xref: /openbmc/qemu/hw/i386/pc.c (revision 1d52866f)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/smbios/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77 
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80 
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...)                                       \
83     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87 
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93 
94 #define E820_NR_ENTRIES		16
95 
96 struct e820_entry {
97     uint64_t address;
98     uint64_t length;
99     uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101 
102 struct e820_table {
103     uint32_t count;
104     struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106 
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111 
112 void gsi_handler(void *opaque, int n, int level)
113 {
114     GSIState *s = opaque;
115 
116     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
117     if (n < ISA_NUM_IRQS) {
118         qemu_set_irq(s->i8259_irq[n], level);
119     }
120     qemu_set_irq(s->ioapic_irq[n], level);
121 }
122 
123 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
124                            unsigned size)
125 {
126 }
127 
128 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
129 {
130     return 0xffffffffffffffffULL;
131 }
132 
133 /* MSDOS compatibility mode FPU exception support */
134 static qemu_irq ferr_irq;
135 
136 void pc_register_ferr_irq(qemu_irq irq)
137 {
138     ferr_irq = irq;
139 }
140 
141 /* XXX: add IGNNE support */
142 void cpu_set_ferr(CPUX86State *s)
143 {
144     qemu_irq_raise(ferr_irq);
145 }
146 
147 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
148                            unsigned size)
149 {
150     qemu_irq_lower(ferr_irq);
151 }
152 
153 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
154 {
155     return 0xffffffffffffffffULL;
156 }
157 
158 /* TSC handling */
159 uint64_t cpu_get_tsc(CPUX86State *env)
160 {
161     return cpu_get_ticks();
162 }
163 
164 /* IRQ handling */
165 int cpu_get_pic_interrupt(CPUX86State *env)
166 {
167     X86CPU *cpu = x86_env_get_cpu(env);
168     int intno;
169 
170     if (!kvm_irqchip_in_kernel()) {
171         intno = apic_get_interrupt(cpu->apic_state);
172         if (intno >= 0) {
173             return intno;
174         }
175         /* read the irq from the PIC */
176         if (!apic_accept_pic_intr(cpu->apic_state)) {
177             return -1;
178         }
179     }
180 
181     intno = pic_read_irq(isa_pic);
182     return intno;
183 }
184 
185 static void pic_irq_request(void *opaque, int irq, int level)
186 {
187     CPUState *cs = first_cpu;
188     X86CPU *cpu = X86_CPU(cs);
189 
190     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
192         CPU_FOREACH(cs) {
193             cpu = X86_CPU(cs);
194             if (apic_accept_pic_intr(cpu->apic_state)) {
195                 apic_deliver_pic_intr(cpu->apic_state, level);
196             }
197         }
198     } else {
199         if (level) {
200             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201         } else {
202             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
203         }
204     }
205 }
206 
207 /* PC cmos mappings */
208 
209 #define REG_EQUIPMENT_BYTE          0x14
210 
211 int cmos_get_fd_drive_type(FloppyDriveType fd0)
212 {
213     int val;
214 
215     switch (fd0) {
216     case FLOPPY_DRIVE_TYPE_144:
217         /* 1.44 Mb 3"5 drive */
218         val = 4;
219         break;
220     case FLOPPY_DRIVE_TYPE_288:
221         /* 2.88 Mb 3"5 drive */
222         val = 5;
223         break;
224     case FLOPPY_DRIVE_TYPE_120:
225         /* 1.2 Mb 5"5 drive */
226         val = 2;
227         break;
228     case FLOPPY_DRIVE_TYPE_NONE:
229     default:
230         val = 0;
231         break;
232     }
233     return val;
234 }
235 
236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237                          int16_t cylinders, int8_t heads, int8_t sectors)
238 {
239     rtc_set_memory(s, type_ofs, 47);
240     rtc_set_memory(s, info_ofs, cylinders);
241     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242     rtc_set_memory(s, info_ofs + 2, heads);
243     rtc_set_memory(s, info_ofs + 3, 0xff);
244     rtc_set_memory(s, info_ofs + 4, 0xff);
245     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246     rtc_set_memory(s, info_ofs + 6, cylinders);
247     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248     rtc_set_memory(s, info_ofs + 8, sectors);
249 }
250 
251 /* convert boot_device letter to something recognizable by the bios */
252 static int boot_device2nibble(char boot_device)
253 {
254     switch(boot_device) {
255     case 'a':
256     case 'b':
257         return 0x01; /* floppy boot */
258     case 'c':
259         return 0x02; /* hard drive boot */
260     case 'd':
261         return 0x03; /* CD-ROM boot */
262     case 'n':
263         return 0x04; /* Network boot */
264     }
265     return 0;
266 }
267 
268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
269 {
270 #define PC_MAX_BOOT_DEVICES 3
271     int nbds, bds[3] = { 0, };
272     int i;
273 
274     nbds = strlen(boot_device);
275     if (nbds > PC_MAX_BOOT_DEVICES) {
276         error_setg(errp, "Too many boot devices for PC");
277         return;
278     }
279     for (i = 0; i < nbds; i++) {
280         bds[i] = boot_device2nibble(boot_device[i]);
281         if (bds[i] == 0) {
282             error_setg(errp, "Invalid boot device for PC: '%c'",
283                        boot_device[i]);
284             return;
285         }
286     }
287     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
289 }
290 
291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
292 {
293     set_boot_dev(opaque, boot_device, errp);
294 }
295 
296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
297 {
298     int val, nb, i;
299     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
300                                    FLOPPY_DRIVE_TYPE_NONE };
301 
302     /* floppy type */
303     if (floppy) {
304         for (i = 0; i < 2; i++) {
305             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
306         }
307     }
308     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
309         cmos_get_fd_drive_type(fd_type[1]);
310     rtc_set_memory(rtc_state, 0x10, val);
311 
312     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
313     nb = 0;
314     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
315         nb++;
316     }
317     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
318         nb++;
319     }
320     switch (nb) {
321     case 0:
322         break;
323     case 1:
324         val |= 0x01; /* 1 drive, ready for boot */
325         break;
326     case 2:
327         val |= 0x41; /* 2 drives, ready for boot */
328         break;
329     }
330     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
331 }
332 
333 typedef struct pc_cmos_init_late_arg {
334     ISADevice *rtc_state;
335     BusState *idebus[2];
336 } pc_cmos_init_late_arg;
337 
338 typedef struct check_fdc_state {
339     ISADevice *floppy;
340     bool multiple;
341 } CheckFdcState;
342 
343 static int check_fdc(Object *obj, void *opaque)
344 {
345     CheckFdcState *state = opaque;
346     Object *fdc;
347     uint32_t iobase;
348     Error *local_err = NULL;
349 
350     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
351     if (!fdc) {
352         return 0;
353     }
354 
355     iobase = object_property_get_uint(obj, "iobase", &local_err);
356     if (local_err || iobase != 0x3f0) {
357         error_free(local_err);
358         return 0;
359     }
360 
361     if (state->floppy) {
362         state->multiple = true;
363     } else {
364         state->floppy = ISA_DEVICE(obj);
365     }
366     return 0;
367 }
368 
369 static const char * const fdc_container_path[] = {
370     "/unattached", "/peripheral", "/peripheral-anon"
371 };
372 
373 /*
374  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
375  * and ACPI objects.
