" }, 344 { "pcnet", "romfile", "pxe-pcnet.rom" }, 345 { "rtl8139", "romfile", "pxe-rtl8139.rom" }, 346 { "virtio-net-pci", "romfile", "pxe-virtio.rom" }, 347 { "486-" TYPE_X86_CPU, "model", "0" }, 348 { "n270" "-" TYPE_X86_CPU, "movbe", "off" }, 349 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" }, 350 }; 351 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4); 352 353 void gsi_handler(void *opaque, int n, int level) 354 { 355 GSIState *s = opaque; 356 357 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 358 if (n < ISA_NUM_IRQS) { 359 qemu_set_irq(s->i8259_irq[n], level); 360 } 361 qemu_set_irq(s->ioapic_irq[n], level); 362 } 363 364 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 365 unsigned size) 366 { 367 } 368 369 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 370 { 371 return 0xffffffffffffffffULL; 372 } 373 374 /* MSDOS compatibility mode FPU exception support */ 375 static qemu_irq ferr_irq; 376 377 void pc_register_ferr_irq(qemu_irq irq) 378 { 379 ferr_irq = irq; 380 } 381 382 /* XXX: add IGNNE support */ 383 void cpu_set_ferr(CPUX86State *s) 384 { 385 qemu_irq_raise(ferr_irq); 386 } 387 388 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 389 unsigned size) 390 { 391 qemu_irq_lower(ferr_irq); 392 } 393 394 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 395 { 396 return 0xffffffffffffffffULL; 397 } 398 399 /* TSC handling */ 400 uint64_t cpu_get_tsc(CPUX86State *env) 401 { 402 return cpu_get_ticks(); 403 } 404 405 /* IRQ handling */ 406 int cpu_get_pic_interrupt(CPUX86State *env) 407 { 408 X86CPU *cpu = x86_env_get_cpu(env); 409 int intno; 410 411 if (!kvm_irqchip_in_kernel()) { 412 intno = apic_get_interrupt(cpu->apic_state); 413 if (intno >= 0) { 414 return intno; 415 } 416 /* read the irq from the PIC */ 417 if (!apic_accept_pic_intr(cpu->apic_state)) { 418 return -1; 419 } 420 } 421 422 intno = pic_read_irq(isa_pic); 423 return intno; 424 } 425 426 static void pic_irq_request(void *opaque, int irq, int level) 427 { 428 CPUState *cs = first_cpu; 429 X86CPU *cpu = X86_CPU(cs); 430 431 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 432 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 433 CPU_FOREACH(cs) { 434 cpu = X86_CPU(cs); 435 if (apic_accept_pic_intr(cpu->apic_state)) { 436 apic_deliver_pic_intr(cpu->apic_state, level); 437 } 438 } 439 } else { 440 if (level) { 441 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 442 } else { 443 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 444 } 445 } 446 } 447 448 /* PC cmos mappings */ 449 450 #define REG_EQUIPMENT_BYTE 0x14 451 452 int cmos_get_fd_drive_type(FloppyDriveType fd0) 453 { 454 int val; 455 456 switch (fd0) { 457 case FLOPPY_DRIVE_TYPE_144: 458 /* 1.44 Mb 3"5 drive */ 459 val = 4; 460 break; 461 case FLOPPY_DRIVE_TYPE_288: 462 /* 2.88 Mb 3"5 drive */ 463 val = 5; 464 break; 465 case FLOPPY_DRIVE_TYPE_120: 466 /* 1.2 Mb 5"5 drive */ 467 val = 2; 468 break; 469 case FLOPPY_DRIVE_TYPE_NONE: 470 default: 471 val = 0; 472 break; 473 } 474 return val; 475 } 476 477 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 478 int16_t cylinders, int8_t heads, int8_t sectors) 479 { 480 rtc_set_memory(s, type_ofs, 47); 481 rtc_set_memory(s, info_ofs, cylinders); 482 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 483 rtc_set_memory(s, info_ofs + 2, heads); 484 rtc_set_memory(s, info_ofs + 3, 0xff); 485 rtc_set_memory(s, info_ofs + 4, 0xff); 486 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 487 rtc_set_memory(s, info_ofs + 6, cylinders); 488 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 489 rtc_set_memory(s, info_ofs + 8, sectors); 490 } 491 492 /* convert boot_device letter to something recognizable by the bios */ 493 static int boot_device2nibble(char boot_device) 494 { 495 switch(boot_device) { 496 case 'a': 497 case 'b': 498 return 0x01; /* floppy boot */ 499 case 'c': 500 return 0x02; /* hard drive boot */ 501 case 'd': 502 return 0x03; /* CD-ROM boot */ 503 case 'n': 504 return 0x04; /* Network boot */ 505 } 506 return 0; 507 } 508 509 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 510 { 511 #define PC_MAX_BOOT_DEVICES 3 512 int nbds, bds[3] = { 0, }; 513 int i; 514 515 nbds = strlen(boot_device); 516 if (nbds > PC_MAX_BOOT_DEVICES) { 517 error_setg(errp, "Too many boot devices for PC"); 518 return; 519 } 520 for (i = 0; i < nbds; i++) { 521 bds[i] = boot_device2nibble(boot_device[i]); 522 if (bds[i] == 0) { 523 error_setg(errp, "Invalid boot device for PC: '%c'", 524 boot_device[i]); 525 return; 526 } 527 } 528 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 529 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 530 } 531 532 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 533 { 534 set_boot_dev(opaque, boot_device, errp); 535 } 536 537 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 538 { 539 int val, nb, i; 540 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 541 FLOPPY_DRIVE_TYPE_NONE }; 542 543 /* floppy type */ 544 if (floppy) { 545 for (i = 0; i < 2; i++) { 546 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 547 } 548 } 549 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 550 cmos_get_fd_drive_type(fd_type[1]); 551 rtc_set_memory(rtc_state, 0x10, val); 552 553 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 554 nb = 0; 555 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 556 nb++; 557 } 558 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 559 nb++; 560 } 561 switch (nb) { 562 case 0: 563 break; 564 case 1: 565 val |= 0x01; /* 1 drive, ready for boot */ 566 break; 567 case 2: 568 val |= 0x41; /* 2 drives, ready for boot */ 569 break; 570 } 571 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 572 } 573 574 typedef struct pc_cmos_init_late_arg { 575 ISADevice *rtc_state; 576 BusState *idebus[2]; 577 } pc_cmos_init_late_arg; 578 579 typedef struct check_fdc_state { 580 ISADevice *floppy; 581 bool multiple; 582 } CheckFdcState; 583 584 static int check_fdc(Object *obj, void *opaque) 585 { 586 CheckFdcState *state = opaque; 587 Object *fdc; 588 uint32_t iobase; 589 Error *local_err = NULL; 590 591 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 592 if (!fdc) { 593 return 0; 594 } 595 596 iobase = object_property_get_uint(obj, "iobase", &local_err); 597 if (local_err || iobase != 0x3f0) { 598 error_free(local_err); 599 return 0; 600 } 601 602 if (state->floppy) { 603 state->multiple = true; 604 } else { 605 state->floppy = ISA_DEVICE(obj); 606 } 607 return 0; 608 } 609 610 static const char * const fdc_container_path[] = { 611 "/unattached", "/peripheral", "/peripheral-anon" 612 }; 613 614 /* 615 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 616 * and ACPI objects. 617 */ 618 ISADevice *pc_find_fdc0(void) 619 { 620 int i; 621 Object *container; 622 CheckFdcState state = { 0 }; 623 624 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 625 container = container_get(qdev_get_machine(), fdc_container_path[i]); 626 object_child_foreach(container, check_fdc, &state); 627 } 628 629 if (state.multiple) { 630 warn_report("multiple floppy disk controllers with " 631 "iobase=0x3f0 have been found"); 632 error_printf("the one being picked for CMOS setup might not reflect " 633 "your intent"); 634 } 635 636 return state.floppy; 637 } 638 639 static void pc_cmos_init_late(void *opaque) 640 { 641 pc_cmos_init_late_arg *arg = opaque; 642 ISADevice *s = arg->rtc_state; 643 int16_t cylinders; 644 int8_t heads, sectors; 645 int val; 646 int i, trans; 647 648 val = 0; 649 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 650 &cylinders, &heads, §ors) >= 0) { 651 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 652 val |= 0xf0; 653 } 654 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 655 &cylinders, &heads, §ors) >= 0) { 656 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 657 val |= 0x0f; 658 } 659 rtc_set_memory(s, 0x12, val); 660 661 val = 0; 662 for (i = 0; i < 4; i++) { 663 /* NOTE: ide_get_geometry() returns the physical 664 geometry. It is always such that: 1 <= sects <= 63, 1 665 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 666 geometry can be different if a translation is done. */ 667 if (arg->idebus[i / 2] && 668 ide_get_geometry(arg->idebus[i / 2], i % 2, 669 &cylinders, &heads, §ors) >= 0) { 670 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 671 assert((trans & ~3) == 0); 672 val |= trans << (i * 2); 673 } 674 } 675 rtc_set_memory(s, 0x39, val); 676 677 pc_cmos_init_floppy(s, pc_find_fdc0()); 678 679 qemu_unregister_reset(pc_cmos_init_late, opaque); 680 } 681 682 void pc_cmos_init(PCMachineState *pcms, 683 BusState *idebus0, BusState *idebus1, 684 ISADevice *s) 685 { 686 int val; 687 static pc_cmos_init_late_arg arg; 688 689 /* various important CMOS locations needed by PC/Bochs bios */ 690 691 /* memory size */ 692 /* base memory (first MiB) */ 693 val = MIN(pcms->below_4g_mem_size / KiB, 640); 694 rtc_set_memory(s, 0x15, val); 695 rtc_set_memory(s, 0x16, val >> 8); 696 /* extended memory (next 64MiB) */ 697 if (pcms->below_4g_mem_size > 1 * MiB) { 698 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 