xref: /openbmc/qemu/hw/i386/pc.c (revision 1ef8185a)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 #include "hw/i386/intel_iommu.h"
72 #include "hw/net/ne2000-isa.h"
73 
74 /* debug PC/ISA interrupts */
75 //#define DEBUG_IRQ
76 
77 #ifdef DEBUG_IRQ
78 #define DPRINTF(fmt, ...)                                       \
79     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
80 #else
81 #define DPRINTF(fmt, ...)
82 #endif
83 
84 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
85 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
86 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
87 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
88 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
89 
90 #define E820_NR_ENTRIES		16
91 
92 struct e820_entry {
93     uint64_t address;
94     uint64_t length;
95     uint32_t type;
96 } QEMU_PACKED __attribute((__aligned__(4)));
97 
98 struct e820_table {
99     uint32_t count;
100     struct e820_entry entry[E820_NR_ENTRIES];
101 } QEMU_PACKED __attribute((__aligned__(4)));
102 
103 static struct e820_table e820_reserve;
104 static struct e820_entry *e820_table;
105 static unsigned e820_entries;
106 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
107 
108 void gsi_handler(void *opaque, int n, int level)
109 {
110     GSIState *s = opaque;
111 
112     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
113     if (n < ISA_NUM_IRQS) {
114         qemu_set_irq(s->i8259_irq[n], level);
115     }
116     qemu_set_irq(s->ioapic_irq[n], level);
117 }
118 
119 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
120                            unsigned size)
121 {
122 }
123 
124 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
125 {
126     return 0xffffffffffffffffULL;
127 }
128 
129 /* MSDOS compatibility mode FPU exception support */
130 static qemu_irq ferr_irq;
131 
132 void pc_register_ferr_irq(qemu_irq irq)
133 {
134     ferr_irq = irq;
135 }
136 
137 /* XXX: add IGNNE support */
138 void cpu_set_ferr(CPUX86State *s)
139 {
140     qemu_irq_raise(ferr_irq);
141 }
142 
143 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
144                            unsigned size)
145 {
146     qemu_irq_lower(ferr_irq);
147 }
148 
149 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
150 {
151     return 0xffffffffffffffffULL;
152 }
153 
154 /* TSC handling */
155 uint64_t cpu_get_tsc(CPUX86State *env)
156 {
157     return cpu_get_ticks();
158 }
159 
160 /* IRQ handling */
161 int cpu_get_pic_interrupt(CPUX86State *env)
162 {
163     X86CPU *cpu = x86_env_get_cpu(env);
164     int intno;
165 
166     if (!kvm_irqchip_in_kernel()) {
167         intno = apic_get_interrupt(cpu->apic_state);
168         if (intno >= 0) {
169             return intno;
170         }
171         /* read the irq from the PIC */
172         if (!apic_accept_pic_intr(cpu->apic_state)) {
173             return -1;
174         }
175     }
176 
177     intno = pic_read_irq(isa_pic);
178     return intno;
179 }
180 
181 static void pic_irq_request(void *opaque, int irq, int level)
182 {
183     CPUState *cs = first_cpu;
184     X86CPU *cpu = X86_CPU(cs);
185 
186     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
187     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
188         CPU_FOREACH(cs) {
189             cpu = X86_CPU(cs);
190             if (apic_accept_pic_intr(cpu->apic_state)) {
191                 apic_deliver_pic_intr(cpu->apic_state, level);
192             }
193         }
194     } else {
195         if (level) {
196             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
197         } else {
198             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
199         }
200     }
201 }
202 
203 /* PC cmos mappings */
204 
205 #define REG_EQUIPMENT_BYTE          0x14
206 
207 int cmos_get_fd_drive_type(FloppyDriveType fd0)
208 {
209     int val;
210 
211     switch (fd0) {
212     case FLOPPY_DRIVE_TYPE_144:
213         /* 1.44 Mb 3"5 drive */
214         val = 4;
215         break;
216     case FLOPPY_DRIVE_TYPE_288:
217         /* 2.88 Mb 3"5 drive */
218         val = 5;
219         break;
220     case FLOPPY_DRIVE_TYPE_120:
221         /* 1.2 Mb 5"5 drive */
222         val = 2;
223         break;
224     case FLOPPY_DRIVE_TYPE_NONE:
225     default:
226         val = 0;
227         break;
228     }
229     return val;
230 }
231 
232 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
233                          int16_t cylinders, int8_t heads, int8_t sectors)
234 {
235     rtc_set_memory(s, type_ofs, 47);
236     rtc_set_memory(s, info_ofs, cylinders);
237     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
238     rtc_set_memory(s, info_ofs + 2, heads);
239     rtc_set_memory(s, info_ofs + 3, 0xff);
240     rtc_set_memory(s, info_ofs + 4, 0xff);
241     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
242     rtc_set_memory(s, info_ofs + 6, cylinders);
243     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
244     rtc_set_memory(s, info_ofs + 8, sectors);
245 }
246 
247 /* convert boot_device letter to something recognizable by the bios */
248 static int boot_device2nibble(char boot_device)
249 {
250     switch(boot_device) {
251     case 'a':
252     case 'b':
253         return 0x01; /* floppy boot */
254     case 'c':
255         return 0x02; /* hard drive boot */
256     case 'd':
257         return 0x03; /* CD-ROM boot */
258     case 'n':
259         return 0x04; /* Network boot */
260     }
261     return 0;
262 }
263 
264 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
265 {
266 #define PC_MAX_BOOT_DEVICES 3
267     int nbds, bds[3] = { 0, };
268     int i;
269 
270     nbds = strlen(boot_device);
271     if (nbds > PC_MAX_BOOT_DEVICES) {
272         error_setg(errp, "Too many boot devices for PC");
273         return;
274     }
275     for (i = 0; i < nbds; i++) {
276         bds[i] = boot_device2nibble(boot_device[i]);
277         if (bds[i] == 0) {
278             error_setg(errp, "Invalid boot device for PC: '%c'",
279                        boot_device[i]);
280             return;
281         }
282     }
283     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
284     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
285 }
286 
287 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
288 {
289     set_boot_dev(opaque, boot_device, errp);
290 }
291 
292 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
293 {
294     int val, nb, i;
295     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
296                                    FLOPPY_DRIVE_TYPE_NONE };
297 
298     /* floppy type */
299     if (floppy) {
300         for (i = 0; i < 2; i++) {
301             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
302         }
303     }
304     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
305         cmos_get_fd_drive_type(fd_type[1]);
306     rtc_set_memory(rtc_state, 0x10, val);
307 
308     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
309     nb = 0;
310     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
311         nb++;
312     }
313     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
314         nb++;
315     }
316     switch (nb) {
317     case 0:
318         break;
319     case 1:
320         val |= 0x01; /* 1 drive, ready for boot */
321         break;
322     case 2:
323         val |= 0x41; /* 2 drives, ready for boot */
324         break;
325     }
326     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
327 }
328 
329 typedef struct pc_cmos_init_late_arg {
330     ISADevice *rtc_state;
331     BusState *idebus[2];
332 } pc_cmos_init_late_arg;
333 
334 typedef struct check_fdc_state {
335     ISADevice *floppy;
336     bool multiple;
337 } CheckFdcState;
338 
339 static int check_fdc(Object *obj, void *opaque)
340 {
341     CheckFdcState *state = opaque;
342     Object *fdc;
343     uint32_t iobase;
344     Error *local_err = NULL;
345 
346     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
347     if (!fdc) {
348         return 0;
349     }
350 
351     iobase = object_property_get_uint(obj, "iobase", &local_err);
352     if (local_err || iobase != 0x3f0) {
353         error_free(local_err);
354         return 0;
355     }
356 
357     if (state->floppy) {
358         state->multiple = true;
359     } else {
360         state->floppy = ISA_DEVICE(obj);
361     }
362     return 0;
363 }
364 
365 static const char * const fdc_container_path[] = {
366     "/unattached", "/peripheral", "/peripheral-anon"
367 };
368 
369 /*
370  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
371  * and ACPI objects.