376  */
377 ISADevice *pc_find_fdc0(void)
378 {
379     int i;
380     Object *container;
381     CheckFdcState state = { 0 };
382 
383     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
384         container = container_get(qdev_get_machine(), fdc_container_path[i]);
385         object_child_foreach(container, check_fdc, &state);
386     }
387 
388     if (state.multiple) {
389         warn_report("multiple floppy disk controllers with "
390                     "iobase=0x3f0 have been found");
391         error_printf("the one being picked for CMOS setup might not reflect "
392                      "your intent");
393     }
394 
395     return state.floppy;
396 }
397 
398 static void pc_cmos_init_late(void *opaque)
399 {
400     pc_cmos_init_late_arg *arg = opaque;
401     ISADevice *s = arg->rtc_state;
402     int16_t cylinders;
403     int8_t heads, sectors;
404     int val;
405     int i, trans;
406 
407     val = 0;
408     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
409                                            &cylinders, &heads, &sectors) >= 0) {
410         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
411         val |= 0xf0;
412     }
413     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
414                                            &cylinders, &heads, &sectors) >= 0) {
415         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
416         val |= 0x0f;
417     }
418     rtc_set_memory(s, 0x12, val);
419 
420     val = 0;
421     for (i = 0; i < 4; i++) {
422         /* NOTE: ide_get_geometry() returns the physical
423            geometry.  It is always such that: 1 <= sects <= 63, 1
424            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
425            geometry can be different if a translation is done. */
426         if (arg->idebus[i / 2] &&
427             ide_get_geometry(arg->idebus[i / 2], i % 2,
428                              &cylinders, &heads, &sectors) >= 0) {
429             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
430             assert((trans & ~3) == 0);
431             val |= trans << (i * 2);
432         }
433     }
434     rtc_set_memory(s, 0x39, val);
435 
436     pc_cmos_init_floppy(s, pc_find_fdc0());
437 
438     qemu_unregister_reset(pc_cmos_init_late, opaque);
439 }
440 
441 void pc_cmos_init(PCMachineState *pcms,
442                   BusState *idebus0, BusState *idebus1,
443                   ISADevice *s)
444 {
445     int val;
446     static pc_cmos_init_late_arg arg;
447 
448     /* various important CMOS locations needed by PC/Bochs bios */
449 
450     /* memory size */
451     /* base memory (first MiB) */
452     val = MIN(pcms->below_4g_mem_size / KiB, 640);
453     rtc_set_memory(s, 0x15, val);
454     rtc_set_memory(s, 0x16, val >> 8);
455     /* extended memory (next 64MiB) */
456     if (pcms->below_4g_mem_size > 1 * MiB) {
457         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
458     } else {
459         val = 0;
460     }
461     if (val > 65535)
462         val = 65535;
463     rtc_set_memory(s, 0x17, val);
464     rtc_set_memory(s, 0x18, val >> 8);
465     rtc_set_memory(s, 0x30, val);
466     rtc_set_memory(s, 0x31, val >> 8);
467     /* memory between 16MiB and 4GiB */
468     if (pcms->below_4g_mem_size > 16 * MiB) {
469         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
470     } else {
471         val = 0;
472     }
473     if (val > 65535)
474         val = 65535;
475     rtc_set_memory(s, 0x34, val);
476     rtc_set_memory(s, 0x35, val >> 8);
477     /* memory above 4GiB */
478     val = pcms->above_4g_mem_size / 65536;
479     rtc_set_memory(s, 0x5b, val);
480     rtc_set_memory(s, 0x5c, val >> 8);
481     rtc_set_memory(s, 0x5d, val >> 16);
482 
483     object_property_add_link(OBJECT(pcms), "rtc_state",
484                              TYPE_ISA_DEVICE,
485                              (Object **)&pcms->rtc,
486                              object_property_allow_set_link,
487                              OBJ_PROP_LINK_STRONG, &error_abort);
488     object_property_set_link(OBJECT(pcms), OBJECT(s),
489                              "rtc_state", &error_abort);
490 
491     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
492 
493     val = 0;
494     val |= 0x02; /* FPU is there */
495     val |= 0x04; /* PS/2 mouse installed */
496     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
497 
498     /* hard drives and FDC */
499     arg.rtc_state = s;
500     arg.idebus[0] = idebus0;
501     arg.idebus[1] = idebus1;
502     qemu_register_reset(pc_cmos_init_late, &arg);
503 }
504 
505 #define TYPE_PORT92 "port92"
506 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
507 
508 /* port 92 stuff: could be split off */
509 typedef struct Port92State {
510     ISADevice parent_obj;
511 
512     MemoryRegion io;
513     uint8_t outport;
514     qemu_irq a20_out;
515 } Port92State;
516 
517 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
518                          unsigned size)
519 {
520     Port92State *s = opaque;
521     int oldval = s->outport;
522 
523     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
524     s->outport = val;
525     qemu_set_irq(s->a20_out, (val >> 1) & 1);
526     if ((val & 1) && !(oldval & 1)) {
527         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
528     }
529 }
530 
531 static uint64_t port92_read(void *opaque, hwaddr addr,
532                             unsigned size)
533 {
534     Port92State *s = opaque;
535     uint32_t ret;
536 
537     ret = s->outport;
538     DPRINTF("port92: read 0x%02x\n", ret);
539     return ret;
540 }
541 
542 static void port92_init(ISADevice *dev, qemu_irq a20_out)
543 {
544     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
545 }
546 
547 static const VMStateDescription vmstate_port92_isa = {
548     .name = "port92",
549     .version_id = 1,
550     .minimum_version_id = 1,
551     .fields = (VMStateField[]) {
552         VMSTATE_UINT8(outport, Port92State),
553         VMSTATE_END_OF_LIST()
554     }
555 };
556 
557 static void port92_reset(DeviceState *d)
558 {
559     Port92State *s = PORT92(d);
560 
561     s->outport &= ~1;
562 }
563 
564 static const MemoryRegionOps port92_ops = {
565     .read = port92_read,
566     .write = port92_write,
567     .impl = {
568         .min_access_size = 1,
569         .max_access_size = 1,
570     },
571     .endianness = DEVICE_LITTLE_ENDIAN,
572 };
573 
574 static void port92_initfn(Object *obj)
575 {
576     Port92State *s = PORT92(obj);
577 
578     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
579 
580     s->outport = 0;
581 
582     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
583 }
584 
585 static void port92_realizefn(DeviceState *dev, Error **errp)
586 {
587     ISADevice *isadev = ISA_DEVICE(dev);
588     Port92State *s = PORT92(dev);
589 
590     isa_register_ioport(isadev, &s->io, 0x92);
591 }
592 
593 static void port92_class_initfn(ObjectClass *klass, void *data)
594 {
595     DeviceClass *dc = DEVICE_CLASS(klass);
596 
597     dc->realize = port92_realizefn;
598     dc->reset = port92_reset;
599     dc->vmsd = &vmstate_port92_isa;
600     /*
601      * Reason: unlike ordinary ISA devices, this one needs additional
602      * wiring: its A20 output line needs to be wired up by
603      * port92_init().
604      */
605     dc->user_creatable = false;
606 }
607 
608 static const TypeInfo port92_info = {
609     .name          = TYPE_PORT92,
610     .parent        = TYPE_ISA_DEVICE,
611     .instance_size = sizeof(Port92State),
612     .instance_init = port92_initfn,
613     .class_init    = port92_class_initfn,
614 };
615 
616 static void port92_register_types(void)
617 {
618     type_register_static(&port92_info);
619 }
620 
621 type_init(port92_register_types)
622 
623 static void handle_a20_line_change(void *opaque, int irq, int level)
624 {
625     X86CPU *cpu = opaque;
626 
627     /* XXX: send to all CPUs ? */
628     /* XXX: add logic to handle multiple A20 line sources */
629     x86_cpu_set_a20(cpu, level);
630 }
631 
632 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
633 {
634     int index = le32_to_cpu(e820_reserve.count);
635     struct e820_entry *entry;
636 
637     if (type != E820_RAM) {
638         /* old FW_CFG_E820_TABLE entry -- reservations only */
639         if (index >= E820_NR_ENTRIES) {
640             return -EBUSY;
641         }
642         entry = &e820_reserve.entry[index++];
643 
644         entry->address = cpu_to_le64(address);
645         entry->length = cpu_to_le64(length);
646         entry->type = cpu_to_le32(type);
647 
648         e820_reserve.count = cpu_to_le32(index);
649     }
650 
651     /* new "etc/e820" file -- include ram too */
652     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
653     e820_table[e820_entries].address = cpu_to_le64(address);
654     e820_table[e820_entries].length = cpu_to_le64(length);
655     e820_table[e820_entries].type = cpu_to_le32(type);
656     e820_entries++;
657 
658     return e820_entries;
659 }
660 
661 int e820_get_num_entries(void)
662 {
663     return e820_entries;
664 }
665 
666 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
667 {
668     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
669         *address = le64_to_cpu(e820_table[idx].address);
670         *length = le64_to_cpu(e820_table[idx].length);
671         return true;
672     }
673     return false;
674 }
675 
676 /* Enables contiguous-apic-ID mode, for compatibility */
677 static bool compat_apic_id_mode;
678 
679 void enable_compat_apic_id_mode(void)
680 {
681     compat_apic_id_mode = true;
682 }
683 
684 /* Calculates initial APIC ID for a specific CPU index
685  *
686  * Currently we need to be able to calculate the APIC ID from the CPU index
687  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
688  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
689  * all CPUs up to max_cpus.
