1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/smbios/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 void gsi_handler(void *opaque, int n, int level) 113 { 114 GSIState *s = opaque; 115 116 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 117 if (n < ISA_NUM_IRQS) { 118 qemu_set_irq(s->i8259_irq[n], level); 119 } 120 qemu_set_irq(s->ioapic_irq[n], level); 121 } 122 123 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 124 unsigned size) 125 { 126 } 127 128 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 129 { 130 return 0xffffffffffffffffULL; 131 } 132 133 /* MSDOS compatibility mode FPU exception support */ 134 static qemu_irq ferr_irq; 135 136 void pc_register_ferr_irq(qemu_irq irq) 137 { 138 ferr_irq = irq; 139 } 140 141 /* XXX: add IGNNE support */ 142 void cpu_set_ferr(CPUX86State *s) 143 { 144 qemu_irq_raise(ferr_irq); 145 } 146 147 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 148 unsigned size) 149 { 150 qemu_irq_lower(ferr_irq); 151 } 152 153 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 154 { 155 return 0xffffffffffffffffULL; 156 } 157 158 /* TSC handling */ 159 uint64_t cpu_get_tsc(CPUX86State *env) 160 { 161 return cpu_get_ticks(); 162 } 163 164 /* IRQ handling */ 165 int cpu_get_pic_interrupt(CPUX86State *env) 166 { 167 X86CPU *cpu = x86_env_get_cpu(env); 168 int intno; 169 170 if (!kvm_irqchip_in_kernel()) { 171 intno = apic_get_interrupt(cpu->apic_state); 172 if (intno >= 0) { 173 return intno; 174 } 175 /* read the irq from the PIC */ 176 if (!apic_accept_pic_intr(cpu->apic_state)) { 177 return -1; 178 } 179 } 180 181 intno = pic_read_irq(isa_pic); 182 return intno; 183 } 184 185 static void pic_irq_request(void *opaque, int irq, int level) 186 { 187 CPUState *cs = first_cpu; 188 X86CPU *cpu = X86_CPU(cs); 189 190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 191 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 192 CPU_FOREACH(cs) { 193 cpu = X86_CPU(cs); 194 if (apic_accept_pic_intr(cpu->apic_state)) { 195 apic_deliver_pic_intr(cpu->apic_state, level); 196 } 197 } 198 } else { 199 if (level) { 200 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 201 } else { 202 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 203 } 204 } 205 } 206 207 /* PC cmos mappings */ 208 209 #define REG_EQUIPMENT_BYTE 0x14 210 211 int cmos_get_fd_drive_type(FloppyDriveType fd0) 212 { 213 int val; 214 215 switch (fd0) { 216 case FLOPPY_DRIVE_TYPE_144: 217 /* 1.44 Mb 3"5 drive */ 218 val = 4; 219 break; 220 case FLOPPY_DRIVE_TYPE_288: 221 /* 2.88 Mb 3"5 drive */ 222 val = 5; 223 break; 224 case FLOPPY_DRIVE_TYPE_120: 225 /* 1.2 Mb 5"5 drive */ 226 val = 2; 227 break; 228 case FLOPPY_DRIVE_TYPE_NONE: 229 default: 230 val = 0; 231 break; 232 } 233 return val; 234 } 235 236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 237 int16_t cylinders, int8_t heads, int8_t sectors) 238 { 239 rtc_set_memory(s, type_ofs, 47); 240 rtc_set_memory(s, info_ofs, cylinders); 241 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 242 rtc_set_memory(s, info_ofs + 2, heads); 243 rtc_set_memory(s, info_ofs + 3, 0xff); 244 rtc_set_memory(s, info_ofs + 4, 0xff); 245 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 246 rtc_set_memory(s, info_ofs + 6, cylinders); 247 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 248 rtc_set_memory(s, info_ofs + 8, sectors); 249 } 250 251 /* convert boot_device letter to something recognizable by the bios */ 252 static int boot_device2nibble(char boot_device) 253 { 254 switch(boot_device) { 255 case 'a': 256 case 'b': 257 return 0x01; /* floppy boot */ 258 case 'c': 259 return 0x02; /* hard drive boot */ 260 case 'd': 261 return 0x03; /* CD-ROM boot */ 262 case 'n': 263 return 0x04; /* Network boot */ 264 } 265 return 0; 266 } 267 268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 269 { 270 #define PC_MAX_BOOT_DEVICES 3 271 int nbds, bds[3] = { 0, }; 272 int i; 273 274 nbds = strlen(boot_device); 275 if (nbds > PC_MAX_BOOT_DEVICES) { 276 error_setg(errp, "Too many boot devices for PC"); 277 return; 278 } 279 for (i = 0; i < nbds; i++) { 280 bds[i] = boot_device2nibble(boot_device[i]); 281 if (bds[i] == 0) { 282 error_setg(errp, "Invalid boot device for PC: '%c'", 283 boot_device[i]); 284 return; 285 } 286 } 287 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 288 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 289 } 290 291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 292 { 293 set_boot_dev(opaque, boot_device, errp); 294 } 295 296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 297 { 298 int val, nb, i; 299 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 300 FLOPPY_DRIVE_TYPE_NONE }; 301 302 /* floppy type */ 303 if (floppy) { 304 for (i = 0; i < 2; i++) { 305 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 306 } 307 } 308 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 309 cmos_get_fd_drive_type(fd_type[1]); 310 rtc_set_memory(rtc_state, 0x10, val); 311 312 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 313 nb = 0; 314 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 315 nb++; 316 } 317 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 318 nb++; 319 } 320 switch (nb) { 321 case 0: 322 break; 323 case 1: 324 val |= 0x01; /* 1 drive, ready for boot */ 325 break; 326 case 2: 327 val |= 0x41; /* 2 drives, ready for boot */ 328 break; 329 } 330 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 331 } 332 333 typedef struct pc_cmos_init_late_arg { 334 ISADevice *rtc_state; 335 BusState *idebus[2]; 336 } pc_cmos_init_late_arg; 337 338 typedef struct check_fdc_state { 339 ISADevice *floppy; 340 bool multiple; 341 } CheckFdcState; 342 343 static int check_fdc(Object *obj, void *opaque) 344 { 345 CheckFdcState *state = opaque; 346 Object *fdc; 347 uint32_t iobase; 348 Error *local_err = NULL; 349 350 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 351 if (!fdc) { 352 return 0; 353 } 354 355 iobase = object_property_get_uint(obj, "iobase", &local_err); 356 if (local_err || iobase != 0x3f0) { 357 error_free(local_err); 358 return 0; 359 } 360 361 if (state->floppy) { 362 state->multiple = true; 363 } else { 364 state->floppy = ISA_DEVICE(obj); 365 } 366 return 0; 367 } 368 369 static const char * const fdc_container_path[] = { 370 "/unattached", "/peripheral", "/peripheral-anon" 371 }; 372 373 /* 374 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 375 * and ACPI objects. 376 */ 377 ISADevice *pc_find_fdc0(void) 378 { 379 int i; 380 Object *container; 381 CheckFdcState state = { 0 }; 382 383 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 384 container = container_get(qdev_get_machine(), fdc_container_path[i]); 385 object_child_foreach(container, check_fdc, &state); 386 } 387 388 if (state.multiple) { 389 warn_report("multiple floppy disk controllers with " 390 "iobase=0x3f0 have been found"); 391 error_printf("the one being picked for CMOS setup might not reflect " 392 "your intent"); 393 } 394 395 return state.floppy; 396 } 397 398 static void pc_cmos_init_late(void *opaque) 399 { 400 pc_cmos_init_late_arg *arg = opaque; 401 ISADevice *s = arg->rtc_state; 402 int16_t cylinders; 403 int8_t heads, sectors; 404 int val; 405 int i, trans; 406 407 val = 0; 408 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 409 &cylinders, &heads, §ors) >= 0) { 410 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 411 val |= 0xf0; 412 } 413 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 414 &cylinders, &heads, §ors) >= 0) { 415 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 416 val |= 0x0f; 417 } 418 rtc_set_memory(s, 0x12, val); 419 420 val = 0; 421 for (i = 0; i < 4; i++) { 422 /* NOTE: ide_get_geometry() returns the physical 423 geometry. It is always such that: 1 <= sects <= 63, 1 424 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 425 geometry can be different if a translation is done. */ 426 if (arg->idebus[i / 2] && 427 ide_get_geometry(arg->idebus[i / 2], i % 2, 428 &cylinders, &heads, §ors) >= 0) { 429 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 430 assert((trans & ~3) == 0); 431 val |= trans << (i * 2); 432 } 433 } 434 rtc_set_memory(s, 0x39, val); 435 436 pc_cmos_init_floppy(s, pc_find_fdc0()); 437 438 qemu_unregister_reset(pc_cmos_init_late, opaque); 439 } 440 441 void pc_cmos_init(PCMachineState *pcms, 442 BusState *idebus0, BusState *idebus1, 443 ISADevice *s) 444 { 445 int val; 446 static pc_cmos_init_late_arg arg; 447 448 /* various important CMOS locations needed by PC/Bochs bios */ 449 450 /* memory size */ 451 /* base