1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/hw.h" 25 #include "hw/i386/pc.h" 26 #include "hw/char/serial.h" 27 #include "hw/i386/apic.h" 28 #include "hw/block/fdc.h" 29 #include "hw/ide.h" 30 #include "hw/pci/pci.h" 31 #include "monitor/monitor.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/timer/hpet.h" 34 #include "hw/i386/smbios.h" 35 #include "hw/loader.h" 36 #include "elf.h" 37 #include "multiboot.h" 38 #include "hw/timer/mc146818rtc.h" 39 #include "hw/timer/i8254.h" 40 #include "hw/audio/pcspk.h" 41 #include "hw/pci/msi.h" 42 #include "hw/sysbus.h" 43 #include "sysemu/sysemu.h" 44 #include "sysemu/kvm.h" 45 #include "kvm_i386.h" 46 #include "hw/xen/xen.h" 47 #include "sysemu/blockdev.h" 48 #include "hw/block/block.h" 49 #include "ui/qemu-spice.h" 50 #include "exec/memory.h" 51 #include "exec/address-spaces.h" 52 #include "sysemu/arch_init.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/config-file.h" 55 #include "hw/acpi/acpi.h" 56 #include "hw/cpu/icc_bus.h" 57 #include "hw/boards.h" 58 59 /* debug PC/ISA interrupts */ 60 //#define DEBUG_IRQ 61 62 #ifdef DEBUG_IRQ 63 #define DPRINTF(fmt, ...) \ 64 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 65 #else 66 #define DPRINTF(fmt, ...) 67 #endif 68 69 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ 70 #define ACPI_DATA_SIZE 0x10000 71 #define BIOS_CFG_IOPORT 0x510 72 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 73 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 74 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 75 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 76 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 77 78 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000 79 80 #define E820_NR_ENTRIES 16 81 82 struct e820_entry { 83 uint64_t address; 84 uint64_t length; 85 uint32_t type; 86 } QEMU_PACKED __attribute((__aligned__(4))); 87 88 struct e820_table { 89 uint32_t count; 90 struct e820_entry entry[E820_NR_ENTRIES]; 91 } QEMU_PACKED __attribute((__aligned__(4))); 92 93 static struct e820_table e820_table; 94 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 95 96 void gsi_handler(void *opaque, int n, int level) 97 { 98 GSIState *s = opaque; 99 100 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 101 if (n < ISA_NUM_IRQS) { 102 qemu_set_irq(s->i8259_irq[n], level); 103 } 104 qemu_set_irq(s->ioapic_irq[n], level); 105 } 106 107 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 108 unsigned size) 109 { 110 } 111 112 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 113 { 114 return 0xffffffffffffffffULL; 115 } 116 117 /* MSDOS compatibility mode FPU exception support */ 118 static qemu_irq ferr_irq; 119 120 void pc_register_ferr_irq(qemu_irq irq) 121 { 122 ferr_irq = irq; 123 } 124 125 /* XXX: add IGNNE support */ 126 void cpu_set_ferr(CPUX86State *s) 127 { 128 qemu_irq_raise(ferr_irq); 129 } 130 131 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 132 unsigned size) 133 { 134 qemu_irq_lower(ferr_irq); 135 } 136 137 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 138 { 139 return 0xffffffffffffffffULL; 140 } 141 142 /* TSC handling */ 143 uint64_t cpu_get_tsc(CPUX86State *env) 144 { 145 return cpu_get_ticks(); 146 } 147 148 /* SMM support */ 149 150 static cpu_set_smm_t smm_set; 151 static void *smm_arg; 152 153 void cpu_smm_register(cpu_set_smm_t callback, void *arg) 154 { 155 assert(smm_set == NULL); 156 assert(smm_arg == NULL); 157 smm_set = callback; 158 smm_arg = arg; 159 } 160 161 void cpu_smm_update(CPUX86State *env) 162 { 163 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) { 164 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg); 165 } 166 } 167 168 169 /* IRQ handling */ 170 int cpu_get_pic_interrupt(CPUX86State *env) 171 { 172 int intno; 173 174 intno = apic_get_interrupt(env->apic_state); 175 if (intno >= 0) { 176 return intno; 177 } 178 /* read the irq from the PIC */ 179 if (!apic_accept_pic_intr(env->apic_state)) { 180 return -1; 181 } 182 183 intno = pic_read_irq(isa_pic); 184 return intno; 185 } 186 187 static void pic_irq_request(void *opaque, int irq, int level) 188 { 189 CPUState *cs = first_cpu; 190 X86CPU *cpu = X86_CPU(cs); 191 CPUX86State *env = &cpu->env; 192 193 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 194 if (env->apic_state) { 195 while (cs) { 196 cpu = X86_CPU(cs); 197 env = &cpu->env; 198 if (apic_accept_pic_intr(env->apic_state)) { 199 apic_deliver_pic_intr(env->apic_state, level); 200 } 201 cs = cs->next_cpu; 202 } 203 } else { 204 if (level) { 205 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 206 } else { 207 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 208 } 209 } 210 } 211 212 /* PC cmos mappings */ 213 214 #define REG_EQUIPMENT_BYTE 0x14 215 216 static int cmos_get_fd_drive_type(FDriveType fd0) 217 { 218 int val; 219 220 switch (fd0) { 221 case FDRIVE_DRV_144: 222 /* 1.44 Mb 3"5 drive */ 223 val = 4; 224 break; 225 case FDRIVE_DRV_288: 226 /* 2.88 Mb 3"5 drive */ 227 val = 5; 228 break; 229 case FDRIVE_DRV_120: 230 /* 1.2 Mb 5"5 drive */ 231 val = 2; 232 break; 233 case FDRIVE_DRV_NONE: 234 default: 235 val = 0; 236 break; 237 } 238 return val; 239 } 240 241 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 242 int16_t cylinders, int8_t heads, int8_t sectors) 243 { 244 rtc_set_memory(s, type_ofs, 47); 245 rtc_set_memory(s, info_ofs, cylinders); 246 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 247 rtc_set_memory(s, info_ofs + 2, heads); 248 rtc_set_memory(s, info_ofs + 3, 0xff); 249 rtc_set_memory(s, info_ofs + 4, 0xff); 250 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 251 rtc_set_memory(s, info_ofs + 6, cylinders); 252 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 253 rtc_set_memory(s, info_ofs + 8, sectors); 254 } 255 256 /* convert boot_device letter to something recognizable by the bios */ 257 static int boot_device2nibble(char boot_device) 258 { 259 switch(boot_device) { 260 case 'a': 261 case 'b': 262 return 0x01; /* floppy boot */ 263 case 'c': 264 return 0x02; /* hard drive boot */ 265 case 'd': 266 return 0x03; /* CD-ROM boot */ 267 case 'n': 268 return 0x04; /* Network boot */ 269 } 270 return 0; 271 } 272 273 static int set_boot_dev(ISADevice *s, const char *boot_device) 274 { 275 #define PC_MAX_BOOT_DEVICES 3 276 int nbds, bds[3] = { 0, }; 277 int i; 278 279 nbds = strlen(boot_device); 280 if (nbds > PC_MAX_BOOT_DEVICES) { 281 error_report("Too many boot devices for PC"); 282 return(1); 283 } 284 for (i = 0; i < nbds; i++) { 285 bds[i] = boot_device2nibble(boot_device[i]); 286 if (bds[i] == 0) { 287 error_report("Invalid boot device for PC: '%c'", 288 boot_device[i]); 289 return(1); 290 } 291 } 292 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 293 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 294 return(0); 295 } 296 297 static int pc_boot_set(void *opaque, const char *boot_device) 298 { 299 return set_boot_dev(opaque, boot_device); 300 } 301 302 typedef struct pc_cmos_init_late_arg { 303 ISADevice *rtc_state; 304 BusState *idebus[2]; 305 } pc_cmos_init_late_arg; 306 307 static void pc_cmos_init_late(void *opaque) 308 { 309 pc_cmos_init_late_arg *arg = opaque; 310 ISADevice *s = arg->rtc_state; 311 int16_t cylinders; 312 int8_t heads, sectors; 313 int val; 314 int i, trans; 315 316 val = 0; 317 if (ide_get_geometry(arg->idebus[0], 0, 318 &cylinders, &heads, §ors) >= 0) { 319 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 320 val |= 0xf0; 321 } 322 if (ide_get_geometry(arg->idebus[0], 1, 323 &cylinders, &heads, §ors) >= 0) { 324 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 325 val |= 0x0f; 326 } 327 rtc_set_memory(s, 0x12, val); 328 329 val = 0; 330 for (i = 0; i < 4; i++) { 331 /* NOTE: ide_get_geometry() returns the physical 332 geometry. It is always such that: 1 <= sects <= 63, 1 333 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 334 geometry can be different if a translation is done. */ 335 if (ide_get_geometry(arg->idebus[i / 2], i % 2, 336 &cylinders, &heads, §ors) >= 0) { 337 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 338 assert((trans & ~3) == 0); 339 val |= trans << (i * 2); 340 } 341 } 342 rtc_set_memory(s, 0x39, val); 343 344 qemu_unregister_reset(pc_cmos_init_late, opaque); 345 } 346 347 typedef struct RTCCPUHotplugArg { 348 Notifier cpu_added_notifier; 349 ISADevice *rtc_state; 350 } RTCCPUHotplugArg; 351 352 static void rtc_notify_cpu_added(Notifier *notifier, void *data) 353 { 354 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg, 355 cpu_added_notifier); 356 ISADevice *s = arg->rtc_state; 357 358 /* increment the number of CPUs */ 359 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1); 360 } 361 362 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, 363 const char *boot_device, 364 ISADevice *floppy, BusState *idebus0, BusState *idebus1, 365 ISADevice *s) 366 { 367 int val, nb, i; 368 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE }; 369 static pc_cmos_init_late_arg arg; 370 static RTCCPUHotplugArg cpu_hotplug_cb; 371 372 /* various important CMOS locations needed by PC/Bochs bios */ 373 374 /* memory size */ 375 /* base memory (first MiB) */ 376 val = MIN(ram_size / 1024, 640); 377 rtc_set_memory(s, 0x15, val); 378 rtc_set_memory(s, 0x16, val >> 8); 379 /* extended memory (next 64MiB) */ 380 if (ram_size > 1024 * 1024) { 381 val = (ram_size - 1024 * 1024) / 1024; 382 } else { 383 val = 0; 384 } 385 if (val > 65535) 386 val = 65535; 387 rtc_set_memory(s, 0x17, val); 388 rtc_set_memory(s, 0x18, val >> 8); 389 rtc_set_memory(s, 0x30, val); 390 rtc_set_memory(s, 0x31, val >> 8); 391 /* memory between 16MiB and 4GiB */ 392 if (ram_size > 16 * 1024 * 1024) { 393 val = (ram_size - 16 * 1024 * 1024) / 65536; 394 } else { 395 val = 0; 396 } 397 if (val > 65535) 398 val = 65535; 399 rtc_set_memory(s, 0x34, val); 400 rtc_set_memory(s, 0x35, val >> 8); 401 /* memory above 4GiB */ 402 val = above_4g_mem_size / 65536; 403 rtc_set_memory(s, 0x5b, val); 404 rtc_set_memory(s, 0x5c, val >> 8); 405 rtc_set_memory(s, 0x5d, val >> 16); 406 407 /* set the number of CPU */ 408 rtc_set_memory(s, 0x5f, smp_cpus - 1); 409 /* init CPU hotplug notifier */ 410 cpu_hotplug_cb.rtc_state = s; 411 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added; 412 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier); 413 414 if (set_boot_dev(s, boot_device)) { 415 exit(1); 416 } 417 418 /* floppy type */ 419 if (floppy) { 420 for (i = 0; i < 2; i++) { 421 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 422 } 423 } 424 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 425 cmos_get_fd_drive_type(fd_type[1]); 426 rtc_set_memory(s, 0x10, val); 427 428 val = 0; 429 nb = 0; 430 if (fd_type[0] < FDRIVE_DRV_NONE) { 431 nb++; 432 } 433 if (fd_type[1] < FDRIVE_DRV_NONE) { 434 nb++; 435 } 436 switch (nb) { 437 case 0: 438 break; 439 case 1: 440 val |= 0x01; /* 1 drive, ready for boot */ 441 break; 442 case 2: 443 val |= 0x41; /* 2 drives, ready for boot */ 444 break; 445 } 446 val |= 0x02; /* FPU is there */ 447 val |= 0x04; /* PS/2 mouse installed */ 448 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 449 450 /* hard drives */ 451 arg.rtc_state = s; 452 arg.idebus[0] = idebus0; 453 arg.idebus[1] = idebus1; 454 qemu_register_reset(pc_cmos_init_late, &arg); 455 } 456 457 #define TYPE_PORT92 "port92" 458 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 459 460 /* port 92 stuff: could be split off */ 461 typedef struct Port92State { 462 ISADevice parent_obj; 463 464 MemoryRegion io; 465 uint8_t outport; 466 qemu_irq *a20_out; 467 } Port92State; 468 469 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 470 unsigned size) 471 { 472 Port92State *s = opaque; 473 474 DPRINTF("port92: write 0x%02x\n", val); 475 s->outport = val; 476 qemu_set_irq(*s->a20_out, (val >> 1) & 1); 477 if (val & 1) { 478 qemu_system_reset_request(); 479 } 480 } 481 482 static uint64_t port92_read(void *opaque, hwaddr addr, 483 unsigned size) 484 { 485 Port92State *s = opaque; 486 uint32_t ret; 487 488 ret = s->outport; 489 DPRINTF("port92: read 0x%02x\n", ret); 490 return ret; 491 } 492 493 static void port92_init(ISADevice *dev, qemu_irq *a20_out) 494 { 495 Port92State *s = PORT92(dev); 496 497 s->a20_out = a20_out; 498 } 499 500 static const VMStateDescription vmstate_port92_isa = { 501 .name = "port92", 502 .version_id = 1, 503 .minimum_version_id = 1, 504 .minimum_version_id_old = 1, 505 .fields = (VMStateField []) { 506 VMSTATE_UINT8(outport, Port92State), 507 VMSTATE_END_OF_LIST() 508 } 509 }; 510 511 static void port92_reset(DeviceState *d) 512 { 513 Port92State *s = PORT92(d); 514 515 s->outport &= ~1; 516 } 517 518 static const MemoryRegionOps port92_ops = { 519 .read = port92_read, 520 .write = port92_write, 521 .impl = { 522 .min_access_size = 1, 523 .max_access_size = 1, 524 }, 525 .endianness = DEVICE_LITTLE_ENDIAN, 526 }; 527 528 static void port92_initfn(Object *obj) 529 { 530 Port92State *s = PORT92(obj); 531 532 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 533 534 s->outport = 0; 535 } 536 537 static void port92_realizefn(DeviceState *dev, Error **errp) 538 { 539 ISADevice *isadev = ISA_DEVICE(dev); 540 Port92State *s = PORT92(dev); 541 542 isa_register_ioport(isadev, &s->io, 0x92); 543 } 544 545 static void port92_class_initfn(ObjectClass *klass, void *data) 546 { 547 DeviceClass *dc = DEVICE_CLASS(klass); 548 549 dc->no_user = 1; 550 dc->realize = port92_realizefn; 551 dc->reset = port92_reset; 552 dc->vmsd = &vmstate_port92_isa; 553 } 554 555 static const TypeInfo port92_info = { 556 .name = TYPE_PORT92, 557 .parent = TYPE_ISA_DEVICE, 558 .instance_size = sizeof(Port92State), 559 .instance_init = port92_initfn, 560 .class_init = port92_class_initfn, 561 }; 562 563 static void port92_register_types(void) 