1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/hw.h" 25 #include "hw/i386/pc.h" 26 #include "hw/char/serial.h" 27 #include "hw/i386/apic.h" 28 #include "hw/block/fdc.h" 29 #include "hw/ide.h" 30 #include "hw/pci/pci.h" 31 #include "monitor/monitor.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/timer/hpet.h" 34 #include "hw/i386/smbios.h" 35 #include "hw/loader.h" 36 #include "elf.h" 37 #include "hw/multiboot.h" 38 #include "hw/timer/mc146818rtc.h" 39 #include "hw/timer/i8254.h" 40 #include "hw/audio/pcspk.h" 41 #include "hw/pci/msi.h" 42 #include "hw/sysbus.h" 43 #include "sysemu/sysemu.h" 44 #include "sysemu/kvm.h" 45 #include "kvm_i386.h" 46 #include "hw/xen/xen.h" 47 #include "sysemu/blockdev.h" 48 #include "hw/block/block.h" 49 #include "ui/qemu-spice.h" 50 #include "exec/memory.h" 51 #include "exec/address-spaces.h" 52 #include "sysemu/arch_init.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/config-file.h" 55 56 /* debug PC/ISA interrupts */ 57 //#define DEBUG_IRQ 58 59 #ifdef DEBUG_IRQ 60 #define DPRINTF(fmt, ...) \ 61 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 62 #else 63 #define DPRINTF(fmt, ...) 64 #endif 65 66 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ 67 #define ACPI_DATA_SIZE 0x10000 68 #define BIOS_CFG_IOPORT 0x510 69 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 70 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 71 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 72 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 73 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 74 75 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000 76 77 #define E820_NR_ENTRIES 16 78 79 struct e820_entry { 80 uint64_t address; 81 uint64_t length; 82 uint32_t type; 83 } QEMU_PACKED __attribute((__aligned__(4))); 84 85 struct e820_table { 86 uint32_t count; 87 struct e820_entry entry[E820_NR_ENTRIES]; 88 } QEMU_PACKED __attribute((__aligned__(4))); 89 90 static struct e820_table e820_table; 91 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 92 93 void gsi_handler(void *opaque, int n, int level) 94 { 95 GSIState *s = opaque; 96 97 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 98 if (n < ISA_NUM_IRQS) { 99 qemu_set_irq(s->i8259_irq[n], level); 100 } 101 qemu_set_irq(s->ioapic_irq[n], level); 102 } 103 104 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 105 unsigned size) 106 { 107 } 108 109 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 110 { 111 return 0xffffffffffffffffULL; 112 } 113 114 /* MSDOS compatibility mode FPU exception support */ 115 static qemu_irq ferr_irq; 116 117 void pc_register_ferr_irq(qemu_irq irq) 118 { 119 ferr_irq = irq; 120 } 121 122 /* XXX: add IGNNE support */ 123 void cpu_set_ferr(CPUX86State *s) 124 { 125 qemu_irq_raise(ferr_irq); 126 } 127 128 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 129 unsigned size) 130 { 131 qemu_irq_lower(ferr_irq); 132 } 133 134 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 135 { 136 return 0xffffffffffffffffULL; 137 } 138 139 /* TSC handling */ 140 uint64_t cpu_get_tsc(CPUX86State *env) 141 { 142 return cpu_get_ticks(); 143 } 144 145 /* SMM support */ 146 147 static cpu_set_smm_t smm_set; 148 static void *smm_arg; 149 150 void cpu_smm_register(cpu_set_smm_t callback, void *arg) 151 { 152 assert(smm_set == NULL); 153 assert(smm_arg == NULL); 154 smm_set = callback; 155 smm_arg = arg; 156 } 157 158 void cpu_smm_update(CPUX86State *env) 159 { 160 if (smm_set && smm_arg && env == first_cpu) 161 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg); 162 } 163 164 165 /* IRQ handling */ 166 int cpu_get_pic_interrupt(CPUX86State *env) 167 { 168 int intno; 169 170 intno = apic_get_interrupt(env->apic_state); 171 if (intno >= 0) { 172 return intno; 173 } 174 /* read the irq from the PIC */ 175 if (!apic_accept_pic_intr(env->apic_state)) { 176 return -1; 177 } 178 179 intno = pic_read_irq(isa_pic); 180 return intno; 181 } 182 183 static void pic_irq_request(void *opaque, int irq, int level) 184 { 185 CPUX86State *env = first_cpu; 186 187 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 188 if (env->apic_state) { 189 while (env) { 190 if (apic_accept_pic_intr(env->apic_state)) { 191 apic_deliver_pic_intr(env->apic_state, level); 192 } 193 env = env->next_cpu; 194 } 195 } else { 196 CPUState *cs = CPU(x86_env_get_cpu(env)); 197 if (level) { 198 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 199 } else { 200 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 201 } 202 } 203 } 204 205 /* PC cmos mappings */ 206 207 #define REG_EQUIPMENT_BYTE 0x14 208 209 static int cmos_get_fd_drive_type(FDriveType fd0) 210 { 211 int val; 212 213 switch (fd0) { 214 case FDRIVE_DRV_144: 215 /* 1.44 Mb 3"5 drive */ 216 val = 4; 217 break; 218 case FDRIVE_DRV_288: 219 /* 2.88 Mb 3"5 drive */ 220 val = 5; 221 break; 222 case FDRIVE_DRV_120: 223 /* 1.2 Mb 5"5 drive */ 224 val = 2; 225 break; 226 case FDRIVE_DRV_NONE: 227 default: 228 val = 0; 229 break; 230 } 231 return val; 232 } 233 234 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 235 int16_t cylinders, int8_t heads, int8_t sectors) 236 { 237 rtc_set_memory(s, type_ofs, 47); 238 rtc_set_memory(s, info_ofs, cylinders); 239 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 240 rtc_set_memory(s, info_ofs + 2, heads); 241 rtc_set_memory(s, info_ofs + 3, 0xff); 242 rtc_set_memory(s, info_ofs + 4, 0xff); 243 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 244 rtc_set_memory(s, info_ofs + 6, cylinders); 245 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 246 rtc_set_memory(s, info_ofs + 8, sectors); 247 } 248 249 /* convert boot_device letter to something recognizable by the bios */ 250 static int boot_device2nibble(char boot_device) 251 { 252 switch(boot_device) { 253 case 'a': 254 case 'b': 255 return 0x01; /* floppy boot */ 256 case 'c': 257 return 0x02; /* hard drive boot */ 258 case 'd': 259 return 0x03; /* CD-ROM boot */ 260 case 'n': 261 return 0x04; /* Network boot */ 262 } 263 return 0; 264 } 265 266 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk) 267 { 268 #define PC_MAX_BOOT_DEVICES 3 269 int nbds, bds[3] = { 0, }; 270 int i; 271 272 nbds = strlen(boot_device); 273 if (nbds > PC_MAX_BOOT_DEVICES) { 274 error_report("Too many boot devices for PC"); 275 return(1); 276 } 277 for (i = 0; i < nbds; i++) { 278 bds[i] = boot_device2nibble(boot_device[i]); 279 if (bds[i] == 0) { 280 error_report("Invalid boot device for PC: '%c'", 281 boot_device[i]); 282 return(1); 283 } 284 } 285 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 286 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 287 return(0); 288 } 289 290 static int pc_boot_set(void *opaque, const char *boot_device) 291 { 292 return set_boot_dev(opaque, boot_device, 0); 293 } 294 295 typedef struct pc_cmos_init_late_arg { 296 ISADevice *rtc_state; 297 BusState *idebus[2]; 298 } pc_cmos_init_late_arg; 299 300 static void pc_cmos_init_late(void *opaque) 301 { 302 pc_cmos_init_late_arg *arg = opaque; 303 ISADevice *s = arg->rtc_state; 304 int16_t cylinders; 305 int8_t heads, sectors; 306 int val; 307 int i, trans; 308 309 val = 0; 310 if (ide_get_geometry(arg->idebus[0], 0, 311 &cylinders, &heads, §ors) >= 0) { 312 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 313 val |= 0xf0; 314 } 315 if (ide_get_geometry(arg->idebus[0], 1, 316 &cylinders, &heads, §ors) >= 0) { 317 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 318 val |= 0x0f; 319 } 320 rtc_set_memory(s, 0x12, val); 321 322 val = 0; 323 for (i = 0; i < 4; i++) { 324 /* NOTE: ide_get_geometry() returns the physical 325 geometry. It is always such that: 1 <= sects <= 63, 1 326 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 327 geometry can be different if a translation is done. */ 328 if (ide_get_geometry(arg->idebus[i / 2], i % 2, 329 &cylinders, &heads, §ors) >= 0) { 330 