memory (first MiB) */ 452 val = MIN(pcms->below_4g_mem_size / KiB, 640); 453 rtc_set_memory(s, 0x15, val); 454 rtc_set_memory(s, 0x16, val >> 8); 455 /* extended memory (next 64MiB) */ 456 if (pcms->below_4g_mem_size > 1 * MiB) { 457 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 458 } else { 459 val = 0; 460 } 461 if (val > 65535) 462 val = 65535; 463 rtc_set_memory(s, 0x17, val); 464 rtc_set_memory(s, 0x18, val >> 8); 465 rtc_set_memory(s, 0x30, val); 466 rtc_set_memory(s, 0x31, val >> 8); 467 /* memory between 16MiB and 4GiB */ 468 if (pcms->below_4g_mem_size > 16 * MiB) { 469 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 470 } else { 471 val = 0; 472 } 473 if (val > 65535) 474 val = 65535; 475 rtc_set_memory(s, 0x34, val); 476 rtc_set_memory(s, 0x35, val >> 8); 477 /* memory above 4GiB */ 478 val = pcms->above_4g_mem_size / 65536; 479 rtc_set_memory(s, 0x5b, val); 480 rtc_set_memory(s, 0x5c, val >> 8); 481 rtc_set_memory(s, 0x5d, val >> 16); 482 483 object_property_add_link(OBJECT(pcms), "rtc_state", 484 TYPE_ISA_DEVICE, 485 (Object **)&pcms->rtc, 486 object_property_allow_set_link, 487 OBJ_PROP_LINK_STRONG, &error_abort); 488 object_property_set_link(OBJECT(pcms), OBJECT(s), 489 "rtc_state", &error_abort); 490 491 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 492 493 val = 0; 494 val |= 0x02; /* FPU is there */ 495 val |= 0x04; /* PS/2 mouse installed */ 496 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 497 498 /* hard drives and FDC */ 499 arg.rtc_state = s; 500 arg.idebus[0] = idebus0; 501 arg.idebus[1] = idebus1; 502 qemu_register_reset(pc_cmos_init_late, &arg); 503 } 504 505 #define TYPE_PORT92 "port92" 506 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 507 508 /* port 92 stuff: could be split off */ 509 typedef struct Port92State { 510 ISADevice parent_obj; 511 512 MemoryRegion io; 513 uint8_t outport; 514 qemu_irq a20_out; 515 } Port92State; 516 517 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 518 unsigned size) 519 { 520 Port92State *s = opaque; 521 int oldval = s->outport; 522 523 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 524 s->outport = val; 525 qemu_set_irq(s->a20_out, (val >> 1) & 1); 526 if ((val & 1) && !(oldval & 1)) { 527 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 528 } 529 } 530 531 static uint64_t port92_read(void *opaque, hwaddr addr, 532 unsigned size) 533 { 534 Port92State *s = opaque; 535 uint32_t ret; 536 537 ret = s->outport; 538 DPRINTF("port92: read 0x%02x\n", ret); 539 return ret; 540 } 541 542 static void port92_init(ISADevice *dev, qemu_irq a20_out) 543 { 544 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 545 } 546 547 static const VMStateDescription vmstate_port92_isa = { 548 .name = "port92", 549 .version_id = 1, 550 .minimum_version_id = 1, 551 .fields = (VMStateField[]) { 552 VMSTATE_UINT8(outport, Port92State), 553 VMSTATE_END_OF_LIST() 554 } 555 }; 556 557 static void port92_reset(DeviceState *d) 558 { 559 Port92State *s = PORT92(d); 560 561 s->outport &= ~1; 562 } 563 564 static const MemoryRegionOps port92_ops = { 565 .read = port92_read, 566 .write = port92_write, 567 .impl = { 568 .min_access_size = 1, 569 .max_access_size = 1, 570 }, 571 .endianness = DEVICE_LITTLE_ENDIAN, 572 }; 573 574 static void port92_initfn(Object *obj) 575 { 576 Port92State *s = PORT92(obj); 577 578 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 579 580 s->outport = 0; 581 582 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 583 } 584 585 static void port92_realizefn(DeviceState *dev, Error **errp) 586 { 587 ISADevice *isadev = ISA_DEVICE(dev); 588 Port92State *s = PORT92(dev); 589 590 isa_register_ioport(isadev, &s->io, 0x92); 591 } 592 593 static void port92_class_initfn(ObjectClass *klass, void *data) 594 { 595 DeviceClass *dc = DEVICE_CLASS(klass); 596 597 dc->realize = port92_realizefn; 598 dc->reset = port92_reset; 599 dc->vmsd = &vmstate_port92_isa; 600 /* 601 * Reason: unlike ordinary ISA devices, this one needs additional 602 * wiring: its A20 output line needs to be wired up by 603 * port92_init(). 604 */ 605 dc->user_creatable = false; 606 } 607 608 static const TypeInfo port92_info = { 609 .name = TYPE_PORT92, 610 .parent = TYPE_ISA_DEVICE, 611 .instance_size = sizeof(Port92State), 612 .instance_init = port92_initfn, 613 .class_init = port92_class_initfn, 614 }; 615 616 static void port92_register_types(void) 617 { 618 type_register_static(&port92_info); 619 } 620 621 type_init(port92_register_types) 622 623 static void handle_a20_line_change(void *opaque, int irq, int level) 624 { 625 X86CPU *cpu = opaque; 626 627 /* XXX: send to all CPUs ? */ 628 /* XXX: add logic to handle multiple A20 line sources */ 629 x86_cpu_set_a20(cpu, level); 630 } 631 632 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 633 { 634 int index = le32_to_cpu(e820_reserve.count); 635 struct e820_entry *entry; 636 637 if (type != E820_RAM) { 638 /* old FW_CFG_E820_TABLE entry -- reservations only */ 639 if (index >= E820_NR_ENTRIES) { 640 return -EBUSY; 641 } 642 entry = &e820_reserve.entry[index++]; 643 644 entry->address = cpu_to_le64(address); 645 entry->length = cpu_to_le64(length); 646 entry->type = cpu_to_le32(type); 647 648 e820_reserve.count = cpu_to_le32(index); 649 } 650 651 /* new "etc/e820" file -- include ram too */ 652 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 653 e820_table[e820_entries].address = cpu_to_le64(address); 654 e820_table[e820_entries].length = cpu_to_le64(length); 655 e820_table[e820_entries].type = cpu_to_le32(type); 656 e820_entries++; 657 658 return e820_entries; 659 } 660 661 int e820_get_num_entries(void) 662 { 663 return e820_entries; 664 } 665 666 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 667 { 668 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 669 *address = le64_to_cpu(e820_table[idx].address); 670 *length = le64_to_cpu(e820_table[idx].length); 671 return true; 672 } 673 return false; 674 } 675 676 /* Enables contiguous-apic-ID mode, for compatibility */ 677 static bool compat_apic_id_mode; 678 679 void enable_compat_apic_id_mode(void) 680 { 681 compat_apic_id_mode = true; 682 } 683 684 /* Calculates initial APIC ID for a specific CPU index 685 * 686 * Currently we need to be able to calculate the APIC ID from the CPU index 687 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 688 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 689 * all CPUs up to max_cpus. 690 */ 691 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 692 { 693 uint32_t correct_id; 694 static bool warned; 695 696 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 697 if (compat_apic_id_mode) { 698 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 699 error_report("APIC IDs set in compatibility mode, " 700 "CPU topology won't match the configuration"); 701 warned = true; 702 } 703 return cpu_index; 704 } else { 705 return correct_id; 706 } 707 } 708 709 static void pc_build_smbios(PCMachineState *pcms) 710 { 711 uint8_t *smbios_tables, *smbios_anchor; 712 size_t smbios_tables_len, smbios_anchor_len; 713 struct smbios_phys_mem_area *mem_array; 714 unsigned i, array_count; 715 MachineState *ms = MACHINE(pcms); 716 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 717 718 /* tell smbios about cpuid version and features */ 719 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 720 721 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 722 if (smbios_tables) { 723 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 724 smbios_tables, smbios_tables_len); 725 } 726 727 /* build the array of physical mem area from e820 table */ 728 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 729 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 730 uint64_t addr, len; 731 732 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 733 mem_array[array_count].address = addr; 734 mem_array[array_count].length = len; 735 array_count++; 736 } 737 } 738 smbios_get_tables(mem_array, array_count, 739 &smbios_tables, &smbios_tables_len, 740 &smbios_anchor, &smbios_anchor_len); 741 g_free(mem_array); 742 743 if (smbios_anchor) { 744 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 745 smbios_tables, smbios_tables_len); 746 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 747 smbios_anchor, smbios_anchor_len); 748 } 749 } 750 751 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 752 { 753 FWCfgState *fw_cfg; 754 uint64_t *numa_fw_cfg; 755 int i; 756 const CPUArchIdList *cpus; 757 MachineClass *mc = MACHINE_GET_CLASS(pcms); 758 759 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 760 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 761 762 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 763 * 764 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 765 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 766 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 767 * for CPU hotplug also uses APIC ID and not "CPU index". 