690  */
691 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
692 {
693     uint32_t correct_id;
694     static bool warned;
695 
696     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
697     if (compat_apic_id_mode) {
698         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
699             error_report("APIC IDs set in compatibility mode, "
700                          "CPU topology won't match the configuration");
701             warned = true;
702         }
703         return cpu_index;
704     } else {
705         return correct_id;
706     }
707 }
708 
709 static void pc_build_smbios(PCMachineState *pcms)
710 {
711     uint8_t *smbios_tables, *smbios_anchor;
712     size_t smbios_tables_len, smbios_anchor_len;
713     struct smbios_phys_mem_area *mem_array;
714     unsigned i, array_count;
715     MachineState *ms = MACHINE(pcms);
716     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
717 
718     /* tell smbios about cpuid version and features */
719     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
720 
721     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
722     if (smbios_tables) {
723         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
724                          smbios_tables, smbios_tables_len);
725     }
726 
727     /* build the array of physical mem area from e820 table */
728     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
729     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
730         uint64_t addr, len;
731 
732         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
733             mem_array[array_count].address = addr;
734             mem_array[array_count].length = len;
735             array_count++;
736         }
737     }
738     smbios_get_tables(mem_array, array_count,
739                       &smbios_tables, &smbios_tables_len,
740                       &smbios_anchor, &smbios_anchor_len);
741     g_free(mem_array);
742 
743     if (smbios_anchor) {
744         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
745                         smbios_tables, smbios_tables_len);
746         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
747                         smbios_anchor, smbios_anchor_len);
748     }
749 }
750 
751 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
752 {
753     FWCfgState *fw_cfg;
754     uint64_t *numa_fw_cfg;
755     int i;
756     const CPUArchIdList *cpus;
757     MachineClass *mc = MACHINE_GET_CLASS(pcms);
758 
759     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
760     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
761 
762     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
763      *
764      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
765      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
766      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
767      * for CPU hotplug also uses APIC ID and not "CPU index".
768      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
769      * but the "limit to the APIC ID values SeaBIOS may see".
770      *
771      * So for compatibility reasons with old BIOSes we are stuck with
772      * "etc/max-cpus" actually being apic_id_limit
773      */
774     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
775     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
776     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
777                      acpi_tables, acpi_tables_len);
778     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
779 
780     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
781                      &e820_reserve, sizeof(e820_reserve));
782     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
783                     sizeof(struct e820_entry) * e820_entries);
784 
785     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
786     /* allocate memory for the NUMA channel: one (64bit) word for the number
787      * of nodes, one word for each VCPU->node and one word for each node to
788      * hold the amount of memory.
789      */
790     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
791     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
792     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
793     for (i = 0; i < cpus->len; i++) {
794         unsigned int apic_id = cpus->cpus[i].arch_id;
795         assert(apic_id < pcms->apic_id_limit);
796         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
797     }
798     for (i = 0; i < nb_numa_nodes; i++) {
799         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
800             cpu_to_le64(numa_info[i].node_mem);
801     }
802     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
803                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
804                      sizeof(*numa_fw_cfg));
805 
806     return fw_cfg;
807 }
808 
809 static long get_file_size(FILE *f)
810 {
811     long where, size;
812 
813     /* XXX: on Unix systems, using fstat() probably makes more sense */
814 
815     where = ftell(f);
816     fseek(f, 0, SEEK_END);
817     size = ftell(f);
818     fseek(f, where, SEEK_SET);
819 
820     return size;
821 }
822 
823 /* setup_data types */
824 #define SETUP_NONE     0
825 #define SETUP_E820_EXT 1
826 #define SETUP_DTB      2
827 #define SETUP_PCI      3
828 #define SETUP_EFI      4
829 
830 struct setup_data {
831     uint64_t next;
832     uint32_t type;
833     uint32_t len;
834     uint8_t data[0];
835 } __attribute__((packed));
836 
837 static void load_linux(PCMachineState *pcms,
838                        FWCfgState *fw_cfg)
839 {
840     uint16_t protocol;
841     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
842     int dtb_size, setup_data_offset;
843     uint32_t initrd_max;
844     uint8_t header[8192], *setup, *kernel, *initrd_data;
845     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
846     FILE *f;
847     char *vmode;
848     MachineState *machine = MACHINE(pcms);
849     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
850     struct setup_data *setup_data;
851     const char *kernel_filename = machine->kernel_filename;
852     const char *initrd_filename = machine->initrd_filename;
853     const char *dtb_filename = machine->dtb;
854     const char *kernel_cmdline = machine->kernel_cmdline;
855 
856     /* Align to 16 bytes as a paranoia measure */
857     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
858 
859     /* load the kernel header */
860     f = fopen(kernel_filename, "rb");
861     if (!f || !(kernel_size = get_file_size(f)) ||
862         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
863         MIN(ARRAY_SIZE(header), kernel_size)) {
864         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
865                 kernel_filename, strerror(errno));
866         exit(1);
867     }
868 
869     /* kernel protocol version */
870 #if 0
871     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
872 #endif
873     if (ldl_p(header+0x202) == 0x53726448) {
874         protocol = lduw_p(header+0x206);
875     } else {
876         /* This looks like a multiboot kernel. If it is, let's stop
877            treating it like a Linux kernel. */
878         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
879                            kernel_cmdline, kernel_size, header)) {
880             return;
881         }
882         protocol = 0;
883     }
884 
885     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
886         /* Low kernel */
887         real_addr    = 0x90000;
888         cmdline_addr = 0x9a000 - cmdline_size;
889         prot_addr    = 0x10000;
890     } else if (protocol < 0x202) {
891         /* High but ancient kernel */
892         real_addr    = 0x90000;
893         cmdline_addr = 0x9a000 - cmdline_size;
894         prot_addr    = 0x100000;
895     } else {
896         /* High and recent kernel */
897         real_addr    = 0x10000;
898         cmdline_addr = 0x20000;
899         prot_addr    = 0x100000;
900     }
901 
902 #if 0
903     fprintf(stderr,
904             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
905             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
906             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
907             real_addr,
908             cmdline_addr,
909             prot_addr);
910 #endif
911 
912     /* highest address for loading the initrd */
913     if (protocol >= 0x203) {
914         initrd_max = ldl_p(header+0x22c);
915     } else {
916         initrd_max = 0x37ffffff;
917     }
918 
919     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
920         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
921     }
922 
923     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
924     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
925     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
926 
927     if (protocol >= 0x202) {
928         stl_p(header+0x228, cmdline_addr);
929     } else {
930         stw_p(header+0x20, 0xA33F);
931         stw_p(header+0x22, cmdline_addr-real_addr);
932     }
933 
934     /* handle vga= parameter */
935     vmode = strstr(kernel_cmdline, "vga=");
936     if (vmode) {
937         unsigned int video_mode;
938         /* skip "vga=" */
939         vmode += 4;
940         if (!strncmp(vmode, "normal", 6)) {
941             video_mode = 0xffff;
942         } else if (!strncmp(vmode, "ext", 3)) {
943             video_mode = 0xfffe;
944         } else if (!strncmp(vmode, "ask", 3)) {
945             video_mode = 0xfffd;
946         } else {
947             video_mode = strtol(vmode, NULL, 0);
948         }
949         stw_p(header+0x1fa, video_mode);
950     }
951 
952     /* loader type */
953     /* High nybble = B reserved for QEMU; low nybble is revision number.