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 331 assert((trans & ~3) == 0); 332 val |= trans << (i * 2); 333 } 334 } 335 rtc_set_memory(s, 0x39, val); 336 337 qemu_unregister_reset(pc_cmos_init_late, opaque); 338 } 339 340 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, 341 const char *boot_device, 342 ISADevice *floppy, BusState *idebus0, BusState *idebus1, 343 ISADevice *s) 344 { 345 int val, nb, i; 346 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE }; 347 static pc_cmos_init_late_arg arg; 348 349 /* various important CMOS locations needed by PC/Bochs bios */ 350 351 /* memory size */ 352 /* base memory (first MiB) */ 353 val = MIN(ram_size / 1024, 640); 354 rtc_set_memory(s, 0x15, val); 355 rtc_set_memory(s, 0x16, val >> 8); 356 /* extended memory (next 64MiB) */ 357 if (ram_size > 1024 * 1024) { 358 val = (ram_size - 1024 * 1024) / 1024; 359 } else { 360 val = 0; 361 } 362 if (val > 65535) 363 val = 65535; 364 rtc_set_memory(s, 0x17, val); 365 rtc_set_memory(s, 0x18, val >> 8); 366 rtc_set_memory(s, 0x30, val); 367 rtc_set_memory(s, 0x31, val >> 8); 368 /* memory between 16MiB and 4GiB */ 369 if (ram_size > 16 * 1024 * 1024) { 370 val = (ram_size - 16 * 1024 * 1024) / 65536; 371 } else { 372 val = 0; 373 } 374 if (val > 65535) 375 val = 65535; 376 rtc_set_memory(s, 0x34, val); 377 rtc_set_memory(s, 0x35, val >> 8); 378 /* memory above 4GiB */ 379 val = above_4g_mem_size / 65536; 380 rtc_set_memory(s, 0x5b, val); 381 rtc_set_memory(s, 0x5c, val >> 8); 382 rtc_set_memory(s, 0x5d, val >> 16); 383 384 /* set the number of CPU */ 385 rtc_set_memory(s, 0x5f, smp_cpus - 1); 386 387 /* set boot devices, and disable floppy signature check if requested */ 388 if (set_boot_dev(s, boot_device, fd_bootchk)) { 389 exit(1); 390 } 391 392 /* floppy type */ 393 if (floppy) { 394 for (i = 0; i < 2; i++) { 395 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 396 } 397 } 398 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 399 cmos_get_fd_drive_type(fd_type[1]); 400 rtc_set_memory(s, 0x10, val); 401 402 val = 0; 403 nb = 0; 404 if (fd_type[0] < FDRIVE_DRV_NONE) { 405 nb++; 406 } 407 if (fd_type[1] < FDRIVE_DRV_NONE) { 408 nb++; 409 } 410 switch (nb) { 411 case 0: 412 break; 413 case 1: 414 val |= 0x01; /* 1 drive, ready for boot */ 415 break; 416 case 2: 417 val |= 0x41; /* 2 drives, ready for boot */ 418 break; 419 } 420 val |= 0x02; /* FPU is there */ 421 val |= 0x04; /* PS/2 mouse installed */ 422 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 423 424 /* hard drives */ 425 arg.rtc_state = s; 426 arg.idebus[0] = idebus0; 427 arg.idebus[1] = idebus1; 428 qemu_register_reset(pc_cmos_init_late, &arg); 429 } 430 431 /* port 92 stuff: could be split off */ 432 typedef struct Port92State { 433 ISADevice dev; 434 MemoryRegion io; 435 uint8_t outport; 436 qemu_irq *a20_out; 437 } Port92State; 438 439 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 440 unsigned size) 441 { 442 Port92State *s = opaque; 443 444 DPRINTF("port92: write 0x%02x\n", val); 445 s->outport = val; 446 qemu_set_irq(*s->a20_out, (val >> 1) & 1); 447 if (val & 1) { 448 qemu_system_reset_request(); 449 } 450 } 451 452 static uint64_t port92_read(void *opaque, hwaddr addr, 453 unsigned size) 454 { 455 Port92State *s = opaque; 456 uint32_t ret; 457 458 ret = s->outport; 459 DPRINTF("port92: read 0x%02x\n", ret); 460 return ret; 461 } 462 463 static void port92_init(ISADevice *dev, qemu_irq *a20_out) 464 { 465 Port92State *s = DO_UPCAST(Port92State, dev, dev); 466 467 s->a20_out = a20_out; 468 } 469 470 static const VMStateDescription vmstate_port92_isa = { 471 .name = "port92", 472 .version_id = 1, 473 .minimum_version_id = 1, 474 .minimum_version_id_old = 1, 475 .fields = (VMStateField []) { 476 VMSTATE_UINT8(outport, Port92State), 477 VMSTATE_END_OF_LIST() 478 } 479 }; 480 481 static void port92_reset(DeviceState *d) 482 { 483 Port92State *s = container_of(d, Port92State, dev.qdev); 484 485 