699 } else { 700 val = 0; 701 } 702 if (val > 65535) 703 val = 65535; 704 rtc_set_memory(s, 0x17, val); 705 rtc_set_memory(s, 0x18, val >> 8); 706 rtc_set_memory(s, 0x30, val); 707 rtc_set_memory(s, 0x31, val >> 8); 708 /* memory between 16MiB and 4GiB */ 709 if (pcms->below_4g_mem_size > 16 * MiB) { 710 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 711 } else { 712 val = 0; 713 } 714 if (val > 65535) 715 val = 65535; 716 rtc_set_memory(s, 0x34, val); 717 rtc_set_memory(s, 0x35, val >> 8); 718 /* memory above 4GiB */ 719 val = pcms->above_4g_mem_size / 65536; 720 rtc_set_memory(s, 0x5b, val); 721 rtc_set_memory(s, 0x5c, val >> 8); 722 rtc_set_memory(s, 0x5d, val >> 16); 723 724 object_property_add_link(OBJECT(pcms), "rtc_state", 725 TYPE_ISA_DEVICE, 726 (Object **)&pcms->rtc, 727 object_property_allow_set_link, 728 OBJ_PROP_LINK_STRONG, &error_abort); 729 object_property_set_link(OBJECT(pcms), OBJECT(s), 730 "rtc_state", &error_abort); 731 732 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 733 734 val = 0; 735 val |= 0x02; /* FPU is there */ 736 val |= 0x04; /* PS/2 mouse installed */ 737 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 738 739 /* hard drives and FDC */ 740 arg.rtc_state = s; 741 arg.idebus[0] = idebus0; 742 arg.idebus[1] = idebus1; 743 qemu_register_reset(pc_cmos_init_late, &arg); 744 } 745 746 #define TYPE_PORT92 "port92" 747 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 748 749 /* port 92 stuff: could be split off */ 750 typedef struct Port92State { 751 ISADevice parent_obj; 752 753 MemoryRegion io; 754 uint8_t outport; 755 qemu_irq a20_out; 756 } Port92State; 757 758 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 759 unsigned size) 760 { 761 Port92State *s = opaque; 762 int oldval = s->outport; 763 764 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 765 s->outport = val; 766 qemu_set_irq(s->a20_out, (val >> 1) & 1); 767 if ((val & 1) && !(oldval & 1)) { 768 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 769 } 770 } 771 772 static uint64_t port92_read(void *opaque, hwaddr addr, 773 unsigned size) 774 { 775 Port92State *s = opaque; 776 uint32_t ret; 777 778 ret = s->outport; 779 DPRINTF("port92: read 0x%02x\n", ret); 780 return ret; 781 } 782 783 static void port92_init(ISADevice *dev, qemu_irq a20_out) 784 { 785 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 786 } 787 788 static const VMStateDescription vmstate_port92_isa = { 789 .name = "port92", 790 .version_id = 1, 791 .minimum_version_id = 1, 792 .fields = (VMStateField[]) { 793 VMSTATE_UINT8(outport, Port92State), 794 VMSTATE_END_OF_LIST() 795 } 796 }; 797 798 static void port92_reset(DeviceState *d) 799 { 800 Port92State *s = PORT92(d); 801 802 s->outport &= ~1; 803 } 804 805 static const MemoryRegionOps port92_ops = { 806 .read = port92_read, 807 .write = port92_write, 808 .impl = { 809 .min_access_size = 1, 810 .max_access_size = 1, 811 }, 812 .endianness = DEVICE_LITTLE_ENDIAN, 813 }; 814 815 static void port92_initfn(Object *obj) 816 { 817 Port92State *s = PORT92(obj); 818 819 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 820 821 s->outport = 0; 822 823 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 824 } 825 826 static void port92_realizefn(DeviceState *dev, Error **errp) 827 { 828 ISADevice *isadev = ISA_DEVICE(dev); 829 Port92State *s = PORT92(dev); 830 831 isa_register_ioport(isadev, &s->io, 0x92); 832 } 833 834 static void port92_class_initfn(ObjectClass *klass, void *data) 835 { 836 DeviceClass *dc = DEVICE_CLASS(klass); 837 838 dc->realize = port92_realizefn; 839 dc->reset = port92_reset; 840 dc->vmsd = &vmstate_port92_isa; 841 /* 842 * Reason: unlike ordinary ISA devices, this one needs additional 843 * wiring: its A20 output line needs to be wired up by 844 * port92_init(). 845 */ 846 dc->user_creatable = false; 847 } 848 849 static const TypeInfo port92_info = { 850 .name = TYPE_PORT92, 851 .parent = TYPE_ISA_DEVICE, 852 .instance_size = sizeof(Port92State), 853 .instance_init = port92_initfn, 854 .class_init = port92_class_initfn, 855 }; 856 857 static void port92_register_types(void) 858 { 859 type_register_static(&port92_info); 860 } 861 862 type_init(port92_register_types) 863 864 static void handle_a20_line_change(void *opaque, int irq, int level) 865 { 866 X86CPU *cpu = opaque; 867 868 /* XXX: send to all CPUs ? */ 869 /* XXX: add logic to handle multiple A20 line sources */ 870 x86_cpu_set_a20(cpu, level); 871 } 872 873 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 874 { 875 int index = le32_to_cpu(e820_reserve.count); 876 struct e820_entry *entry; 877 878 if (type != E820_RAM) { 879 /* old FW_CFG_E820_TABLE entry -- reservations only */ 880 if (index >= E820_NR_ENTRIES) { 881 return -EBUSY; 882 } 883 entry = &e820_reserve.entry[index++]; 884 885 entry->address = cpu_to_le64(address); 886 entry->length = cpu_to_le64(length); 887 entry->type = cpu_to_le32(type); 888 889 e820_reserve.count = cpu_to_le32(index); 890 } 891 892 /* new "etc/e820" file -- include ram too */ 893 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 894 e820_table[e820_entries].address = cpu_to_le64(address); 895 e820_table[e820_entries].length = cpu_to_le64(length); 896 e820_table[e820_entries].type = cpu_to_le32(type); 897 e820_entries++; 898 899 return e820_entries; 900 } 901 902 int e820_get_num_entries(void) 903 { 904 return e820_entries; 905 } 906 907 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 908 { 909 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 910 *address = le64_to_cpu(e820_table[idx].address); 911 *length = le64_to_cpu(e820_table[idx].length); 912 return true; 913 } 914 return false; 915 } 916 917 /* Enables contiguous-apic-ID mode, for compatibility */ 918 static bool compat_apic_id_mode; 919 920 void enable_compat_apic_id_mode(void) 921 { 922 compat_apic_id_mode = true; 923 } 924 925 /* Calculates initial APIC ID for a specific CPU index 926 * 927 * Currently we need to be able to calculate the APIC ID from the CPU index 928 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 929 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 930 * all CPUs up to max_cpus. 931 */ 932 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 933 { 934 uint32_t correct_id; 935 static bool warned; 936 937 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 938 if (compat_apic_id_mode) { 939 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 940 error_report("APIC IDs set in compatibility mode, " 941 "CPU topology won't match the configuration"); 942 warned = true; 943 } 944 return cpu_index; 945 } else { 946 return correct_id; 947 } 948 } 949 950 static void pc_build_smbios(PCMachineState *pcms) 951 { 952 uint8_t *smbios_tables, *smbios_anchor; 953 size_t smbios_tables_len, smbios_anchor_len; 954 struct smbios_phys_mem_area *mem_array; 955 unsigned i, array_count; 956 MachineState *ms = MACHINE(pcms); 957 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 958 959 /* tell smbios about cpuid version and features */ 960 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 961 962 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 963 if (smbios_tables) { 964 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 965 smbios_tables, smbios_tables_len); 966 } 967 968 /* build the array of physical mem area from e820 table */ 969 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 970 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 971 uint64_t addr, len; 972 973 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 974 mem_array[array_count].address = addr; 975 mem_array[array_count].length = len; 976 array_count++; 977 } 978 } 979 smbios_get_tables(mem_array, array_count, 980 &smbios_tables, &smbios_tables_len, 981 &smbios_anchor, &smbios_anchor_len); 982 g_free(mem_array); 983 984 if (smbios_anchor) { 985 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 986 smbios_tables, smbios_tables_len); 987 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 988 smbios_anchor, smbios_anchor_len); 989 } 990 } 991 992 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 993 { 994 FWCfgState *fw_cfg; 995 uint64_t *numa_fw_cfg; 996 int i; 997 const CPUArchIdList *cpus; 998 MachineClass *mc = MACHINE_GET_CLASS(pcms); 999 1000 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 1001 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1002 1003 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 1004 * 1005 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 1006 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 1007 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 1008 * for CPU hotplug also uses APIC ID and not "CPU index". 1009 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 1010 * but the "limit to the APIC ID values SeaBIOS may see". 