954        If this code is substantially changed, you may want to consider
955        incrementing the revision. */
956     if (protocol >= 0x200) {
957         header[0x210] = 0xB0;
958     }
959     /* heap */
960     if (protocol >= 0x201) {
961         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
962         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
963     }
964 
965     /* load initrd */
966     if (initrd_filename) {
967         if (protocol < 0x200) {
968             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
969             exit(1);
970         }
971 
972         initrd_size = get_image_size(initrd_filename);
973         if (initrd_size < 0) {
974             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
975                     initrd_filename, strerror(errno));
976             exit(1);
977         }
978 
979         initrd_addr = (initrd_max-initrd_size) & ~4095;
980 
981         initrd_data = g_malloc(initrd_size);
982         load_image(initrd_filename, initrd_data);
983 
984         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
985         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
986         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
987 
988         stl_p(header+0x218, initrd_addr);
989         stl_p(header+0x21c, initrd_size);
990     }
991 
992     /* load kernel and setup */
993     setup_size = header[0x1f1];
994     if (setup_size == 0) {
995         setup_size = 4;
996     }
997     setup_size = (setup_size+1)*512;
998     if (setup_size > kernel_size) {
999         fprintf(stderr, "qemu: invalid kernel header\n");
1000         exit(1);
1001     }
1002     kernel_size -= setup_size;
1003 
1004     setup  = g_malloc(setup_size);
1005     kernel = g_malloc(kernel_size);
1006     fseek(f, 0, SEEK_SET);
1007     if (fread(setup, 1, setup_size, f) != setup_size) {
1008         fprintf(stderr, "fread() failed\n");
1009         exit(1);
1010     }
1011     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1012         fprintf(stderr, "fread() failed\n");
1013         exit(1);
1014     }
1015     fclose(f);
1016 
1017     /* append dtb to kernel */
1018     if (dtb_filename) {
1019         if (protocol < 0x209) {
1020             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1021             exit(1);
1022         }
1023 
1024         dtb_size = get_image_size(dtb_filename);
1025         if (dtb_size <= 0) {
1026             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1027                     dtb_filename, strerror(errno));
1028             exit(1);
1029         }
1030 
1031         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1032         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1033         kernel = g_realloc(kernel, kernel_size);
1034 
1035         stq_p(header+0x250, prot_addr + setup_data_offset);
1036 
1037         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1038         setup_data->next = 0;
1039         setup_data->type = cpu_to_le32(SETUP_DTB);
1040         setup_data->len = cpu_to_le32(dtb_size);
1041 
1042         load_image_size(dtb_filename, setup_data->data, dtb_size);
1043     }
1044 
1045     memcpy(setup, header, MIN(sizeof(header), setup_size));
1046 
1047     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1048     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1049     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1050 
1051     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1052     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1053     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1054 
1055     option_rom[nb_option_roms].bootindex = 0;
1056     option_rom[nb_option_roms].name = "linuxboot.bin";
1057     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1058         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1059     }
1060     nb_option_roms++;
1061 }
1062 
1063 #define NE2000_NB_MAX 6
1064 
1065 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1066                                               0x280, 0x380 };
1067 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1068 
1069 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1070 {
1071     static int nb_ne2k = 0;
1072 
1073     if (nb_ne2k == NE2000_NB_MAX)
1074         return;
1075     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1076                     ne2000_irq[nb_ne2k], nd);
1077     nb_ne2k++;
1078 }
1079 
1080 DeviceState *cpu_get_current_apic(void)
1081 {
1082     if (current_cpu) {
1083         X86CPU *cpu = X86_CPU(current_cpu);
1084         return cpu->apic_state;
1085     } else {
1086         return NULL;
1087     }
1088 }
1089 
1090 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1091 {
1092     X86CPU *cpu = opaque;
1093 
1094     if (level) {
1095         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1096     }
1097 }
1098 
1099 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1100 {
1101     Object *cpu = NULL;
1102     Error *local_err = NULL;
1103 
1104     cpu = object_new(typename);
1105 
1106     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1107     object_property_set_bool(cpu, true, "realized", &local_err);
1108 
1109     object_unref(cpu);
1110     error_propagate(errp, local_err);
1111 }
1112 
1113 void pc_hot_add_cpu(const int64_t id, Error **errp)
1114 {
1115     MachineState *ms = MACHINE(qdev_get_machine());
1116     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1117     Error *local_err = NULL;
1118 
1119     if (id < 0) {
1120         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1121         return;
1122     }
1123 
1124     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1125         error_setg(errp, "Unable to add CPU: %" PRIi64
1126                    ", resulting APIC ID (%" PRIi64 ") is too large",
1127                    id, apic_id);
1128         return;
1129     }
1130 
1131     pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1132     if (local_err) {
1133         error_propagate(errp, local_err);
1134         return;
1135     }
1136 }
1137 
1138 void pc_cpus_init(PCMachineState *pcms)
1139 {
1140     int i;
1141     const CPUArchIdList *possible_cpus;
1142     MachineState *ms = MACHINE(pcms);
1143     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1144 
1145     /* Calculates the limit to CPU APIC ID values
1146      *
1147      * Limit for the APIC ID value, so that all
1148      * CPU APIC IDs are < pcms->apic_id_limit.
1149      *
1150      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1151      */
1152     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1153     possible_cpus = mc->possible_cpu_arch_ids(ms);
1154     for (i = 0; i < smp_cpus; i++) {
1155         pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1156                    &error_fatal);
1157     }
1158 }
1159 
1160 static void pc_build_feature_control_file(PCMachineState *pcms)
1161 {
1162     MachineState *ms = MACHINE(pcms);
1163     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1164     CPUX86State *env = &cpu->env;
1165     uint32_t unused, ecx, edx;
1166     uint64_t feature_control_bits = 0;
1167     uint64_t *val;
1168 
1169     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1170     if (ecx & CPUID_EXT_VMX) {
1171         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1172     }
1173 
1174     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1175         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1176         (env->mcg_cap & MCG_LMCE_P)) {
1177         feature_control_bits |= FEATURE_CONTROL_LMCE;
1178     }
1179 
1180     if (!feature_control_bits) {
1181         return;
1182     }
1183 
1184     val = g_malloc(sizeof(*val));
1185     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1186     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1187 }
1188 
1189 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1190 {
1191     if (cpus_count > 0xff) {
1192         /* If the number of CPUs can't be represented in 8 bits, the
1193          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1194          * to make old BIOSes fail more predictably.
1195          */
1196         rtc_set_memory(rtc, 0x5f, 0);
1197     } else {
1198         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1199     }
1200 }
1201 
1202 static
1203 void pc_machine_done(Notifier *notifier, void *data)
1204 {
1205     PCMachineState *pcms = container_of(notifier,
1206                                         PCMachineState, machine_done);
1207     PCIBus *bus = pcms->bus;
1208 
1209     /* set the number of CPUs */
1210     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1211 
1212     if (bus) {
1213         int extra_hosts = 0;
1214 
1215         QLIST_FOREACH(bus, &bus->child, sibling) {
1216             /* look for expander root buses */
1217             if (pci_bus_is_root(bus)) {
1218                 extra_hosts++;
1219             }
1220         }
1221         if (extra_hosts && pcms->fw_cfg) {
1222             uint64_t *val = g_malloc(sizeof(*val));
1223             *val = cpu_to_le64(extra_hosts);
1224             fw_cfg_add_file(pcms->fw_cfg,
1225                     "etc/extra-pci-roots", val, sizeof(*val));
1226         }
1227     }
1228 
1229     acpi_setup();
1230     if (pcms->fw_cfg) {
1231         pc_build_smbios(pcms);
1232         pc_build_feature_control_file(pcms);
1233         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1234         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1235     }
1236 
1237     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1238         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1239 
1240         if (!iommu || !iommu->x86_iommu.intr_supported ||
1241             iommu->intr_eim != ON_OFF_AUTO_ON) {
1242             error_report("current -smp configuration requires "
1243                          "Extended Interrupt Mode enabled. "
1244                          "You can add an IOMMU using: "
1245                          "-device intel-iommu,intremap=on,eim=on");
1246             exit(EXIT_FAILURE);
1247         }
1248     }
1249 }
1250 
1251 void pc_guest_info_init(PCMachineState *pcms)
1252 {
1253     int i;
1254 
1255     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1256     pcms->numa_nodes = nb_numa_nodes;
1257     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1258                                     sizeof *pcms->node_mem);
1259     for (i = 0; i < nb_numa_nodes; i++) {
1260         pcms->node_mem[i] = numa_info[i].node_mem;
1261     }
1262 
1263     pcms->machine_done.notify = pc_machine_done;
1264     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1265 }
1266 
1267 /* setup pci memory address space mapping into system address space */
1268 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1269                             MemoryRegion *pci_address_space)
1270 {
1271     /* Set to lower priority than RAM */
1272     memory_region_add_subregion_overlap(system_memory, 0x0,
1273                                         pci_address_space, -1);
1274 }
1275 
1276 void pc_acpi_init(const char *default_dsdt)
1277 {
1278     char *filename;
1279 
1280     if (acpi_tables != NULL) {
1281         /* manually set via -acpitable, leave it alone */
1282         return;
1283     }
1284 
1285     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1286     if (filename == NULL) {
1287         warn_report("failed to find %s", default_dsdt);
1288     } else {
1289         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1290                                           &error_abort);
1291         Error *err = NULL;
1292 
1293         qemu_opt_set(opts, "file", filename, &error_abort);
1294 
1295         acpi_table_add_builtin(opts, &err);
1296         if (err) {
1297             warn_reportf_err(err, "failed to load %s: ", filename);
1298         }
1299         g_free(filename);
1300     }
1301 }
1302 
1303 void xen_load_linux(PCMachineState *pcms)
1304 {
1305     int i;
1306     FWCfgState *fw_cfg;
1307 
1308     assert(MACHINE(pcms)->kernel_filename != NULL);
1309 
1310     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1311     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1312     rom_set_fw(fw_cfg);
1313 
1314     load_linux(pcms, fw_cfg);
1315     for (i = 0; i < nb_option_roms; i++) {
1316         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1317                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1318                !strcmp(option_rom[i].name, "multiboot.bin"));
1319         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1320     }
1321     pcms->fw_cfg = fw_cfg;
1322 }
1323 
1324 void pc_memory_init(PCMachineState *pcms,
1325                     MemoryRegion *system_memory,
1326                     MemoryRegion *rom_memory,
1327                     MemoryRegion **ram_memory)
1328 {
1329     int linux_boot, i;
1330     MemoryRegion *ram, *option_rom_mr;
1331     MemoryRegion *ram_below_4g, *ram_above_4g;
1332     FWCfgState *fw_cfg;
1333     MachineState *machine = MACHINE(pcms);
1334     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1335 
1336     assert(machine->ram_size == pcms->below_4g_mem_size +
1337                                 pcms->above_4g_mem_size);
1338 
1339     linux_boot = (machine->kernel_filename != NULL);
1340 
1341     /* Allocate RAM.  We allocate it as a single memory region and use
1342      * aliases to address portions of it, mostly for backwards compatibility
1343      * with older qemus that used qemu_ram_alloc().