768 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 769 * but the "limit to the APIC ID values SeaBIOS may see". 770 * 771 * So for compatibility reasons with old BIOSes we are stuck with 772 * "etc/max-cpus" actually being apic_id_limit 773 */ 774 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 775 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 776 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 777 acpi_tables, acpi_tables_len); 778 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 779 780 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 781 &e820_reserve, sizeof(e820_reserve)); 782 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 783 sizeof(struct e820_entry) * e820_entries); 784 785 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 786 /* allocate memory for the NUMA channel: one (64bit) word for the number 787 * of nodes, one word for each VCPU->node and one word for each node to 788 * hold the amount of memory. 789 */ 790 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 791 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 792 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 793 for (i = 0; i < cpus->len; i++) { 794 unsigned int apic_id = cpus->cpus[i].arch_id; 795 assert(apic_id < pcms->apic_id_limit); 796 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 797 } 798 for (i = 0; i < nb_numa_nodes; i++) { 799 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 800 cpu_to_le64(numa_info[i].node_mem); 801 } 802 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 803 (1 + pcms->apic_id_limit + nb_numa_nodes) * 804 sizeof(*numa_fw_cfg)); 805 806 return fw_cfg; 807 } 808 809 static long get_file_size(FILE *f) 810 { 811 long where, size; 812 813 /* XXX: on Unix systems, using fstat() probably makes more sense */ 814 815 where = ftell(f); 816 fseek(f, 0, SEEK_END); 817 size = ftell(f); 818 fseek(f, where, SEEK_SET); 819 820 return size; 821 } 822 823 /* setup_data types */ 824 #define SETUP_NONE 0 825 #define SETUP_E820_EXT 1 826 #define SETUP_DTB 2 827 #define SETUP_PCI 3 828 #define SETUP_EFI 4 829 830 struct setup_data { 831 uint64_t next; 832 uint32_t type; 833 uint32_t len; 834 uint8_t data[0]; 835 } __attribute__((packed)); 836 837 static void load_linux(PCMachineState *pcms, 838 FWCfgState *fw_cfg) 839 { 840 uint16_t protocol; 841 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 842 int dtb_size, setup_data_offset; 843 uint32_t initrd_max; 844 uint8_t header[8192], *setup, *kernel, *initrd_data; 845 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 846 FILE *f; 847 char *vmode; 848 MachineState *machine = MACHINE(pcms); 849 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 850 struct setup_data *setup_data; 851 const char *kernel_filename = machine->kernel_filename; 852 const char *initrd_filename = machine->initrd_filename; 853 const char *dtb_filename = machine->dtb; 854 const char *kernel_cmdline = machine->kernel_cmdline; 855 856 /* Align to 16 bytes as a paranoia measure */ 857 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 858 859 /* load the kernel header */ 860 f = fopen(kernel_filename, "rb"); 861 if (!f || !(kernel_size = get_file_size(f)) || 862 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 863 MIN(ARRAY_SIZE(header), kernel_size)) { 864 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 865 kernel_filename, strerror(errno)); 866 exit(1); 867 } 868 869 /* kernel protocol version */ 870 #if 0 871 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 872 #endif 873 if (ldl_p(header+0x202) == 0x53726448) { 874 protocol = lduw_p(header+0x206); 875 } else { 876 /* This looks like a multiboot kernel. If it is, let's stop 877 treating it like a Linux kernel. */ 878 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 879 kernel_cmdline, kernel_size, header)) { 880 return; 881 } 882 protocol = 0; 883 } 884 885 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 886 /* Low kernel */ 887 real_addr = 0x90000; 888 cmdline_addr = 0x9a000 - cmdline_size; 889 prot_addr = 0x10000; 890 } else if (protocol < 0x202) { 891 /* High but ancient kernel */ 892 real_addr = 0x90000; 893 cmdline_addr = 0x9a000 - cmdline_size; 894 prot_addr = 0x100000; 895 } else { 896 /* High and recent kernel */ 897 real_addr = 0x10000; 898 cmdline_addr = 0x20000; 899 prot_addr = 0x100000; 900 } 901 902 #if 0 903 fprintf(stderr, 904 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 905 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 906 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 907 real_addr, 908 cmdline_addr, 909 prot_addr); 910 #endif 911 912 /* highest address for loading the initrd */ 913 if (protocol >= 0x203) { 914 initrd_max = ldl_p(header+0x22c); 915 } else { 916 initrd_max = 0x37ffffff; 917 } 918 919 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 920 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 921 } 922 923 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 924 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 925 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 926 927 if (protocol >= 0x202) { 928 stl_p(header+0x228, cmdline_addr); 929 } else { 930 stw_p(header+0x20, 0xA33F); 931 stw_p(header+0x22, cmdline_addr-real_addr); 932 } 933 934 /* handle vga= parameter */ 935 vmode = strstr(kernel_cmdline, "vga="); 936 if (vmode) { 937 unsigned int video_mode; 938 /* skip "vga=" */ 939 vmode += 4; 940 if (!strncmp(vmode, "normal", 6)) { 941 video_mode = 0xffff; 942 } else if (!strncmp(vmode, "ext", 3)) { 943 video_mode = 0xfffe; 944 } else if (!strncmp(vmode, "ask", 3)) { 945 video_mode = 0xfffd; 946 } else { 947 video_mode = strtol(vmode, NULL, 0); 948 } 949 stw_p(header+0x1fa, video_mode); 950 } 951 952 /* loader type */ 953 /* High nybble = B reserved for QEMU; low nybble is revision number. 954 If this code is substantially changed, you may want to consider 955 incrementing the revision. */ 956 if (protocol >= 0x200) { 957 header[0x210] = 0xB0; 958 } 959 /* heap */ 960 if (protocol >= 0x201) { 961 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 962 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 963 } 964 965 /* load initrd */ 966 if (initrd_filename) { 967 if (protocol < 0x200) { 968 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 969 exit(1); 970 } 971 972 initrd_size = get_image_size(initrd_filename); 973 if (initrd_size < 0) { 974 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 975 initrd_filename, strerror(errno)); 976 exit(1); 977 } 978 979 initrd_addr = (initrd_max-initrd_size) & ~4095; 980 981 initrd_data = g_malloc(initrd_size); 982 load_image(initrd_filename, initrd_data); 983 984 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 985 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 986 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 987 988 stl_p(header+0x218, initrd_addr); 989 stl_p(header+0x21c, initrd_size); 990 } 991 992 /* load kernel and setup */ 993 setup_size = header[0x1f1]; 994 if (setup_size == 0) { 995 setup_size = 4; 996 } 997 setup_size = (setup_size+1)*512; 998 if (setup_size > kernel_size) { 999 fprintf(stderr, "qemu: invalid kernel header\n"); 1000 exit(1); 1001 } 1002 kernel_size -= setup_size; 1003 1004 setup = g_malloc(setup_size); 1005 kernel = g_malloc(kernel_size); 1006 fseek(f, 0, SEEK_SET); 1007 if (fread(setup, 1, setup_size, f) != setup_size) { 1008 fprintf(stderr, "fread() failed\n"); 1009 exit(1); 1010 } 1011 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1012 fprintf(stderr, "fread() failed\n"); 1013 exit(1); 1014 } 1015 fclose(f); 1016 1017 /* append dtb to kernel */ 1018 if (dtb_filename) { 1019 if (protocol < 0x209) { 1020 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1021 exit(1); 1022 } 1023 1024 dtb_size = get_image_size(dtb_filename); 1025 if (dtb_size <= 0) { 1026 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1027 dtb_filename, strerror(errno)); 1028 exit(1); 1029 } 1030 1031 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1032 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1033 kernel = g_realloc(kernel, kernel_size); 1034 1035 stq_p(header+0x250, prot_addr + setup_data_offset); 1036 