1011 * 1012 * So for compatibility reasons with old BIOSes we are stuck with 1013 * "etc/max-cpus" actually being apic_id_limit 1014 */ 1015 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 1016 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 1017 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 1018 acpi_tables, acpi_tables_len); 1019 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 1020 1021 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 1022 &e820_reserve, sizeof(e820_reserve)); 1023 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 1024 sizeof(struct e820_entry) * e820_entries); 1025 1026 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 1027 /* allocate memory for the NUMA channel: one (64bit) word for the number 1028 * of nodes, one word for each VCPU->node and one word for each node to 1029 * hold the amount of memory. 1030 */ 1031 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 1032 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 1033 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 1034 for (i = 0; i < cpus->len; i++) { 1035 unsigned int apic_id = cpus->cpus[i].arch_id; 1036 assert(apic_id < pcms->apic_id_limit); 1037 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 1038 } 1039 for (i = 0; i < nb_numa_nodes; i++) { 1040 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 1041 cpu_to_le64(numa_info[i].node_mem); 1042 } 1043 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 1044 (1 + pcms->apic_id_limit + nb_numa_nodes) * 1045 sizeof(*numa_fw_cfg)); 1046 1047 return fw_cfg; 1048 } 1049 1050 static long get_file_size(FILE *f) 1051 { 1052 long where, size; 1053 1054 /* XXX: on Unix systems, using fstat() probably makes more sense */ 1055 1056 where = ftell(f); 1057 fseek(f, 0, SEEK_END); 1058 size = ftell(f); 1059 fseek(f, where, SEEK_SET); 1060 1061 return size; 1062 } 1063 1064 struct setup_data { 1065 uint64_t next; 1066 uint32_t type; 1067 uint32_t len; 1068 uint8_t data[0]; 1069 } __attribute__((packed)); 1070 1071 1072 /* 1073 * The entry point into the kernel for PVH boot is different from 1074 * the native entry point. The PVH entry is defined by the x86/HVM 1075 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 1076 * 1077 * This function is passed to load_elf() when it is called from 1078 * load_elfboot() which then additionally checks for an ELF Note of 1079 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 1080 * parse the PVH entry address from the ELF Note. 1081 * 1082 * Due to trickery in elf_opts.h, load_elf() is actually available as 1083 * load_elf32() or load_elf64() and this routine needs to be able 1084 * to deal with being called as 32 or 64 bit. 1085 * 1086 * The address of the PVH entry point is saved to the 'pvh_start_addr' 1087 * global variable. (although the entry point is 32-bit, the kernel 1088 * binary can be either 32-bit or 64-bit). 1089 */ 1090 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 1091 { 1092 size_t *elf_note_data_addr; 1093 1094 /* Check if ELF Note header passed in is valid */ 1095 if (arg1 == NULL) { 1096 return 0; 1097 } 1098 1099 if (is64) { 1100 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 1101 uint64_t nhdr_size64 = sizeof(struct elf64_note); 1102 uint64_t phdr_align = *(uint64_t *)arg2; 1103 uint64_t nhdr_namesz = nhdr64->n_namesz; 1104 1105 elf_note_data_addr = 1106 ((void *)nhdr64) + nhdr_size64 + 1107 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 1108 } else { 1109 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 1110 uint32_t nhdr_size32 = sizeof(struct elf32_note); 1111 uint32_t phdr_align = *(uint32_t *)arg2; 1112 uint32_t nhdr_namesz = nhdr32->n_namesz; 1113 1114 elf_note_data_addr = 1115 ((void *)nhdr32) + nhdr_size32 + 1116 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 1117 } 1118 1119 pvh_start_addr = *elf_note_data_addr; 1120 1121 return pvh_start_addr; 1122 } 1123 1124 static bool load_elfboot(const char *kernel_filename, 1125 int kernel_file_size, 1126 uint8_t *header, 1127 size_t pvh_xen_start_addr, 1128 FWCfgState *fw_cfg) 1129 { 1130 uint32_t flags = 0; 1131 uint32_t mh_load_addr = 0; 1132 uint32_t elf_kernel_size = 0; 1133 uint64_t elf_entry; 1134 uint64_t elf_low, elf_high; 1135 int kernel_size; 1136 1137 if (ldl_p(header) != 0x464c457f) { 1138 return false; /* no elfboot */ 1139 } 1140 1141 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 1142 flags = elf_is64 ? 1143 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 1144 1145 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 1146 error_report("elfboot unsupported flags = %x", flags); 1147 exit(1); 1148 } 1149 1150 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 1151 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 1152 NULL, &elf_note_type, &elf_entry, 1153 &elf_low, &elf_high, 0, I386_ELF_MACHINE, 1154 0, 0); 1155 1156 if (kernel_size < 0) { 1157 error_report("Error while loading elf kernel"); 1158 exit(1); 1159 } 1160 mh_load_addr = elf_low; 1161 elf_kernel_size = elf_high - elf_low; 1162 1163 if (pvh_start_addr == 0) { 1164 error_report("Error loading uncompressed kernel without PVH ELF Note"); 1165 exit(1); 1166 } 1167 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 1168 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 1169 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 1170 1171 return true; 1172 } 1173 1174 static void load_linux(PCMachineState *pcms, 1175 FWCfgState *fw_cfg) 1176 { 1177 uint16_t protocol; 1178 int setup_size, kernel_size, cmdline_size; 1179 int dtb_size, setup_data_offset; 1180 uint32_t initrd_max; 1181 uint8_t header[8192], *setup, *kernel; 1182 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 1183 FILE *f; 1184 char *vmode; 1185 MachineState *machine = MACHINE(pcms); 1186 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1187 struct setup_data *setup_data; 1188 const char *kernel_filename = machine->kernel_filename; 1189 const char *initrd_filename = machine->initrd_filename; 1190 const char *dtb_filename = machine->dtb; 1191 const char *kernel_cmdline = machine->kernel_cmdline; 1192 1193 /* Align to 16 bytes as a paranoia measure */ 1194 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 1195 1196 /* load the kernel header */ 1197 f = fopen(kernel_filename, "rb"); 1198 if (!f || !(kernel_size = get_file_size(f)) || 1199 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 1200 MIN(ARRAY_SIZE(header), kernel_size)) { 1201 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 1202 kernel_filename, strerror(errno)); 1203 exit(1); 1204 } 1205 1206 /* kernel protocol version */ 1207 #if 0 1208 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 1209 #endif 1210 if (ldl_p(header+0x202) == 0x53726448) { 1211 protocol = lduw_p(header+0x206); 1212 } else { 1213 /* 1214 * This could be a multiboot kernel. If it is, let's stop treating it 1215 * like a Linux kernel. 1216 * Note: some multiboot images could be in the ELF format (the same of 1217 * PVH), so we try multiboot first since we check the multiboot magic 1218 * header before to load it. 1219 */ 1220 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 1221 kernel_cmdline, kernel_size, header)) { 1222 return; 1223 } 1224 /* 1225 * Check if the file is an uncompressed kernel file (ELF) and load it, 1226 * saving the PVH entry point used by the x86/HVM direct boot ABI. 1227 * If load_elfboot() is successful, populate the fw_cfg info. 1228 */ 1229 if (pcmc->pvh_enabled && 1230 load_elfboot(kernel_filename, kernel_size, 1231 header, pvh_start_addr, fw_cfg)) { 1232 fclose(f); 1233 1234 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 1235 strlen(kernel_cmdline) + 1); 1236 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 1237 1238 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 1239 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 1240 header, sizeof(header)); 1241 1242 /* load initrd */ 1243 if (initrd_filename) { 1244 gsize initrd_size; 1245 gchar *initrd_data; 1246 GError *gerr = NULL; 1247 1248 if (!g_file_get_contents(initrd_filename, &initrd_data, 1249 &initrd_size, &gerr)) { 1250 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1251 initrd_filename, gerr->message); 1252 exit(1); 1253 } 1254 1255 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 1256 if (initrd_size >= initrd_max) { 1257 fprintf(stderr, "qemu: initrd is too large, cannot support." 1258 "(max: %"PRIu32", need %"PRId64")\n", 1259 initrd_max, (uint64_t)initrd_size); 1260 exit(1); 1261 } 1262 1263 initrd_addr = (initrd_max - initrd_size) & ~4095; 1264 1265 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1266 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1267 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 1268 initrd_size); 1269 } 1270 1271 option_rom[nb_option_roms].bootindex = 0; 1272 option_rom[nb_option_roms].name = "pvh.bin"; 1273 nb_option_roms++; 1274 1275 return; 1276 } 1277 protocol = 0; 1278 } 1279 1280 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 1281 /* Low kernel */ 1282 real_addr = 0x90000; 1283 cmdline_addr = 0x9a000 - cmdline_size; 1284 prot_addr = 0x10000; 1285 } else if (protocol < 0x202) { 1286 /* High but ancient kernel */ 1287 real_addr = 0x90000; 1288 cmdline_addr = 0x9a000 - cmdline_size; 1289 prot_addr = 0x100000; 1290 } else { 1291 /* High and recent kernel */ 1292 real_addr = 0x10000; 1293 cmdline_addr = 0x20000; 1294 prot_addr = 0x100000; 1295 } 1296 1297 #if 0 1298 fprintf(stderr, 1299 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 1300 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 1301 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 1302 real_addr, 1303 cmdline_addr, 1304 prot_addr); 1305 #endif 1306 1307 /* highest address for loading the initrd */ 1308 if (protocol >= 0x20c && 1309 lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 1310 /* 1311 * Linux has supported initrd up to 4 GB for a very long time (2007, 1312 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 1313 * though it only sets initrd_max to 2 GB to "work around bootloader 1314 * bugs". Luckily, QEMU firmware(which does something like bootloader) 1315 * has supported this. 1316 * 1317 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 1318 * be loaded into any address. 