372  */
373 ISADevice *pc_find_fdc0(void)
374 {
375     int i;
376     Object *container;
377     CheckFdcState state = { 0 };
378 
379     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
380         container = container_get(qdev_get_machine(), fdc_container_path[i]);
381         object_child_foreach(container, check_fdc, &state);
382     }
383 
384     if (state.multiple) {
385         warn_report("multiple floppy disk controllers with "
386                     "iobase=0x3f0 have been found");
387         error_printf("the one being picked for CMOS setup might not reflect "
388                      "your intent");
389     }
390 
391     return state.floppy;
392 }
393 
394 static void pc_cmos_init_late(void *opaque)
395 {
396     pc_cmos_init_late_arg *arg = opaque;
397     ISADevice *s = arg->rtc_state;
398     int16_t cylinders;
399     int8_t heads, sectors;
400     int val;
401     int i, trans;
402 
403     val = 0;
404     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
405                                            &cylinders, &heads, &sectors) >= 0) {
406         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
407         val |= 0xf0;
408     }
409     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
410                                            &cylinders, &heads, &sectors) >= 0) {
411         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
412         val |= 0x0f;
413     }
414     rtc_set_memory(s, 0x12, val);
415 
416     val = 0;
417     for (i = 0; i < 4; i++) {
418         /* NOTE: ide_get_geometry() returns the physical
419            geometry.  It is always such that: 1 <= sects <= 63, 1
420            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
421            geometry can be different if a translation is done. */
422         if (arg->idebus[i / 2] &&
423             ide_get_geometry(arg->idebus[i / 2], i % 2,
424                              &cylinders, &heads, &sectors) >= 0) {
425             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
426             assert((trans & ~3) == 0);
427             val |= trans << (i * 2);
428         }
429     }
430     rtc_set_memory(s, 0x39, val);
431 
432     pc_cmos_init_floppy(s, pc_find_fdc0());
433 
434     qemu_unregister_reset(pc_cmos_init_late, opaque);
435 }
436 
437 void pc_cmos_init(PCMachineState *pcms,
438                   BusState *idebus0, BusState *idebus1,
439                   ISADevice *s)
440 {
441     int val;
442     static pc_cmos_init_late_arg arg;
443 
444     /* various important CMOS locations needed by PC/Bochs bios */
445 
446     /* memory size */
447     /* base memory (first MiB) */
448     val = MIN(pcms->below_4g_mem_size / 1024, 640);
449     rtc_set_memory(s, 0x15, val);
450     rtc_set_memory(s, 0x16, val >> 8);
451     /* extended memory (next 64MiB) */
452     if (pcms->below_4g_mem_size > 1024 * 1024) {
453         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
454     } else {
455         val = 0;
456     }
457     if (val > 65535)
458         val = 65535;
459     rtc_set_memory(s, 0x17, val);
460     rtc_set_memory(s, 0x18, val >> 8);
461     rtc_set_memory(s, 0x30, val);
462     rtc_set_memory(s, 0x31, val >> 8);
463     /* memory between 16MiB and 4GiB */
464     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
465         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
466     } else {
467         val = 0;
468     }
469     if (val > 65535)
470         val = 65535;
471     rtc_set_memory(s, 0x34, val);
472     rtc_set_memory(s, 0x35, val >> 8);
473     /* memory above 4GiB */
474     val = pcms->above_4g_mem_size / 65536;
475     rtc_set_memory(s, 0x5b, val);
476     rtc_set_memory(s, 0x5c, val >> 8);
477     rtc_set_memory(s, 0x5d, val >> 16);
478 
479     object_property_add_link(OBJECT(pcms), "rtc_state",
480                              TYPE_ISA_DEVICE,
481                              (Object **)&pcms->rtc,
482                              object_property_allow_set_link,
483                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
484     object_property_set_link(OBJECT(pcms), OBJECT(s),
485                              "rtc_state", &error_abort);
486 
487     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
488 
489     val = 0;
490     val |= 0x02; /* FPU is there */
491     val |= 0x04; /* PS/2 mouse installed */
492     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
493 
494     /* hard drives and FDC */
495     arg.rtc_state = s;
496     arg.idebus[0] = idebus0;
497     arg.idebus[1] = idebus1;
498     qemu_register_reset(pc_cmos_init_late, &arg);
499 }
500 
501 #define TYPE_PORT92 "port92"
502 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
503 
504 /* port 92 stuff: could be split off */
505 typedef struct Port92State {
506     ISADevice parent_obj;
507 
508     MemoryRegion io;
509     uint8_t outport;
510     qemu_irq a20_out;
511 } Port92State;
512 
513 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
514                          unsigned size)
515 {
516     Port92State *s = opaque;
517     int oldval = s->outport;
518 
519     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
520     s->outport = val;
521     qemu_set_irq(s->a20_out, (val >> 1) & 1);
522     if ((val & 1) && !(oldval & 1)) {
523         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
524     }
525 }
526 
527 static uint64_t port92_read(void *opaque, hwaddr addr,
528                             unsigned size)
529 {
530     Port92State *s = opaque;
531     uint32_t ret;
532 
533     ret = s->outport;
534     DPRINTF("port92: read 0x%02x\n", ret);
535     return ret;
536 }
537 
538 static void port92_init(ISADevice *dev, qemu_irq a20_out)
539 {
540     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
541 }
542 
543 static const VMStateDescription vmstate_port92_isa = {
544     .name = "port92",
545     .version_id = 1,
546     .minimum_version_id = 1,
547     .fields = (VMStateField[]) {
548         VMSTATE_UINT8(outport, Port92State),
549         VMSTATE_END_OF_LIST()
550     }
551 };
552 
553 static void port92_reset(DeviceState *d)
554 {
555     Port92State *s = PORT92(d);
556 
557     s->outport &= ~1;
558 }
559 
560 static const MemoryRegionOps port92_ops = {
561     .read = port92_read,
562     .write = port92_write,
563     .impl = {
564         .min_access_size = 1,
565         .max_access_size = 1,
566     },
567     .endianness = DEVICE_LITTLE_ENDIAN,
568 };
569 
570 static void port92_initfn(Object *obj)
571 {
572     Port92State *s = PORT92(obj);
573 
574     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
575 
576     s->outport = 0;
577 
578     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
579 }
580 
581 static void port92_realizefn(DeviceState *dev, Error **errp)
582 {
583     ISADevice *isadev = ISA_DEVICE(dev);
584     Port92State *s = PORT92(dev);
585 
586     isa_register_ioport(isadev, &s->io, 0x92);
587 }
588 
589 static void port92_class_initfn(ObjectClass *klass, void *data)
590 {
591     DeviceClass *dc = DEVICE_CLASS(klass);
592 
593     dc->realize = port92_realizefn;
594     dc->reset = port92_reset;
595     dc->vmsd = &vmstate_port92_isa;
596     /*
597      * Reason: unlike ordinary ISA devices, this one needs additional
598      * wiring: its A20 output line needs to be wired up by
599      * port92_init().
600      */
601     dc->user_creatable = false;
602 }
603 
604 static const TypeInfo port92_info = {
605     .name          = TYPE_PORT92,
606     .parent        = TYPE_ISA_DEVICE,
607     .instance_size = sizeof(Port92State),
608     .instance_init = port92_initfn,
609     .class_init    = port92_class_initfn,
610 };
611 
612 static void port92_register_types(void)
613 {
614     type_register_static(&port92_info);
615 }
616 
617 type_init(port92_register_types)
618 
619 static void handle_a20_line_change(void *opaque, int irq, int level)
620 {
621     X86CPU *cpu = opaque;
622 
623     /* XXX: send to all CPUs ? */
624     /* XXX: add logic to handle multiple A20 line sources */
625     x86_cpu_set_a20(cpu, level);
626 }
627 
628 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
629 {
630     int index = le32_to_cpu(e820_reserve.count);
631     struct e820_entry *entry;
632 
633     if (type != E820_RAM) {
634         /* old FW_CFG_E820_TABLE entry -- reservations only */
635         if (index >= E820_NR_ENTRIES) {
636             return -EBUSY;
637         }
638         entry = &e820_reserve.entry[index++];
639 
640         entry->address = cpu_to_le64(address);
641         entry->length = cpu_to_le64(length);
642         entry->type = cpu_to_le32(type);
643 
644         e820_reserve.count = cpu_to_le32(index);
645     }
646 
647     /* new "etc/e820" file -- include ram too */
648     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
649     e820_table[e820_entries].address = cpu_to_le64(address);
650     e820_table[e820_entries].length = cpu_to_le64(length);
651     e820_table[e820_entries].type = cpu_to_le32(type);
652     e820_entries++;
653 
654     return e820_entries;
655 }
656 
657 int e820_get_num_entries(void)
658 {
659     return e820_entries;
660 }
661 
662 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
663 {
664     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
665         *address = le64_to_cpu(e820_table[idx].address);
666         *length = le64_to_cpu(e820_table[idx].length);
667         return true;
668     }
669     return false;
670 }
671 
672 /* Enables contiguous-apic-ID mode, for compatibility */
673 static bool compat_apic_id_mode;
674 
675 void enable_compat_apic_id_mode(void)
676 {
677     compat_apic_id_mode = true;
678 }
679 
680 /* Calculates initial APIC ID for a specific CPU index
681  *
682  * Currently we need to be able to calculate the APIC ID from the CPU index
683  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
684  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
685  * all CPUs up to max_cpus.
