xref: /openbmc/qemu/hw/i386/pc.c (revision 1d300b5f)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/cpu/icc_bus.h"
57 #include "hw/boards.h"
58 
59 /* debug PC/ISA interrupts */
60 //#define DEBUG_IRQ
61 
62 #ifdef DEBUG_IRQ
63 #define DPRINTF(fmt, ...)                                       \
64     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define DPRINTF(fmt, ...)
67 #endif
68 
69 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
70 #define ACPI_DATA_SIZE       0x10000
71 #define BIOS_CFG_IOPORT 0x510
72 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
73 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
74 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
75 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
76 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
77 
78 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000
79 
80 #define E820_NR_ENTRIES		16
81 
82 struct e820_entry {
83     uint64_t address;
84     uint64_t length;
85     uint32_t type;
86 } QEMU_PACKED __attribute((__aligned__(4)));
87 
88 struct e820_table {
89     uint32_t count;
90     struct e820_entry entry[E820_NR_ENTRIES];
91 } QEMU_PACKED __attribute((__aligned__(4)));
92 
93 static struct e820_table e820_table;
94 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
95 
96 void gsi_handler(void *opaque, int n, int level)
97 {
98     GSIState *s = opaque;
99 
100     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
101     if (n < ISA_NUM_IRQS) {
102         qemu_set_irq(s->i8259_irq[n], level);
103     }
104     qemu_set_irq(s->ioapic_irq[n], level);
105 }
106 
107 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
108                            unsigned size)
109 {
110 }
111 
112 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
113 {
114     return 0xffffffffffffffffULL;
115 }
116 
117 /* MSDOS compatibility mode FPU exception support */
118 static qemu_irq ferr_irq;
119 
120 void pc_register_ferr_irq(qemu_irq irq)
121 {
122     ferr_irq = irq;
123 }
124 
125 /* XXX: add IGNNE support */
126 void cpu_set_ferr(CPUX86State *s)
127 {
128     qemu_irq_raise(ferr_irq);
129 }
130 
131 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
132                            unsigned size)
133 {
134     qemu_irq_lower(ferr_irq);
135 }
136 
137 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
138 {
139     return 0xffffffffffffffffULL;
140 }
141 
142 /* TSC handling */
143 uint64_t cpu_get_tsc(CPUX86State *env)
144 {
145     return cpu_get_ticks();
146 }
147 
148 /* SMM support */
149 
150 static cpu_set_smm_t smm_set;
151 static void *smm_arg;
152 
153 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
154 {
155     assert(smm_set == NULL);
156     assert(smm_arg == NULL);
157     smm_set = callback;
158     smm_arg = arg;
159 }
160 
161 void cpu_smm_update(CPUX86State *env)
162 {
163     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
164         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
165     }
166 }
167 
168 
169 /* IRQ handling */
170 int cpu_get_pic_interrupt(CPUX86State *env)
171 {
172     int intno;
173 
174     intno = apic_get_interrupt(env->apic_state);
175     if (intno >= 0) {
176         return intno;
177     }
178     /* read the irq from the PIC */
179     if (!apic_accept_pic_intr(env->apic_state)) {
180         return -1;
181     }
182 
183     intno = pic_read_irq(isa_pic);
184     return intno;
185 }
186 
187 static void pic_irq_request(void *opaque, int irq, int level)
188 {
189     CPUState *cs = first_cpu;
190     X86CPU *cpu = X86_CPU(cs);
191     CPUX86State *env = &cpu->env;
192 
193     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
194     if (env->apic_state) {
195         while (cs) {
196             cpu = X86_CPU(cs);
197             env = &cpu->env;
198             if (apic_accept_pic_intr(env->apic_state)) {
199                 apic_deliver_pic_intr(env->apic_state, level);
200             }
201             cs = cs->next_cpu;
202         }
203     } else {
204         if (level) {
205             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
206         } else {
207             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
208         }
209     }
210 }
211 
212 /* PC cmos mappings */
213 
214 #define REG_EQUIPMENT_BYTE          0x14
215 
216 static int cmos_get_fd_drive_type(FDriveType fd0)
217 {
218     int val;
219 
220     switch (fd0) {
221     case FDRIVE_DRV_144:
222         /* 1.44 Mb 3"5 drive */
223         val = 4;
224         break;
225     case FDRIVE_DRV_288:
226         /* 2.88 Mb 3"5 drive */
227         val = 5;
228         break;
229     case FDRIVE_DRV_120:
230         /* 1.2 Mb 5"5 drive */
231         val = 2;
232         break;
233     case FDRIVE_DRV_NONE:
234     default:
235         val = 0;
236         break;
237     }
238     return val;
239 }
240 
241 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
242                          int16_t cylinders, int8_t heads, int8_t sectors)
243 {
244     rtc_set_memory(s, type_ofs, 47);
245     rtc_set_memory(s, info_ofs, cylinders);
246     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
247     rtc_set_memory(s, info_ofs + 2, heads);
248     rtc_set_memory(s, info_ofs + 3, 0xff);