s->outport &= ~1; 486 } 487 488 static const MemoryRegionOps port92_ops = { 489 .read = port92_read, 490 .write = port92_write, 491 .impl = { 492 .min_access_size = 1, 493 .max_access_size = 1, 494 }, 495 .endianness = DEVICE_LITTLE_ENDIAN, 496 }; 497 498 static int port92_initfn(ISADevice *dev) 499 { 500 Port92State *s = DO_UPCAST(Port92State, dev, dev); 501 502 memory_region_init_io(&s->io, &port92_ops, s, "port92", 1); 503 isa_register_ioport(dev, &s->io, 0x92); 504 505 s->outport = 0; 506 return 0; 507 } 508 509 static void port92_class_initfn(ObjectClass *klass, void *data) 510 { 511 DeviceClass *dc = DEVICE_CLASS(klass); 512 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass); 513 ic->init = port92_initfn; 514 dc->no_user = 1; 515 dc->reset = port92_reset; 516 dc->vmsd = &vmstate_port92_isa; 517 } 518 519 static const TypeInfo port92_info = { 520 .name = "port92", 521 .parent = TYPE_ISA_DEVICE, 522 .instance_size = sizeof(Port92State), 523 .class_init = port92_class_initfn, 524 }; 525 526 static void port92_register_types(void) 527 { 528 type_register_static(&port92_info); 529 } 530 531 type_init(port92_register_types) 532 533 static void handle_a20_line_change(void *opaque, int irq, int level) 534 { 535 X86CPU *cpu = opaque; 536 537 /* XXX: send to all CPUs ? */ 538 /* XXX: add logic to handle multiple A20 line sources */ 539 x86_cpu_set_a20(cpu, level); 540 } 541 542 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 543 { 544 int index = le32_to_cpu(e820_table.count); 545 struct e820_entry *entry; 546 547 if (index >= E820_NR_ENTRIES) 548 return -EBUSY; 549 entry = &e820_table.entry[index++]; 550 551 entry->address = cpu_to_le64(address); 552 entry->length = cpu_to_le64(length); 553 entry->type = cpu_to_le32(type); 554 555 e820_table.count = cpu_to_le32(index); 556 return index; 557 } 558 559 /* Calculates the limit to CPU APIC ID values 560 * 561 * This function returns the limit for the APIC ID value, so that all 562 * CPU APIC IDs are < pc_apic_id_limit(). 563 * 564 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 565 */ 566 static unsigned int pc_apic_id_limit(unsigned int max_cpus) 567 { 568 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 569 } 570 571 static void *bochs_bios_init(void) 572 { 573 void *fw_cfg; 574 uint8_t *smbios_table; 575 size_t smbios_len; 576 uint64_t *numa_fw_cfg; 577 int i, j; 578 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus); 579 580 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); 581 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 582 * 583 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug 584 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC 585 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the 586 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS 587 * may see". 588 * 589 * So, this means we must not use max_cpus, here, but the maximum possible 590 * APIC ID value, plus one. 591 * 592 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is 593 * the APIC ID, not the "CPU index" 594 */ 595 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit); 596 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); 597 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 598 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 599 acpi_tables, acpi_tables_len); 600 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 601 602 smbios_table = smbios_get_table(&smbios_len); 603 if (smbios_table) 604 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 605 smbios_table, smbios_len); 606 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 607 &e820_table, sizeof(e820_table)); 608 609 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 610 /* allocate memory for the NUMA channel: one (64bit) word for the number 611 * of nodes, one word for each VCPU->node and one word for each node to 612 * hold the amount of memory. 