686  */
687 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
688 {
689     uint32_t correct_id;
690     static bool warned;
691 
692     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
693     if (compat_apic_id_mode) {
694         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
695             error_report("APIC IDs set in compatibility mode, "
696                          "CPU topology won't match the configuration");
697             warned = true;
698         }
699         return cpu_index;
700     } else {
701         return correct_id;
702     }
703 }
704 
705 static void pc_build_smbios(PCMachineState *pcms)
706 {
707     uint8_t *smbios_tables, *smbios_anchor;
708     size_t smbios_tables_len, smbios_anchor_len;
709     struct smbios_phys_mem_area *mem_array;
710     unsigned i, array_count;
711     MachineState *ms = MACHINE(pcms);
712     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
713 
714     /* tell smbios about cpuid version and features */
715     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
716 
717     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
718     if (smbios_tables) {
719         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
720                          smbios_tables, smbios_tables_len);
721     }
722 
723     /* build the array of physical mem area from e820 table */
724     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
725     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
726         uint64_t addr, len;
727 
728         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
729             mem_array[array_count].address = addr;
730             mem_array[array_count].length = len;
731             array_count++;
732         }
733     }
734     smbios_get_tables(mem_array, array_count,
735                       &smbios_tables, &smbios_tables_len,
736                       &smbios_anchor, &smbios_anchor_len);
737     g_free(mem_array);
738 
739     if (smbios_anchor) {
740         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
741                         smbios_tables, smbios_tables_len);
742         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
743                         smbios_anchor, smbios_anchor_len);
744     }
745 }
746 
747 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
748 {
749     FWCfgState *fw_cfg;
750     uint64_t *numa_fw_cfg;
751     int i;
752     const CPUArchIdList *cpus;
753     MachineClass *mc = MACHINE_GET_CLASS(pcms);
754 
755     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
756     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
757 
758     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
759      *
760      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
761      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
762      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
763      * for CPU hotplug also uses APIC ID and not "CPU index".
764      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
765      * but the "limit to the APIC ID values SeaBIOS may see".
766      *
767      * So for compatibility reasons with old BIOSes we are stuck with
768      * "etc/max-cpus" actually being apic_id_limit
769      */
770     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
771     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
772     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
773                      acpi_tables, acpi_tables_len);
774     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
775 
776     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
777                      &e820_reserve, sizeof(e820_reserve));
778     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
779                     sizeof(struct e820_entry) * e820_entries);
780 
781     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
782     /* allocate memory for the NUMA channel: one (64bit) word for the number
783      * of nodes, one word for each VCPU->node and one word for each node to
784      * hold the amount of memory.
785      */
786     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
787     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
788     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
789     for (i = 0; i < cpus->len; i++) {
790         unsigned int apic_id = cpus->cpus[i].arch_id;
791         assert(apic_id < pcms->apic_id_limit);
792         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
793     }
794     for (i = 0; i < nb_numa_nodes; i++) {
795         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
796             cpu_to_le64(numa_info[i].node_mem);
797     }
798     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
799                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
800                      sizeof(*numa_fw_cfg));
801 
802     return fw_cfg;
803 }
804 
805 static long get_file_size(FILE *f)
806 {
807     long where, size;
808 
809     /* XXX: on Unix systems, using fstat() probably makes more sense */
810 
811     where = ftell(f);
812     fseek(f, 0, SEEK_END);
813     size = ftell(f);
814     fseek(f, where, SEEK_SET);
815 
816     return size;
817 }
818 
819 /* setup_data types */
820 #define SETUP_NONE     0
821 #define SETUP_E820_EXT 1
822 #define SETUP_DTB      2
823 #define SETUP_PCI      3
824 #define SETUP_EFI      4
825 
826 struct setup_data {
827     uint64_t next;
828     uint32_t type;
829     uint32_t len;
830     uint8_t data[0];
831 } __attribute__((packed));
832 
833 static void load_linux(PCMachineState *pcms,
834                        FWCfgState *fw_cfg)
835 {
836     uint16_t protocol;
837     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
838     int dtb_size, setup_data_offset;
839     uint32_t initrd_max;
840     uint8_t header[8192], *setup, *kernel, *initrd_data;
841     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
842     FILE *f;
843     char *vmode;
844     MachineState *machine = MACHINE(pcms);
845     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
846     struct setup_data *setup_data;
847     const char *kernel_filename = machine->kernel_filename;
848     const char *initrd_filename = machine->initrd_filename;
849     const char *dtb_filename = machine->dtb;
850     const char *kernel_cmdline = machine->kernel_cmdline;
851 
852     /* Align to 16 bytes as a paranoia measure */
853     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
854 
855     /* load the kernel header */
856     f = fopen(kernel_filename, "rb");
857     if (!f || !(kernel_size = get_file_size(f)) ||
858         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
859         MIN(ARRAY_SIZE(header), kernel_size)) {
860         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
861                 kernel_filename, strerror(errno));
862         exit(1);
863     }
864 
865     /* kernel protocol version */
866 #if 0
867     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
868 #endif
869     if (ldl_p(header+0x202) == 0x53726448) {
870         protocol = lduw_p(header+0x206);
871     } else {
872         /* This looks like a multiboot kernel. If it is, let's stop
873            treating it like a Linux kernel. */
874         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
875                            kernel_cmdline, kernel_size, header)) {
876             return;
877         }
878         protocol = 0;
879     }
880 
881     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
882         /* Low kernel */
883         real_addr    = 0x90000;
884         cmdline_addr = 0x9a000 - cmdline_size;
885         prot_addr    = 0x10000;
886     } else if (protocol < 0x202) {
887         /* High but ancient kernel */
888         real_addr    = 0x90000;
889         cmdline_addr = 0x9a000 - cmdline_size;
890         prot_addr    = 0x100000;
891     } else {
892         /* High and recent kernel */
893         real_addr    = 0x10000;
894         cmdline_addr = 0x20000;
895         prot_addr    = 0x100000;
896     }
897 
898 #if 0
899     fprintf(stderr,
900             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
901             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
902             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
903             real_addr,
904             cmdline_addr,
905             prot_addr);
906 #endif
907 
908     /* highest address for loading the initrd */
909     if (protocol >= 0x203) {
910         initrd_max = ldl_p(header+0x22c);
911     } else {
912         initrd_max = 0x37ffffff;
913     }
914 
915     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
916         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
917     }
918 
919     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
920     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
921     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
922 
923     if (protocol >= 0x202) {
924         stl_p(header+0x228, cmdline_addr);
925     } else {
926         stw_p(header+0x20, 0xA33F);
927         stw_p(header+0x22, cmdline_addr-real_addr);
928     }
929 
930     /* handle vga= parameter */
931     vmode = strstr(kernel_cmdline, "vga=");
932     if (vmode) {
933         unsigned int video_mode;
934         /* skip "vga=" */
935         vmode += 4;
936         if (!strncmp(vmode, "normal", 6)) {
937             video_mode = 0xffff;
938         } else if (!strncmp(vmode, "ext", 3)) {
939             video_mode = 0xfffe;
940         } else if (!strncmp(vmode, "ask", 3)) {
941             video_mode = 0xfffd;
942         } else {
943             video_mode = strtol(vmode, NULL, 0);
944         }
945         stw_p(header+0x1fa, video_mode);
946     }
947 
948     /* loader type */
949     /* High nybble = B reserved for QEMU; low nybble is revision number.