249     rtc_set_memory(s, info_ofs + 4, 0xff);
250     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
251     rtc_set_memory(s, info_ofs + 6, cylinders);
252     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
253     rtc_set_memory(s, info_ofs + 8, sectors);
254 }
255 
256 /* convert boot_device letter to something recognizable by the bios */
257 static int boot_device2nibble(char boot_device)
258 {
259     switch(boot_device) {
260     case 'a':
261     case 'b':
262         return 0x01; /* floppy boot */
263     case 'c':
264         return 0x02; /* hard drive boot */
265     case 'd':
266         return 0x03; /* CD-ROM boot */
267     case 'n':
268         return 0x04; /* Network boot */
269     }
270     return 0;
271 }
272 
273 static int set_boot_dev(ISADevice *s, const char *boot_device)
274 {
275 #define PC_MAX_BOOT_DEVICES 3
276     int nbds, bds[3] = { 0, };
277     int i;
278 
279     nbds = strlen(boot_device);
280     if (nbds > PC_MAX_BOOT_DEVICES) {
281         error_report("Too many boot devices for PC");
282         return(1);
283     }
284     for (i = 0; i < nbds; i++) {
285         bds[i] = boot_device2nibble(boot_device[i]);
286         if (bds[i] == 0) {
287             error_report("Invalid boot device for PC: '%c'",
288                          boot_device[i]);
289             return(1);
290         }
291     }
292     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
293     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
294     return(0);
295 }
296 
297 static int pc_boot_set(void *opaque, const char *boot_device)
298 {
299     return set_boot_dev(opaque, boot_device);
300 }
301 
302 typedef struct pc_cmos_init_late_arg {
303     ISADevice *rtc_state;
304     BusState *idebus[2];
305 } pc_cmos_init_late_arg;
306 
307 static void pc_cmos_init_late(void *opaque)
308 {
309     pc_cmos_init_late_arg *arg = opaque;
310     ISADevice *s = arg->rtc_state;
311     int16_t cylinders;
312     int8_t heads, sectors;
313     int val;
314     int i, trans;
315 
316     val = 0;
317     if (ide_get_geometry(arg->idebus[0], 0,
318                          &cylinders, &heads, &sectors) >= 0) {
319         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
320         val |= 0xf0;
321     }
322     if (ide_get_geometry(arg->idebus[0], 1,
323                          &cylinders, &heads, &sectors) >= 0) {
324         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
325         val |= 0x0f;
326     }
327     rtc_set_memory(s, 0x12, val);
328 
329     val = 0;
330     for (i = 0; i < 4; i++) {
331         /* NOTE: ide_get_geometry() returns the physical
332            geometry.  It is always such that: 1 <= sects <= 63, 1
333            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
334            geometry can be different if a translation is done. */
335         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
336                              &cylinders, &heads, &sectors) >= 0) {
337             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
338             assert((trans & ~3) == 0);
339             val |= trans << (i * 2);
340         }
341     }
342     rtc_set_memory(s, 0x39, val);
343 
344     qemu_unregister_reset(pc_cmos_init_late, opaque);
345 }
346 
347 typedef struct RTCCPUHotplugArg {
348     Notifier cpu_added_notifier;
349     ISADevice *rtc_state;
350 } RTCCPUHotplugArg;
351 
352 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
353 {
354     RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
355                                          cpu_added_notifier);
356     ISADevice *s = arg->rtc_state;
357 
358     /* increment the number of CPUs */
359     rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
360 }
361 
362 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
363                   const char *boot_device,
364                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
365                   ISADevice *s)
366 {
367     int val, nb, i;
368     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
369     static pc_cmos_init_late_arg arg;
370     static RTCCPUHotplugArg cpu_hotplug_cb;
371 
372     /* various important CMOS locations needed by PC/Bochs bios */
373 
374     /* memory size */
375     /* base memory (first MiB) */
376     val = MIN(ram_size / 1024, 640);
377     rtc_set_memory(s, 0x15, val);
378     rtc_set_memory(s, 0x16, val >> 8);
379     /* extended memory (next 64MiB) */
380     if (ram_size > 1024 * 1024) {
381         val = (ram_size - 1024 * 1024) / 1024;
382     } else {
383         val = 0;
384     }
385     if (val > 65535)
386         val = 65535;
387     rtc_set_memory(s, 0x17, val);
388     rtc_set_memory(s, 0x18, val >> 8);
389     rtc_set_memory(s, 0x30, val);
390     rtc_set_memory(s, 0x31, val >> 8);
391     /* memory between 16MiB and 4GiB */
392     if (ram_size > 16 * 1024 * 1024) {
393         val = (ram_size - 16 * 1024 * 1024) / 65536;
394     } else {
395         val = 0;
396     }
397     if (val > 65535)
398         val = 65535;
399     rtc_set_memory(s, 0x34, val);
400     rtc_set_memory(s, 0x35, val >> 8);
401     /* memory above 4GiB */
402     val = above_4g_mem_size / 65536;
403     rtc_set_memory(s, 0x5b, val);
404     rtc_set_memory(s, 0x5c, val >> 8);