1037 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1038 setup_data->next = 0; 1039 setup_data->type = cpu_to_le32(SETUP_DTB); 1040 setup_data->len = cpu_to_le32(dtb_size); 1041 1042 load_image_size(dtb_filename, setup_data->data, dtb_size); 1043 } 1044 1045 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1046 1047 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1048 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1049 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1050 1051 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1052 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1053 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1054 1055 option_rom[nb_option_roms].bootindex = 0; 1056 option_rom[nb_option_roms].name = "linuxboot.bin"; 1057 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1058 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1059 } 1060 nb_option_roms++; 1061 } 1062 1063 #define NE2000_NB_MAX 6 1064 1065 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1066 0x280, 0x380 }; 1067 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1068 1069 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1070 { 1071 static int nb_ne2k = 0; 1072 1073 if (nb_ne2k == NE2000_NB_MAX) 1074 return; 1075 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1076 ne2000_irq[nb_ne2k], nd); 1077 nb_ne2k++; 1078 } 1079 1080 DeviceState *cpu_get_current_apic(void) 1081 { 1082 if (current_cpu) { 1083 X86CPU *cpu = X86_CPU(current_cpu); 1084 return cpu->apic_state; 1085 } else { 1086 return NULL; 1087 } 1088 } 1089 1090 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1091 { 1092 X86CPU *cpu = opaque; 1093 1094 if (level) { 1095 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1096 } 1097 } 1098 1099 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1100 { 1101 Object *cpu = NULL; 1102 Error *local_err = NULL; 1103 1104 cpu = object_new(typename); 1105 1106 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1107 object_property_set_bool(cpu, true, "realized", &local_err); 1108 1109 object_unref(cpu); 1110 error_propagate(errp, local_err); 1111 } 1112 1113 void pc_hot_add_cpu(const int64_t id, Error **errp) 1114 { 1115 MachineState *ms = MACHINE(qdev_get_machine()); 1116 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1117 Error *local_err = NULL; 1118 1119 if (id < 0) { 1120 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1121 return; 1122 } 1123 1124 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1125 error_setg(errp, "Unable to add CPU: %" PRIi64 1126 ", resulting APIC ID (%" PRIi64 ") is too large", 1127 id, apic_id); 1128 return; 1129 } 1130 1131 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1132 if (local_err) { 1133 error_propagate(errp, local_err); 1134 return; 1135 } 1136 } 1137 1138 void pc_cpus_init(PCMachineState *pcms) 1139 { 1140 int i; 1141 const CPUArchIdList *possible_cpus; 1142 MachineState *ms = MACHINE(pcms); 1143 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1144 1145 /* Calculates the limit to CPU APIC ID values 1146 * 1147 * Limit for the APIC ID value, so that all 1148 * CPU APIC IDs are < pcms->apic_id_limit. 1149 * 1150 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1151 */ 1152 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1153 possible_cpus = mc->possible_cpu_arch_ids(ms); 1154 for (i = 0; i < smp_cpus; i++) { 1155 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1156 &error_fatal); 1157 } 1158 } 1159 1160 static void pc_build_feature_control_file(PCMachineState *pcms) 1161 { 1162 MachineState *ms = MACHINE(pcms); 1163 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1164 CPUX86State *env = &cpu->env; 1165 uint32_t unused, ecx, edx; 1166 uint64_t feature_control_bits = 0; 1167 uint64_t *val; 1168 1169 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1170 if (ecx & CPUID_EXT_VMX) { 1171 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1172 } 1173 1174 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1175 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1176 (env->mcg_cap & MCG_LMCE_P)) { 1177 feature_control_bits |= FEATURE_CONTROL_LMCE; 1178 } 1179 1180 if (!feature_control_bits) { 1181 return; 1182 } 1183 1184 val = g_malloc(sizeof(*val)); 1185 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1186 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1187 } 1188 1189 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1190 { 1191 if (cpus_count > 0xff) { 1192 /* If the number of CPUs can't be represented in 8 bits, the 1193 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1194 * to make old BIOSes fail more predictably. 1195 */ 1196 rtc_set_memory(rtc, 0x5f, 0); 1197 } else { 1198 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1199 } 1200 } 1201 1202 static 1203 void pc_machine_done(Notifier *notifier, void *data) 1204 { 1205 PCMachineState *pcms = container_of(notifier, 1206 PCMachineState, machine_done); 1207 PCIBus *bus = pcms->bus; 1208 1209 /* set the number of CPUs */ 1210 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1211 1212 if (bus) { 1213 int extra_hosts = 0; 1214 1215 QLIST_FOREACH(bus, &bus->child, sibling) { 1216 /* look for expander root buses */ 1217 if (pci_bus_is_root(bus)) { 1218 extra_hosts++; 1219 } 1220 } 1221 if (extra_hosts && pcms->fw_cfg) { 1222 uint64_t *val = g_malloc(sizeof(*val)); 1223 *val = cpu_to_le64(extra_hosts); 1224 fw_cfg_add_file(pcms->fw_cfg, 1225 "etc/extra-pci-roots", val, sizeof(*val)); 1226 } 1227 } 1228 1229 acpi_setup(); 1230 if (pcms->fw_cfg) { 1231 pc_build_smbios(pcms); 1232 pc_build_feature_control_file(pcms); 1233 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1234 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1235 } 1236 1237 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1238 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1239 1240 if (!iommu || !iommu->x86_iommu.intr_supported || 1241 iommu->intr_eim != ON_OFF_AUTO_ON) { 1242 error_report("current -smp configuration requires " 1243 "Extended Interrupt Mode enabled. " 1244 "You can add an IOMMU using: " 1245 "-device intel-iommu,intremap=on,eim=on"); 1246 exit(EXIT_FAILURE); 1247 } 1248 } 1249 } 1250 1251 void pc_guest_info_init(PCMachineState *pcms) 1252 { 1253 int i; 1254 1255 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1256 pcms->numa_nodes = nb_numa_nodes; 1257 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1258 sizeof *pcms->node_mem); 1259 for (i = 0; i < nb_numa_nodes; i++) { 1260 pcms->node_mem[i] = numa_info[i].node_mem; 1261 } 1262 1263 pcms->machine_done.notify = pc_machine_done; 1264 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1265 } 1266 1267 /* setup pci memory address space mapping into system address space */ 1268 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1269 MemoryRegion *pci_address_space) 1270 { 1271 /* Set to lower priority than RAM */ 1272 memory_region_add_subregion_overlap(system_memory, 0x0, 1273 pci_address_space, -1); 1274 } 1275 1276 void pc_acpi_init(const char *default_dsdt) 1277 { 1278 char *filename; 1279 1280 if (acpi_tables != NULL) { 1281 /* manually set via -acpitable, leave it alone */ 1282 return; 1283 } 1284 1285 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1286 if (filename == NULL) { 1287 warn_report("failed to find %s", default_dsdt); 1288 } else { 1289 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1290 &error_abort); 1291 Error *err = NULL; 1292 1293 qemu_opt_set(opts, "file", filename, &error_abort); 1294 1295 acpi_table_add_builtin(opts, &err); 1296 if (err) { 1297 warn_reportf_err(err, "failed to load %s: ", filename); 1298 } 1299 g_free(filename); 1300 } 1301 } 1302 1303 void xen_load_linux(PCMachineState *pcms) 1304 { 1305 int i; 1306 FWCfgState *fw_cfg; 1307 1308 assert(MACHINE(pcms)->kernel_filename != NULL); 1309 1310 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1311 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1312 rom_set_fw(fw_cfg); 1313 1314 load_linux(pcms, fw_cfg); 1315 for (i = 0; i < nb_option_roms; i++) { 1316 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1317 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1318 !strcmp(option_rom[i].name, "multiboot.bin")); 1319 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1320 } 1321 pcms->fw_cfg = fw_cfg; 1322 } 1323 1324 void pc_memory_init(PCMachineState *pcms, 1325 MemoryRegion *system_memory, 1326 MemoryRegion *rom_memory, 1327 MemoryRegion **ram_memory) 1328 { 1329 int linux_boot, i; 1330 MemoryRegion *ram, *option_rom_mr; 1331 MemoryRegion *ram_below_4g, *ram_above_4g; 1332 FWCfgState *fw_cfg; 1333 MachineState *machine = MACHINE(pcms); 1334 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1335 1336 assert(machine->ram_size == pcms->below_4g_mem_size + 1337 pcms->above_4g_mem_size); 1338 1339 linux_boot = (machine->kernel_filename != NULL); 1340 1341 /* Allocate RAM. We allocate it as a single memory region and use 1342 * aliases to address portions of it, mostly for backwards compatibility 1343 * with older qemus that used qemu_ram_alloc(). 