564 { 565 type_register_static(&port92_info); 566 } 567 568 type_init(port92_register_types) 569 570 static void handle_a20_line_change(void *opaque, int irq, int level) 571 { 572 X86CPU *cpu = opaque; 573 574 /* XXX: send to all CPUs ? */ 575 /* XXX: add logic to handle multiple A20 line sources */ 576 x86_cpu_set_a20(cpu, level); 577 } 578 579 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 580 { 581 int index = le32_to_cpu(e820_table.count); 582 struct e820_entry *entry; 583 584 if (index >= E820_NR_ENTRIES) 585 return -EBUSY; 586 entry = &e820_table.entry[index++]; 587 588 entry->address = cpu_to_le64(address); 589 entry->length = cpu_to_le64(length); 590 entry->type = cpu_to_le32(type); 591 592 e820_table.count = cpu_to_le32(index); 593 return index; 594 } 595 596 /* Calculates the limit to CPU APIC ID values 597 * 598 * This function returns the limit for the APIC ID value, so that all 599 * CPU APIC IDs are < pc_apic_id_limit(). 600 * 601 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 602 */ 603 static unsigned int pc_apic_id_limit(unsigned int max_cpus) 604 { 605 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 606 } 607 608 static FWCfgState *bochs_bios_init(void) 609 { 610 FWCfgState *fw_cfg; 611 uint8_t *smbios_table; 612 size_t smbios_len; 613 uint64_t *numa_fw_cfg; 614 int i, j; 615 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus); 616 617 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); 618 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 619 * 620 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug 621 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC 622 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the 623 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS 624 * may see". 625 * 626 * So, this means we must not use max_cpus, here, but the maximum possible 627 * APIC ID value, plus one. 628 * 629 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is 630 * the APIC ID, not the "CPU index" 631 */ 632 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit); 633 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); 634 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 635 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 636 acpi_tables, acpi_tables_len); 637 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 638 639 smbios_table = smbios_get_table(&smbios_len); 640 if (smbios_table) 641 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 642 smbios_table, smbios_len); 643 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 644 &e820_table, sizeof(e820_table)); 645 646 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 647 /* allocate memory for the NUMA channel: one (64bit) word for the number 648 * of nodes, one word for each VCPU->node and one word for each node to 649 * hold the amount of memory. 650 */ 651 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); 652 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 653 for (i = 0; i < max_cpus; i++) { 654 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 655 assert(apic_id < apic_id_limit); 656 for (j = 0; j < nb_numa_nodes; j++) { 657 if (test_bit(i, node_cpumask[j])) { 658 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); 659 break; 660 } 661 } 662 } 663 for (i = 0; i < nb_numa_nodes; i++) { 664 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]); 665 } 666 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 667 (1 + apic_id_limit + nb_numa_nodes) * 668 sizeof(*numa_fw_cfg)); 669 670 return fw_cfg; 671 } 672 673 static long get_file_size(FILE *f) 674 { 675 long where, size; 676 677 /* XXX: on Unix systems, using fstat() probably makes more sense */ 678 679 where = ftell(f); 680 fseek(f, 0, SEEK_END); 681 size = ftell(f); 682 fseek(f, where, SEEK_SET); 683 684 return size; 685 } 686 687 static void load_linux(FWCfgState *fw_cfg, 688 const char *kernel_filename, 689 const char *initrd_filename, 690 const char *kernel_cmdline, 691 hwaddr max_ram_size) 692 { 693 uint16_t protocol; 694 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 695 uint32_t initrd_max; 696 uint8_t header[8192], *setup, *kernel, *initrd_data; 697 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 698 FILE *f; 699 char *vmode; 700 701 /* Align to 16 bytes as a paranoia measure */ 702 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 703 704 /* load the kernel header */ 705 f = fopen(kernel_filename, "rb"); 706 if (!f || !