405     rtc_set_memory(s, 0x5d, val >> 16);
406 
407     /* set the number of CPU */
408     rtc_set_memory(s, 0x5f, smp_cpus - 1);
409     /* init CPU hotplug notifier */
410     cpu_hotplug_cb.rtc_state = s;
411     cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
412     qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
413 
414     if (set_boot_dev(s, boot_device)) {
415         exit(1);
416     }
417 
418     /* floppy type */
419     if (floppy) {
420         for (i = 0; i < 2; i++) {
421             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
422         }
423     }
424     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
425         cmos_get_fd_drive_type(fd_type[1]);
426     rtc_set_memory(s, 0x10, val);
427 
428     val = 0;
429     nb = 0;
430     if (fd_type[0] < FDRIVE_DRV_NONE) {
431         nb++;
432     }
433     if (fd_type[1] < FDRIVE_DRV_NONE) {
434         nb++;
435     }
436     switch (nb) {
437     case 0:
438         break;
439     case 1:
440         val |= 0x01; /* 1 drive, ready for boot */
441         break;
442     case 2:
443         val |= 0x41; /* 2 drives, ready for boot */
444         break;
445     }
446     val |= 0x02; /* FPU is there */
447     val |= 0x04; /* PS/2 mouse installed */
448     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
449 
450     /* hard drives */
451     arg.rtc_state = s;
452     arg.idebus[0] = idebus0;
453     arg.idebus[1] = idebus1;
454     qemu_register_reset(pc_cmos_init_late, &arg);
455 }
456 
457 #define TYPE_PORT92 "port92"
458 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
459 
460 /* port 92 stuff: could be split off */
461 typedef struct Port92State {
462     ISADevice parent_obj;
463 
464     MemoryRegion io;
465     uint8_t outport;
466     qemu_irq *a20_out;
467 } Port92State;
468 
469 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
470                          unsigned size)
471 {
472     Port92State *s = opaque;
473 
474     DPRINTF("port92: write 0x%02x\n", val);
475     s->outport = val;
476     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
477     if (val & 1) {
478         qemu_system_reset_request();
479     }
480 }
481 
482 static uint64_t port92_read(void *opaque, hwaddr addr,
483                             unsigned size)
484 {
485     Port92State *s = opaque;
486     uint32_t ret;
487 
488     ret = s->outport;
489     DPRINTF("port92: read 0x%02x\n", ret);
490     return ret;
491 }
492 
493 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
494 {
495     Port92State *s = PORT92(dev);
496 
497     s->a20_out = a20_out;
498 }
499 
500 static const VMStateDescription vmstate_port92_isa = {
501     .name = "port92",
502     .version_id = 1,
503     .minimum_version_id = 1,
504     .minimum_version_id_old = 1,
505     .fields      = (VMStateField []) {
506         VMSTATE_UINT8(outport, Port92State),
507         VMSTATE_END_OF_LIST()
508     }
509 };
510 
511 static void port92_reset(DeviceState *d)
512 {
513     Port92State *s = PORT92(d);
514 
515     s->outport &= ~1;
516 }
517 
518 static const MemoryRegionOps port92_ops = {
519     .read = port92_read,
520     .write = port92_write,
521     .impl = {
522         .min_access_size = 1,
523         .max_access_size = 1,
524     },
525     .endianness = DEVICE_LITTLE_ENDIAN,
526 };
527 
528 static void port92_initfn(Object *obj)
529 {
530     Port92State *s = PORT92(obj);
531 
532     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
533 
534     s->outport = 0;
535 }
536 
537 static void port92_realizefn(DeviceState *dev, Error **errp)
538 {
539     ISADevice *isadev = ISA_DEVICE(dev);
540     Port92State *s = PORT92(dev);
541 
542     isa_register_ioport(isadev, &s->io, 0x92);
543 }
544 
545 static void port92_class_initfn(ObjectClass *klass, void *data)
546 {
547     DeviceClass *dc = DEVICE_CLASS(klass);
548 
549     dc->no_user = 1;
550     dc->realize = port92_realizefn;
551     dc->reset = port92_reset;
552     dc->vmsd = &vmstate_port92_isa;
553 }
554 
555 static const TypeInfo port92_info = {
556     .name          = TYPE_PORT92,
557     .parent        = TYPE_ISA_DEVICE,
558     .instance_size = sizeof(Port92State),
559     .instance_init = port92_initfn,
560     .class_init    = port92_class_initfn,
561 };
562 
563 static void port92_register_types(void)
564 {
565     type_register_static(&port92_info);
566 }
567 
568 type_init(port92_register_types)
569 
570 static void handle_a20_line_change(void *opaque, int irq, int level)
571 {
572     X86CPU *cpu = opaque;
573 
574     /* XXX: send to all CPUs ? */
575     /* XXX: add logic to handle multiple A20 line sources */
576     x86_cpu_set_a20(cpu, level);
577 }
578 
579 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
580 {
581     int index = le32_to_cpu(e820_table.count);
582     struct e820_entry *entry;
583 
584     if (index >= E820_NR_ENTRIES)
585         return -EBUSY;
586     entry = &e820_table.entry[index++];
587 
588     entry->address = cpu_to_le64(address);
589     entry->length = cpu_to_le64(length);
590     entry->type = cpu_to_le32(type);
591 
592     e820_table.count = cpu_to_le32(index);
593     return index;
594 }
595 
596 /* Calculates the limit to CPU APIC ID values
597  *