950        If this code is substantially changed, you may want to consider
951        incrementing the revision. */
952     if (protocol >= 0x200) {
953         header[0x210] = 0xB0;
954     }
955     /* heap */
956     if (protocol >= 0x201) {
957         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
958         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
959     }
960 
961     /* load initrd */
962     if (initrd_filename) {
963         if (protocol < 0x200) {
964             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
965             exit(1);
966         }
967 
968         initrd_size = get_image_size(initrd_filename);
969         if (initrd_size < 0) {
970             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
971                     initrd_filename, strerror(errno));
972             exit(1);
973         }
974 
975         initrd_addr = (initrd_max-initrd_size) & ~4095;
976 
977         initrd_data = g_malloc(initrd_size);
978         load_image(initrd_filename, initrd_data);
979 
980         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
981         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
982         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
983 
984         stl_p(header+0x218, initrd_addr);
985         stl_p(header+0x21c, initrd_size);
986     }
987 
988     /* load kernel and setup */
989     setup_size = header[0x1f1];
990     if (setup_size == 0) {
991         setup_size = 4;
992     }
993     setup_size = (setup_size+1)*512;
994     if (setup_size > kernel_size) {
995         fprintf(stderr, "qemu: invalid kernel header\n");
996         exit(1);
997     }
998     kernel_size -= setup_size;
999 
1000     setup  = g_malloc(setup_size);
1001     kernel = g_malloc(kernel_size);
1002     fseek(f, 0, SEEK_SET);
1003     if (fread(setup, 1, setup_size, f) != setup_size) {
1004         fprintf(stderr, "fread() failed\n");
1005         exit(1);
1006     }
1007     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1008         fprintf(stderr, "fread() failed\n");
1009         exit(1);
1010     }
1011     fclose(f);
1012 
1013     /* append dtb to kernel */
1014     if (dtb_filename) {
1015         if (protocol < 0x209) {
1016             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1017             exit(1);
1018         }
1019 
1020         dtb_size = get_image_size(dtb_filename);
1021         if (dtb_size <= 0) {
1022             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1023                     dtb_filename, strerror(errno));
1024             exit(1);
1025         }
1026 
1027         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1028         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1029         kernel = g_realloc(kernel, kernel_size);
1030 
1031         stq_p(header+0x250, prot_addr + setup_data_offset);
1032 
1033         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1034         setup_data->next = 0;
1035         setup_data->type = cpu_to_le32(SETUP_DTB);
1036         setup_data->len = cpu_to_le32(dtb_size);
1037 
1038         load_image_size(dtb_filename, setup_data->data, dtb_size);
1039     }
1040 
1041     memcpy(setup, header, MIN(sizeof(header), setup_size));
1042 
1043     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1044     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1045     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1046 
1047     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1048     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1049     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1050 
1051     option_rom[nb_option_roms].bootindex = 0;
1052     option_rom[nb_option_roms].name = "linuxboot.bin";
1053     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1054         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1055     }
1056     nb_option_roms++;
1057 }
1058 
1059 #define NE2000_NB_MAX 6
1060 
1061 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1062                                               0x280, 0x380 };
1063 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1064 
1065 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1066 {
1067     static int nb_ne2k = 0;
1068 
1069     if (nb_ne2k == NE2000_NB_MAX)
1070         return;
1071     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1072                     ne2000_irq[nb_ne2k], nd);
1073     nb_ne2k++;
1074 }
1075 
1076 DeviceState *cpu_get_current_apic(void)
1077 {
1078     if (current_cpu) {
1079         X86CPU *cpu = X86_CPU(current_cpu);
1080         return cpu->apic_state;
1081     } else {
1082         return NULL;
1083     }
1084 }
1085 
1086 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1087 {
1088     X86CPU *cpu = opaque;
1089 
1090     if (level) {
1091         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1092     }
1093 }
1094 
1095 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1096 {
1097     Object *cpu = NULL;
1098     Error *local_err = NULL;
1099 
1100     cpu = object_new(typename);
1101 
1102     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1103     object_property_set_bool(cpu, true, "realized", &local_err);
1104 
1105     object_unref(cpu);
1106     error_propagate(errp, local_err);
1107 }
1108 
1109 void pc_hot_add_cpu(const int64_t id, Error **errp)
1110 {
1111     MachineState *ms = MACHINE(qdev_get_machine());
1112     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1113     Error *local_err = NULL;
1114 
1115     if (id < 0) {
1116         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1117         return;
1118     }
1119 
1120     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1121         error_setg(errp, "Unable to add CPU: %" PRIi64
1122                    ", resulting APIC ID (%" PRIi64 ") is too large",
1123                    id, apic_id);
1124         return;
1125     }
1126 
1127     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1128     if (local_err) {
1129         error_propagate(errp, local_err);
1130         return;
1131     }
1132 }
1133 
1134 void pc_cpus_init(PCMachineState *pcms)
1135 {
1136     int i;
1137     const CPUArchIdList *possible_cpus;
1138     MachineState *ms = MACHINE(pcms);
1139     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1140 
1141     /* Calculates the limit to CPU APIC ID values
1142      *
1143      * Limit for the APIC ID value, so that all
1144      * CPU APIC IDs are < pcms->apic_id_limit.
1145      *
1146      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1147      */
1148     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1149     possible_cpus = mc->possible_cpu_arch_ids(ms);
1150     for (i = 0; i < smp_cpus; i++) {
1151         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1152                    &error_fatal);
1153     }
1154 }
1155 
1156 static void pc_build_feature_control_file(PCMachineState *pcms)
1157 {
1158     MachineState *ms = MACHINE(pcms);
1159     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1160     CPUX86State *env = &cpu->env;
1161     uint32_t unused, ecx, edx;
1162     uint64_t feature_control_bits = 0;
1163     uint64_t *val;
1164 
1165     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1166     if (ecx & CPUID_EXT_VMX) {
1167         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1168     }
1169 
1170     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1171         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1172         (env->mcg_cap & MCG_LMCE_P)) {
1173         feature_control_bits |= FEATURE_CONTROL_LMCE;
1174     }
1175 
1176     if (!feature_control_bits) {
1177         return;
1178     }
1179 
1180     val = g_malloc(sizeof(*val));
1181     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1182     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1183 }
1184 
1185 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1186 {
1187     if (cpus_count > 0xff) {
1188         /* If the number of CPUs can't be represented in 8 bits, the
1189          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1190          * to make old BIOSes fail more predictably.