1344      */
1345     ram = g_malloc(sizeof(*ram));
1346     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1347                                          machine->ram_size);
1348     *ram_memory = ram;
1349     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1350     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1351                              0, pcms->below_4g_mem_size);
1352     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1353     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1354     if (pcms->above_4g_mem_size > 0) {
1355         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1356         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1357                                  pcms->below_4g_mem_size,
1358                                  pcms->above_4g_mem_size);
1359         memory_region_add_subregion(system_memory, 0x100000000ULL,
1360                                     ram_above_4g);
1361         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1362     }
1363 
1364     if (!pcmc->has_reserved_memory &&
1365         (machine->ram_slots ||
1366          (machine->maxram_size > machine->ram_size))) {
1367         MachineClass *mc = MACHINE_GET_CLASS(machine);
1368 
1369         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1370                      mc->name);
1371         exit(EXIT_FAILURE);
1372     }
1373 
1374     /* always allocate the device memory information */
1375     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1376 
1377     /* initialize device memory address space */
1378     if (pcmc->has_reserved_memory &&
1379         (machine->ram_size < machine->maxram_size)) {
1380         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1381 
1382         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1383             error_report("unsupported amount of memory slots: %"PRIu64,
1384                          machine->ram_slots);
1385             exit(EXIT_FAILURE);
1386         }
1387 
1388         if (QEMU_ALIGN_UP(machine->maxram_size,
1389                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1390             error_report("maximum memory size must by aligned to multiple of "
1391                          "%d bytes", TARGET_PAGE_SIZE);
1392             exit(EXIT_FAILURE);
1393         }
1394 
1395         machine->device_memory->base =
1396             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1397 
1398         if (pcmc->enforce_aligned_dimm) {
1399             /* size device region assuming 1G page max alignment per slot */
1400             device_mem_size += (1 * GiB) * machine->ram_slots;
1401         }
1402 
1403         if ((machine->device_memory->base + device_mem_size) <
1404             device_mem_size) {
1405             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1406                          machine->maxram_size);
1407             exit(EXIT_FAILURE);
1408         }
1409 
1410         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1411                            "device-memory", device_mem_size);
1412         memory_region_add_subregion(system_memory, machine->device_memory->base,
1413                                     &machine->device_memory->mr);
1414     }
1415 
1416     /* Initialize PC system firmware */
1417     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1418 
1419     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1420     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1421                            &error_fatal);
1422     if (pcmc->pci_enabled) {
1423         memory_region_set_readonly(option_rom_mr, true);
1424     }
1425     memory_region_add_subregion_overlap(rom_memory,
1426                                         PC_ROM_MIN_VGA,
1427                                         option_rom_mr,
1428                                         1);
1429 
1430     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1431 
1432     rom_set_fw(fw_cfg);
1433 
1434     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1435         uint64_t *val = g_malloc(sizeof(*val));
1436         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1437         uint64_t res_mem_end = machine->device_memory->base;
1438 
1439         if (!pcmc->broken_reserved_end) {
1440             res_mem_end += memory_region_size(&machine->device_memory->mr);
1441         }
1442         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1443         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1444     }
1445 
1446     if (linux_boot) {
1447         load_linux(pcms, fw_cfg);
1448     }
1449 
1450     for (i = 0; i < nb_option_roms; i++) {
1451         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1452     }
1453     pcms->fw_cfg = fw_cfg;
1454 
1455     /* Init default IOAPIC address space */
1456     pcms->ioapic_as = &address_space_memory;
1457 }
1458 
1459 /*
1460  * The 64bit pci hole starts after "above 4G RAM" and
1461  * potentially the space reserved for memory hotplug.
1462  */
1463 uint64_t pc_pci_hole64_start(void)
1464 {
1465     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1466     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1467     MachineState *ms = MACHINE(pcms);
1468     uint64_t hole64_start = 0;
1469 
1470     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1471         hole64_start = ms->device_memory->base;
1472         if (!pcmc->broken_reserved_end) {
1473             hole64_start += memory_region_size(&ms->device_memory->mr);
1474         }
1475     } else {
1476         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1477     }
1478 
1479     return ROUND_UP(hole64_start, 1 * GiB);
1480 }
1481 
1482 qemu_irq pc_allocate_cpu_irq(void)
1483 {
1484     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1485 }
1486 
1487 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1488 {
1489     DeviceState *dev = NULL;
1490 
1491     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1492     if (pci_bus) {
1493         PCIDevice *pcidev = pci_vga_init(pci_bus);
1494         dev = pcidev ? &pcidev->qdev : NULL;
1495     } else if (isa_bus) {
1496         ISADevice *isadev = isa_vga_init(isa_bus);
1497         dev = isadev ? DEVICE(isadev) : NULL;
1498     }
1499     rom_reset_order_override();
1500     return dev;
1501 }
1502 
1503 static const MemoryRegionOps ioport80_io_ops = {
1504     .write = ioport80_write,
1505     .read = ioport80_read,
1506     .endianness = DEVICE_NATIVE_ENDIAN,
1507     .impl = {
1508         .min_access_size = 1,
1509         .max_access_size = 1,
1510     },
1511 };
1512 
1513 static const MemoryRegionOps ioportF0_io_ops = {
1514     .write = ioportF0_write,
1515     .read = ioportF0_read,
1516     .endianness = DEVICE_NATIVE_ENDIAN,
1517     .impl = {
1518         .min_access_size = 1,
1519         .max_access_size = 1,
1520     },
1521 };
1522 
1523 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1524 {
1525     int i;
1526     DriveInfo *fd[MAX_FD];
1527     qemu_irq *a20_line;
1528     ISADevice *i8042, *port92, *vmmouse;
1529 
1530     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1531     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1532 
1533     for (i = 0; i < MAX_FD; i++) {
1534         fd[i] = drive_get(IF_FLOPPY, 0, i);
1535         create_fdctrl |= !!fd[i];
1536     }
1537     if (create_fdctrl) {
1538         fdctrl_init_isa(isa_bus, fd);
1539     }
1540 
1541     i8042 = isa_create_simple(isa_bus, "i8042");
1542     if (!no_vmport) {
1543         vmport_init(isa_bus);
1544         vmmouse = isa_try_create(isa_bus, "vmmouse");
1545     } else {
1546         vmmouse = NULL;
1547     }
1548     if (vmmouse) {
1549         DeviceState *dev = DEVICE(vmmouse);
1550         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1551         qdev_init_nofail(dev);
1552     }
1553     port92 = isa_create_simple(isa_bus, "port92");
1554 
1555     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1556     i8042_setup_a20_line(i8042, a20_line[0]);
1557     port92_init(port92, a20_line[1]);
1558     g_free(a20_line);
1559 }
1560 
1561 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1562                           ISADevice **rtc_state,
1563                           bool create_fdctrl,
1564                           bool no_vmport,
1565                           bool has_pit,
1566                           uint32_t hpet_irqs)
1567 {
1568     int i;
1569     DeviceState *hpet = NULL;
1570     int pit_isa_irq = 0;
1571     qemu_irq pit_alt_irq = NULL;
1572     qemu_irq rtc_irq = NULL;
1573     ISADevice *pit = NULL;
1574     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1575     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1576 
1577     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1578     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1579 
1580     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1581     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1582 
1583     /*
1584      * Check if an HPET shall be created.