(kernel_size = get_file_size(f)) || 707 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 708 MIN(ARRAY_SIZE(header), kernel_size)) { 709 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 710 kernel_filename, strerror(errno)); 711 exit(1); 712 } 713 714 /* kernel protocol version */ 715 #if 0 716 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 717 #endif 718 if (ldl_p(header+0x202) == 0x53726448) { 719 protocol = lduw_p(header+0x206); 720 } else { 721 /* This looks like a multiboot kernel. If it is, let's stop 722 treating it like a Linux kernel. */ 723 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 724 kernel_cmdline, kernel_size, header)) { 725 return; 726 } 727 protocol = 0; 728 } 729 730 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 731 /* Low kernel */ 732 real_addr = 0x90000; 733 cmdline_addr = 0x9a000 - cmdline_size; 734 prot_addr = 0x10000; 735 } else if (protocol < 0x202) { 736 /* High but ancient kernel */ 737 real_addr = 0x90000; 738 cmdline_addr = 0x9a000 - cmdline_size; 739 prot_addr = 0x100000; 740 } else { 741 /* High and recent kernel */ 742 real_addr = 0x10000; 743 cmdline_addr = 0x20000; 744 prot_addr = 0x100000; 745 } 746 747 #if 0 748 fprintf(stderr, 749 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 750 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 751 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 752 real_addr, 753 cmdline_addr, 754 prot_addr); 755 #endif 756 757 /* highest address for loading the initrd */ 758 if (protocol >= 0x203) { 759 initrd_max = ldl_p(header+0x22c); 760 } else { 761 initrd_max = 0x37ffffff; 762 } 763 764 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) 765 initrd_max = max_ram_size-ACPI_DATA_SIZE-1; 766 767 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 768 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 769 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 770 771 if (protocol >= 0x202) { 772 stl_p(header+0x228, cmdline_addr); 773 } else { 774 stw_p(header+0x20, 0xA33F); 775 stw_p(header+0x22, cmdline_addr-real_addr); 776 } 777 778 /* handle vga= parameter */ 779 vmode = strstr(kernel_cmdline, "vga="); 780 if (vmode) { 781 unsigned int video_mode; 782 /* skip "vga=" */ 783 vmode += 4; 784 if (!strncmp(vmode, "normal", 6)) { 785 video_mode = 0xffff; 786 } else if (!strncmp(vmode, "ext", 3)) { 787 video_mode = 0xfffe; 788 } else if (!strncmp(vmode, "ask", 3)) { 789 video_mode = 0xfffd; 790 } else { 791 video_mode = strtol(vmode, NULL, 0); 792 } 793 stw_p(header+0x1fa, video_mode); 794 } 795 796 /* loader type */ 797 /* High nybble = B reserved for QEMU; low nybble is revision number. 798 If this code is substantially changed, you may want to consider 799 incrementing the revision. */ 800 if (protocol >= 0x200) { 801 header[0x210] = 0xB0; 802 } 803 /* heap */ 804 if (protocol >= 0x201) { 805 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 806 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 807 } 808 809 /* load initrd */ 810 if (initrd_filename) { 811 if (protocol < 0x200) { 812 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 813 exit(1); 814 } 815 816 initrd_size = get_image_size(initrd_filename); 817 if (initrd_size < 0) { 818 fprintf(stderr, "qemu: error reading initrd %s\n", 819 initrd_filename); 820 exit(1); 821 } 822 823 initrd_addr = (initrd_max-initrd_size) & ~4095; 824 825 initrd_data = g_malloc(initrd_size); 826 load_image(initrd_filename, initrd_data); 827 828 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 829 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 830 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 831 832 stl_p(header+0x218, initrd_addr); 833 stl_p(header+0x21c, initrd_size); 834 } 835 836 /* load kernel and setup */ 837 setup_size = header[0x1f1]; 838 if (setup_size == 0) { 839 setup_size = 4; 840 } 841 setup_size = (setup_size+1)*512; 842 kernel_size -= setup_size; 843 844 setup = g_malloc(setup_size); 845 kernel = g_malloc(kernel_size); 846 fseek(f, 0, SEEK_SET); 847 if (fread(setup, 1, setup_size, f) != setup_size) { 848 fprintf(stderr, "fread() failed\n"); 849 exit(1); 850 } 851 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 852 fprintf(stderr, "fread() failed\n"); 853 exit(1); 854 } 855 fclose(f); 856 memcpy(setup, header, MIN(sizeof(header), setup_size)); 857 858 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 859 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 860 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 861 862 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 863 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 864 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 865 866 option_rom[nb_option_roms].name = "linuxboot.bin"; 