1319 * 1320 * In addition, initrd_max is uint32_t simply because QEMU doesn't 1321 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 1322 * field). 1323 * 1324 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 1325 */ 1326 initrd_max = UINT32_MAX; 1327 } else if (protocol >= 0x203) { 1328 initrd_max = ldl_p(header+0x22c); 1329 } else { 1330 initrd_max = 0x37ffffff; 1331 } 1332 1333 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 1334 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 1335 } 1336 1337 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 1338 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 1339 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 1340 1341 if (protocol >= 0x202) { 1342 stl_p(header+0x228, cmdline_addr); 1343 } else { 1344 stw_p(header+0x20, 0xA33F); 1345 stw_p(header+0x22, cmdline_addr-real_addr); 1346 } 1347 1348 /* handle vga= parameter */ 1349 vmode = strstr(kernel_cmdline, "vga="); 1350 if (vmode) { 1351 unsigned int video_mode; 1352 /* skip "vga=" */ 1353 vmode += 4; 1354 if (!strncmp(vmode, "normal", 6)) { 1355 video_mode = 0xffff; 1356 } else if (!strncmp(vmode, "ext", 3)) { 1357 video_mode = 0xfffe; 1358 } else if (!strncmp(vmode, "ask", 3)) { 1359 video_mode = 0xfffd; 1360 } else { 1361 video_mode = strtol(vmode, NULL, 0); 1362 } 1363 stw_p(header+0x1fa, video_mode); 1364 } 1365 1366 /* loader type */ 1367 /* High nybble = B reserved for QEMU; low nybble is revision number. 1368 If this code is substantially changed, you may want to consider 1369 incrementing the revision. */ 1370 if (protocol >= 0x200) { 1371 header[0x210] = 0xB0; 1372 } 1373 /* heap */ 1374 if (protocol >= 0x201) { 1375 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 1376 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 1377 } 1378 1379 /* load initrd */ 1380 if (initrd_filename) { 1381 gsize initrd_size; 1382 gchar *initrd_data; 1383 GError *gerr = NULL; 1384 1385 if (protocol < 0x200) { 1386 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 1387 exit(1); 1388 } 1389 1390 if (!g_file_get_contents(initrd_filename, &initrd_data, 1391 &initrd_size, &gerr)) { 1392 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1393 initrd_filename, gerr->message); 1394 exit(1); 1395 } 1396 if (initrd_size >= initrd_max) { 1397 fprintf(stderr, "qemu: initrd is too large, cannot support." 1398 "(max: %"PRIu32", need %"PRId64")\n", 1399 initrd_max, (uint64_t)initrd_size); 1400 exit(1); 1401 } 1402 1403 initrd_addr = (initrd_max-initrd_size) & ~4095; 1404 1405 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1406 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1407 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1408 1409 stl_p(header+0x218, initrd_addr); 1410 stl_p(header+0x21c, initrd_size); 1411 } 1412 1413 /* load kernel and setup */ 1414 setup_size = header[0x1f1]; 1415 if (setup_size == 0) { 1416 setup_size = 4; 1417 } 1418 setup_size = (setup_size+1)*512; 1419 if (setup_size > kernel_size) { 1420 fprintf(stderr, "qemu: invalid kernel header\n"); 1421 exit(1); 1422 } 1423 kernel_size -= setup_size; 1424 1425 setup = g_malloc(setup_size); 1426 kernel = g_malloc(kernel_size); 1427 fseek(f, 0, SEEK_SET); 1428 if (fread(setup, 1, setup_size, f) != setup_size) { 1429 fprintf(stderr, "fread() failed\n"); 1430 exit(1); 1431 } 1432 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1433 fprintf(stderr, "fread() failed\n"); 1434 exit(1); 1435 } 1436 fclose(f); 1437 1438 /* append dtb to kernel */ 1439 if (dtb_filename) { 1440 if (protocol < 0x209) { 1441 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1442 exit(1); 1443 } 1444 1445 dtb_size = get_image_size(dtb_filename); 1446 if (dtb_size <= 0) { 1447 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1448 dtb_filename, strerror(errno)); 1449 exit(1); 1450 } 1451 1452 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1453 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1454 kernel = g_realloc(kernel, kernel_size); 1455 1456 stq_p(header+0x250, prot_addr + setup_data_offset); 1457 1458 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1459 setup_data->next = 0; 1460 setup_data->type = cpu_to_le32(SETUP_DTB); 1461 setup_data->len = cpu_to_le32(dtb_size); 1462 1463 load_image_size(dtb_filename, setup_data->data, dtb_size); 1464 } 1465 1466 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1467 1468 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1469 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1470 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1471 1472 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1473 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1474 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1475 1476 option_rom[nb_option_roms].bootindex = 0; 1477 option_rom[nb_option_roms].name = "linuxboot.bin"; 1478 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1479 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1480 } 1481 nb_option_roms++; 1482 } 1483 1484 #define NE2000_NB_MAX 6 1485 1486 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1487 0x280, 0x380 }; 1488 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1489 1490 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1491 { 1492 static int nb_ne2k = 0; 1493 1494 if (nb_ne2k == NE2000_NB_MAX) 1495 return; 1496 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1497 ne2000_irq[nb_ne2k], nd); 1498 nb_ne2k++; 1499 } 1500 1501 DeviceState *cpu_get_current_apic(void) 1502 { 1503 if (current_cpu) { 1504 X86CPU *cpu = X86_CPU(current_cpu); 1505 return cpu->apic_state; 1506 } else { 1507 return NULL; 1508 } 1509 } 1510 1511 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1512 { 1513 X86CPU *cpu = opaque; 1514 1515 if (level) { 1516 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1517 } 1518 } 1519 1520 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1521 { 1522 Object *cpu = NULL; 1523 Error *local_err = NULL; 1524 1525 cpu = object_new(typename); 1526 1527 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1528 object_property_set_bool(cpu, true, "realized", &local_err); 1529 1530 object_unref(cpu); 1531 error_propagate(errp, local_err); 1532 } 1533 1534 void pc_hot_add_cpu(const int64_t id, Error **errp) 1535 { 1536 MachineState *ms = MACHINE(qdev_get_machine()); 1537 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1538 Error *local_err = NULL; 1539 1540 if (id < 0) { 1541 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1542 return; 1543 } 1544 1545 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1546 error_setg(errp, "Unable to add CPU: %" PRIi64 1547 ", resulting APIC ID (%" PRIi64 ") is too large", 1548 id, apic_id); 1549 return; 1550 } 1551 1552 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1553 if (local_err) { 1554 error_propagate(errp, local_err); 1555 return; 1556 } 1557 } 1558 1559 void pc_cpus_init(PCMachineState *pcms) 1560 { 1561 int i; 1562 const CPUArchIdList *possible_cpus; 1563 MachineState *ms = MACHINE(pcms); 1564 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1565 1566 /* Calculates the limit to CPU APIC ID values 1567 * 1568 * Limit for the APIC ID value, so that all 1569 * CPU APIC IDs are < pcms->apic_id_limit. 1570 * 1571 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1572 */ 1573 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1574 possible_cpus = mc->possible_cpu_arch_ids(ms); 1575 for (i = 0; i < smp_cpus; i++) { 1576 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1577 &error_fatal); 1578 } 1579 } 1580 1581 static void pc_build_feature_control_file(PCMachineState *pcms) 1582 { 1583 MachineState *ms = MACHINE(pcms); 1584 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1585 CPUX86State *env = &cpu->env; 1586 uint32_t unused, ecx, edx; 1587 uint64_t feature_control_bits = 0; 1588 uint64_t *val; 1589 1590 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1591 if (ecx & CPUID_EXT_VMX) { 1592 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1593 } 1594 1595 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1596 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1597 (env->mcg_cap & MCG_LMCE_P)) { 1598 feature_control_bits |= FEATURE_CONTROL_LMCE; 1599 } 1600 1601 if (!feature_control_bits) { 1602 return; 1603 } 1604 1605 val = g_malloc(sizeof(*val)); 1606 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1607 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1608 } 1609 1610 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1611 { 1612 if (cpus_count > 0xff) { 1613 /* If the number of CPUs can't be represented in 8 bits, the 1614 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1615 * to make old BIOSes fail more predictably. 