xref: /openbmc/qemu/hw/i386/pc.c (revision 1cf9412b)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/cpu/icc_bus.h"
57 #include "hw/boards.h"
58 #include "hw/pci/pci_host.h"
59 
60 /* debug PC/ISA interrupts */
61 //#define DEBUG_IRQ
62 
63 #ifdef DEBUG_IRQ
64 #define DPRINTF(fmt, ...)                                       \
65     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
66 #else
67 #define DPRINTF(fmt, ...)
68 #endif
69 
70 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
71 #define ACPI_DATA_SIZE       0x10000
72 #define BIOS_CFG_IOPORT 0x510
73 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
74 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
75 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
76 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
77 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
78 
79 #define E820_NR_ENTRIES		16
80 
81 struct e820_entry {
82     uint64_t address;
83     uint64_t length;
84     uint32_t type;
85 } QEMU_PACKED __attribute((__aligned__(4)));
86 
87 struct e820_table {
88     uint32_t count;
89     struct e820_entry entry[E820_NR_ENTRIES];
90 } QEMU_PACKED __attribute((__aligned__(4)));
91 
92 static struct e820_table e820_table;
93 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
94 
95 void gsi_handler(void *opaque, int n, int level)
96 {
97     GSIState *s = opaque;
98 
99     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
100     if (n < ISA_NUM_IRQS) {
101         qemu_set_irq(s->i8259_irq[n], level);
102     }
103     qemu_set_irq(s->ioapic_irq[n], level);
104 }
105 
106 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
107                            unsigned size)
108 {
109 }
110 
111 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
112 {
113     return 0xffffffffffffffffULL;
114 }
115 
116 /* MSDOS compatibility mode FPU exception support */
117 static qemu_irq ferr_irq;
118 
119 void pc_register_ferr_irq(qemu_irq irq)
120 {
121     ferr_irq = irq;
122 }
123 
124 /* XXX: add IGNNE support */
125 void cpu_set_ferr(CPUX86State *s)
126 {
127     qemu_irq_raise(ferr_irq);
128 }
129 
130 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
131                            unsigned size)
132 {
133     qemu_irq_lower(ferr_irq);
134 }
135 
136 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
137 {
138     return 0xffffffffffffffffULL;
139 }
140 
141 /* TSC handling */
142 uint64_t cpu_get_tsc(CPUX86State *env)
143 {
144     return cpu_get_ticks();
145 }
146 
147 /* SMM support */
148 
149 static cpu_set_smm_t smm_set;
150 static void *smm_arg;
151 
152 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
153 {
154     assert(smm_set == NULL);
155     assert(smm_arg == NULL);
156     smm_set = callback;
157     smm_arg = arg;
158 }
159 
160 void cpu_smm_update(CPUX86State *env)
161 {
162     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
163         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
164     }
165 }
166 
167 
168 /* IRQ handling */
169 int cpu_get_pic_interrupt(CPUX86State *env)
170 {
171     int intno;
172 
173     intno = apic_get_interrupt(env->apic_state);
174     if (intno >= 0) {
175         return intno;
176     }
177     /* read the irq from the PIC */
178     if (!apic_accept_pic_intr(env->apic_state)) {
179         return -1;
180     }
181 
182     intno = pic_read_irq(isa_pic);
183     return intno;
184 }
185 
186 static void pic_irq_request(void *opaque, int irq, int level)
187 {
188     CPUState *cs = first_cpu;
189     X86CPU *cpu = X86_CPU(cs);
190     CPUX86State *env = &cpu->env;
191 
192     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
193     if (env->apic_state) {
194         CPU_FOREACH(cs) {
195             cpu = X86_CPU(cs);
196             env = &cpu->env;
197             if (apic_accept_pic_intr(env->apic_state)) {
198                 apic_deliver_pic_intr(env->apic_state, level);
199             }
200         }
201     } else {
202         if (level) {
203             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
204         } else {
205             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
206         }
207     }
208 }
209 
210 /* PC cmos mappings */
211 
212 #define REG_EQUIPMENT_BYTE          0x14
213 
214 static int cmos_get_fd_drive_type(FDriveType fd0)
215 {
216     int val;
217 
218     switch (fd0) {
219     case FDRIVE_DRV_144:
220         /* 1.44 Mb 3"5 drive */
221         val = 4;
222         break;
223     case FDRIVE_DRV_288:
224         /* 2.88 Mb 3"5 drive */
225         val = 5;
226         break;
227     case FDRIVE_DRV_120:
228         /* 1.2 Mb 5"5 drive */
229         val = 2;
230         break;
231     case FDRIVE_DRV_NONE:
232     default:
233         val = 0;
234         break;
235     }
236     return val;
237 }
238 
239 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
240                          int16_t cylinders, int8_t heads, int8_t sectors)
241 {
242     rtc_set_memory(s, type_ofs, 47);
243     rtc_set_memory(s, info_ofs, cylinders);
244     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
245     rtc_set_memory(s, info_ofs + 2, heads);
246     rtc_set_memory(s, info_ofs + 3, 0xff);
247     rtc_set_memory(s, info_ofs + 4, 0xff);
248     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
249     rtc_set_memory(s, info_ofs + 6, cylinders);