867 option_rom[nb_option_roms].bootindex = 0; 868 nb_option_roms++; 869 } 870 871 #define NE2000_NB_MAX 6 872 873 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 874 0x280, 0x380 }; 875 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 876 877 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc }; 878 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 }; 879 880 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 881 { 882 static int nb_ne2k = 0; 883 884 if (nb_ne2k == NE2000_NB_MAX) 885 return; 886 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 887 ne2000_irq[nb_ne2k], nd); 888 nb_ne2k++; 889 } 890 891 DeviceState *cpu_get_current_apic(void) 892 { 893 if (current_cpu) { 894 X86CPU *cpu = X86_CPU(current_cpu); 895 return cpu->env.apic_state; 896 } else { 897 return NULL; 898 } 899 } 900 901 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 902 { 903 X86CPU *cpu = opaque; 904 905 if (level) { 906 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 907 } 908 } 909 910 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id, 911 DeviceState *icc_bridge, Error **errp) 912 { 913 X86CPU *cpu; 914 Error *local_err = NULL; 915 916 cpu = cpu_x86_create(cpu_model, icc_bridge, errp); 917 if (!cpu) { 918 return cpu; 919 } 920 921 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); 922 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); 923 924 if (local_err) { 925 if (cpu != NULL) { 926 object_unref(OBJECT(cpu)); 927 cpu = NULL; 928 } 929 error_propagate(errp, local_err); 930 } 931 return cpu; 932 } 933 934 static const char *current_cpu_model; 935 936 void pc_hot_add_cpu(const int64_t id, Error **errp) 937 { 938 DeviceState *icc_bridge; 939 int64_t apic_id = x86_cpu_apic_id_from_index(id); 940 941 if (id < 0) { 942 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 943 return; 944 } 945 946 if (cpu_exists(apic_id)) { 947 error_setg(errp, "Unable to add CPU: %" PRIi64 948 ", it already exists", id); 949 return; 950 } 951 952 if (id >= max_cpus) { 953 error_setg(errp, "Unable to add CPU: %" PRIi64 954 ", max allowed: %d", id, max_cpus - 1); 955 return; 956 } 957 958 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge", 959 TYPE_ICC_BRIDGE, NULL)); 960 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp); 961 } 962 963 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge) 964 { 965 int i; 966 X86CPU *cpu = NULL; 967 Error *error = NULL; 968 969 /* init CPUs */ 970 if (cpu_model == NULL) { 971 #ifdef TARGET_X86_64 972 cpu_model = "qemu64"; 973 #else 974 cpu_model = "qemu32"; 975 #endif 976 } 977 current_cpu_model = cpu_model; 978 979 for (i = 0; i < smp_cpus; i++) { 980 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i), 981 icc_bridge, &error); 982 if (error) { 983 fprintf(stderr, "%s\n", error_get_pretty(error)); 984 error_free(error); 985 exit(1); 986 } 987 } 988 989 /* map APIC MMIO area if CPU has APIC */ 990 if (cpu && cpu->env.apic_state) { 991 /* XXX: what if the base changes? */ 992 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0, 993 APIC_DEFAULT_ADDRESS, 0x1000); 994 } 995 } 996 997 /* pci-info ROM file. Little endian format */ 998 typedef struct PcRomPciInfo { 999 uint64_t w32_min; 1000 uint64_t w32_max; 1001 uint64_t w64_min; 1002 uint64_t w64_max; 1003 } PcRomPciInfo; 1004 1005 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info) 1006 { 1007 PcRomPciInfo *info; 1008 if (!guest_info->has_pci_info || !guest_info->fw_cfg) { 1009 return; 1010 } 1011 1012 info = g_malloc(sizeof *info); 1013 info->w32_min = cpu_to_le64(guest_info->pci_info.w32.begin); 1014 info->w32_max = cpu_to_le64(guest_info->pci_info.w32.end); 1015 info->w64_min = cpu_to_le64(guest_info->pci_info.w64.begin); 1016 info->w64_max = cpu_to_le64(guest_info->pci_info.w64.end); 1017 /* Pass PCI hole info to guest via a side channel. 1018 * Required so guest PCI enumeration does the right thing. */ 1019 fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info); 1020 } 1021 1022 typedef struct PcGuestInfoState { 1023 PcGuestInfo info; 1024 Notifier machine_done; 1025 } PcGuestInfoState; 1026 1027 static 1028 void pc_guest_info_machine_done(Notifier *notifier, void *data) 1029 { 1030 PcGuestInfoState *guest_info_state = container_of(notifier, 1031 PcGuestInfoState, 1032 machine_done); 1033 pc_fw_cfg_guest_info(&guest_info_state->info); 1034 } 1035 1036 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size, 1037 ram_addr_t above_4g_mem_size) 1038 { 1039 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1040 PcGuestInfo *guest_info = &guest_info_state->info; 1041 1042 guest_info->pci_info.w32.end = IO_APIC_DEFAULT_ADDRESS; 1043 if (sizeof(hwaddr) == 4) { 1044 guest_info->pci_info.w64.begin = 0; 1045 guest_info->pci_info.w64.end = 0; 1046 } else { 1047 /* 1048 * BIOS does not set MTRR entries for the 64 bit window, so no need to 1049 * align address to power of two. Align address at 1G, this makes sure 1050 * it can be exactly covered with a PAT entry even when using huge 1051 * pages. 