613 */ 614 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); 615 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 616 for (i = 0; i < max_cpus; i++) { 617 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 618 assert(apic_id < apic_id_limit); 619 for (j = 0; j < nb_numa_nodes; j++) { 620 if (test_bit(i, node_cpumask[j])) { 621 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); 622 break; 623 } 624 } 625 } 626 for (i = 0; i < nb_numa_nodes; i++) { 627 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]); 628 } 629 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 630 (1 + apic_id_limit + nb_numa_nodes) * 631 sizeof(*numa_fw_cfg)); 632 633 return fw_cfg; 634 } 635 636 static long get_file_size(FILE *f) 637 { 638 long where, size; 639 640 /* XXX: on Unix systems, using fstat() probably makes more sense */ 641 642 where = ftell(f); 643 fseek(f, 0, SEEK_END); 644 size = ftell(f); 645 fseek(f, where, SEEK_SET); 646 647 return size; 648 } 649 650 static void load_linux(void *fw_cfg, 651 const char *kernel_filename, 652 const char *initrd_filename, 653 const char *kernel_cmdline, 654 hwaddr max_ram_size) 655 { 656 uint16_t protocol; 657 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 658 uint32_t initrd_max; 659 uint8_t header[8192], *setup, *kernel, *initrd_data; 660 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 661 FILE *f; 662 char *vmode; 663 664 /* Align to 16 bytes as a paranoia measure */ 665 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 666 667 /* load the kernel header */ 668 f = fopen(kernel_filename, "rb"); 669 if (!f || !(kernel_size = get_file_size(f)) || 670 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 671 MIN(ARRAY_SIZE(header), kernel_size)) { 672 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 673 kernel_filename, strerror(errno)); 674 exit(1); 675 } 676 677 /* kernel protocol version */ 678 #if 0 679 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 680 #endif 681 if (ldl_p(header+0x202) == 0x53726448) { 682 protocol = lduw_p(header+0x206); 683 } else { 684 /* This looks like a multiboot kernel. If it is, let's stop 685 treating it like a Linux kernel. */ 686 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 687 kernel_cmdline, kernel_size, header)) { 688 return; 689 } 690 protocol = 0; 691 } 692 693 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 694 /* Low kernel */ 695 real_addr = 0x90000; 696 cmdline_addr = 0x9a000 - cmdline_size; 697 prot_addr = 0x10000; 698 } else if (protocol < 0x202) { 699 /* High but ancient kernel */ 700 real_addr = 0x90000; 701 cmdline_addr = 0x9a000 - cmdline_size; 702 prot_addr = 0x100000; 703 } else { 704 /* High and recent kernel */ 705 real_addr = 0x10000; 706 cmdline_addr = 0x20000; 707 prot_addr = 0x100000; 708 } 709 710 #if 0 711 fprintf(stderr, 712 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 713 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 714 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 715 real_addr, 716 cmdline_addr, 717 prot_addr); 718 #endif 719 720 /* highest address for loading the initrd */ 721 if (protocol >= 0x203) { 722 initrd_max = ldl_p(header+0x22c); 723 } else { 724 initrd_max = 0x37ffffff; 725 } 726 727 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) 728 initrd_max = max_ram_size-ACPI_DATA_SIZE-1; 729 730 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 731 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 732 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 733 734 if (protocol >= 0x202) { 735 stl_p(header+0x228, cmdline_addr); 736 } else { 737 stw_p(header+0x20, 0xA33F); 738 stw_p(header+0x22, cmdline_addr-real_addr); 739 } 740 741 /* handle vga= parameter */ 742 vmode = strstr(kernel_cmdline, "vga="); 743 if (vmode) { 744 unsigned int video_mode; 745 /* skip "vga=" */ 746 vmode += 4; 747 if (!strncmp(vmode, "normal", 6)) { 748 video_mode = 0xffff; 749 } else if (!strncmp(vmode, "ext", 3)) { 750 video_mode = 0xfffe; 751 } else if (!strncmp(vmode, "ask", 3)) { 752 video_mode = 0xfffd; 753 } else { 754 video_mode = strtol(vmode, NULL, 0); 755 } 756 stw_p(header+0x1fa, video_mode); 757 } 758 759 /* loader type */ 760 /* High nybble = B reserved for QEMU; low nybble is revision number. 