1585      *
1586      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1587      * when the HPET wants to take over. Thus we have to disable the latter.
1588      */
1589     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1590         /* In order to set property, here not using sysbus_try_create_simple */
1591         hpet = qdev_try_create(NULL, TYPE_HPET);
1592         if (hpet) {
1593             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1594              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1595              * IRQ8 and IRQ2.
1596              */
1597             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1598                     HPET_INTCAP, NULL);
1599             if (!compat) {
1600                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1601             }
1602             qdev_init_nofail(hpet);
1603             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1604 
1605             for (i = 0; i < GSI_NUM_PINS; i++) {
1606                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1607             }
1608             pit_isa_irq = -1;
1609             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1610             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1611         }
1612     }
1613     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1614 
1615     qemu_register_boot_set(pc_boot_set, *rtc_state);
1616 
1617     if (!xen_enabled() && has_pit) {
1618         if (kvm_pit_in_kernel()) {
1619             pit = kvm_pit_init(isa_bus, 0x40);
1620         } else {
1621             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1622         }
1623         if (hpet) {
1624             /* connect PIT to output control line of the HPET */
1625             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1626         }
1627         pcspk_init(isa_bus, pit);
1628     }
1629 
1630     i8257_dma_init(isa_bus, 0);
1631 
1632     /* Super I/O */
1633     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1634 }
1635 
1636 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1637 {
1638     int i;
1639 
1640     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1641     for (i = 0; i < nb_nics; i++) {
1642         NICInfo *nd = &nd_table[i];
1643         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1644 
1645         if (g_str_equal(model, "ne2k_isa")) {
1646             pc_init_ne2k_isa(isa_bus, nd);
1647         } else {
1648             pci_nic_init_nofail(nd, pci_bus, model, NULL);
1649         }
1650     }
1651     rom_reset_order_override();
1652 }
1653 
1654 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1655 {
1656     DeviceState *dev;
1657     SysBusDevice *d;
1658     unsigned int i;
1659 
1660     if (kvm_ioapic_in_kernel()) {
1661         dev = qdev_create(NULL, "kvm-ioapic");
1662     } else {
1663         dev = qdev_create(NULL, "ioapic");
1664     }
1665     if (parent_name) {
1666         object_property_add_child(object_resolve_path(parent_name, NULL),
1667                                   "ioapic", OBJECT(dev), NULL);
1668     }
1669     qdev_init_nofail(dev);
1670     d = SYS_BUS_DEVICE(dev);
1671     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1672 
1673     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1674         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1675     }
1676 }
1677 
1678 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1679                                Error **errp)
1680 {
1681     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1682     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1683     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1684     const uint64_t legacy_align = TARGET_PAGE_SIZE;
1685 
1686     /*
1687      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1688      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1689      * addition to cover this case.
1690      */
1691     if (!pcms->acpi_dev || !acpi_enabled) {
1692         error_setg(errp,
1693                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1694         return;
1695     }
1696 
1697     if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1698         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1699         return;
1700     }
1701 
1702     pc_dimm_pre_plug(dev, MACHINE(hotplug_dev),
1703                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1704 }
1705 
1706 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1707                            DeviceState *dev, Error **errp)
1708 {
1709     HotplugHandlerClass *hhc;
1710     Error *local_err = NULL;
1711     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1712     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1713 
1714     pc_dimm_plug(dev, MACHINE(pcms), &local_err);
1715     if (local_err) {
1716         goto out;
1717     }
1718 
1719     if (is_nvdimm) {
1720         nvdimm_plug(&pcms->acpi_nvdimm_state);
1721     }
1722 
1723     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1724     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1725 out:
1726     error_propagate(errp, local_err);
1727 }
1728 
1729 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1730                                      DeviceState *dev, Error **errp)
1731 {
1732     HotplugHandlerClass *hhc;
1733     Error *local_err = NULL;
1734     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1735 
1736     /*
1737      * When -no-acpi is used with Q35 machine type, no ACPI is built,
1738      * but pcms->acpi_dev is still created. Check !acpi_enabled in
1739      * addition to cover this case.
1740      */
1741     if (!pcms->acpi_dev || !acpi_enabled) {
1742         error_setg(&local_err,
1743                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
1744         goto out;
1745     }
1746 
1747     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1748         error_setg(&local_err,
1749                    "nvdimm device hot unplug is not supported yet.");
1750         goto out;
1751     }
1752 
1753     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1754     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1755 
1756 out:
1757     error_propagate(errp, local_err);
1758 }
1759 
1760 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1761                              DeviceState *dev, Error **errp)
1762 {
1763     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1764     HotplugHandlerClass *hhc;
1765     Error *local_err = NULL;
1766 
1767     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1768     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1769 
1770     if (local_err) {
1771         goto out;
1772     }
1773 
1774     pc_dimm_unplug(dev, MACHINE(pcms));
1775     object_unparent(OBJECT(dev));
1776 
1777  out:
1778     error_propagate(errp, local_err);
1779 }
1780 
1781 static int pc_apic_cmp(const void *a, const void *b)
1782 {
1783    CPUArchId *apic_a = (CPUArchId *)a;
1784    CPUArchId *apic_b = (CPUArchId *)b;
1785 
1786    return apic_a->arch_id - apic_b->arch_id;
1787 }
1788 
1789 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1790  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1791  * entry corresponding to CPU's apic_id returns NULL.