598  * This function returns the limit for the APIC ID value, so that all
599  * CPU APIC IDs are < pc_apic_id_limit().
600  *
601  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
602  */
603 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
604 {
605     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
606 }
607 
608 static FWCfgState *bochs_bios_init(void)
609 {
610     FWCfgState *fw_cfg;
611     uint8_t *smbios_table;
612     size_t smbios_len;
613     uint64_t *numa_fw_cfg;
614     int i, j;
615     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
616 
617     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
618     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
619      *
620      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
621      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
622      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
623      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
624      * may see".
625      *
626      * So, this means we must not use max_cpus, here, but the maximum possible
627      * APIC ID value, plus one.
628      *
629      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
630      *     the APIC ID, not the "CPU index"
631      */
632     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
633     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
634     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
635     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
636                      acpi_tables, acpi_tables_len);
637     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
638 
639     smbios_table = smbios_get_table(&smbios_len);
640     if (smbios_table)
641         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
642                          smbios_table, smbios_len);
643     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
644                      &e820_table, sizeof(e820_table));
645 
646     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
647     /* allocate memory for the NUMA channel: one (64bit) word for the number
648      * of nodes, one word for each VCPU->node and one word for each node to
649      * hold the amount of memory.
650      */
651     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
652     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
653     for (i = 0; i < max_cpus; i++) {
654         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
655         assert(apic_id < apic_id_limit);
656         for (j = 0; j < nb_numa_nodes; j++) {
657             if (test_bit(i, node_cpumask[j])) {
658                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
659                 break;
660             }
661         }
662     }
663     for (i = 0; i < nb_numa_nodes; i++) {
664         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
665     }
666     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
667                      (1 + apic_id_limit + nb_numa_nodes) *
668                      sizeof(*numa_fw_cfg));
669 
670     return fw_cfg;
671 }
672 
673 static long get_file_size(FILE *f)
674 {
675     long where, size;
676 
677     /* XXX: on Unix systems, using fstat() probably makes more sense */
678 
679     where = ftell(f);
680     fseek(f, 0, SEEK_END);
681     size = ftell(f);
682     fseek(f, where, SEEK_SET);
683 
684     return size;
685 }
686 
687 static void load_linux(FWCfgState *fw_cfg,
688                        const char *kernel_filename,
689                        const char *initrd_filename,
690                        const char *kernel_cmdline,
691                        hwaddr max_ram_size)
692 {
693     uint16_t protocol;
694     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
695     uint32_t initrd_max;
696     uint8_t header[8192], *setup, *kernel, *initrd_data;
697     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
698     FILE *f;
699     char *vmode;
700 
701     /* Align to 16 bytes as a paranoia measure */
702     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
703 
704     /* load the kernel header */
705     f = fopen(kernel_filename, "rb");
706     if (!f || !(kernel_size = get_file_size(f)) ||
707         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
708         MIN(ARRAY_SIZE(header), kernel_size)) {
709         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
710                 kernel_filename, strerror(errno));
711         exit(1);
712     }
713 
714     /* kernel protocol version */
715 #if 0
716     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
717 #endif
718     if (ldl_p(header+0x202) == 0x53726448) {
719         protocol = lduw_p(header+0x206);
720     } else {
721         /* This looks like a multiboot kernel. If it is, let's stop
722            treating it like a Linux kernel. */
723         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
724                            kernel_cmdline, kernel_size, header)) {
725             return;
726         }
727         protocol = 0;
728     }
729 
730     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
731         /* Low kernel */
732         real_addr    = 0x90000;
733         cmdline_addr = 0x9a000 - cmdline_size;
734         prot_addr    = 0x10000;
735     } else if (protocol < 0x202) {