1191          */
1192         rtc_set_memory(rtc, 0x5f, 0);
1193     } else {
1194         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1195     }
1196 }
1197 
1198 static
1199 void pc_machine_done(Notifier *notifier, void *data)
1200 {
1201     PCMachineState *pcms = container_of(notifier,
1202                                         PCMachineState, machine_done);
1203     PCIBus *bus = pcms->bus;
1204 
1205     /* set the number of CPUs */
1206     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1207 
1208     if (bus) {
1209         int extra_hosts = 0;
1210 
1211         QLIST_FOREACH(bus, &bus->child, sibling) {
1212             /* look for expander root buses */
1213             if (pci_bus_is_root(bus)) {
1214                 extra_hosts++;
1215             }
1216         }
1217         if (extra_hosts && pcms->fw_cfg) {
1218             uint64_t *val = g_malloc(sizeof(*val));
1219             *val = cpu_to_le64(extra_hosts);
1220             fw_cfg_add_file(pcms->fw_cfg,
1221                     "etc/extra-pci-roots", val, sizeof(*val));
1222         }
1223     }
1224 
1225     acpi_setup();
1226     if (pcms->fw_cfg) {
1227         pc_build_smbios(pcms);
1228         pc_build_feature_control_file(pcms);
1229         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1230         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1231     }
1232 
1233     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1234         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1235 
1236         if (!iommu || !iommu->x86_iommu.intr_supported ||
1237             iommu->intr_eim != ON_OFF_AUTO_ON) {
1238             error_report("current -smp configuration requires "
1239                          "Extended Interrupt Mode enabled. "
1240                          "You can add an IOMMU using: "
1241                          "-device intel-iommu,intremap=on,eim=on");
1242             exit(EXIT_FAILURE);
1243         }
1244     }
1245 }
1246 
1247 void pc_guest_info_init(PCMachineState *pcms)
1248 {
1249     int i;
1250 
1251     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1252     pcms->numa_nodes = nb_numa_nodes;
1253     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1254                                     sizeof *pcms->node_mem);
1255     for (i = 0; i < nb_numa_nodes; i++) {
1256         pcms->node_mem[i] = numa_info[i].node_mem;
1257     }
1258 
1259     pcms->machine_done.notify = pc_machine_done;
1260     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1261 }
1262 
1263 /* setup pci memory address space mapping into system address space */
1264 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1265                             MemoryRegion *pci_address_space)
1266 {
1267     /* Set to lower priority than RAM */
1268     memory_region_add_subregion_overlap(system_memory, 0x0,
1269                                         pci_address_space, -1);
1270 }
1271 
1272 void pc_acpi_init(const char *default_dsdt)
1273 {
1274     char *filename;
1275 
1276     if (acpi_tables != NULL) {
1277         /* manually set via -acpitable, leave it alone */
1278         return;
1279     }
1280 
1281     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1282     if (filename == NULL) {
1283         warn_report("failed to find %s", default_dsdt);
1284     } else {
1285         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1286                                           &error_abort);
1287         Error *err = NULL;
1288 
1289         qemu_opt_set(opts, "file", filename, &error_abort);
1290 
1291         acpi_table_add_builtin(opts, &err);
1292         if (err) {
1293             warn_reportf_err(err, "failed to load %s: ", filename);
1294         }
1295         g_free(filename);
1296     }
1297 }
1298 
1299 void xen_load_linux(PCMachineState *pcms)
1300 {
1301     int i;
1302     FWCfgState *fw_cfg;
1303 
1304     assert(MACHINE(pcms)->kernel_filename != NULL);
1305 
1306     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1307     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1308     rom_set_fw(fw_cfg);
1309 
1310     load_linux(pcms, fw_cfg);
1311     for (i = 0; i < nb_option_roms; i++) {
1312         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1313                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1314                !strcmp(option_rom[i].name, "multiboot.bin"));
1315         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1316     }
1317     pcms->fw_cfg = fw_cfg;
1318 }
1319 
1320 void pc_memory_init(PCMachineState *pcms,
1321                     MemoryRegion *system_memory,
1322                     MemoryRegion *rom_memory,
1323                     MemoryRegion **ram_memory)
1324 {
1325     int linux_boot, i;
1326     MemoryRegion *ram, *option_rom_mr;
1327     MemoryRegion *ram_below_4g, *ram_above_4g;
1328     FWCfgState *fw_cfg;
1329     MachineState *machine = MACHINE(pcms);
1330     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1331 
1332     assert(machine->ram_size == pcms->below_4g_mem_size +
1333                                 pcms->above_4g_mem_size);
1334 
1335     linux_boot = (machine->kernel_filename != NULL);
1336 
1337     /* Allocate RAM.  We allocate it as a single memory region and use
1338      * aliases to address portions of it, mostly for backwards compatibility
1339      * with older qemus that used qemu_ram_alloc().
1340      */
1341     ram = g_malloc(sizeof(*ram));
1342     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1343                                          machine->ram_size);
1344     *ram_memory = ram;
1345     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1346     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1347                              0, pcms->below_4g_mem_size);
1348     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1349     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1350     if (pcms->above_4g_mem_size > 0) {
1351         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1352         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1353                                  pcms->below_4g_mem_size,
1354                                  pcms->above_4g_mem_size);
1355         memory_region_add_subregion(system_memory, 0x100000000ULL,
1356                                     ram_above_4g);
1357         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1358     }
1359 
1360     if (!pcmc->has_reserved_memory &&
1361         (machine->ram_slots ||
1362          (machine->maxram_size > machine->ram_size))) {
1363         MachineClass *mc = MACHINE_GET_CLASS(machine);
1364 
1365         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1366                      mc->name);
1367         exit(EXIT_FAILURE);
1368     }
1369 
1370     /* initialize hotplug memory address space */
1371     if (pcmc->has_reserved_memory &&
1372         (machine->ram_size < machine->maxram_size)) {
1373         ram_addr_t hotplug_mem_size =
1374             machine->maxram_size - machine->ram_size;
1375 
1376         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1377             error_report("unsupported amount of memory slots: %"PRIu64,
1378                          machine->ram_slots);
1379             exit(EXIT_FAILURE);
1380         }
1381 
1382         if (QEMU_ALIGN_UP(machine->maxram_size,
1383                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1384             error_report("maximum memory size must by aligned to multiple of "
1385                          "%d bytes", TARGET_PAGE_SIZE);
1386             exit(EXIT_FAILURE);
1387         }
1388 
1389         pcms->hotplug_memory.base =
1390             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1391 
1392         if (pcmc->enforce_aligned_dimm) {
1393             /* size hotplug region assuming 1G page max alignment per slot */
1394             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1395         }
1396 
1397         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1398             hotplug_mem_size) {
1399             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1400                          machine->maxram_size);
1401             exit(EXIT_FAILURE);
1402         }
1403 
1404         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1405                            "hotplug-memory", hotplug_mem_size);
1406         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1407                                     &pcms->hotplug_memory.mr);
1408     }
1409 
1410     /* Initialize PC system firmware */
1411     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1412 
1413     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1414     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1415                            &error_fatal);
1416     if (pcmc->pci_enabled) {
1417         memory_region_set_readonly(option_rom_mr, true);
1418     }
1419     memory_region_add_subregion_overlap(rom_memory,
1420                                         PC_ROM_MIN_VGA,
1421                                         option_rom_mr,
1422                                         1);
1423 
1424     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1425 
1426     rom_set_fw(fw_cfg);
1427 
1428     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1429         uint64_t *val = g_malloc(sizeof(*val));
1430         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1431         uint64_t res_mem_end = pcms->hotplug_memory.base;
1432 
1433         if (!pcmc->broken_reserved_end) {
1434             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1435         }
1436         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1437         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1438     }
1439 
1440     if (linux_boot) {
1441         load_linux(pcms, fw_cfg);
1442     }
1443 
1444     for (i = 0; i < nb_option_roms; i++) {
1445         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1446     }
1447     pcms->fw_cfg = fw_cfg;
1448 
1449     /* Init default IOAPIC address space */
1450     pcms->ioapic_as = &address_space_memory;
1451 }
1452 
1453 /*
1454  * The 64bit pci hole starts after "above 4G RAM" and
1455  * potentially the space reserved for memory hotplug.
1456  */
1457 uint64_t pc_pci_hole64_start(void)
1458 {
1459     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1460     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1461     uint64_t hole64_start = 0;
1462 
1463     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1464         hole64_start = pcms->hotplug_memory.base;
1465         if (!pcmc->broken_reserved_end) {
1466             hole64_start += memory_region_size(&pcms->hotplug_memory.mr);
1467         }
1468     } else {
1469         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1470     }
1471 
1472     return ROUND_UP(hole64_start, 1ULL << 30);
1473 }
1474 
1475 qemu_irq pc_allocate_cpu_irq(void)
1476 {
1477     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1478 }
1479 
1480 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1481 {
1482     DeviceState *dev = NULL;
1483 
1484     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1485     if (pci_bus) {
1486         PCIDevice *pcidev = pci_vga_init(pci_bus);
1487         dev = pcidev ? &pcidev->qdev : NULL;
1488     } else if (isa_bus) {
1489         ISADevice *isadev = isa_vga_init(isa_bus);
1490         dev = isadev ? DEVICE(isadev) : NULL;
1491     }
1492     rom_reset_order_override();
1493     return dev;
1494 }
1495 
1496 static const MemoryRegionOps ioport80_io_ops = {
1497     .write = ioport80_write,
1498     .read = ioport80_read,
1499     .endianness = DEVICE_NATIVE_ENDIAN,
1500     .impl = {
1501         .min_access_size = 1,
1502         .max_access_size = 1,
1503     },
1504 };
1505 
1506 static const MemoryRegionOps ioportF0_io_ops = {
1507     .write = ioportF0_write,
1508     .read = ioportF0_read,
1509     .endianness = DEVICE_NATIVE_ENDIAN,
1510     .impl = {
1511         .min_access_size = 1,
1512         .max_access_size = 1,
1513     },
1514 };
1515 
1516 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1517                           ISADevice **rtc_state,
1518                           bool create_fdctrl,
1519                           bool no_vmport,
1520                           bool has_pit,
1521                           uint32_t hpet_irqs)
1522 {
1523     int i;
1524     DriveInfo *fd[MAX_FD];
1525     DeviceState *hpet = NULL;
1526     int pit_isa_irq = 0;
1527     qemu_irq pit_alt_irq = NULL;
1528     qemu_irq rtc_irq = NULL;
1529     qemu_irq *a20_line;
1530     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1531     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1532     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1533 
1534     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1535     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1536 
1537     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1538     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1539 
1540     /*
1541      * Check if an HPET shall be created.