1616 */ 1617 rtc_set_memory(rtc, 0x5f, 0); 1618 } else { 1619 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1620 } 1621 } 1622 1623 static 1624 void pc_machine_done(Notifier *notifier, void *data) 1625 { 1626 PCMachineState *pcms = container_of(notifier, 1627 PCMachineState, machine_done); 1628 PCIBus *bus = pcms->bus; 1629 1630 /* set the number of CPUs */ 1631 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1632 1633 if (bus) { 1634 int extra_hosts = 0; 1635 1636 QLIST_FOREACH(bus, &bus->child, sibling) { 1637 /* look for expander root buses */ 1638 if (pci_bus_is_root(bus)) { 1639 extra_hosts++; 1640 } 1641 } 1642 if (extra_hosts && pcms->fw_cfg) { 1643 uint64_t *val = g_malloc(sizeof(*val)); 1644 *val = cpu_to_le64(extra_hosts); 1645 fw_cfg_add_file(pcms->fw_cfg, 1646 "etc/extra-pci-roots", val, sizeof(*val)); 1647 } 1648 } 1649 1650 acpi_setup(); 1651 if (pcms->fw_cfg) { 1652 pc_build_smbios(pcms); 1653 pc_build_feature_control_file(pcms); 1654 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1655 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1656 } 1657 1658 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1659 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1660 1661 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) || 1662 iommu->intr_eim != ON_OFF_AUTO_ON) { 1663 error_report("current -smp configuration requires " 1664 "Extended Interrupt Mode enabled. " 1665 "You can add an IOMMU using: " 1666 "-device intel-iommu,intremap=on,eim=on"); 1667 exit(EXIT_FAILURE); 1668 } 1669 } 1670 } 1671 1672 void pc_guest_info_init(PCMachineState *pcms) 1673 { 1674 int i; 1675 1676 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1677 pcms->numa_nodes = nb_numa_nodes; 1678 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1679 sizeof *pcms->node_mem); 1680 for (i = 0; i < nb_numa_nodes; i++) { 1681 pcms->node_mem[i] = numa_info[i].node_mem; 1682 } 1683 1684 pcms->machine_done.notify = pc_machine_done; 1685 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1686 } 1687 1688 /* setup pci memory address space mapping into system address space */ 1689 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1690 MemoryRegion *pci_address_space) 1691 { 1692 /* Set to lower priority than RAM */ 1693 memory_region_add_subregion_overlap(system_memory, 0x0, 1694 pci_address_space, -1); 1695 } 1696 1697 void xen_load_linux(PCMachineState *pcms) 1698 { 1699 int i; 1700 FWCfgState *fw_cfg; 1701 1702 assert(MACHINE(pcms)->kernel_filename != NULL); 1703 1704 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1705 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1706 rom_set_fw(fw_cfg); 1707 1708 load_linux(pcms, fw_cfg); 1709 for (i = 0; i < nb_option_roms; i++) { 1710 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1711 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1712 !strcmp(option_rom[i].name, "pvh.bin") || 1713 !strcmp(option_rom[i].name, "multiboot.bin")); 1714 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1715 } 1716 pcms->fw_cfg = fw_cfg; 1717 } 1718 1719 void pc_memory_init(PCMachineState *pcms, 1720 MemoryRegion *system_memory, 1721 MemoryRegion *rom_memory, 1722 MemoryRegion **ram_memory) 1723 { 1724 int linux_boot, i; 1725 MemoryRegion *ram, *option_rom_mr; 1726 MemoryRegion *ram_below_4g, *ram_above_4g; 1727 FWCfgState *fw_cfg; 1728 MachineState *machine = MACHINE(pcms); 1729 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1730 1731 assert(machine->ram_size == pcms->below_4g_mem_size + 1732 pcms->above_4g_mem_size); 1733 1734 linux_boot = (machine->kernel_filename != NULL); 1735 1736 /* Allocate RAM. We allocate it as a single memory region and use 1737 * aliases to address portions of it, mostly for backwards compatibility 1738 * with older qemus that used qemu_ram_alloc(). 1739 */ 1740 ram = g_malloc(sizeof(*ram)); 1741 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1742 machine->ram_size); 1743 *ram_memory = ram; 1744 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1745 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1746 0, pcms->below_4g_mem_size); 1747 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1748 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1749 if (pcms->above_4g_mem_size > 0) { 1750 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1751 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1752 pcms->below_4g_mem_size, 1753 pcms->above_4g_mem_size); 1754 memory_region_add_subregion(system_memory, 0x100000000ULL, 1755 ram_above_4g); 1756 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1757 } 1758 1759 if (!pcmc->has_reserved_memory && 1760 (machine->ram_slots || 1761 (machine->maxram_size > machine->ram_size))) { 1762 MachineClass *mc = MACHINE_GET_CLASS(machine); 1763 1764 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1765 mc->name); 1766 exit(EXIT_FAILURE); 1767 } 1768 1769 /* always allocate the device memory information */ 1770 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1771 1772 /* initialize device memory address space */ 1773 if (pcmc->has_reserved_memory && 1774 (machine->ram_size < machine->maxram_size)) { 1775 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1776 1777 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1778 error_report("unsupported amount of memory slots: %"PRIu64, 1779 machine->ram_slots); 1780 exit(EXIT_FAILURE); 1781 } 1782 1783 if (QEMU_ALIGN_UP(machine->maxram_size, 1784 TARGET_PAGE_SIZE) != machine->maxram_size) { 1785 error_report("maximum memory size must by aligned to multiple of " 1786 "%d bytes", TARGET_PAGE_SIZE); 1787 exit(EXIT_FAILURE); 1788 } 1789 1790 machine->device_memory->base = 1791 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1792 1793 if (pcmc->enforce_aligned_dimm) { 1794 /* size device region assuming 1G page max alignment per slot */ 1795 device_mem_size += (1 * GiB) * machine->ram_slots; 1796 } 1797 1798 if ((machine->device_memory->base + device_mem_size) < 1799 device_mem_size) { 1800 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1801 machine->maxram_size); 1802 exit(EXIT_FAILURE); 1803 } 1804 1805 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1806 "device-memory", device_mem_size); 1807 memory_region_add_subregion(system_memory, machine->device_memory->base, 1808 &machine->device_memory->mr); 1809 } 1810 1811 /* Initialize PC system firmware */ 1812 pc_system_firmware_init(pcms, rom_memory); 1813 1814 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1815 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1816 &error_fatal); 1817 if (pcmc->pci_enabled) { 1818 memory_region_set_readonly(option_rom_mr, true); 1819 } 1820 memory_region_add_subregion_overlap(rom_memory, 1821 PC_ROM_MIN_VGA, 1822 option_rom_mr, 1823 1); 1824 1825 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1826 1827 rom_set_fw(fw_cfg); 1828 1829 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1830 uint64_t *val = g_malloc(sizeof(*val)); 1831 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1832 uint64_t res_mem_end = machine->device_memory->base; 1833 1834 if (!pcmc->broken_reserved_end) { 1835 res_mem_end += memory_region_size(&machine->device_memory->mr); 1836 } 1837 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1838 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1839 } 1840 1841 if (linux_boot) { 1842 load_linux(pcms, fw_cfg); 1843 } 1844 1845 for (i = 0; i < nb_option_roms; i++) { 1846 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1847 } 1848 pcms->fw_cfg = fw_cfg; 1849 1850 /* Init default IOAPIC address space */ 1851 pcms->ioapic_as = &address_space_memory; 1852 } 1853 1854 /* 1855 * The 64bit pci hole starts after "above 4G RAM" and 1856 * potentially the space reserved for memory hotplug. 