736         /* High but ancient kernel */
737         real_addr    = 0x90000;
738         cmdline_addr = 0x9a000 - cmdline_size;
739         prot_addr    = 0x100000;
740     } else {
741         /* High and recent kernel */
742         real_addr    = 0x10000;
743         cmdline_addr = 0x20000;
744         prot_addr    = 0x100000;
745     }
746 
747 #if 0
748     fprintf(stderr,
749             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
750             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
751             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
752             real_addr,
753             cmdline_addr,
754             prot_addr);
755 #endif
756 
757     /* highest address for loading the initrd */
758     if (protocol >= 0x203) {
759         initrd_max = ldl_p(header+0x22c);
760     } else {
761         initrd_max = 0x37ffffff;
762     }
763 
764     if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
765     	initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
766 
767     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
768     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
769     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
770 
771     if (protocol >= 0x202) {
772         stl_p(header+0x228, cmdline_addr);
773     } else {
774         stw_p(header+0x20, 0xA33F);
775         stw_p(header+0x22, cmdline_addr-real_addr);
776     }
777 
778     /* handle vga= parameter */
779     vmode = strstr(kernel_cmdline, "vga=");
780     if (vmode) {
781         unsigned int video_mode;
782         /* skip "vga=" */
783         vmode += 4;
784         if (!strncmp(vmode, "normal", 6)) {
785             video_mode = 0xffff;
786         } else if (!strncmp(vmode, "ext", 3)) {
787             video_mode = 0xfffe;
788         } else if (!strncmp(vmode, "ask", 3)) {
789             video_mode = 0xfffd;
790         } else {
791             video_mode = strtol(vmode, NULL, 0);
792         }
793         stw_p(header+0x1fa, video_mode);
794     }
795 
796     /* loader type */
797     /* High nybble = B reserved for QEMU; low nybble is revision number.
798        If this code is substantially changed, you may want to consider
799        incrementing the revision. */
800     if (protocol >= 0x200) {
801         header[0x210] = 0xB0;
802     }
803     /* heap */
804     if (protocol >= 0x201) {
805         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
806         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
807     }
808 
809     /* load initrd */
810     if (initrd_filename) {
811         if (protocol < 0x200) {
812             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
813             exit(1);
814         }
815 
816         initrd_size = get_image_size(initrd_filename);
817         if (initrd_size < 0) {
818             fprintf(stderr, "qemu: error reading initrd %s\n",
819                     initrd_filename);
820             exit(1);
821         }
822 
823         initrd_addr = (initrd_max-initrd_size) & ~4095;
824 
825         initrd_data = g_malloc(initrd_size);
826         load_image(initrd_filename, initrd_data);
827 
828         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
829         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
830         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
831 
832         stl_p(header+0x218, initrd_addr);
833         stl_p(header+0x21c, initrd_size);
834     }
835 
836     /* load kernel and setup */
837     setup_size = header[0x1f1];
838     if (setup_size == 0) {
839         setup_size = 4;
840     }
841     setup_size = (setup_size+1)*512;
842     kernel_size -= setup_size;
843 
844     setup  = g_malloc(setup_size);
845     kernel = g_malloc(kernel_size);
846     fseek(f, 0, SEEK_SET);
847     if (fread(setup, 1, setup_size, f) != setup_size) {
848         fprintf(stderr, "fread() failed\n");
849         exit(1);
850     }
851     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
852         fprintf(stderr, "fread() failed\n");
853         exit(1);
854     }
855     fclose(f);
856     memcpy(setup, header, MIN(sizeof(header), setup_size));
857 
858     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
859     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
860     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
861 
862     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
863     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
864     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
865 
866     option_rom[nb_option_roms].name = "linuxboot.bin";
867     option_rom[nb_option_roms].bootindex = 0;
868     nb_option_roms++;
869 }
870 
871 #define NE2000_NB_MAX 6
872 
873 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
874                                               0x280, 0x380 };
875 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
876 
877 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
878 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
879 
880 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
881 {
882     static int nb_ne2k = 0;
883 
884     if (nb_ne2k == NE2000_NB_MAX)
885         return;
886     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