1542      *
1543      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1544      * when the HPET wants to take over. Thus we have to disable the latter.
1545      */
1546     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1547         /* In order to set property, here not using sysbus_try_create_simple */
1548         hpet = qdev_try_create(NULL, TYPE_HPET);
1549         if (hpet) {
1550             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1551              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1552              * IRQ8 and IRQ2.
1553              */
1554             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1555                     HPET_INTCAP, NULL);
1556             if (!compat) {
1557                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1558             }
1559             qdev_init_nofail(hpet);
1560             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1561 
1562             for (i = 0; i < GSI_NUM_PINS; i++) {
1563                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1564             }
1565             pit_isa_irq = -1;
1566             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1567             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1568         }
1569     }
1570     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1571 
1572     qemu_register_boot_set(pc_boot_set, *rtc_state);
1573 
1574     if (!xen_enabled() && has_pit) {
1575         if (kvm_pit_in_kernel()) {
1576             pit = kvm_pit_init(isa_bus, 0x40);
1577         } else {
1578             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1579         }
1580         if (hpet) {
1581             /* connect PIT to output control line of the HPET */
1582             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1583         }
1584         pcspk_init(isa_bus, pit);
1585     }
1586 
1587     serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1588     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1589 
1590     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1591     i8042 = isa_create_simple(isa_bus, "i8042");
1592     i8042_setup_a20_line(i8042, a20_line[0]);
1593     if (!no_vmport) {
1594         vmport_init(isa_bus);
1595         vmmouse = isa_try_create(isa_bus, "vmmouse");
1596     } else {
1597         vmmouse = NULL;
1598     }
1599     if (vmmouse) {
1600         DeviceState *dev = DEVICE(vmmouse);
1601         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1602         qdev_init_nofail(dev);
1603     }
1604     port92 = isa_create_simple(isa_bus, "port92");
1605     port92_init(port92, a20_line[1]);
1606     g_free(a20_line);
1607 
1608     DMA_init(isa_bus, 0);
1609 
1610     for(i = 0; i < MAX_FD; i++) {
1611         fd[i] = drive_get(IF_FLOPPY, 0, i);
1612         create_fdctrl |= !!fd[i];
1613     }
1614     if (create_fdctrl) {
1615         fdctrl_init_isa(isa_bus, fd);
1616     }
1617 }
1618 
1619 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1620 {
1621     int i;
1622 
1623     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1624     for (i = 0; i < nb_nics; i++) {
1625         NICInfo *nd = &nd_table[i];
1626 
1627         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1628             pc_init_ne2k_isa(isa_bus, nd);
1629         } else {
1630             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1631         }
1632     }
1633     rom_reset_order_override();
1634 }
1635 
1636 void pc_pci_device_init(PCIBus *pci_bus)
1637 {
1638     int max_bus;
1639     int bus;
1640 
1641     /* Note: if=scsi is deprecated with PC machine types */
1642     max_bus = drive_get_max_bus(IF_SCSI);
1643     for (bus = 0; bus <= max_bus; bus++) {
1644         pci_create_simple(pci_bus, -1, "lsi53c895a");
1645         /*
1646          * By not creating frontends here, we make
1647          * scsi_legacy_handle_cmdline() create them, and warn that
1648          * this usage is deprecated.
1649          */
1650     }
1651 }
1652 
1653 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1654 {
1655     DeviceState *dev;
1656     SysBusDevice *d;
1657     unsigned int i;
1658 
1659     if (kvm_ioapic_in_kernel()) {
1660         dev = qdev_create(NULL, "kvm-ioapic");
1661     } else {
1662         dev = qdev_create(NULL, "ioapic");
1663     }
1664     if (parent_name) {
1665         object_property_add_child(object_resolve_path(parent_name, NULL),
1666                                   "ioapic", OBJECT(dev), NULL);
1667     }
1668     qdev_init_nofail(dev);
1669     d = SYS_BUS_DEVICE(dev);
1670     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1671 
1672     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1673         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1674     }
1675 }
1676 
1677 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1678                          DeviceState *dev, Error **errp)
1679 {
1680     HotplugHandlerClass *hhc;
1681     Error *local_err = NULL;
1682     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1683     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1684     PCDIMMDevice *dimm = PC_DIMM(dev);
1685     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1686     MemoryRegion *mr;
1687     uint64_t align = TARGET_PAGE_SIZE;
1688     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1689 
1690     mr = ddc->get_memory_region(dimm, &local_err);
1691     if (local_err) {
1692         goto out;
1693     }
1694 
1695     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1696         align = memory_region_get_alignment(mr);
1697     }
1698 
1699     /*
1700      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1701      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1702      * addition to cover this case.
1703      */
1704     if (!pcms->acpi_dev || !acpi_enabled) {
1705         error_setg(&local_err,
1706                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1707         goto out;
1708     }
1709 
1710     if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1711         error_setg(&local_err,
1712                    "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1713         goto out;
1714     }
1715 
1716     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1717     if (local_err) {
1718         goto out;
1719     }
1720 
1721     if (is_nvdimm) {
1722         nvdimm_plug(&pcms->acpi_nvdimm_state);
1723     }
1724 
1725     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1726     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1727 out:
1728     error_propagate(errp, local_err);
1729 }
1730 
1731 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1732                                    DeviceState *dev, Error **errp)
1733 {
1734     HotplugHandlerClass *hhc;
1735     Error *local_err = NULL;
1736     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1737 
1738     /*
1739      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1740      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1741      * addition to cover this case.
1742      */
1743     if (!pcms->acpi_dev || !acpi_enabled) {
1744         error_setg(&local_err,
1745                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1746         goto out;
1747     }
1748 
1749     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1750         error_setg(&local_err,
1751                    "nvdimm device hot unplug is not supported yet.");
1752         goto out;
1753     }
1754 
1755     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1756     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1757 
1758 out:
1759     error_propagate(errp, local_err);
1760 }
1761 
1762 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1763                            DeviceState *dev, Error **errp)
1764 {
1765     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1766     PCDIMMDevice *dimm = PC_DIMM(dev);
1767     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1768     MemoryRegion *mr;
1769     HotplugHandlerClass *hhc;
1770     Error *local_err = NULL;
1771 
1772     mr = ddc->get_memory_region(dimm, &local_err);
1773     if (local_err) {
1774         goto out;
1775     }
1776 
1777     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1778     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1779 
1780     if (local_err) {
1781         goto out;
1782     }
1783 
1784     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1785     object_unparent(OBJECT(dev));
1786 
1787  out:
1788     error_propagate(errp, local_err);
1789 }
1790 
1791 static int pc_apic_cmp(const void *a, const void *b)
1792 {
1793    CPUArchId *apic_a = (CPUArchId *)a;
1794    CPUArchId *apic_b = (CPUArchId *)b;
1795 
1796    return apic_a->arch_id - apic_b->arch_id;
1797 }
1798 
1799 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1800  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1801  * entry corresponding to CPU's apic_id returns NULL.