1344 */ 1345 ram = g_malloc(sizeof(*ram)); 1346 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1347 machine->ram_size); 1348 *ram_memory = ram; 1349 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1350 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1351 0, pcms->below_4g_mem_size); 1352 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1353 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1354 if (pcms->above_4g_mem_size > 0) { 1355 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1356 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1357 pcms->below_4g_mem_size, 1358 pcms->above_4g_mem_size); 1359 memory_region_add_subregion(system_memory, 0x100000000ULL, 1360 ram_above_4g); 1361 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1362 } 1363 1364 if (!pcmc->has_reserved_memory && 1365 (machine->ram_slots || 1366 (machine->maxram_size > machine->ram_size))) { 1367 MachineClass *mc = MACHINE_GET_CLASS(machine); 1368 1369 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1370 mc->name); 1371 exit(EXIT_FAILURE); 1372 } 1373 1374 /* always allocate the device memory information */ 1375 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1376 1377 /* initialize device memory address space */ 1378 if (pcmc->has_reserved_memory && 1379 (machine->ram_size < machine->maxram_size)) { 1380 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1381 1382 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1383 error_report("unsupported amount of memory slots: %"PRIu64, 1384 machine->ram_slots); 1385 exit(EXIT_FAILURE); 1386 } 1387 1388 if (QEMU_ALIGN_UP(machine->maxram_size, 1389 TARGET_PAGE_SIZE) != machine->maxram_size) { 1390 error_report("maximum memory size must by aligned to multiple of " 1391 "%d bytes", TARGET_PAGE_SIZE); 1392 exit(EXIT_FAILURE); 1393 } 1394 1395 machine->device_memory->base = 1396 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1397 1398 if (pcmc->enforce_aligned_dimm) { 1399 /* size device region assuming 1G page max alignment per slot */ 1400 device_mem_size += (1 * GiB) * machine->ram_slots; 1401 } 1402 1403 if ((machine->device_memory->base + device_mem_size) < 1404 device_mem_size) { 1405 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1406 machine->maxram_size); 1407 exit(EXIT_FAILURE); 1408 } 1409 1410 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1411 "device-memory", device_mem_size); 1412 memory_region_add_subregion(system_memory, machine->device_memory->base, 1413 &machine->device_memory->mr); 1414 } 1415 1416 /* Initialize PC system firmware */ 1417 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1418 1419 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1420 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1421 &error_fatal); 1422 if (pcmc->pci_enabled) { 1423 memory_region_set_readonly(option_rom_mr, true); 1424 } 1425 memory_region_add_subregion_overlap(rom_memory, 1426 PC_ROM_MIN_VGA, 1427 option_rom_mr, 1428 1); 1429 1430 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1431 1432 rom_set_fw(fw_cfg); 1433 1434 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1435 uint64_t *val = g_malloc(sizeof(*val)); 1436 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1437 uint64_t res_mem_end = machine->device_memory->base; 1438 1439 if (!pcmc->broken_reserved_end) { 1440 res_mem_end += memory_region_size(&machine->device_memory->mr); 1441 } 1442 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1443 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1444 } 1445 1446 if (linux_boot) { 1447 load_linux(pcms, fw_cfg); 1448 } 1449 1450 for (i = 0; i < nb_option_roms; i++) { 1451 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1452 } 1453 pcms->fw_cfg = fw_cfg; 1454 1455 /* Init default IOAPIC address space */ 1456 pcms->ioapic_as = &address_space_memory; 1457 } 1458 1459 /* 1460 * The 64bit pci hole starts after "above 4G RAM" and 1461 * potentially the space reserved for memory hotplug. 1462 */ 1463 uint64_t pc_pci_hole64_start(void) 1464 { 1465 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1466 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1467 MachineState *ms = MACHINE(pcms); 1468 uint64_t hole64_start = 0; 1469 1470 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1471 hole64_start = ms->device_memory->base; 1472 if (!pcmc->broken_reserved_end) { 1473 hole64_start += memory_region_size(&ms->device_memory->mr); 1474 } 1475 } else { 1476 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1477 } 1478 1479 return ROUND_UP(hole64_start, 1 * GiB); 1480 } 1481 1482 qemu_irq pc_allocate_cpu_irq(void) 1483 { 1484 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1485 } 1486 1487 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1488 { 1489 DeviceState *dev = NULL; 1490 1491 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1492 if (pci_bus) { 1493 PCIDevice *pcidev = pci_vga_init(pci_bus); 1494 dev = pcidev ? &pcidev->qdev : NULL; 1495 } else if (isa_bus) { 1496 ISADevice *isadev = isa_vga_init(isa_bus); 1497 dev = isadev ? DEVICE(isadev) : NULL; 1498 } 1499 rom_reset_order_override(); 1500 return dev; 1501 } 1502 1503 static const MemoryRegionOps ioport80_io_ops = { 1504 .write = ioport80_write, 1505 .read = ioport80_read, 1506 .endianness = DEVICE_NATIVE_ENDIAN, 1507 .impl = { 1508 .min_access_size = 1, 1509 .max_access_size = 1, 1510 }, 1511 }; 1512 1513 static const MemoryRegionOps ioportF0_io_ops = { 1514 .write = ioportF0_write, 1515 .read = ioportF0_read, 1516 .endianness = DEVICE_NATIVE_ENDIAN, 1517 .impl = { 1518 .min_access_size = 1, 1519 .max_access_size = 1, 1520 }, 1521 }; 1522 1523 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1524 { 1525 int i; 1526 DriveInfo *fd[MAX_FD]; 1527 qemu_irq *a20_line; 1528 ISADevice *i8042, *port92, *vmmouse; 1529 1530 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1531 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1532 1533 for (i = 0; i < MAX_FD; i++) { 1534 fd[i] = drive_get(IF_FLOPPY, 0, i); 1535 create_fdctrl |= !!fd[i]; 1536 } 1537 if (create_fdctrl) { 1538 fdctrl_init_isa(isa_bus, fd); 1539 } 1540 1541 i8042 = isa_create_simple(isa_bus, "i8042"); 1542 if (!no_vmport) { 1543 vmport_init(isa_bus); 1544 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1545 } else { 1546 vmmouse = NULL; 1547 } 1548 if (vmmouse) { 1549 DeviceState *dev = DEVICE(vmmouse); 1550 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1551 qdev_init_nofail(dev); 1552 } 1553 port92 = isa_create_simple(isa_bus, "port92"); 1554 1555 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1556 i8042_setup_a20_line(i8042, a20_line[0]); 1557 port92_init(port92, a20_line[1]); 1558 g_free(a20_line); 1559 } 1560 1561 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1562 ISADevice **rtc_state, 1563 bool create_fdctrl, 1564 bool no_vmport, 1565 bool has_pit, 1566 uint32_t hpet_irqs) 1567 { 1568 int i; 1569 DeviceState *hpet = NULL; 1570 int pit_isa_irq = 0; 1571 qemu_irq pit_alt_irq = NULL; 1572 qemu_irq rtc_irq = NULL; 1573 ISADevice *pit = NULL; 1574 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1575 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1576 1577 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1578 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1579 1580 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1581 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1582 1583 /* 1584 * Check if an HPET shall be created. 1585 * 1586 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1587 * when the HPET wants to take over. Thus we have to disable the latter. 1588 */ 1589 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1590 /* In order to set property, here not using sysbus_try_create_simple */ 1591 hpet = qdev_try_create(NULL, TYPE_HPET); 1592 if (hpet) { 1593 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1594 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1595 * IRQ8 and IRQ2. 