887                     ne2000_irq[nb_ne2k], nd);
888     nb_ne2k++;
889 }
890 
891 DeviceState *cpu_get_current_apic(void)
892 {
893     if (current_cpu) {
894         X86CPU *cpu = X86_CPU(current_cpu);
895         return cpu->env.apic_state;
896     } else {
897         return NULL;
898     }
899 }
900 
901 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
902 {
903     X86CPU *cpu = opaque;
904 
905     if (level) {
906         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
907     }
908 }
909 
910 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
911                           DeviceState *icc_bridge, Error **errp)
912 {
913     X86CPU *cpu;
914     Error *local_err = NULL;
915 
916     cpu = cpu_x86_create(cpu_model, icc_bridge, errp);
917     if (!cpu) {
918         return cpu;
919     }
920 
921     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
922     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
923 
924     if (local_err) {
925         if (cpu != NULL) {
926             object_unref(OBJECT(cpu));
927             cpu = NULL;
928         }
929         error_propagate(errp, local_err);
930     }
931     return cpu;
932 }
933 
934 static const char *current_cpu_model;
935 
936 void pc_hot_add_cpu(const int64_t id, Error **errp)
937 {
938     DeviceState *icc_bridge;
939     int64_t apic_id = x86_cpu_apic_id_from_index(id);
940 
941     if (id < 0) {
942         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
943         return;
944     }
945 
946     if (cpu_exists(apic_id)) {
947         error_setg(errp, "Unable to add CPU: %" PRIi64
948                    ", it already exists", id);
949         return;
950     }
951 
952     if (id >= max_cpus) {
953         error_setg(errp, "Unable to add CPU: %" PRIi64
954                    ", max allowed: %d", id, max_cpus - 1);
955         return;
956     }
957 
958     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
959                                                  TYPE_ICC_BRIDGE, NULL));
960     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
961 }
962 
963 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
964 {
965     int i;
966     X86CPU *cpu = NULL;
967     Error *error = NULL;
968 
969     /* init CPUs */
970     if (cpu_model == NULL) {
971 #ifdef TARGET_X86_64
972         cpu_model = "qemu64";
973 #else
974         cpu_model = "qemu32";
975 #endif
976     }
977     current_cpu_model = cpu_model;
978 
979     for (i = 0; i < smp_cpus; i++) {
980         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
981                          icc_bridge, &error);
982         if (error) {
983             fprintf(stderr, "%s\n", error_get_pretty(error));
984             error_free(error);
985             exit(1);
986         }
987     }
988 
989     /* map APIC MMIO area if CPU has APIC */
990     if (cpu && cpu->env.apic_state) {
991         /* XXX: what if the base changes? */
992         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
993                                 APIC_DEFAULT_ADDRESS, 0x1000);
994     }
995 }
996 
997 /* pci-info ROM file. Little endian format */
998 typedef struct PcRomPciInfo {
999     uint64_t w32_min;
1000     uint64_t w32_max;
1001     uint64_t w64_min;
1002     uint64_t w64_max;
1003 } PcRomPciInfo;
1004 
1005 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1006 {
1007     PcRomPciInfo *info;
1008     if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1009         return;
1010     }
1011 
1012     info = g_malloc(sizeof *info);
1013     info->w32_min = cpu_to_le64(guest_info->pci_info.w32.begin);
1014     info->w32_max = cpu_to_le64(guest_info->pci_info.w32.end);
1015     info->w64_min = cpu_to_le64(guest_info->pci_info.w64.begin);
1016     info->w64_max = cpu_to_le64(guest_info->pci_info.w64.end);
1017     /* Pass PCI hole info to guest via a side channel.
1018      * Required so guest PCI enumeration does the right thing. */
1019     fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1020 }
1021 
1022 typedef struct PcGuestInfoState {
1023     PcGuestInfo info;
1024     Notifier machine_done;
1025 } PcGuestInfoState;
1026 
1027 static
1028 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1029 {
1030     PcGuestInfoState *guest_info_state = container_of(notifier,
1031                                                       PcGuestInfoState,
1032                                                       machine_done);
1033     pc_fw_cfg_guest_info(&guest_info_state->info);
1034 }
1035 
1036 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1037                                 ram_addr_t above_4g_mem_size)
1038 {
1039     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1040     PcGuestInfo *guest_info = &guest_info_state->info;
1041 
1042     guest_info->pci_info.w32.end = IO_APIC_DEFAULT_ADDRESS;
1043     if (sizeof(hwaddr) == 4) {
1044         guest_info->pci_info.w64.begin = 0;
1045         guest_info->pci_info.w64.end = 0;
1046     } else {
1047         /*
1048          * BIOS does not set MTRR entries for the 64 bit window, so no need to
1049          * align address to power of two.  Align address at 1G, this makes sure
1050          * it can be exactly covered with a PAT entry even when using huge
1051          * pages.