761 If this code is substantially changed, you may want to consider 762 incrementing the revision. */ 763 if (protocol >= 0x200) { 764 header[0x210] = 0xB0; 765 } 766 /* heap */ 767 if (protocol >= 0x201) { 768 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 769 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 770 } 771 772 /* load initrd */ 773 if (initrd_filename) { 774 if (protocol < 0x200) { 775 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 776 exit(1); 777 } 778 779 initrd_size = get_image_size(initrd_filename); 780 if (initrd_size < 0) { 781 fprintf(stderr, "qemu: error reading initrd %s\n", 782 initrd_filename); 783 exit(1); 784 } 785 786 initrd_addr = (initrd_max-initrd_size) & ~4095; 787 788 initrd_data = g_malloc(initrd_size); 789 load_image(initrd_filename, initrd_data); 790 791 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 792 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 793 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 794 795 stl_p(header+0x218, initrd_addr); 796 stl_p(header+0x21c, initrd_size); 797 } 798 799 /* load kernel and setup */ 800 setup_size = header[0x1f1]; 801 if (setup_size == 0) { 802 setup_size = 4; 803 } 804 setup_size = (setup_size+1)*512; 805 kernel_size -= setup_size; 806 807 setup = g_malloc(setup_size); 808 kernel = g_malloc(kernel_size); 809 fseek(f, 0, SEEK_SET); 810 if (fread(setup, 1, setup_size, f) != setup_size) { 811 fprintf(stderr, "fread() failed\n"); 812 exit(1); 813 } 814 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 815 fprintf(stderr, "fread() failed\n"); 816 exit(1); 817 } 818 fclose(f); 819 memcpy(setup, header, MIN(sizeof(header), setup_size)); 820 821 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 822 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 823 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 824 825 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 826 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 827 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 828 829 option_rom[nb_option_roms].name = "linuxboot.bin"; 830 option_rom[nb_option_roms].bootindex = 0; 831 nb_option_roms++; 832 } 833 834 #define NE2000_NB_MAX 6 835 836 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 837 0x280, 0x380 }; 838 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 839 840 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc }; 841 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 }; 842 843 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 844 { 845 static int nb_ne2k = 0; 846 847 if (nb_ne2k == NE2000_NB_MAX) 848 return; 849 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 850 ne2000_irq[nb_ne2k], nd); 851 nb_ne2k++; 852 } 853 854 DeviceState *cpu_get_current_apic(void) 855 { 856 if (cpu_single_env) { 857 return cpu_single_env->apic_state; 858 } else { 859 return NULL; 860 } 861 } 862 863 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 864 { 865 X86CPU *cpu = opaque; 866 867 if (level) { 868 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 869 } 870 } 871 872 void pc_cpus_init(const char *cpu_model) 873 { 874 int i; 875 876 /* init CPUs */ 877 if (cpu_model == NULL) { 878 #ifdef TARGET_X86_64 879 cpu_model = "qemu64"; 880 #else 881 cpu_model = "qemu32"; 882 #endif 883 } 884 885 for (i = 0; i < smp_cpus; i++) { 886 if (!cpu_x86_init(cpu_model)) { 887 exit(1); 888 } 889 } 890 } 891 892 void pc_acpi_init(const char *default_dsdt) 893 { 894 char *filename; 895 896 if (acpi_tables != NULL) { 897 /* manually set via -acpitable, leave it alone */ 898 return; 899 } 900 901 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 902 if (filename == NULL) { 903 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 