1792  */
1793 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1794 {
1795     CPUArchId apic_id, *found_cpu;
1796 
1797     apic_id.arch_id = id;
1798     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1799         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1800         pc_apic_cmp);
1801     if (found_cpu && idx) {
1802         *idx = found_cpu - ms->possible_cpus->cpus;
1803     }
1804     return found_cpu;
1805 }
1806 
1807 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1808                         DeviceState *dev, Error **errp)
1809 {
1810     CPUArchId *found_cpu;
1811     HotplugHandlerClass *hhc;
1812     Error *local_err = NULL;
1813     X86CPU *cpu = X86_CPU(dev);
1814     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1815 
1816     if (pcms->acpi_dev) {
1817         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1818         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1819         if (local_err) {
1820             goto out;
1821         }
1822     }
1823 
1824     /* increment the number of CPUs */
1825     pcms->boot_cpus++;
1826     if (pcms->rtc) {
1827         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1828     }
1829     if (pcms->fw_cfg) {
1830         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1831     }
1832 
1833     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1834     found_cpu->cpu = OBJECT(dev);
1835 out:
1836     error_propagate(errp, local_err);
1837 }
1838 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1839                                      DeviceState *dev, Error **errp)
1840 {
1841     int idx = -1;
1842     HotplugHandlerClass *hhc;
1843     Error *local_err = NULL;
1844     X86CPU *cpu = X86_CPU(dev);
1845     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1846 
1847     if (!pcms->acpi_dev) {
1848         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1849         goto out;
1850     }
1851 
1852     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1853     assert(idx != -1);
1854     if (idx == 0) {
1855         error_setg(&local_err, "Boot CPU is unpluggable");
1856         goto out;
1857     }
1858 
1859     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1860     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1861 
1862     if (local_err) {
1863         goto out;
1864     }
1865 
1866  out:
1867     error_propagate(errp, local_err);
1868 
1869 }
1870 
1871 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1872                              DeviceState *dev, Error **errp)
1873 {
1874     CPUArchId *found_cpu;
1875     HotplugHandlerClass *hhc;
1876     Error *local_err = NULL;
1877     X86CPU *cpu = X86_CPU(dev);
1878     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1879 
1880     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1881     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1882 
1883     if (local_err) {
1884         goto out;
1885     }
1886 
1887     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1888     found_cpu->cpu = NULL;
1889     object_unparent(OBJECT(dev));
1890 
1891     /* decrement the number of CPUs */
1892     pcms->boot_cpus--;
1893     /* Update the number of CPUs in CMOS */
1894     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1895     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1896  out:
1897     error_propagate(errp, local_err);
1898 }
1899 
1900 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1901                             DeviceState *dev, Error **errp)
1902 {
1903     int idx;
1904     CPUState *cs;
1905     CPUArchId *cpu_slot;
1906     X86CPUTopoInfo topo;
1907     X86CPU *cpu = X86_CPU(dev);
1908     MachineState *ms = MACHINE(hotplug_dev);
1909     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1910 
1911     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1912         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1913                    ms->cpu_type);
1914         return;
1915     }
1916 
1917     /* if APIC ID is not set, set it based on socket/core/thread properties */
1918     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1919         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1920 
1921         if (cpu->socket_id < 0) {
1922             error_setg(errp, "CPU socket-id is not set");
1923             return;
1924         } else if (cpu->socket_id > max_socket) {
1925             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1926                        cpu->socket_id, max_socket);
1927             return;
1928         }
1929         if (cpu->core_id < 0) {
1930             error_setg(errp, "CPU core-id is not set");
1931             return;
1932         } else if (cpu->core_id > (smp_cores - 1)) {
1933             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1934                        cpu->core_id, smp_cores - 1);
1935             return;
1936         }
1937         if (cpu->thread_id < 0) {
1938             error_setg(errp, "CPU thread-id is not set");
1939             return;
1940         } else if (cpu->thread_id > (smp_threads - 1)) {
1941             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1942                        cpu->thread_id, smp_threads - 1);
1943             return;
1944         }
1945 
1946         topo.pkg_id = cpu->socket_id;
1947         topo.core_id = cpu->core_id;
1948         topo.smt_id = cpu->thread_id;
1949         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1950     }
1951 
1952     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1953     if (!cpu_slot) {
1954         MachineState *ms = MACHINE(pcms);
1955 
1956         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1957         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1958                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1959                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1960                    ms->possible_cpus->len - 1);
1961         return;
1962     }
1963 
1964     if (cpu_slot->cpu) {
1965         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1966                    idx, cpu->apic_id);
1967         return;
1968     }
1969 
1970     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1971      * so that machine_query_hotpluggable_cpus would show correct values
1972      */
1973     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1974      * once -smp refactoring is complete and there will be CPU private
1975      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1976     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1977     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1978         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1979             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1980         return;
1981     }
1982     cpu->socket_id = topo.pkg_id;
1983 
1984     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1985         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1986             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1987         return;
1988     }
1989     cpu->core_id = topo.core_id;
1990 
1991     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1992         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1993             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1994         return;
1995     }
1996     cpu->thread_id = topo.smt_id;
1997 
1998     if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
1999         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2000         return;
2001     }
2002 
2003     cs = CPU(cpu);
2004     cs->cpu_index = idx;
2005 
2006     numa_cpu_pre_plug(cpu_slot, dev, errp);
2007 }
2008 
2009 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2010                                           DeviceState *dev, Error **errp)
2011 {
2012     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2013         pc_memory_pre_plug(hotplug_dev, dev, errp);
2014     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2015         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2016     }
2017 }
2018 
2019 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2020                                       DeviceState *dev, Error **errp)
2021 {
2022     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2023         pc_memory_plug(hotplug_dev, dev, errp);
2024     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2025         pc_cpu_plug(hotplug_dev, dev, errp);
2026     }
2027 }
2028 
2029 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2030                                                 DeviceState *dev, Error **errp)
2031 {
2032     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2033         pc_memory_unplug_request(hotplug_dev, dev, errp);
2034     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2035         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2036     } else {
2037         error_setg(errp, "acpi: device unplug request for not supported device"
2038                    " type: %s", object_get_typename(OBJECT(dev)));
2039     }
2040 }
2041 
2042 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2043                                         DeviceState *dev, Error **errp)
2044 {
2045     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2046         pc_memory_unplug(hotplug_dev, dev, errp);
2047     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2048         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2049     } else {
2050         error_setg(errp, "acpi: device unplug for not supported device"
2051                    " type: %s", object_get_typename(OBJECT(dev)));
2052     }
2053 }
2054 
2055 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2056                                              DeviceState *dev)
2057 {
2058     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2059         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2060         return HOTPLUG_HANDLER(machine);
2061     }
2062 
2063     return NULL;
2064 }
2065 
2066 static void
2067 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2068                                          const char *name, void *opaque,
2069                                          Error **errp)
2070 {
2071     MachineState *ms = MACHINE(obj);
2072     int64_t value = memory_region_size(&ms->device_memory->mr);
2073 
2074     visit_type_int(v, name, &value, errp);
2075 }
2076 
2077 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2078                                             const char *name, void *opaque,
2079                                             Error **errp)
2080 {
2081     PCMachineState *pcms = PC_MACHINE(obj);
2082     uint64_t value = pcms->max_ram_below_4g;
2083 
2084     visit_type_size(v, name, &value, errp);
2085 }
2086 
2087 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2088                                             const char *name, void *opaque,
2089                                             Error **errp)
2090 {
2091     PCMachineState *pcms = PC_MACHINE(obj);
2092     Error *error = NULL;
2093     uint64_t value;
2094 
2095     visit_type_size(v, name, &value, &error);
2096     if (error) {
2097         error_propagate(errp, error);
2098         return;
2099     }
2100     if (value > 4 * GiB) {
2101         error_setg(&error,
2102                    "Machine option 'max-ram-below-4g=%"PRIu64
2103                    "' expects size less than or equal to 4G", value);
2104         error_propagate(errp, error);
2105         return;
2106     }
2107 
2108     if (value < 1 * MiB) {
2109         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2110                     "BIOS may not work with less than 1MiB", value);
2111     }
2112 
2113     pcms->max_ram_below_4g = value;
2114 }