1596 */ 1597 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1598 HPET_INTCAP, NULL); 1599 if (!compat) { 1600 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1601 } 1602 qdev_init_nofail(hpet); 1603 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1604 1605 for (i = 0; i < GSI_NUM_PINS; i++) { 1606 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1607 } 1608 pit_isa_irq = -1; 1609 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1610 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1611 } 1612 } 1613 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1614 1615 qemu_register_boot_set(pc_boot_set, *rtc_state); 1616 1617 if (!xen_enabled() && has_pit) { 1618 if (kvm_pit_in_kernel()) { 1619 pit = kvm_pit_init(isa_bus, 0x40); 1620 } else { 1621 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1622 } 1623 if (hpet) { 1624 /* connect PIT to output control line of the HPET */ 1625 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1626 } 1627 pcspk_init(isa_bus, pit); 1628 } 1629 1630 i8257_dma_init(isa_bus, 0); 1631 1632 /* Super I/O */ 1633 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1634 } 1635 1636 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1637 { 1638 int i; 1639 1640 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1641 for (i = 0; i < nb_nics; i++) { 1642 NICInfo *nd = &nd_table[i]; 1643 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1644 1645 if (g_str_equal(model, "ne2k_isa")) { 1646 pc_init_ne2k_isa(isa_bus, nd); 1647 } else { 1648 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1649 } 1650 } 1651 rom_reset_order_override(); 1652 } 1653 1654 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1655 { 1656 DeviceState *dev; 1657 SysBusDevice *d; 1658 unsigned int i; 1659 1660 if (kvm_ioapic_in_kernel()) { 1661 dev = qdev_create(NULL, "kvm-ioapic"); 1662 } else { 1663 dev = qdev_create(NULL, "ioapic"); 1664 } 1665 if (parent_name) { 1666 object_property_add_child(object_resolve_path(parent_name, NULL), 1667 "ioapic", OBJECT(dev), NULL); 1668 } 1669 qdev_init_nofail(dev); 1670 d = SYS_BUS_DEVICE(dev); 1671 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1672 1673 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1674 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1675 } 1676 } 1677 1678 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1679 Error **errp) 1680 { 1681 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1682 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1683 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1684 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1685 1686 /* 1687 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1688 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1689 * addition to cover this case. 1690 */ 1691 if (!pcms->acpi_dev || !acpi_enabled) { 1692 error_setg(errp, 1693 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1694 return; 1695 } 1696 1697 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1698 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1699 return; 1700 } 1701 1702 pc_dimm_pre_plug(dev, MACHINE(hotplug_dev), 1703 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1704 } 1705 1706 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1707 DeviceState *dev, Error **errp) 1708 { 1709 HotplugHandlerClass *hhc; 1710 Error *local_err = NULL; 1711 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1712 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1713 1714 pc_dimm_plug(dev, MACHINE(pcms), &local_err); 1715 if (local_err) { 1716 goto out; 1717 } 1718 1719 if (is_nvdimm) { 1720 nvdimm_plug(&pcms->acpi_nvdimm_state); 1721 } 1722 1723 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1724 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1725 out: 1726 error_propagate(errp, local_err); 1727 } 1728 1729 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1730 DeviceState *dev, Error **errp) 1731 { 1732 HotplugHandlerClass *hhc; 1733 Error *local_err = NULL; 1734 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1735 1736 /* 1737 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1738 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1739 * addition to cover this case. 1740 */ 1741 if (!pcms->acpi_dev || !acpi_enabled) { 1742 error_setg(&local_err, 1743 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1744 goto out; 1745 } 1746 1747 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1748 error_setg(&local_err, 1749 "nvdimm device hot unplug is not supported yet."); 1750 goto out; 1751 } 1752 1753 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1754 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1755 1756 out: 1757 error_propagate(errp, local_err); 1758 } 1759 1760 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1761 DeviceState *dev, Error **errp) 1762 { 1763 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1764 HotplugHandlerClass *hhc; 1765 Error *local_err = NULL; 1766 1767 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1768 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1769 1770 if (local_err) { 1771 goto out; 1772 } 1773 1774 pc_dimm_unplug(dev, MACHINE(pcms)); 1775 object_unparent(OBJECT(dev)); 1776 1777 out: 1778 error_propagate(errp, local_err); 1779 } 1780 1781 static int pc_apic_cmp(const void *a, const void *b) 1782 { 1783 CPUArchId *apic_a = (CPUArchId *)a; 1784 CPUArchId *apic_b = (CPUArchId *)b; 1785 1786 return apic_a->arch_id - apic_b->arch_id; 1787 } 1788 1789 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1790 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1791 * entry corresponding to CPU's apic_id returns NULL. 1792 */ 1793 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1794 { 1795 CPUArchId apic_id, *found_cpu; 1796 1797 apic_id.arch_id = id; 1798 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1799 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1800 pc_apic_cmp); 1801 if (found_cpu && idx) { 1802 *idx = found_cpu - ms->possible_cpus->cpus; 1803 } 1804 return found_cpu; 1805 } 1806 1807 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1808 DeviceState *dev, Error **errp) 1809 { 1810 CPUArchId *found_cpu; 1811 HotplugHandlerClass *hhc; 1812 Error *local_err = NULL; 1813 X86CPU *cpu = X86_CPU(dev); 1814 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1815 1816 if (pcms->acpi_dev) { 1817 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1818 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1819 if (local_err) { 1820 goto out; 1821 } 1822 } 1823 1824 /* increment the number of CPUs */ 1825 pcms->boot_cpus++; 1826 if (pcms->rtc) { 1827 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1828 } 1829 if (pcms->fw_cfg) { 1830 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1831 } 1832 1833 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1834 found_cpu->cpu = OBJECT(dev); 1835 out: 1836 error_propagate(errp, local_err); 1837 } 1838 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1839 DeviceState *dev, Error **errp) 1840 { 1841 int idx = -1; 1842 HotplugHandlerClass *hhc; 1843 Error *local_err = NULL; 1844 X86CPU *cpu = X86_CPU(dev); 1845 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1846 1847 if (!pcms->acpi_dev) { 1848 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1849 goto out; 1850 } 1851 1852 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1853 assert(idx != -1); 1854 if (idx == 0) { 1855 error_setg(&local_err, "Boot CPU is unpluggable"); 1856 goto out; 1857 } 1858 1859 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1860 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1861 1862 if (local_err) { 1863 goto out; 1864 } 1865 1866 out: 1867 error_propagate(errp, local_err); 1868 1869 } 1870 1871 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1872 DeviceState *dev, Error **errp) 1873 { 1874 CPUArchId *found_cpu; 1875 HotplugHandlerClass *hhc; 1876 Error *local_err = NULL; 1877 X86CPU *cpu = X86_CPU(dev); 1878 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1879 1880 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1881 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1882 1883 if (local_err) { 1884 goto out; 1885 } 1886 1887 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1888 found_cpu->cpu = NULL; 1889 object_unparent(OBJECT(dev)); 1890 1891 /* decrement the number of CPUs */ 1892 pcms->boot_cpus--; 1893 /* Update the number of CPUs in CMOS */ 1894 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1895 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1896 out: 1897 error_propagate(errp, local_err); 1898 } 1899 1900 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1901 