904 } else { 905 char *arg; 906 QemuOpts *opts; 907 Error *err = NULL; 908 909 arg = g_strdup_printf("file=%s", filename); 910 911 /* creates a deep copy of "arg" */ 912 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0); 913 g_assert(opts != NULL); 914 915 acpi_table_add(opts, &err); 916 if (err) { 917 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename, 918 error_get_pretty(err)); 919 error_free(err); 920 } 921 g_free(arg); 922 g_free(filename); 923 } 924 } 925 926 void *pc_memory_init(MemoryRegion *system_memory, 927 const char *kernel_filename, 928 const char *kernel_cmdline, 929 const char *initrd_filename, 930 ram_addr_t below_4g_mem_size, 931 ram_addr_t above_4g_mem_size, 932 MemoryRegion *rom_memory, 933 MemoryRegion **ram_memory) 934 { 935 int linux_boot, i; 936 MemoryRegion *ram, *option_rom_mr; 937 MemoryRegion *ram_below_4g, *ram_above_4g; 938 void *fw_cfg; 939 940 linux_boot = (kernel_filename != NULL); 941 942 /* Allocate RAM. We allocate it as a single memory region and use 943 * aliases to address portions of it, mostly for backwards compatibility 944 * with older qemus that used qemu_ram_alloc(). 945 */ 946 ram = g_malloc(sizeof(*ram)); 947 memory_region_init_ram(ram, "pc.ram", 948 below_4g_mem_size + above_4g_mem_size); 949 vmstate_register_ram_global(ram); 950 *ram_memory = ram; 951 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 952 memory_region_init_alias(ram_below_4g, "ram-below-4g", ram, 953 0, below_4g_mem_size); 954 memory_region_add_subregion(system_memory, 0, ram_below_4g); 955 if (above_4g_mem_size > 0) { 956 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 957 memory_region_init_alias(ram_above_4g, "ram-above-4g", ram, 958 below_4g_mem_size, above_4g_mem_size); 959 memory_region_add_subregion(system_memory, 0x100000000ULL, 960 ram_above_4g); 961 } 962 963 964 /* Initialize PC system firmware */ 965 pc_system_firmware_init(rom_memory); 966 967 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 968 memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE); 969 vmstate_register_ram_global(option_rom_mr); 970 memory_region_add_subregion_overlap(rom_memory, 971 PC_ROM_MIN_VGA, 972 option_rom_mr, 973 1); 974 975 fw_cfg = bochs_bios_init(); 976 rom_set_fw(fw_cfg); 977 978 if (linux_boot) { 979 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size); 980 } 981 982 for (i = 0; i < nb_option_roms; i++) { 983 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 984 } 985 return fw_cfg; 986 } 987 988 qemu_irq *pc_allocate_cpu_irq(void) 989 { 990 return qemu_allocate_irqs(pic_irq_request, NULL, 1); 991 } 992 993 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 994 { 995 DeviceState *dev = NULL; 996 997 if (pci_bus) { 998 PCIDevice *pcidev = pci_vga_init(pci_bus); 999 dev = pcidev ? &pcidev->qdev : NULL; 1000 } else if (isa_bus) { 1001 ISADevice *isadev = isa_vga_init(isa_bus); 1002 dev = isadev ? &isadev->qdev : NULL; 1003 } 1004 return dev; 1005 } 1006 1007 static void cpu_request_exit(void *opaque, int irq, int level) 1008 { 1009 CPUX86State *env = cpu_single_env; 1010 1011 if (env && level) { 1012 cpu_exit(env); 1013 } 1014 } 1015 1016 static const MemoryRegionOps ioport80_io_ops = { 1017 .write = ioport80_write, 1018 .read = ioport80_read, 1019 .endianness = DEVICE_NATIVE_ENDIAN, 1020 .impl = { 1021 .min_access_size = 1, 1022 .max_access_size = 1, 1023 }, 1024 }; 1025 1026 static const MemoryRegionOps ioportF0_io_ops = { 1027 .write = ioportF0_write, 1028 .read = ioportF0_read, 1029 .endianness = DEVICE_NATIVE_ENDIAN, 1030 .impl = { 1031 .min_access_size = 1, 1032 .max_access_size = 1, 1033 }, 1034 }; 1035 1036 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1037 ISADevice **rtc_state, 1038 ISADevice **floppy, 1039 bool no_vmport) 1040 { 1041 int i; 1042 DriveInfo *fd[MAX_FD]; 1043 DeviceState *hpet = NULL; 1044 int pit_isa_irq = 0; 1045 qemu_irq pit_alt_irq = NULL; 1046 qemu_irq rtc_irq = NULL; 1047 qemu_irq *a20_line; 1048 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1049 qemu_irq *cpu_exit_irq; 1050 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1051 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1052 1053 memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1); 1054 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1055 1056 memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1); 1057 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1058 1059 /* 1060 * Check if an HPET shall be created. 