1802  */
1803 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1804 {
1805     CPUArchId apic_id, *found_cpu;
1806 
1807     apic_id.arch_id = id;
1808     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1809         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1810         pc_apic_cmp);
1811     if (found_cpu && idx) {
1812         *idx = found_cpu - ms->possible_cpus->cpus;
1813     }
1814     return found_cpu;
1815 }
1816 
1817 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1818                         DeviceState *dev, Error **errp)
1819 {
1820     CPUArchId *found_cpu;
1821     HotplugHandlerClass *hhc;
1822     Error *local_err = NULL;
1823     X86CPU *cpu = X86_CPU(dev);
1824     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1825 
1826     if (pcms->acpi_dev) {
1827         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1828         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1829         if (local_err) {
1830             goto out;
1831         }
1832     }
1833 
1834     /* increment the number of CPUs */
1835     pcms->boot_cpus++;
1836     if (pcms->rtc) {
1837         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1838     }
1839     if (pcms->fw_cfg) {
1840         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1841     }
1842 
1843     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1844     found_cpu->cpu = OBJECT(dev);
1845 out:
1846     error_propagate(errp, local_err);
1847 }
1848 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1849                                      DeviceState *dev, Error **errp)
1850 {
1851     int idx = -1;
1852     HotplugHandlerClass *hhc;
1853     Error *local_err = NULL;
1854     X86CPU *cpu = X86_CPU(dev);
1855     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1856 
1857     if (!pcms->acpi_dev) {
1858         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1859         goto out;
1860     }
1861 
1862     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1863     assert(idx != -1);
1864     if (idx == 0) {
1865         error_setg(&local_err, "Boot CPU is unpluggable");
1866         goto out;
1867     }
1868 
1869     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1870     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1871 
1872     if (local_err) {
1873         goto out;
1874     }
1875 
1876  out:
1877     error_propagate(errp, local_err);
1878 
1879 }
1880 
1881 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1882                              DeviceState *dev, Error **errp)
1883 {
1884     CPUArchId *found_cpu;
1885     HotplugHandlerClass *hhc;
1886     Error *local_err = NULL;
1887     X86CPU *cpu = X86_CPU(dev);
1888     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1889 
1890     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1891     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1892 
1893     if (local_err) {
1894         goto out;
1895     }
1896 
1897     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1898     found_cpu->cpu = NULL;
1899     object_unparent(OBJECT(dev));
1900 
1901     /* decrement the number of CPUs */
1902     pcms->boot_cpus--;
1903     /* Update the number of CPUs in CMOS */
1904     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1905     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1906  out:
1907     error_propagate(errp, local_err);
1908 }
1909 
1910 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1911                             DeviceState *dev, Error **errp)
1912 {
1913     int idx;
1914     CPUState *cs;
1915     CPUArchId *cpu_slot;
1916     X86CPUTopoInfo topo;
1917     X86CPU *cpu = X86_CPU(dev);
1918     MachineState *ms = MACHINE(hotplug_dev);
1919     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1920 
1921     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1922         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1923                    ms->cpu_type);
1924         return;
1925     }
1926 
1927     /* if APIC ID is not set, set it based on socket/core/thread properties */
1928     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1929         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1930 
1931         if (cpu->socket_id < 0) {
1932             error_setg(errp, "CPU socket-id is not set");
1933             return;
1934         } else if (cpu->socket_id > max_socket) {
1935             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1936                        cpu->socket_id, max_socket);
1937             return;
1938         }
1939         if (cpu->core_id < 0) {
1940             error_setg(errp, "CPU core-id is not set");
1941             return;
1942         } else if (cpu->core_id > (smp_cores - 1)) {
1943             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1944                        cpu->core_id, smp_cores - 1);
1945             return;
1946         }
1947         if (cpu->thread_id < 0) {
1948             error_setg(errp, "CPU thread-id is not set");
1949             return;
1950         } else if (cpu->thread_id > (smp_threads - 1)) {
1951             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1952                        cpu->thread_id, smp_threads - 1);
1953             return;
1954         }
1955 
1956         topo.pkg_id = cpu->socket_id;
1957         topo.core_id = cpu->core_id;
1958         topo.smt_id = cpu->thread_id;
1959         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1960     }
1961 
1962     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1963     if (!cpu_slot) {
1964         MachineState *ms = MACHINE(pcms);
1965 
1966         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1967         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1968                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1969                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1970                    ms->possible_cpus->len - 1);
1971         return;
1972     }
1973 
1974     if (cpu_slot->cpu) {
1975         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1976                    idx, cpu->apic_id);
1977         return;
1978     }
1979 
1980     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1981      * so that machine_query_hotpluggable_cpus would show correct values
1982      */
1983     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1984      * once -smp refactoring is complete and there will be CPU private
1985      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1986     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1987     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1988         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1989             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1990         return;
1991     }
1992     cpu->socket_id = topo.pkg_id;
1993 
1994     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1995         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1996             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1997         return;
1998     }
1999     cpu->core_id = topo.core_id;
2000 
2001     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2002         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2003             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2004         return;
2005     }
2006     cpu->thread_id = topo.smt_id;
2007 
2008     cs = CPU(cpu);
2009     cs->cpu_index = idx;
2010 
2011     numa_cpu_pre_plug(cpu_slot, dev, errp);
2012 }
2013 
2014 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2015                                           DeviceState *dev, Error **errp)
2016 {
2017     if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2018         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2019     }
2020 }
2021 
2022 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2023                                       DeviceState *dev, Error **errp)
2024 {
2025     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2026         pc_dimm_plug(hotplug_dev, dev, errp);
2027     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2028         pc_cpu_plug(hotplug_dev, dev, errp);
2029     }
2030 }
2031 
2032 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2033                                                 DeviceState *dev, Error **errp)
2034 {
2035     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2036         pc_dimm_unplug_request(hotplug_dev, dev, errp);
2037     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2038         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2039     } else {
2040         error_setg(errp, "acpi: device unplug request for not supported device"
2041                    " type: %s", object_get_typename(OBJECT(dev)));
2042     }
2043 }
2044 
2045 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2046                                         DeviceState *dev, Error **errp)
2047 {
2048     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2049         pc_dimm_unplug(hotplug_dev, dev, errp);
2050     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2051         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2052     } else {
2053         error_setg(errp, "acpi: device unplug for not supported device"
2054                    " type: %s", object_get_typename(OBJECT(dev)));
2055     }
2056 }
2057 
2058 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2059                                              DeviceState *dev)
2060 {
2061     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2062 
2063     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2064         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2065         return HOTPLUG_HANDLER(machine);
2066     }
2067 
2068     return pcmc->get_hotplug_handler ?
2069         pcmc->get_hotplug_handler(machine, dev) : NULL;
2070 }
2071 
2072 static void
2073 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2074                                           const char *name, void *opaque,
2075                                           Error **errp)
2076 {
2077     PCMachineState *pcms = PC_MACHINE(obj);
2078     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2079 
2080     visit_type_int(v, name, &value, errp);
2081 }
2082 
2083 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2084                                             const char *name, void *opaque,
2085                                             Error **errp)
2086 {
2087     PCMachineState *pcms = PC_MACHINE(obj);
2088     uint64_t value = pcms->max_ram_below_4g;
2089 
2090     visit_type_size(v, name, &value, errp);
2091 }
2092 
2093 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2094                                             const char *name, void *opaque,
2095                                             Error **errp)
2096 {
2097     PCMachineState *pcms = PC_MACHINE(obj);
2098     Error *error = NULL;
2099     uint64_t value;
2100 
2101     visit_type_size(v, name, &value, &error);
2102     if (error) {
2103         error_propagate(errp, error);
2104         return;
2105     }
2106     if (value > (1ULL << 32)) {
2107         error_setg(&error,