DeviceState *dev, Error **errp) 1902 { 1903 int idx; 1904 CPUState *cs; 1905 CPUArchId *cpu_slot; 1906 X86CPUTopoInfo topo; 1907 X86CPU *cpu = X86_CPU(dev); 1908 MachineState *ms = MACHINE(hotplug_dev); 1909 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1910 1911 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1912 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1913 ms->cpu_type); 1914 return; 1915 } 1916 1917 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1918 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1919 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1920 1921 if (cpu->socket_id < 0) { 1922 error_setg(errp, "CPU socket-id is not set"); 1923 return; 1924 } else if (cpu->socket_id > max_socket) { 1925 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1926 cpu->socket_id, max_socket); 1927 return; 1928 } 1929 if (cpu->core_id < 0) { 1930 error_setg(errp, "CPU core-id is not set"); 1931 return; 1932 } else if (cpu->core_id > (smp_cores - 1)) { 1933 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1934 cpu->core_id, smp_cores - 1); 1935 return; 1936 } 1937 if (cpu->thread_id < 0) { 1938 error_setg(errp, "CPU thread-id is not set"); 1939 return; 1940 } else if (cpu->thread_id > (smp_threads - 1)) { 1941 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1942 cpu->thread_id, smp_threads - 1); 1943 return; 1944 } 1945 1946 topo.pkg_id = cpu->socket_id; 1947 topo.core_id = cpu->core_id; 1948 topo.smt_id = cpu->thread_id; 1949 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1950 } 1951 1952 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1953 if (!cpu_slot) { 1954 MachineState *ms = MACHINE(pcms); 1955 1956 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1957 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1958 " APIC ID %" PRIu32 ", valid index range 0:%d", 1959 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1960 ms->possible_cpus->len - 1); 1961 return; 1962 } 1963 1964 if (cpu_slot->cpu) { 1965 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1966 idx, cpu->apic_id); 1967 return; 1968 } 1969 1970 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1971 * so that machine_query_hotpluggable_cpus would show correct values 1972 */ 1973 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1974 * once -smp refactoring is complete and there will be CPU private 1975 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1976 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1977 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1978 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1979 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1980 return; 1981 } 1982 cpu->socket_id = topo.pkg_id; 1983 1984 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 1985 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 1986 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 1987 return; 1988 } 1989 cpu->core_id = topo.core_id; 1990 1991 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 1992 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 1993 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 1994 return; 1995 } 1996 cpu->thread_id = topo.smt_id; 1997 1998 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 1999 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2000 return; 2001 } 2002 2003 cs = CPU(cpu); 2004 cs->cpu_index = idx; 2005 2006 numa_cpu_pre_plug(cpu_slot, dev, errp); 2007 } 2008 2009 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2010 DeviceState *dev, Error **errp) 2011 { 2012 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2013 pc_memory_pre_plug(hotplug_dev, dev, errp); 2014 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2015 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2016 } 2017 } 2018 2019 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2020 DeviceState *dev, Error **errp) 2021 { 2022 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2023 pc_memory_plug(hotplug_dev, dev, errp); 2024 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2025 pc_cpu_plug(hotplug_dev, dev, errp); 2026 } 2027 } 2028 2029 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2030 DeviceState *dev, Error **errp) 2031 { 2032 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2033 pc_memory_unplug_request(hotplug_dev, dev, errp); 2034 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2035 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2036 } else { 2037 error_setg(errp, "acpi: device unplug request for not supported device" 2038 " type: %s", object_get_typename(OBJECT(dev))); 2039 } 2040 } 2041 2042 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2043 DeviceState *dev, Error **errp) 2044 { 2045 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2046 pc_memory_unplug(hotplug_dev, dev, errp); 2047 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2048 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2049 } else { 2050 error_setg(errp, "acpi: device unplug for not supported device" 2051 " type: %s", object_get_typename(OBJECT(dev))); 2052 } 2053 } 2054 2055 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2056 DeviceState *dev) 2057 { 2058 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2059 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2060 return HOTPLUG_HANDLER(machine); 2061 } 2062 2063 return NULL; 2064 } 2065 2066 static void 2067 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2068 const char *name, void *opaque, 2069 Error **errp) 2070 { 2071 MachineState *ms = MACHINE(obj); 2072 int64_t value = memory_region_size(&ms->device_memory->mr); 2073 2074 visit_type_int(v, name, &value, errp); 2075 } 2076 2077 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2078 const char *name, void *opaque, 2079 Error **errp) 2080 { 2081 PCMachineState *pcms = PC_MACHINE(obj); 2082 uint64_t value = pcms->max_ram_below_4g; 2083 2084 visit_type_size(v, name, &value, errp); 2085 } 2086 2087 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2088 const char *name, void *opaque, 2089 Error **errp) 2090 { 2091 PCMachineState *pcms = PC_MACHINE(obj); 2092 Error *error = NULL; 2093 uint64_t value; 2094 2095 visit_type_size(v, name, &value, &error); 2096 if (error) { 2097 error_propagate(errp, error); 2098 return; 2099 } 2100 if (value > 4 * GiB) { 2101 error_setg(&error, 2102 "Machine option 'max-ram-below-4g=%"PRIu64 2103 "' expects size less than or equal to 4G", value); 2104 error_propagate(errp, error); 2105 return; 2106 } 2107 2108 if (value < 1 * MiB) { 2109 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2110 "BIOS may not work with less than 1MiB", value); 2111 } 2112 2113 pcms->max_ram_below_4g = value; 2114 } 2115 2116 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2117 void *opaque, Error **errp) 2118 { 2119 PCMachineState *pcms = PC_MACHINE(obj); 2120 OnOffAuto vmport = pcms->vmport; 2121 2122 visit_type_OnOffAuto(v, name, &vmport, errp); 2123 } 2124 2125 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2126 void *opaque, Error **errp) 2127 { 2128 PCMachineState *pcms = PC_MACHINE(obj); 2129 2130 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2131 } 2132 2133 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2134 { 2135 bool smm_available = false; 2136 2137 if (pcms->smm == ON_OFF_AUTO_OFF) { 2138 return false; 2139 } 2140 2141 if (tcg_enabled() || qtest_enabled()) { 2142 smm_available = true; 2143 } else if (kvm_enabled()) { 2144 smm_available = kvm_has_smm(); 2145 } 2146 2147 if (smm_available) { 2148 return true; 2149 } 2150 2151 if (pcms->smm == ON_OFF_AUTO_ON) { 2152 error_report("System Management Mode not supported by this hypervisor."); 2153 exit(1); 2154 } 2155 return false; 2156 } 2157 2158 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2159 void *opaque, Error **errp) 2160 { 2161 PCMachineState *pcms = PC_MACHINE(obj); 2162 OnOffAuto smm = pcms->smm; 2163 2164 visit_type_OnOffAuto(v, name, &smm, errp); 2165 } 2166 2167 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2168 void *opaque, Error **errp) 2169 { 2170 PCMachineState *pcms = PC_MACHINE(obj); 2171 2172 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2173 } 2174 2175 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2176 { 2177 PCMachineState *pcms = PC_MACHINE(obj); 2178 2179 return pcms->acpi_nvdimm_state.is_enabled; 2180 } 2181 2182 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2183 { 2184 PCMachineState *pcms = PC_MACHINE(obj); 2185 2186 pcms->acpi_nvdimm_state.is_enabled = value; 2187 } 2188 2189 