1857 */ 1858 uint64_t pc_pci_hole64_start(void) 1859 { 1860 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1861 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1862 MachineState *ms = MACHINE(pcms); 1863 uint64_t hole64_start = 0; 1864 1865 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1866 hole64_start = ms->device_memory->base; 1867 if (!pcmc->broken_reserved_end) { 1868 hole64_start += memory_region_size(&ms->device_memory->mr); 1869 } 1870 } else { 1871 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1872 } 1873 1874 return ROUND_UP(hole64_start, 1 * GiB); 1875 } 1876 1877 qemu_irq pc_allocate_cpu_irq(void) 1878 { 1879 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1880 } 1881 1882 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1883 { 1884 DeviceState *dev = NULL; 1885 1886 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1887 if (pci_bus) { 1888 PCIDevice *pcidev = pci_vga_init(pci_bus); 1889 dev = pcidev ? &pcidev->qdev : NULL; 1890 } else if (isa_bus) { 1891 ISADevice *isadev = isa_vga_init(isa_bus); 1892 dev = isadev ? DEVICE(isadev) : NULL; 1893 } 1894 rom_reset_order_override(); 1895 return dev; 1896 } 1897 1898 static const MemoryRegionOps ioport80_io_ops = { 1899 .write = ioport80_write, 1900 .read = ioport80_read, 1901 .endianness = DEVICE_NATIVE_ENDIAN, 1902 .impl = { 1903 .min_access_size = 1, 1904 .max_access_size = 1, 1905 }, 1906 }; 1907 1908 static const MemoryRegionOps ioportF0_io_ops = { 1909 .write = ioportF0_write, 1910 .read = ioportF0_read, 1911 .endianness = DEVICE_NATIVE_ENDIAN, 1912 .impl = { 1913 .min_access_size = 1, 1914 .max_access_size = 1, 1915 }, 1916 }; 1917 1918 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1919 { 1920 int i; 1921 DriveInfo *fd[MAX_FD]; 1922 qemu_irq *a20_line; 1923 ISADevice *i8042, *port92, *vmmouse; 1924 1925 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1926 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1927 1928 for (i = 0; i < MAX_FD; i++) { 1929 fd[i] = drive_get(IF_FLOPPY, 0, i); 1930 create_fdctrl |= !!fd[i]; 1931 } 1932 if (create_fdctrl) { 1933 fdctrl_init_isa(isa_bus, fd); 1934 } 1935 1936 i8042 = isa_create_simple(isa_bus, "i8042"); 1937 if (!no_vmport) { 1938 vmport_init(isa_bus); 1939 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1940 } else { 1941 vmmouse = NULL; 1942 } 1943 if (vmmouse) { 1944 DeviceState *dev = DEVICE(vmmouse); 1945 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1946 qdev_init_nofail(dev); 1947 } 1948 port92 = isa_create_simple(isa_bus, "port92"); 1949 1950 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1951 i8042_setup_a20_line(i8042, a20_line[0]); 1952 port92_init(port92, a20_line[1]); 1953 g_free(a20_line); 1954 } 1955 1956 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1957 ISADevice **rtc_state, 1958 bool create_fdctrl, 1959 bool no_vmport, 1960 bool has_pit, 1961 uint32_t hpet_irqs) 1962 { 1963 int i; 1964 DeviceState *hpet = NULL; 1965 int pit_isa_irq = 0; 1966 qemu_irq pit_alt_irq = NULL; 1967 qemu_irq rtc_irq = NULL; 1968 ISADevice *pit = NULL; 1969 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1970 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1971 1972 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1973 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1974 1975 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1976 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1977 1978 /* 1979 * Check if an HPET shall be created. 1980 * 1981 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1982 * when the HPET wants to take over. Thus we have to disable the latter. 1983 */ 1984 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1985 /* In order to set property, here not using sysbus_try_create_simple */ 1986 hpet = qdev_try_create(NULL, TYPE_HPET); 1987 if (hpet) { 1988 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1989 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1990 * IRQ8 and IRQ2. 1991 */ 1992 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1993 HPET_INTCAP, NULL); 1994 if (!compat) { 1995 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1996 } 1997 qdev_init_nofail(hpet); 1998 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1999 2000 for (i = 0; i < GSI_NUM_PINS; i++) { 2001 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 2002 } 2003 pit_isa_irq = -1; 2004 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 2005 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 2006 } 2007 } 2008 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 2009 2010 qemu_register_boot_set(pc_boot_set, *rtc_state); 2011 2012 if (!xen_enabled() && has_pit) { 2013 if (kvm_pit_in_kernel()) { 2014 pit = kvm_pit_init(isa_bus, 0x40); 2015 } else { 2016 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 2017 } 2018 if (hpet) { 2019 /* connect PIT to output control line of the HPET */ 2020 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 2021 } 2022 pcspk_init(isa_bus, pit); 2023 } 2024 2025 i8257_dma_init(isa_bus, 0); 2026 2027 /* Super I/O */ 2028 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 2029 } 2030 2031 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 2032 { 2033 int i; 2034 2035 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 2036 for (i = 0; i < nb_nics; i++) { 2037 NICInfo *nd = &nd_table[i]; 2038 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 2039 2040 if (g_str_equal(model, "ne2k_isa")) { 2041 pc_init_ne2k_isa(isa_bus, nd); 2042 } else { 2043 pci_nic_init_nofail(nd, pci_bus, model, NULL); 2044 } 2045 } 2046 rom_reset_order_override(); 2047 } 2048 2049 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 2050 { 2051 DeviceState *dev; 2052 SysBusDevice *d; 2053 unsigned int i; 2054 2055 if (kvm_ioapic_in_kernel()) { 2056 dev = qdev_create(NULL, TYPE_KVM_IOAPIC); 2057 } else { 2058 dev = qdev_create(NULL, TYPE_IOAPIC); 2059 } 2060 if (parent_name) { 2061 object_property_add_child(object_resolve_path(parent_name, NULL), 2062 "ioapic", OBJECT(dev), NULL); 2063 } 2064 qdev_init_nofail(dev); 2065 d = SYS_BUS_DEVICE(dev); 2066 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 2067 2068 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 2069 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 2070 } 2071 } 2072 2073 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2074 Error **errp) 2075 { 2076 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2077 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 2078 const MachineState *ms = MACHINE(hotplug_dev); 2079 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2080 const uint64_t legacy_align = TARGET_PAGE_SIZE; 2081 2082 /* 2083 * When -no-acpi is used with Q35 machine type, no ACPI is built, 2084 * but pcms->acpi_dev is still created. Check !acpi_enabled in 2085 * addition to cover this case. 2086 */ 2087 if (!pcms->acpi_dev || !acpi_enabled) { 2088 error_setg(errp, 2089 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 2090 return; 2091 } 2092 2093 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2094 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 2095 return; 2096 } 2097 2098 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), 2099 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 2100 } 2101 2102 static void pc_memory_plug(HotplugHandler *hotplug_dev, 2103 DeviceState *dev, Error **errp) 2104 { 2105 Error *local_err = NULL; 2106 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2107 MachineState *ms = MACHINE(hotplug_dev); 2108 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2109 2110 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); 2111 if (local_err) { 2112 goto out; 2113 } 2114 2115 if (is_nvdimm) { 2116 nvdimm_plug(ms->nvdimms_state); 2117 } 2118 2119 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 2120 out: 2121 error_propagate(errp, local_err); 2122 } 2123 2124 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 2125 DeviceState *dev, Error **errp) 2126 { 2127 Error *local_err = NULL; 2128 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2129 2130 /* 2131 * When -no-acpi is used with Q35 machine type, no ACPI is built, 2132 * but pcms->acpi_dev is still created. Check !acpi_enabled in 2133 * addition to cover this case. 2134 */ 2135 if (!pcms->acpi_dev || !acpi_enabled) { 2136 error_setg(&local_err, 2137 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 2138 goto out; 2139 } 2140 2141 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2142 error_setg(&local_err, 2143 "nvdimm device hot unplug is not supported yet."); 2144 goto out; 2145 } 2146 2147 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, 2148 &local_err); 2149 out: 2150 error_propagate(errp, local_err); 2151 } 2152 2153 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 2154 DeviceState *dev, Error **errp) 2155 { 2156 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2157 Error *local_err = NULL; 2158 2159 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 2160 if (local_err) { 2161 goto out; 2162 } 2163 2164 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); 2165 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 2166 out: 2167 error_propagate(errp, local_err); 2168 } 2169 2170 static int pc_apic_cmp(const void *a, const void *b) 2171 { 2172 CPUArchId *apic_a = (CPUArchId *)a; 2173 CPUArchId *apic_b = (CPUArchId *)b; 2174 2175 return apic_a->arch_id - apic_b->arch_id; 2176 } 2177 2178 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 2179 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 2180 * entry corresponding to CPU's apic_id returns NULL. 2181 */ 2182 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2183 { 2184 CPUArchId apic_id, *found_cpu; 2185 2186 apic_id.arch_id = id; 2187 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 2188 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 2189 pc_apic_cmp); 2190 if (found_cpu && idx) { 2191 *idx = found_cpu - ms->possible_cpus->cpus; 2192 } 2193 return found_cpu; 2194 } 2195 2196 