2108                    "Machine option 'max-ram-below-4g=%"PRIu64
2109                    "' expects size less than or equal to 4G", value);
2110         error_propagate(errp, error);
2111         return;
2112     }
2113 
2114     if (value < (1ULL << 20)) {
2115         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2116                     "BIOS may not work with less than 1MiB", value);
2117     }
2118 
2119     pcms->max_ram_below_4g = value;
2120 }
2121 
2122 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2123                                   void *opaque, Error **errp)
2124 {
2125     PCMachineState *pcms = PC_MACHINE(obj);
2126     OnOffAuto vmport = pcms->vmport;
2127 
2128     visit_type_OnOffAuto(v, name, &vmport, errp);
2129 }
2130 
2131 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2132                                   void *opaque, Error **errp)
2133 {
2134     PCMachineState *pcms = PC_MACHINE(obj);
2135 
2136     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2137 }
2138 
2139 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2140 {
2141     bool smm_available = false;
2142 
2143     if (pcms->smm == ON_OFF_AUTO_OFF) {
2144         return false;
2145     }
2146 
2147     if (tcg_enabled() || qtest_enabled()) {
2148         smm_available = true;
2149     } else if (kvm_enabled()) {
2150         smm_available = kvm_has_smm();
2151     }
2152 
2153     if (smm_available) {
2154         return true;
2155     }
2156 
2157     if (pcms->smm == ON_OFF_AUTO_ON) {
2158         error_report("System Management Mode not supported by this hypervisor.");
2159         exit(1);
2160     }
2161     return false;
2162 }
2163 
2164 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2165                                void *opaque, Error **errp)
2166 {
2167     PCMachineState *pcms = PC_MACHINE(obj);
2168     OnOffAuto smm = pcms->smm;
2169 
2170     visit_type_OnOffAuto(v, name, &smm, errp);
2171 }
2172 
2173 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2174                                void *opaque, Error **errp)
2175 {
2176     PCMachineState *pcms = PC_MACHINE(obj);
2177 
2178     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2179 }
2180 
2181 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2182 {
2183     PCMachineState *pcms = PC_MACHINE(obj);
2184 
2185     return pcms->acpi_nvdimm_state.is_enabled;
2186 }
2187 
2188 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2189 {
2190     PCMachineState *pcms = PC_MACHINE(obj);
2191 
2192     pcms->acpi_nvdimm_state.is_enabled = value;
2193 }
2194 
2195 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2196 {
2197     PCMachineState *pcms = PC_MACHINE(obj);
2198 
2199     return pcms->smbus;
2200 }
2201 
2202 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2203 {
2204     PCMachineState *pcms = PC_MACHINE(obj);
2205 
2206     pcms->smbus = value;
2207 }
2208 
2209 static bool pc_machine_get_sata(Object *obj, Error **errp)
2210 {
2211     PCMachineState *pcms = PC_MACHINE(obj);
2212 
2213     return pcms->sata;
2214 }
2215 
2216 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2217 {
2218     PCMachineState *pcms = PC_MACHINE(obj);
2219 
2220     pcms->sata = value;
2221 }
2222 
2223 static bool pc_machine_get_pit(Object *obj, Error **errp)
2224 {
2225     PCMachineState *pcms = PC_MACHINE(obj);
2226 
2227     return pcms->pit;
2228 }
2229 
2230 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2231 {
2232     PCMachineState *pcms = PC_MACHINE(obj);
2233 
2234     pcms->pit = value;
2235 }
2236 
2237 static void pc_machine_initfn(Object *obj)
2238 {
2239     PCMachineState *pcms = PC_MACHINE(obj);
2240 
2241     pcms->max_ram_below_4g = 0; /* use default */
2242     pcms->smm = ON_OFF_AUTO_AUTO;
2243     pcms->vmport = ON_OFF_AUTO_AUTO;
2244     /* nvdimm is disabled on default. */
2245     pcms->acpi_nvdimm_state.is_enabled = false;
2246     /* acpi build is enabled by default if machine supports it */
2247     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2248     pcms->smbus = true;
2249     pcms->sata = true;
2250     pcms->pit = true;
2251 }
2252 
2253 static void pc_machine_reset(void)
2254 {
2255     CPUState *cs;
2256     X86CPU *cpu;
2257 
2258     qemu_devices_reset();
2259 
2260     /* Reset APIC after devices have been reset to cancel
2261      * any changes that qemu_devices_reset() might have done.
2262      */
2263     CPU_FOREACH(cs) {
2264         cpu = X86_CPU(cs);
2265 
2266         if (cpu->apic_state) {
2267             device_reset(cpu->apic_state);
2268         }
2269     }
2270 }
2271 
2272 static CpuInstanceProperties
2273 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2274 {
2275     MachineClass *mc = MACHINE_GET_CLASS(ms);
2276     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2277 
2278     assert(cpu_index < possible_cpus->len);
2279     return possible_cpus->cpus[cpu_index].props;
2280 }
2281 
2282 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2283 {
2284    X86CPUTopoInfo topo;
2285 
2286    assert(idx < ms->possible_cpus->len);
2287    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2288                             smp_cores, smp_threads, &topo);
2289    return topo.pkg_id % nb_numa_nodes;
2290 }
2291 
2292 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2293 {
2294     int i;
2295 
2296     if (ms->possible_cpus) {
2297         /*
2298          * make sure that max_cpus hasn't changed since the first use, i.e.
2299          * -smp hasn't been parsed after it
2300         */
2301         assert(ms->possible_cpus->len == max_cpus);
2302         return ms->possible_cpus;
2303     }
2304 
2305     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2306                                   sizeof(CPUArchId) * max_cpus);
2307     ms->possible_cpus->len = max_cpus;
2308     for (i = 0; i < ms->possible_cpus->len; i++) {
2309         X86CPUTopoInfo topo;
2310 
2311         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2312         ms->possible_cpus->cpus[i].vcpus_count = 1;
2313         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2314         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2315                                  smp_cores, smp_threads, &topo);
2316         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2317         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2318         ms->possible_cpus->cpus[i].props.has_core_id = true;
2319         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2320         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2321         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2322     }
2323     return ms->possible_cpus;
2324 }
2325 
2326 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2327 {
2328     /* cpu index isn't used */
2329     CPUState *cs;
2330 
2331     CPU_FOREACH(cs) {
2332         X86CPU *cpu = X86_CPU(cs);
2333 
2334         if (!cpu->apic_state) {
2335             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2336         } else {
2337             apic_deliver_nmi(cpu->apic_state);
2338         }
2339     }
2340 }
2341 
2342 static void pc_machine_class_init(ObjectClass *oc, void *data)
2343 {
2344     MachineClass *mc = MACHINE_CLASS(oc);
2345     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2346     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2347     NMIClass *nc = NMI_CLASS(oc);
2348 
2349     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2350     pcmc->pci_enabled = true;
2351     pcmc->has_acpi_build = true;
2352     pcmc->rsdp_in_ram = true;
2353     pcmc->smbios_defaults = true;
2354     pcmc->smbios_uuid_encoded = true;
2355     pcmc->gigabyte_align = true;
2356     pcmc->has_reserved_memory = true;
2357     pcmc->kvmclock_enabled = true;
2358     pcmc->enforce_aligned_dimm = true;
2359     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2360      * to be used at the moment, 32K should be enough for a while.  */
2361     pcmc->acpi_data_size = 0x20000 + 0x8000;
2362     pcmc->save_tsc_khz = true;
2363     pcmc->linuxboot_dma_enabled = true;
2364     mc->get_hotplug_handler = pc_get_hotpug_handler;
2365     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2366     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2367     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2368     mc->auto_enable_numa_with_memhp = true;
2369     mc->has_hotpluggable_cpus = true;
2370     mc->default_boot_order = "cad";
2371     mc->hot_add_cpu = pc_hot_add_cpu;
2372     mc->block_default_type = IF_IDE;
2373     mc->max_cpus = 255;
2374     mc->reset = pc_machine_reset;
2375     hc->pre_plug = pc_machine_device_pre_plug_cb;
2376     hc->plug = pc_machine_device_plug_cb;
2377     hc->unplug_request = pc_machine_device_unplug_request_cb;
2378     hc->unplug = pc_machine_device_unplug_cb;
2379     nc->nmi_monitor_handler = x86_nmi;
2380     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2381 
2382     object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2383         pc_machine_get_hotplug_memory_region_size, NULL,
2384         NULL, NULL, &error_abort);
2385 
2386     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2387         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2388         NULL, NULL, &error_abort);
2389 
2390     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2391         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2392 
2393     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2394         pc_machine_get_smm, pc_machine_set_smm,
2395         NULL, NULL, &error_abort);
2396     object_class_property_set_description(oc, PC_MACHINE_SMM,
2397         "Enable SMM (pc & q35)", &error_abort);
2398 
2399     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2400         pc_machine_get_vmport, pc_machine_set_vmport,
2401         NULL, NULL, &error_abort);
2402     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2403         "Enable vmport (pc & q35)", &error_abort);
2404 
2405     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2406         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2407 
2408     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2409         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2410 
2411     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2412         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2413 
2414     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2415         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2416 }
2417 
2418 static const TypeInfo pc_machine_info = {
2419     .name = TYPE_PC_MACHINE,
2420     .parent = TYPE_MACHINE,
2421     .abstract = true,
2422     .instance_size = sizeof(PCMachineState),
2423     .instance_init = pc_machine_initfn,
2424     .class_size = sizeof(PCMachineClass),
2425     .class_init = pc_machine_class_init,
2426     .interfaces = (InterfaceInfo[]) {
2427          { TYPE_HOTPLUG_HANDLER },
2428          { TYPE_NMI },
2429          { }
2430     },
2431 };
2432 
2433 static void pc_machine_register_types(void)
2434 {
2435     type_register_static(&pc_machine_info);
2436 }
2437 
2438 type_init(pc_machine_register_types)
2439