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2190 { 2191 PCMachineState *pcms = PC_MACHINE(obj); 2192 2193 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2194 } 2195 2196 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2197 Error **errp) 2198 { 2199 PCMachineState *pcms = PC_MACHINE(obj); 2200 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2201 2202 if (strcmp(value, "cpu") == 0) 2203 nvdimm_state->persistence = 3; 2204 else if (strcmp(value, "mem-ctrl") == 0) 2205 nvdimm_state->persistence = 2; 2206 else { 2207 error_report("-machine nvdimm-persistence=%s: unsupported option", value); 2208 exit(EXIT_FAILURE); 2209 } 2210 2211 g_free(nvdimm_state->persistence_string); 2212 nvdimm_state->persistence_string = g_strdup(value); 2213 } 2214 2215 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2216 { 2217 PCMachineState *pcms = PC_MACHINE(obj); 2218 2219 return pcms->smbus; 2220 } 2221 2222 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2223 { 2224 PCMachineState *pcms = PC_MACHINE(obj); 2225 2226 pcms->smbus = value; 2227 } 2228 2229 static bool pc_machine_get_sata(Object *obj, Error **errp) 2230 { 2231 PCMachineState *pcms = PC_MACHINE(obj); 2232 2233 return pcms->sata; 2234 } 2235 2236 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2237 { 2238 PCMachineState *pcms = PC_MACHINE(obj); 2239 2240 pcms->sata = value; 2241 } 2242 2243 static bool pc_machine_get_pit(Object *obj, Error **errp) 2244 { 2245 PCMachineState *pcms = PC_MACHINE(obj); 2246 2247 return pcms->pit; 2248 } 2249 2250 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2251 { 2252 PCMachineState *pcms = PC_MACHINE(obj); 2253 2254 pcms->pit = value; 2255 } 2256 2257 static void pc_machine_initfn(Object *obj) 2258 { 2259 PCMachineState *pcms = PC_MACHINE(obj); 2260 2261 pcms->max_ram_below_4g = 0; /* use default */ 2262 pcms->smm = ON_OFF_AUTO_AUTO; 2263 pcms->vmport = ON_OFF_AUTO_AUTO; 2264 /* nvdimm is disabled on default. */ 2265 pcms->acpi_nvdimm_state.is_enabled = false; 2266 /* acpi build is enabled by default if machine supports it */ 2267 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2268 pcms->smbus = true; 2269 pcms->sata = true; 2270 pcms->pit = true; 2271 } 2272 2273 static void pc_machine_reset(void) 2274 { 2275 CPUState *cs; 2276 X86CPU *cpu; 2277 2278 qemu_devices_reset(); 2279 2280 /* Reset APIC after devices have been reset to cancel 2281 * any changes that qemu_devices_reset() might have done. 2282 */ 2283 CPU_FOREACH(cs) { 2284 cpu = X86_CPU(cs); 2285 2286 if (cpu->apic_state) { 2287 device_reset(cpu->apic_state); 2288 } 2289 } 2290 } 2291 2292 static CpuInstanceProperties 2293 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2294 { 2295 MachineClass *mc = MACHINE_GET_CLASS(ms); 2296 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2297 2298 assert(cpu_index < possible_cpus->len); 2299 return possible_cpus->cpus[cpu_index].props; 2300 } 2301 2302 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2303 { 2304 X86CPUTopoInfo topo; 2305 2306 assert(idx < ms->possible_cpus->len); 2307 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2308 smp_cores, smp_threads, &topo); 2309 return topo.pkg_id % nb_numa_nodes; 2310 } 2311 2312 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2313 { 2314 int i; 2315 2316 if (ms->possible_cpus) { 2317 /* 2318 * make sure that max_cpus hasn't changed since the first use, i.e. 2319 * -smp hasn't been parsed after it 2320 */ 2321 assert(ms->possible_cpus->len == max_cpus); 2322 return ms->possible_cpus; 2323 } 2324 2325 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2326 sizeof(CPUArchId) * max_cpus); 2327 ms->possible_cpus->len = max_cpus; 2328 for (i = 0; i < ms->possible_cpus->len; i++) { 2329 X86CPUTopoInfo topo; 2330 2331 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2332 ms->possible_cpus->cpus[i].vcpus_count = 1; 2333 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2334 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2335 smp_cores, smp_threads, &topo); 2336 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2337 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2338 ms->possible_cpus->cpus[i].props.has_core_id = true; 2339 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2340 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2341 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2342 } 2343 return ms->possible_cpus; 2344 } 2345 2346 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2347 { 2348 /* cpu index isn't used */ 2349 CPUState *cs; 2350 2351 CPU_FOREACH(cs) { 2352 X86CPU *cpu = X86_CPU(cs); 2353 2354 if (!cpu->apic_state) { 2355 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2356 } else { 2357 apic_deliver_nmi(cpu->apic_state); 2358 } 2359 } 2360 } 2361 2362 static void pc_machine_class_init(ObjectClass *oc, void *data) 2363 { 2364 MachineClass *mc = MACHINE_CLASS(oc); 2365 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2366 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2367 NMIClass *nc = NMI_CLASS(oc); 2368 2369 pcmc->pci_enabled = true; 2370 pcmc->has_acpi_build = true; 2371 pcmc->rsdp_in_ram = true; 2372 pcmc->smbios_defaults = true; 2373 pcmc->smbios_uuid_encoded = true; 2374 pcmc->gigabyte_align = true; 2375 pcmc->has_reserved_memory = true; 2376 pcmc->kvmclock_enabled = true; 2377 pcmc->enforce_aligned_dimm = true; 2378 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2379 * to be used at the moment, 32K should be enough for a while. */ 2380 pcmc->acpi_data_size = 0x20000 + 0x8000; 2381 pcmc->save_tsc_khz = true; 2382 pcmc->linuxboot_dma_enabled = true; 2383 assert(!mc->get_hotplug_handler); 2384 mc->get_hotplug_handler = pc_get_hotpug_handler; 2385 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2386 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2387 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2388 mc->auto_enable_numa_with_memhp = true; 2389 mc->has_hotpluggable_cpus = true; 2390 mc->default_boot_order = "cad"; 2391 mc->hot_add_cpu = pc_hot_add_cpu; 2392 mc->block_default_type = IF_IDE; 2393 mc->max_cpus = 255; 2394 mc->reset = pc_machine_reset; 2395 hc->pre_plug = pc_machine_device_pre_plug_cb; 2396 hc->plug = pc_machine_device_plug_cb; 2397 hc->unplug_request = pc_machine_device_unplug_request_cb; 2398 hc->unplug = pc_machine_device_unplug_cb; 2399 nc->nmi_monitor_handler = x86_nmi; 2400 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2401 2402 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2403 pc_machine_get_device_memory_region_size, NULL, 2404 NULL, NULL, &error_abort); 2405 2406 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2407 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2408 NULL, NULL, &error_abort); 2409 2410 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2411 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2412 2413 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2414 pc_machine_get_smm, pc_machine_set_smm, 2415 NULL, NULL, &error_abort); 2416 object_class_property_set_description(oc, PC_MACHINE_SMM, 2417 "Enable SMM (pc & q35)", &error_abort); 2418 2419 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2420 pc_machine_get_vmport, pc_machine_set_vmport, 2421 NULL, NULL, &error_abort); 2422 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2423 "Enable vmport (pc & q35)", &error_abort); 2424 2425 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2426 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2427 2428 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2429 pc_machine_get_nvdimm_persistence, 2430 pc_machine_set_nvdimm_persistence, &error_abort); 2431 2432 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2433 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2434 2435 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2436 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2437 2438 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2439 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2440 } 2441 2442 static const TypeInfo pc_machine_info = { 2443 .name = TYPE_PC_MACHINE, 2444 .parent = TYPE_MACHINE, 2445 .abstract = true, 2446 .instance_size = sizeof(PCMachineState), 2447 .instance_init = pc_machine_initfn, 2448 .class_size = sizeof(PCMachineClass), 2449 .class_init = pc_machine_class_init, 2450 .interfaces = (InterfaceInfo[]) { 2451 { TYPE_HOTPLUG_HANDLER }, 2452 { TYPE_NMI }, 2453 { } 2454 }, 2455 }; 2456 2457 static void pc_machine_register_types(void) 2458 { 2459 type_register_static(&pc_machine_info); 2460 } 2461 2462 type_init(pc_machine_register_types) 2463