2115 
2116 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2117                                   void *opaque, Error **errp)
2118 {
2119     PCMachineState *pcms = PC_MACHINE(obj);
2120     OnOffAuto vmport = pcms->vmport;
2121 
2122     visit_type_OnOffAuto(v, name, &vmport, errp);
2123 }
2124 
2125 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2126                                   void *opaque, Error **errp)
2127 {
2128     PCMachineState *pcms = PC_MACHINE(obj);
2129 
2130     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2131 }
2132 
2133 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2134 {
2135     bool smm_available = false;
2136 
2137     if (pcms->smm == ON_OFF_AUTO_OFF) {
2138         return false;
2139     }
2140 
2141     if (tcg_enabled() || qtest_enabled()) {
2142         smm_available = true;
2143     } else if (kvm_enabled()) {
2144         smm_available = kvm_has_smm();
2145     }
2146 
2147     if (smm_available) {
2148         return true;
2149     }
2150 
2151     if (pcms->smm == ON_OFF_AUTO_ON) {
2152         error_report("System Management Mode not supported by this hypervisor.");
2153         exit(1);
2154     }
2155     return false;
2156 }
2157 
2158 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2159                                void *opaque, Error **errp)
2160 {
2161     PCMachineState *pcms = PC_MACHINE(obj);
2162     OnOffAuto smm = pcms->smm;
2163 
2164     visit_type_OnOffAuto(v, name, &smm, errp);
2165 }
2166 
2167 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2168                                void *opaque, Error **errp)
2169 {
2170     PCMachineState *pcms = PC_MACHINE(obj);
2171 
2172     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2173 }
2174 
2175 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2176 {
2177     PCMachineState *pcms = PC_MACHINE(obj);
2178 
2179     return pcms->acpi_nvdimm_state.is_enabled;
2180 }
2181 
2182 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2183 {
2184     PCMachineState *pcms = PC_MACHINE(obj);
2185 
2186     pcms->acpi_nvdimm_state.is_enabled = value;
2187 }
2188 
2189 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2190 {
2191     PCMachineState *pcms = PC_MACHINE(obj);
2192 
2193     return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2194 }
2195 
2196 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2197                                                Error **errp)
2198 {
2199     PCMachineState *pcms = PC_MACHINE(obj);
2200     AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2201 
2202     if (strcmp(value, "cpu") == 0)
2203         nvdimm_state->persistence = 3;
2204     else if (strcmp(value, "mem-ctrl") == 0)
2205         nvdimm_state->persistence = 2;
2206     else {
2207         error_report("-machine nvdimm-persistence=%s: unsupported option", value);
2208         exit(EXIT_FAILURE);
2209     }
2210 
2211     g_free(nvdimm_state->persistence_string);
2212     nvdimm_state->persistence_string = g_strdup(value);
2213 }
2214 
2215 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2216 {
2217     PCMachineState *pcms = PC_MACHINE(obj);
2218 
2219     return pcms->smbus;
2220 }
2221 
2222 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2223 {
2224     PCMachineState *pcms = PC_MACHINE(obj);
2225 
2226     pcms->smbus = value;
2227 }
2228 
2229 static bool pc_machine_get_sata(Object *obj, Error **errp)
2230 {
2231     PCMachineState *pcms = PC_MACHINE(obj);
2232 
2233     return pcms->sata;
2234 }
2235 
2236 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2237 {
2238     PCMachineState *pcms = PC_MACHINE(obj);
2239 
2240     pcms->sata = value;
2241 }
2242 
2243 static bool pc_machine_get_pit(Object *obj, Error **errp)
2244 {
2245     PCMachineState *pcms = PC_MACHINE(obj);
2246 
2247     return pcms->pit;
2248 }
2249 
2250 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2251 {
2252     PCMachineState *pcms = PC_MACHINE(obj);
2253 
2254     pcms->pit = value;
2255 }
2256 
2257 static void pc_machine_initfn(Object *obj)
2258 {
2259     PCMachineState *pcms = PC_MACHINE(obj);
2260 
2261     pcms->max_ram_below_4g = 0; /* use default */
2262     pcms->smm = ON_OFF_AUTO_AUTO;
2263     pcms->vmport = ON_OFF_AUTO_AUTO;
2264     /* nvdimm is disabled on default. */
2265     pcms->acpi_nvdimm_state.is_enabled = false;
2266     /* acpi build is enabled by default if machine supports it */
2267     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2268     pcms->smbus = true;
2269     pcms->sata = true;
2270     pcms->pit = true;
2271 }
2272 
2273 static void pc_machine_reset(void)
2274 {
2275     CPUState *cs;
2276     X86CPU *cpu;
2277 
2278     qemu_devices_reset();
2279 
2280     /* Reset APIC after devices have been reset to cancel
2281      * any changes that qemu_devices_reset() might have done.
2282      */
2283     CPU_FOREACH(cs) {
2284         cpu = X86_CPU(cs);
2285 
2286         if (cpu->apic_state) {
2287             device_reset(cpu->apic_state);
2288         }
2289     }
2290 }
2291 
2292 static CpuInstanceProperties
2293 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2294 {
2295     MachineClass *mc = MACHINE_GET_CLASS(ms);
2296     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2297 
2298     assert(cpu_index < possible_cpus->len);
2299     return possible_cpus->cpus[cpu_index].props;
2300 }
2301 
2302 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2303 {
2304    X86CPUTopoInfo topo;
2305 
2306    assert(idx < ms->possible_cpus->len);
2307    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2308                             smp_cores, smp_threads, &topo);
2309    return topo.pkg_id % nb_numa_nodes;
2310 }
2311 
2312 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2313 {
2314     int i;
2315 
2316     if (ms->possible_cpus) {
2317         /*
2318          * make sure that max_cpus hasn't changed since the first use, i.e.
2319          * -smp hasn't been parsed after it
2320         */
2321         assert(ms->possible_cpus->len == max_cpus);
2322         return ms->possible_cpus;
2323     }
2324 
2325     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2326                                   sizeof(CPUArchId) * max_cpus);
2327     ms->possible_cpus->len = max_cpus;
2328     for (i = 0; i < ms->possible_cpus->len; i++) {
2329         X86CPUTopoInfo topo;
2330 
2331         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2332         ms->possible_cpus->cpus[i].vcpus_count = 1;
2333         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2334         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2335                                  smp_cores, smp_threads, &topo);
2336         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2337         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2338         ms->possible_cpus->cpus[i].props.has_core_id = true;
2339         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2340         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2341         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2342     }
2343     return ms->possible_cpus;
2344 }
2345 
2346 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2347 {
2348     /* cpu index isn't used */
2349     CPUState *cs;
2350 
2351     CPU_FOREACH(cs) {
2352         X86CPU *cpu = X86_CPU(cs);
2353 
2354         if (!cpu->apic_state) {
2355             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2356         } else {
2357             apic_deliver_nmi(cpu->apic_state);
2358         }
2359     }
2360 }
2361 
2362 static void pc_machine_class_init(ObjectClass *oc, void *data)
2363 {
2364     MachineClass *mc = MACHINE_CLASS(oc);
2365     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2366     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2367     NMIClass *nc = NMI_CLASS(oc);
2368 
2369     pcmc->pci_enabled = true;
2370     pcmc->has_acpi_build = true;
2371     pcmc->rsdp_in_ram = true;
2372     pcmc->smbios_defaults = true;
2373     pcmc->smbios_uuid_encoded = true;
2374     pcmc->gigabyte_align = true;
2375     pcmc->has_reserved_memory = true;
2376     pcmc->kvmclock_enabled = true;
2377     pcmc->enforce_aligned_dimm = true;
2378     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2379      * to be used at the moment, 32K should be enough for a while.  */
2380     pcmc->acpi_data_size = 0x20000 + 0x8000;
2381     pcmc->save_tsc_khz = true;
2382     pcmc->linuxboot_dma_enabled = true;
2383     assert(!mc->get_hotplug_handler);
2384     mc->get_hotplug_handler = pc_get_hotpug_handler;
2385     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2386     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2387     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2388     mc->auto_enable_numa_with_memhp = true;
2389     mc->has_hotpluggable_cpus = true;
2390     mc->default_boot_order = "cad";
2391     mc->hot_add_cpu = pc_hot_add_cpu;
2392     mc->block_default_type = IF_IDE;
2393     mc->max_cpus = 255;
2394     mc->reset = pc_machine_reset;
2395     hc->pre_plug = pc_machine_device_pre_plug_cb;
2396     hc->plug = pc_machine_device_plug_cb;
2397     hc->unplug_request = pc_machine_device_unplug_request_cb;
2398     hc->unplug = pc_machine_device_unplug_cb;
2399     nc->nmi_monitor_handler = x86_nmi;
2400     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2401 
2402     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2403         pc_machine_get_device_memory_region_size, NULL,
2404         NULL, NULL, &error_abort);
2405 
2406     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2407         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2408         NULL, NULL, &error_abort);
2409 
2410     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2411         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2412 
2413     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2414         pc_machine_get_smm, pc_machine_set_smm,
2415         NULL, NULL, &error_abort);
2416     object_class_property_set_description(oc, PC_MACHINE_SMM,
2417         "Enable SMM (pc & q35)", &error_abort);
2418 
2419     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2420         pc_machine_get_vmport, pc_machine_set_vmport,
2421         NULL, NULL, &error_abort);
2422     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2423         "Enable vmport (pc & q35)", &error_abort);
2424 
2425     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2426         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2427 
2428     object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2429         pc_machine_get_nvdimm_persistence,
2430         pc_machine_set_nvdimm_persistence, &error_abort);
2431 
2432     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2433         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2434 
2435     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2436         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2437 
2438     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2439         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2440 }
2441 
2442 static const TypeInfo pc_machine_info = {
2443     .name = TYPE_PC_MACHINE,
2444     .parent = TYPE_MACHINE,
2445     .abstract = true,
2446     .instance_size = sizeof(PCMachineState),
2447     .instance_init = pc_machine_initfn,
2448     .class_size = sizeof(PCMachineClass),
2449     .class_init = pc_machine_class_init,
2450     .interfaces = (InterfaceInfo[]) {
2451          { TYPE_HOTPLUG_HANDLER },
2452          { TYPE_NMI },
2453          { }
2454     },
2455 };
2456 
2457 static void pc_machine_register_types(void)
2458 {
2459     type_register_static(&pc_machine_info);
2460 }
2461 
2462 type_init(pc_machine_register_types)
2463