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 2197 DeviceState *dev, Error **errp) 2198 { 2199 CPUArchId *found_cpu; 2200 Error *local_err = NULL; 2201 X86CPU *cpu = X86_CPU(dev); 2202 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2203 2204 if (pcms->acpi_dev) { 2205 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 2206 if (local_err) { 2207 goto out; 2208 } 2209 } 2210 2211 /* increment the number of CPUs */ 2212 pcms->boot_cpus++; 2213 if (pcms->rtc) { 2214 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 2215 } 2216 if (pcms->fw_cfg) { 2217 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 2218 } 2219 2220 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 2221 found_cpu->cpu = OBJECT(dev); 2222 out: 2223 error_propagate(errp, local_err); 2224 } 2225 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 2226 DeviceState *dev, Error **errp) 2227 { 2228 int idx = -1; 2229 Error *local_err = NULL; 2230 X86CPU *cpu = X86_CPU(dev); 2231 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2232 2233 if (!pcms->acpi_dev) { 2234 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 2235 goto out; 2236 } 2237 2238 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 2239 assert(idx != -1); 2240 if (idx == 0) { 2241 error_setg(&local_err, "Boot CPU is unpluggable"); 2242 goto out; 2243 } 2244 2245 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, 2246 &local_err); 2247 if (local_err) { 2248 goto out; 2249 } 2250 2251 out: 2252 error_propagate(errp, local_err); 2253 2254 } 2255 2256 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 2257 DeviceState *dev, Error **errp) 2258 { 2259 CPUArchId *found_cpu; 2260 Error *local_err = NULL; 2261 X86CPU *cpu = X86_CPU(dev); 2262 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2263 2264 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 2265 if (local_err) { 2266 goto out; 2267 } 2268 2269 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 2270 found_cpu->cpu = NULL; 2271 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 2272 2273 /* decrement the number of CPUs */ 2274 pcms->boot_cpus--; 2275 /* Update the number of CPUs in CMOS */ 2276 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 2277 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 2278 out: 2279 error_propagate(errp, local_err); 2280 } 2281 2282 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 2283 DeviceState *dev, Error **errp) 2284 { 2285 int idx; 2286 CPUState *cs; 2287 CPUArchId *cpu_slot; 2288 X86CPUTopoInfo topo; 2289 X86CPU *cpu = X86_CPU(dev); 2290 MachineState *ms = MACHINE(hotplug_dev); 2291 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 2292 2293 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 2294 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 2295 ms->cpu_type); 2296 return; 2297 } 2298 2299 /* if APIC ID is not set, set it based on socket/core/thread properties */ 2300 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 2301 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 2302 2303 if (cpu->socket_id < 0) { 2304 error_setg(errp, "CPU socket-id is not set"); 2305 return; 2306 } else if (cpu->socket_id > max_socket) { 2307 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 2308 cpu->socket_id, max_socket); 2309 return; 2310 } 2311 if (cpu->core_id < 0) { 2312 error_setg(errp, "CPU core-id is not set"); 2313 return; 2314 } else if (cpu->core_id > (smp_cores - 1)) { 2315 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 2316 cpu->core_id, smp_cores - 1); 2317 return; 2318 } 2319 if (cpu->thread_id < 0) { 2320 error_setg(errp, "CPU thread-id is not set"); 2321 return; 2322 } else if (cpu->thread_id > (smp_threads - 1)) { 2323 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 2324 cpu->thread_id, smp_threads - 1); 2325 return; 2326 } 2327 2328 topo.pkg_id = cpu->socket_id; 2329 topo.core_id = cpu->core_id; 2330 topo.smt_id = cpu->thread_id; 2331 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 2332 } 2333 2334 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 2335 if (!cpu_slot) { 2336 MachineState *ms = MACHINE(pcms); 2337 2338 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2339 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 2340 " APIC ID %" PRIu32 ", valid index range 0:%d", 2341 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 2342 ms->possible_cpus->len - 1); 2343 return; 2344 } 2345 2346 if (cpu_slot->cpu) { 2347 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 2348 idx, cpu->apic_id); 2349 return; 2350 } 2351 2352 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 2353 * so that machine_query_hotpluggable_cpus would show correct values 2354 */ 2355 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 2356 * once -smp refactoring is complete and there will be CPU private 2357 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 2358 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2359 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 2360 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 2361 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 2362 return; 2363 } 2364 cpu->socket_id = topo.pkg_id; 2365 2366 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 2367 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 2368 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 2369 return; 2370 } 2371 cpu->core_id = topo.core_id; 2372 2373 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2374 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2375 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2376 return; 2377 } 2378 cpu->thread_id = topo.smt_id; 2379 2380 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2381 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2382 return; 2383 } 2384 2385 cs = CPU(cpu); 2386 cs->cpu_index = idx; 2387 2388 numa_cpu_pre_plug(cpu_slot, dev, errp); 2389 } 2390 2391 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2392 DeviceState *dev, Error **errp) 2393 { 2394 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2395 pc_memory_pre_plug(hotplug_dev, dev, errp); 2396 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2397 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2398 } 2399 } 2400 2401 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2402 DeviceState *dev, Error **errp) 2403 { 2404 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2405 pc_memory_plug(hotplug_dev, dev, errp); 2406 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2407 pc_cpu_plug(hotplug_dev, dev, errp); 2408 } 2409 } 2410 2411 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2412 DeviceState *dev, Error **errp) 2413 { 2414 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2415 pc_memory_unplug_request(hotplug_dev, dev, errp); 2416 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2417 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2418 } else { 2419 error_setg(errp, "acpi: device unplug request for not supported device" 2420 " type: %s", object_get_typename(OBJECT(dev))); 2421 } 2422 } 2423 2424 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2425 DeviceState *dev, Error **errp) 2426 { 2427 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2428 pc_memory_unplug(hotplug_dev, dev, errp); 2429 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2430 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2431 } else { 2432 error_setg(errp, "acpi: device unplug for not supported device" 2433 " type: %s", object_get_typename(OBJECT(dev))); 2434 } 2435 } 2436 2437 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine, 2438 DeviceState *dev) 2439 { 2440 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2441 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2442 return HOTPLUG_HANDLER(machine); 2443 } 2444 2445 return NULL; 2446 } 2447 2448 static void 2449 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2450 const char *name, void *opaque, 2451 Error **errp) 2452 { 2453 MachineState *ms = MACHINE(obj); 2454 int64_t value = memory_region_size(&ms->device_memory->mr); 2455 2456 visit_type_int(v, name, &value, errp); 2457 } 2458 2459 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2460 const char *name, void *opaque, 2461 Error **errp) 2462 { 2463 PCMachineState *pcms = PC_MACHINE(obj); 2464 uint64_t value = pcms->max_ram_below_4g; 2465 2466 visit_type_size(v, name, &value, errp); 2467 } 2468 2469 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2470 const char *name, void *opaque, 2471 Error **errp) 2472 { 2473 PCMachineState *pcms = PC_MACHINE(obj); 2474 Error *error = NULL; 2475 uint64_t value; 2476 2477 visit_type_size(v, name, &value, &error); 2478 if (error) { 2479 error_propagate(errp, error); 2480 return; 2481 } 2482 if (value > 4 * GiB) { 2483 error_setg(&error, 2484 "Machine option 'max-ram-below-4g=%"PRIu64 2485 "' expects size less than or equal to 4G", value); 2486 error_propagate(errp, error); 2487 return; 2488 } 2489 2490 if (value < 1 * MiB) { 2491 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2492 "BIOS may not work with less than 1MiB", value); 2493 } 2494 2495 pcms->max_ram_below_4g = value; 2496 } 2497 2498 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2499 void *opaque, Error **errp) 2500 { 2501 PCMachineState *pcms = PC_MACHINE(obj); 2502 OnOffAuto vmport = pcms->vmport; 2503 2504 visit_type_OnOffAuto(v, name, &vmport, errp); 2505 } 2506 2507 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2508 void *opaque, Error **errp) 2509 { 2510 PCMachineState *pcms = PC_MACHINE(obj); 2511 2512 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2513 } 2514 2515 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2516 { 2517 bool smm_available = false; 2518 2519 if (pcms->smm == ON_OFF_AUTO_OFF) { 2520 return false; 2521 } 2522 2523 if (tcg_enabled() || qtest_enabled()) { 2524 smm_available = true; 2525 } else if (kvm_enabled()) { 2526 smm_available = kvm_has_smm(); 2527 } 2528 2529 if (smm_available) { 2530 return true; 2531 } 2532 2533 if (pcms->smm == ON_OFF_AUTO_ON) { 2534 error_report("System Management Mode not supported by this hypervisor."); 2535 exit(1); 2536 } 2537 return false; 2538 } 2539 2540 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2541 void *opaque, Error **errp) 2542 { 2543 PCMachineState *pcms = PC_MACHINE(obj); 2544 OnOffAuto smm = pcms->smm; 2545 2546 visit_type_OnOffAuto(v, name, &smm, errp); 2547 } 2548 2549 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2550 void *opaque, Error **errp) 2551 { 2552 PCMachineState *pcms = PC_MACHINE(obj); 2553 2554 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2555 } 2556 2557 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2558 { 2559 PCMachineState *pcms = PC_MACHINE(obj); 2560 2561 return pcms->smbus_enabled; 2562 } 2563 2564 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2565 { 2566 PCMachineState *pcms = PC_MACHINE(obj); 2567 2568 pcms->smbus_enabled = value; 2569 } 2570 2571 static bool pc_machine_get_sata(Object *obj, Error **errp) 2572 { 2573 PCMachineState *pcms = PC_MACHINE(obj); 2574 2575 return pcms->sata_enabled; 2576 } 2577 2578 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2579 { 2580 PCMachineState *pcms = PC_MACHINE(obj); 2581 2582 pcms->sata_enabled = value; 2583 } 2584 2585 static bool pc_machine_get_pit(Object *obj, Error **errp) 2586 { 2587 PCMachineState *pcms = PC_MACHINE(obj); 2588 2589 return pcms->pit_enabled; 2590 } 2591 2592 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2593 { 2594 PCMachineState *pcms = PC_MACHINE(obj); 2595 2596 pcms->pit_enabled = value; 2597 } 2598 2599 static void pc_machine_initfn(Object *obj) 2600 { 2601 PCMachineState *pcms = PC_MACHINE(obj); 2602 2603 pcms->max_ram_below_4g = 0; /* use default */ 2604 pcms->smm = ON_OFF_AUTO_AUTO; 2605 pcms->vmport = ON_OFF_AUTO_AUTO; 2606 /* acpi build is enabled by default if machine supports it */ 2607 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2608 pcms->smbus_enabled = true; 2609 pcms->sata_enabled = true; 2610 pcms->pit_enabled = true; 2611 2612 pc_system_flash_create(pcms); 2613 } 2614 2615 static void pc_machine_reset(void) 2616 { 2617 CPUState *cs; 2618 X86CPU *cpu; 2619 2620 qemu_devices_reset(); 2621 2622 /* Reset APIC after devices have been reset to cancel 2623 * any changes that qemu_devices_reset() might have done. 2624 */ 2625 CPU_FOREACH(cs) { 2626 cpu = X86_CPU(cs); 2627 2628 if (cpu->apic_state) { 2629 device_reset(cpu->apic_state); 2630 } 2631 } 2632 } 2633 2634 static CpuInstanceProperties 2635 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2636 { 2637 MachineClass *mc = MACHINE_GET_CLASS(ms); 2638 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2639 2640 assert(cpu_index < possible_cpus->len); 2641 return possible_cpus->cpus[cpu_index].props; 2642 } 2643 2644 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2645 { 2646 X86CPUTopoInfo topo; 2647 2648 assert(idx < ms->possible_cpus->len); 2649 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2650 smp_cores, smp_threads, &topo); 2651 return topo.pkg_id % nb_numa_nodes; 2652 } 2653 2654 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2655 { 2656 int i; 2657 2658 if (ms->possible_cpus) { 2659 /* 2660 * make sure that max_cpus hasn't changed since the first use, i.e. 2661 * -smp hasn't been parsed after it 2662 */ 2663 assert(ms->possible_cpus->len == max_cpus); 2664 return ms->possible_cpus; 2665 } 2666 2667 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2668 sizeof(CPUArchId) * max_cpus); 2669 ms->possible_cpus->len = max_cpus; 2670 for (i = 0; i < ms->possible_cpus->len; i++) { 2671 X86CPUTopoInfo topo; 2672 2673 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2674 ms->possible_cpus->cpus[i].vcpus_count = 1; 2675 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2676 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2677 smp_cores, smp_threads, &topo); 2678 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2679 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2680 ms->possible_cpus->cpus[i].props.has_core_id = true; 2681 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2682 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2683 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2684 } 2685 return ms->possible_cpus; 2686 } 2687 2688 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2689 { 2690 /* cpu index isn't used */ 2691 CPUState *cs; 2692 2693 CPU_FOREACH(cs) { 2694 X86CPU *cpu = X86_CPU(cs); 2695 2696 if (!cpu->apic_state) { 2697 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2698 } else { 2699 apic_deliver_nmi(cpu->apic_state); 2700 } 2701 } 2702 } 2703 2704 static void pc_machine_class_init(ObjectClass *oc, void *data) 2705 { 2706 MachineClass *mc = MACHINE_CLASS(oc); 2707 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2708 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2709 NMIClass *nc = NMI_CLASS(oc); 2710 2711 pcmc->pci_enabled = true; 2712 pcmc->has_acpi_build = true; 2713 pcmc->rsdp_in_ram = true; 2714 pcmc->smbios_defaults = true; 2715 pcmc->smbios_uuid_encoded = true; 2716 pcmc->gigabyte_align = true; 2717 pcmc->has_reserved_memory = true; 2718 pcmc->kvmclock_enabled = true; 2719 pcmc->enforce_aligned_dimm = true; 2720 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2721 * to be used at the moment, 32K should be enough for a while. */ 2722 pcmc->acpi_data_size = 0x20000 + 0x8000; 2723 pcmc->save_tsc_khz = true; 2724 pcmc->linuxboot_dma_enabled = true; 2725 pcmc->pvh_enabled = true; 2726 assert(!mc->get_hotplug_handler); 2727 mc->get_hotplug_handler = pc_get_hotplug_handler; 2728 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2729 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2730 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2731 mc->auto_enable_numa_with_memhp = true; 2732 mc->has_hotpluggable_cpus = true; 2733 mc->default_boot_order = "cad"; 2734 mc->hot_add_cpu = pc_hot_add_cpu; 2735 mc->block_default_type = IF_IDE; 2736 mc->max_cpus = 255; 2737 mc->reset = pc_machine_reset; 2738 hc->pre_plug = pc_machine_device_pre_plug_cb; 2739 hc->plug = pc_machine_device_plug_cb; 2740 hc->unplug_request = pc_machine_device_unplug_request_cb; 2741 hc->unplug = pc_machine_device_unplug_cb; 2742 nc->nmi_monitor_handler = x86_nmi; 2743 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2744 mc->nvdimm_supported = true; 2745 2746 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2747 pc_machine_get_device_memory_region_size, NULL, 2748 NULL, NULL, &error_abort); 2749 2750 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2751 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2752 NULL, NULL, &error_abort); 2753 2754 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2755 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2756 2757 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2758 pc_machine_get_smm, pc_machine_set_smm, 2759 NULL, NULL, &error_abort); 2760 object_class_property_set_description(oc, PC_MACHINE_SMM, 2761 "Enable SMM (pc & q35)", &error_abort); 2762 2763 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2764 pc_machine_get_vmport, pc_machine_set_vmport, 2765 NULL, NULL, &error_abort); 2766 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2767 "Enable vmport (pc & q35)", &error_abort); 2768 2769 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2770 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2771 2772 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2773 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2774 2775 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2776 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2777 } 2778 2779 static const TypeInfo pc_machine_info = { 2780 .name = TYPE_PC_MACHINE, 2781 .parent = TYPE_MACHINE, 2782 .abstract = true, 2783 .instance_size = sizeof(PCMachineState), 2784 .instance_init = pc_machine_initfn, 2785 .class_size = sizeof(PCMachineClass), 2786 .class_init = pc_machine_class_init, 2787 .interfaces = (InterfaceInfo[]) { 2788 { TYPE_HOTPLUG_HANDLER }, 2789 { TYPE_NMI }, 2790 { } 2791 }, 2792 }; 2793 2794 static void pc_machine_register_types(void) 2795 { 2796 type_register_static(&pc_machine_info); 2797 } 2798 2799 type_init(pc_machine_register_types) 2800