1052          */
1053         guest_info->pci_info.w64.begin =
1054             ROUND_UP((0x1ULL << 32) + above_4g_mem_size, 0x1ULL << 30);
1055         guest_info->pci_info.w64.end = guest_info->pci_info.w64.begin +
1056             (0x1ULL << 62);
1057         assert(guest_info->pci_info.w64.begin <= guest_info->pci_info.w64.end);
1058     }
1059 
1060     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1061     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1062     return guest_info;
1063 }
1064 
1065 void pc_acpi_init(const char *default_dsdt)
1066 {
1067     char *filename;
1068 
1069     if (acpi_tables != NULL) {
1070         /* manually set via -acpitable, leave it alone */
1071         return;
1072     }
1073 
1074     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1075     if (filename == NULL) {
1076         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1077     } else {
1078         char *arg;
1079         QemuOpts *opts;
1080         Error *err = NULL;
1081 
1082         arg = g_strdup_printf("file=%s", filename);
1083 
1084         /* creates a deep copy of "arg" */
1085         opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1086         g_assert(opts != NULL);
1087 
1088         acpi_table_add(opts, &err);
1089         if (err) {
1090             fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
1091                     error_get_pretty(err));
1092             error_free(err);
1093         }
1094         g_free(arg);
1095         g_free(filename);
1096     }
1097 }
1098 
1099 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1100                            const char *kernel_filename,
1101                            const char *kernel_cmdline,
1102                            const char *initrd_filename,
1103                            ram_addr_t below_4g_mem_size,
1104                            ram_addr_t above_4g_mem_size,
1105                            MemoryRegion *rom_memory,
1106                            MemoryRegion **ram_memory,
1107                            PcGuestInfo *guest_info)
1108 {
1109     int linux_boot, i;
1110     MemoryRegion *ram, *option_rom_mr;
1111     MemoryRegion *ram_below_4g, *ram_above_4g;
1112     FWCfgState *fw_cfg;
1113 
1114     linux_boot = (kernel_filename != NULL);
1115 
1116     /* Allocate RAM.  We allocate it as a single memory region and use
1117      * aliases to address portions of it, mostly for backwards compatibility
1118      * with older qemus that used qemu_ram_alloc().
1119      */
1120     ram = g_malloc(sizeof(*ram));
1121     memory_region_init_ram(ram, NULL, "pc.ram",
1122                            below_4g_mem_size + above_4g_mem_size);
1123     vmstate_register_ram_global(ram);
1124     *ram_memory = ram;
1125     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1126     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1127                              0, below_4g_mem_size);
1128     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1129     if (above_4g_mem_size > 0) {
1130         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1131         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1132                                  below_4g_mem_size, above_4g_mem_size);
1133         memory_region_add_subregion(system_memory, 0x100000000ULL,
1134                                     ram_above_4g);
1135     }
1136 
1137 
1138     /* Initialize PC system firmware */
1139     pc_system_firmware_init(rom_memory);
1140 
1141     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1142     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1143     vmstate_register_ram_global(option_rom_mr);
1144     memory_region_add_subregion_overlap(rom_memory,
1145                                         PC_ROM_MIN_VGA,
1146                                         option_rom_mr,
1147                                         1);
1148 
1149     fw_cfg = bochs_bios_init();
1150     rom_set_fw(fw_cfg);
1151 
1152     if (linux_boot) {
1153         load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1154     }
1155 
1156     for (i = 0; i < nb_option_roms; i++) {
1157         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1158     }
1159     guest_info->fw_cfg = fw_cfg;
1160     return fw_cfg;
1161 }
1162 
1163 qemu_irq *pc_allocate_cpu_irq(void)
1164 {
1165     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1166 }
1167 
1168 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1169 {
1170     DeviceState *dev = NULL;
1171 
1172     if (pci_bus) {
1173         PCIDevice *pcidev = pci_vga_init(pci_bus);
1174         dev = pcidev ? &pcidev->qdev : NULL;
1175     } else if (isa_bus) {
1176         ISADevice *isadev = isa_vga_init(isa_bus);
1177         dev = isadev ? DEVICE(isadev) : NULL;
1178     }
1179     return dev;
1180 }
1181 
1182 static void cpu_request_exit(void *opaque, int irq, int level)
1183 {
1184     CPUState *cpu = current_cpu;
1185 
1186     if (cpu && level) {
1187         cpu_exit(cpu);
1188     }
1189 }
1190 
1191 static const MemoryRegionOps ioport80_io_ops = {
1192     .write = ioport80_write,
1193     .read = ioport80_read,
1194     .endianness = DEVICE_NATIVE_ENDIAN,
1195     .impl = {
1196         .min_access_size = 1,
1197         .max_access_size = 1,
1198     },
1199 };
1200 
1201 static const MemoryRegionOps ioportF0_io_ops = {
1202     .write = ioportF0_write,
1203     .read = ioportF0_read,
1204     .endianness = DEVICE_NATIVE_ENDIAN,
1205     .impl = {
1206         .min_access_size = 1,
1207         .max_access_size = 1,
1208     },
1209 };
1210 
1211 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1212                           ISADevice **rtc_state,
1213                           ISADevice **floppy,
1214                           bool no_vmport)
1215 {
1216     int i;
1217     DriveInfo *fd[MAX_FD];
1218     DeviceState *hpet = NULL;
1219     int pit_isa_irq = 0;
1220     qemu_irq pit_alt_irq = NULL;
1221     qemu_irq rtc_irq = NULL;
1222     qemu_irq *a20_line;
1223     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1224     qemu_irq *cpu_exit_irq;
1225     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1226     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1227 
1228     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1229     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1230 
1231     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1232     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1233 
1234     /*
1235      * Check if an HPET shall be created.