1061 * 1062 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1063 * when the HPET wants to take over. Thus we have to disable the latter. 1064 */ 1065 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1066 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL); 1067 1068 if (hpet) { 1069 for (i = 0; i < GSI_NUM_PINS; i++) { 1070 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1071 } 1072 pit_isa_irq = -1; 1073 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1074 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1075 } 1076 } 1077 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1078 1079 qemu_register_boot_set(pc_boot_set, *rtc_state); 1080 1081 if (!xen_enabled()) { 1082 if (kvm_irqchip_in_kernel()) { 1083 pit = kvm_pit_init(isa_bus, 0x40); 1084 } else { 1085 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1086 } 1087 if (hpet) { 1088 /* connect PIT to output control line of the HPET */ 1089 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0)); 1090 } 1091 pcspk_init(isa_bus, pit); 1092 } 1093 1094 for(i = 0; i < MAX_SERIAL_PORTS; i++) { 1095 if (serial_hds[i]) { 1096 serial_isa_init(isa_bus, i, serial_hds[i]); 1097 } 1098 } 1099 1100 for(i = 0; i < MAX_PARALLEL_PORTS; i++) { 1101 if (parallel_hds[i]) { 1102 parallel_init(isa_bus, i, parallel_hds[i]); 1103 } 1104 } 1105 1106 a20_line = qemu_allocate_irqs(handle_a20_line_change, 1107 x86_env_get_cpu(first_cpu), 2); 1108 i8042 = isa_create_simple(isa_bus, "i8042"); 1109 i8042_setup_a20_line(i8042, &a20_line[0]); 1110 if (!no_vmport) { 1111 vmport_init(isa_bus); 1112 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1113 } else { 1114 vmmouse = NULL; 1115 } 1116 if (vmmouse) { 1117 qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042); 1118 qdev_init_nofail(&vmmouse->qdev); 1119 } 1120 port92 = isa_create_simple(isa_bus, "port92"); 1121 port92_init(port92, &a20_line[1]); 1122 1123 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); 1124 DMA_init(0, cpu_exit_irq); 1125 1126 for(i = 0; i < MAX_FD; i++) { 1127 fd[i] = drive_get(IF_FLOPPY, 0, i); 1128 } 1129 *floppy = fdctrl_init_isa(isa_bus, fd); 1130 } 1131 1132 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1133 { 1134 int i; 1135 1136 for (i = 0; i < nb_nics; i++) { 1137 NICInfo *nd = &nd_table[i]; 1138 1139 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1140 pc_init_ne2k_isa(isa_bus, nd); 1141 } else { 1142 pci_nic_init_nofail(nd, "e1000", NULL); 1143 } 1144 } 1145 } 1146 1147 void pc_pci_device_init(PCIBus *pci_bus) 1148 { 1149 int max_bus; 1150 int bus; 1151 1152 max_bus = drive_get_max_bus(IF_SCSI); 1153 for (bus = 0; bus <= max_bus; bus++) { 1154 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1155 } 1156 } 1157 1158 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1159 { 1160 DeviceState *dev; 1161 SysBusDevice *d; 1162 unsigned int i; 1163 1164 if (kvm_irqchip_in_kernel()) { 1165 dev = qdev_create(NULL, "kvm-ioapic"); 1166 } else { 1167 dev = qdev_create(NULL, "ioapic"); 1168 } 1169 if (parent_name) { 1170 object_property_add_child(object_resolve_path(parent_name, NULL), 1171 "ioapic", OBJECT(dev), NULL); 1172 } 1173 qdev_init_nofail(dev); 1174 d = SYS_BUS_DEVICE(dev); 1175 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1176 1177 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1178 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1179 } 1180 } 1181