1052 */ 1053 guest_info->pci_info.w64.begin = 1054 ROUND_UP((0x1ULL << 32) + above_4g_mem_size, 0x1ULL << 30); 1055 guest_info->pci_info.w64.end = guest_info->pci_info.w64.begin + 1056 (0x1ULL << 62); 1057 assert(guest_info->pci_info.w64.begin <= guest_info->pci_info.w64.end); 1058 } 1059 1060 guest_info_state->machine_done.notify = pc_guest_info_machine_done; 1061 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1062 return guest_info; 1063 } 1064 1065 void pc_acpi_init(const char *default_dsdt) 1066 { 1067 char *filename; 1068 1069 if (acpi_tables != NULL) { 1070 /* manually set via -acpitable, leave it alone */ 1071 return; 1072 } 1073 1074 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1075 if (filename == NULL) { 1076 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 1077 } else { 1078 char *arg; 1079 QemuOpts *opts; 1080 Error *err = NULL; 1081 1082 arg = g_strdup_printf("file=%s", filename); 1083 1084 /* creates a deep copy of "arg" */ 1085 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0); 1086 g_assert(opts != NULL); 1087 1088 acpi_table_add(opts, &err); 1089 if (err) { 1090 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename, 1091 error_get_pretty(err)); 1092 error_free(err); 1093 } 1094 g_free(arg); 1095 g_free(filename); 1096 } 1097 } 1098 1099 FWCfgState *pc_memory_init(MemoryRegion *system_memory, 1100 const char *kernel_filename, 1101 const char *kernel_cmdline, 1102 const char *initrd_filename, 1103 ram_addr_t below_4g_mem_size, 1104 ram_addr_t above_4g_mem_size, 1105 MemoryRegion *rom_memory, 1106 MemoryRegion **ram_memory, 1107 PcGuestInfo *guest_info) 1108 { 1109 int linux_boot, i; 1110 MemoryRegion *ram, *option_rom_mr; 1111 MemoryRegion *ram_below_4g, *ram_above_4g; 1112 FWCfgState *fw_cfg; 1113 1114 linux_boot = (kernel_filename != NULL); 1115 1116 /* Allocate RAM. We allocate it as a single memory region and use 1117 * aliases to address portions of it, mostly for backwards compatibility 1118 * with older qemus that used qemu_ram_alloc(). 1119 */ 1120 ram = g_malloc(sizeof(*ram)); 1121 memory_region_init_ram(ram, NULL, "pc.ram", 1122 below_4g_mem_size + above_4g_mem_size); 1123 vmstate_register_ram_global(ram); 1124 *ram_memory = ram; 1125 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1126 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1127 0, below_4g_mem_size); 1128 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1129 if (above_4g_mem_size > 0) { 1130 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1131 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1132 below_4g_mem_size, above_4g_mem_size); 1133 memory_region_add_subregion(system_memory, 0x100000000ULL, 1134 ram_above_4g); 1135 } 1136 1137 1138 /* Initialize PC system firmware */ 1139 pc_system_firmware_init(rom_memory); 1140 1141 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1142 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE); 1143 vmstate_register_ram_global(option_rom_mr); 1144 memory_region_add_subregion_overlap(rom_memory, 1145 PC_ROM_MIN_VGA, 1146 option_rom_mr, 1147 1); 1148 1149 fw_cfg = bochs_bios_init(); 1150 rom_set_fw(fw_cfg); 1151 1152 if (linux_boot) { 1153 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size); 1154 } 1155 1156 for (i = 0; i < nb_option_roms; i++) { 1157 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1158 } 1159 guest_info->fw_cfg = fw_cfg; 1160 return fw_cfg; 1161 } 1162 1163 qemu_irq *pc_allocate_cpu_irq(void) 1164 { 1165 return qemu_allocate_irqs(pic_irq_request, NULL, 1); 1166 } 1167 1168 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1169 { 1170 DeviceState *dev = NULL; 1171 1172 if (pci_bus) { 1173 PCIDevice *pcidev = pci_vga_init(pci_bus); 1174 dev = pcidev ? &pcidev->qdev : NULL; 1175 } else if (isa_bus) { 1176 ISADevice *isadev = isa_vga_init(isa_bus); 1177 dev = isadev ? DEVICE(isadev) : NULL; 1178 } 1179 return dev; 1180 } 1181 1182 static void cpu_request_exit(void *opaque, int irq, int level) 1183 { 1184 CPUState *cpu = current_cpu; 1185 1186 if (cpu && level) { 1187 cpu_exit(cpu); 1188 } 1189 } 1190 1191 static const MemoryRegionOps ioport80_io_ops = { 1192 .write = ioport80_write, 1193 .read = ioport80_read, 1194 .endianness = DEVICE_NATIVE_ENDIAN, 1195 .impl = { 1196 .min_access_size = 1, 1197 .max_access_size = 1, 1198 }, 1199 }; 1200 1201 static const MemoryRegionOps ioportF0_io_ops = { 1202 .write = ioportF0_write, 1203 .read = ioportF0_read, 1204 .endianness = DEVICE_NATIVE_ENDIAN, 1205 .impl = { 1206 .min_access_size = 1, 1207 .max_access_size = 1, 1208 }, 1209 }; 1210 1211 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1212 ISADevice **rtc_state, 1213 ISADevice **floppy, 1214 bool no_vmport) 1215 { 1216 int i; 1217 DriveInfo *fd[MAX_FD]; 1218 DeviceState *hpet = NULL; 1219 int pit_isa_irq = 0; 1220 qemu_irq pit_alt_irq = NULL; 1221 qemu_irq rtc_irq = NULL; 1222 qemu_irq *a20_line; 1223 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1224 qemu_irq *cpu_exit_irq; 1225 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1226 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1227 1228 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1229 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1230 1231 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1232 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1233 1234 /* 1235 * Check if an HPET shall be created. 1236 * 1237 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1238 * when the HPET wants to take over. Thus we have to disable the latter. 1239 */ 1240 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1241 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL); 1242 1243 if (hpet) { 1244 for (i = 0; i < GSI_NUM_PINS; i++) { 1245 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1246 } 1247 pit_isa_irq = -1; 1248 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1249 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1250 } 1251 } 1252 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1253 1254 qemu_register_boot_set(pc_boot_set, *rtc_state); 1255 1256 if (!xen_enabled()) { 1257 if (kvm_irqchip_in_kernel()) { 1258 pit = kvm_pit_init(isa_bus, 0x40); 1259 } else { 1260 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1261 } 1262 if (hpet) { 1263 /* connect PIT to output control line of the HPET */ 1264 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1265 } 1266 pcspk_init(isa_bus, pit); 1267 } 1268 1269 for(i = 0; i < MAX_SERIAL_PORTS; i++) { 1270 if (serial_hds[i]) { 1271 serial_isa_init(isa_bus, i, serial_hds[i]); 1272 } 1273 } 1274 1275 for(i = 0; i < MAX_PARALLEL_PORTS; i++) { 1276 if (parallel_hds[i]) { 1277 parallel_init(isa_bus, i, parallel_hds[i]); 1278 } 1279 } 1280 1281 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1282 i8042 = isa_create_simple(isa_bus, "i8042"); 1283 i8042_setup_a20_line(i8042, &a20_line[0]); 1284 if (!no_vmport) { 1285 vmport_init(isa_bus); 1286 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1287 } else { 1288 vmmouse = NULL; 1289 } 1290 if (vmmouse) { 1291 DeviceState *dev = DEVICE(vmmouse); 1292 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1293 qdev_init_nofail(dev); 1294 } 1295 port92 = isa_create_simple(isa_bus, "port92"); 1296 port92_init(port92, &a20_line[1]); 1297 1298 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); 1299 DMA_init(0, cpu_exit_irq); 1300 1301 for(i = 0; i < MAX_FD; i++) { 1302 fd[i] = drive_get(IF_FLOPPY, 0, i); 1303 } 1304 *floppy = fdctrl_init_isa(isa_bus, fd); 1305 } 1306 1307 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1308 { 1309 int i; 1310 1311 for (i = 0; i < nb_nics; i++) { 1312 NICInfo *nd = &nd_table[i]; 1313 1314 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1315 pc_init_ne2k_isa(isa_bus, nd); 1316 } else { 1317 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1318 } 1319 } 1320 } 1321 1322 void pc_pci_device_init(PCIBus *pci_bus) 1323 { 1324 int max_bus; 1325 int bus; 1326 1327 max_bus = drive_get_max_bus(IF_SCSI); 1328 for (bus = 0; bus <= max_bus; bus++) { 1329 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1330 } 1331 } 1332 1333 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1334 { 1335 DeviceState *dev; 1336 SysBusDevice *d; 1337 unsigned int i; 1338 1339 if (kvm_irqchip_in_kernel()) { 1340 dev = qdev_create(NULL, "kvm-ioapic"); 1341 } else { 1342 dev = qdev_create(NULL, "ioapic"); 1343 } 1344 if (parent_name) { 1345 object_property_add_child(object_resolve_path(parent_name, NULL), 1346 "ioapic", OBJECT(dev), NULL); 1347 } 1348 qdev_init_nofail(dev); 1349 d = SYS_BUS_DEVICE(dev); 1350 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1351 1352 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1353 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1354 } 1355 } 1356