1236      *
1237      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1238      * when the HPET wants to take over. Thus we have to disable the latter.
1239      */
1240     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1241         hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1242 
1243         if (hpet) {
1244             for (i = 0; i < GSI_NUM_PINS; i++) {
1245                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1246             }
1247             pit_isa_irq = -1;
1248             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1249             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1250         }
1251     }
1252     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1253 
1254     qemu_register_boot_set(pc_boot_set, *rtc_state);
1255 
1256     if (!xen_enabled()) {
1257         if (kvm_irqchip_in_kernel()) {
1258             pit = kvm_pit_init(isa_bus, 0x40);
1259         } else {
1260             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1261         }
1262         if (hpet) {
1263             /* connect PIT to output control line of the HPET */
1264             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1265         }
1266         pcspk_init(isa_bus, pit);
1267     }
1268 
1269     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1270         if (serial_hds[i]) {
1271             serial_isa_init(isa_bus, i, serial_hds[i]);
1272         }
1273     }
1274 
1275     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1276         if (parallel_hds[i]) {
1277             parallel_init(isa_bus, i, parallel_hds[i]);
1278         }
1279     }
1280 
1281     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1282     i8042 = isa_create_simple(isa_bus, "i8042");
1283     i8042_setup_a20_line(i8042, &a20_line[0]);
1284     if (!no_vmport) {
1285         vmport_init(isa_bus);
1286         vmmouse = isa_try_create(isa_bus, "vmmouse");
1287     } else {
1288         vmmouse = NULL;
1289     }
1290     if (vmmouse) {
1291         DeviceState *dev = DEVICE(vmmouse);
1292         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1293         qdev_init_nofail(dev);
1294     }
1295     port92 = isa_create_simple(isa_bus, "port92");
1296     port92_init(port92, &a20_line[1]);
1297 
1298     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1299     DMA_init(0, cpu_exit_irq);
1300 
1301     for(i = 0; i < MAX_FD; i++) {
1302         fd[i] = drive_get(IF_FLOPPY, 0, i);
1303     }
1304     *floppy = fdctrl_init_isa(isa_bus, fd);
1305 }
1306 
1307 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1308 {
1309     int i;
1310 
1311     for (i = 0; i < nb_nics; i++) {
1312         NICInfo *nd = &nd_table[i];
1313 
1314         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1315             pc_init_ne2k_isa(isa_bus, nd);
1316         } else {
1317             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1318         }
1319     }
1320 }
1321 
1322 void pc_pci_device_init(PCIBus *pci_bus)
1323 {
1324     int max_bus;
1325     int bus;
1326 
1327     max_bus = drive_get_max_bus(IF_SCSI);
1328     for (bus = 0; bus <= max_bus; bus++) {
1329         pci_create_simple(pci_bus, -1, "lsi53c895a");
1330     }
1331 }
1332 
1333 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1334 {
1335     DeviceState *dev;
1336     SysBusDevice *d;
1337     unsigned int i;
1338 
1339     if (kvm_irqchip_in_kernel()) {
1340         dev = qdev_create(NULL, "kvm-ioapic");
1341     } else {
1342         dev = qdev_create(NULL, "ioapic");
1343     }
1344     if (parent_name) {
1345         object_property_add_child(object_resolve_path(parent_name, NULL),
1346                                   "ioapic", OBJECT(dev), NULL);
1347     }
1348     qdev_init_nofail(dev);
1349     d = SYS_BUS_DEVICE(dev);
1350     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1351 
1352     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1353         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1354     }
1355 }
1356