250     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
251     rtc_set_memory(s, info_ofs + 8, sectors);
252 }
253 
254 /* convert boot_device letter to something recognizable by the bios */
255 static int boot_device2nibble(char boot_device)
256 {
257     switch(boot_device) {
258     case 'a':
259     case 'b':
260         return 0x01; /* floppy boot */
261     case 'c':
262         return 0x02; /* hard drive boot */
263     case 'd':
264         return 0x03; /* CD-ROM boot */
265     case 'n':
266         return 0x04; /* Network boot */
267     }
268     return 0;
269 }
270 
271 static int set_boot_dev(ISADevice *s, const char *boot_device)
272 {
273 #define PC_MAX_BOOT_DEVICES 3
274     int nbds, bds[3] = { 0, };
275     int i;
276 
277     nbds = strlen(boot_device);
278     if (nbds > PC_MAX_BOOT_DEVICES) {
279         error_report("Too many boot devices for PC");
280         return(1);
281     }
282     for (i = 0; i < nbds; i++) {
283         bds[i] = boot_device2nibble(boot_device[i]);
284         if (bds[i] == 0) {
285             error_report("Invalid boot device for PC: '%c'",
286                          boot_device[i]);
287             return(1);
288         }
289     }
290     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
291     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
292     return(0);
293 }
294 
295 static int pc_boot_set(void *opaque, const char *boot_device)
296 {
297     return set_boot_dev(opaque, boot_device);
298 }
299 
300 typedef struct pc_cmos_init_late_arg {
301     ISADevice *rtc_state;
302     BusState *idebus[2];
303 } pc_cmos_init_late_arg;
304 
305 static void pc_cmos_init_late(void *opaque)
306 {
307     pc_cmos_init_late_arg *arg = opaque;
308     ISADevice *s = arg->rtc_state;
309     int16_t cylinders;
310     int8_t heads, sectors;
311     int val;
312     int i, trans;
313 
314     val = 0;
315     if (ide_get_geometry(arg->idebus[0], 0,
316                          &cylinders, &heads, &sectors) >= 0) {
317         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
318         val |= 0xf0;
319     }
320     if (ide_get_geometry(arg->idebus[0], 1,
321                          &cylinders, &heads, &sectors) >= 0) {
322         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
323         val |= 0x0f;
324     }
325     rtc_set_memory(s, 0x12, val);
326 
327     val = 0;
328     for (i = 0; i < 4; i++) {
329         /* NOTE: ide_get_geometry() returns the physical
330            geometry.  It is always such that: 1 <= sects <= 63, 1
331            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
332            geometry can be different if a translation is done. */
333         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
334                              &cylinders, &heads, &sectors) >= 0) {
335             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
336             assert((trans & ~3) == 0);
337             val |= trans << (i * 2);
338         }
339     }
340     rtc_set_memory(s, 0x39, val);
341 
342     qemu_unregister_reset(pc_cmos_init_late, opaque);
343 }
344 
345 typedef struct RTCCPUHotplugArg {
346     Notifier cpu_added_notifier;
347     ISADevice *rtc_state;
348 } RTCCPUHotplugArg;
349 
350 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
351 {
352     RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
353                                          cpu_added_notifier);
354     ISADevice *s = arg->rtc_state;
355 
356     /* increment the number of CPUs */
357     rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
358 }
359 
360 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
361                   const char *boot_device,
362                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
363                   ISADevice *s)
364 {
365     int val, nb, i;
366     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
367     static pc_cmos_init_late_arg arg;
368     static RTCCPUHotplugArg cpu_hotplug_cb;
369 
370     /* various important CMOS locations needed by PC/Bochs bios */
371 
372     /* memory size */
373     /* base memory (first MiB) */
374     val = MIN(ram_size / 1024, 640);
375     rtc_set_memory(s, 0x15, val);
376     rtc_set_memory(s, 0x16, val >> 8);
377     /* extended memory (next 64MiB) */
378     if (ram_size > 1024 * 1024) {
379         val = (ram_size - 1024 * 1024) / 1024;
380     } else {
381         val = 0;
382     }
383     if (val > 65535)
384         val = 65535;
385     rtc_set_memory(s, 0x17, val);
386     rtc_set_memory(s, 0x18, val >> 8);
387     rtc_set_memory(s, 0x30, val);
388     rtc_set_memory(s, 0x31, val >> 8);
389     /* memory between 16MiB and 4GiB */
390     if (ram_size > 16 * 1024 * 1024) {
391         val = (ram_size - 16 * 1024 * 1024) / 65536;
392     } else {
393         val = 0;
394     }
395     if (val > 65535)
396         val = 65535;
397     rtc_set_memory(s, 0x34, val);
398     rtc_set_memory(s, 0x35, val >> 8);
399     /* memory above 4GiB */
400     val = above_4g_mem_size / 65536;
401     rtc_set_memory(s, 0x5b, val);
402     rtc_set_memory(s, 0x5c, val >> 8);
403     rtc_set_memory(s, 0x5d, val >> 16);
404 
405     /* set the number of CPU */
406     rtc_set_memory(s, 0x5f, smp_cpus - 1);
407     /* init CPU hotplug notifier */
408     cpu_hotplug_cb.rtc_state = s;
409     cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
410     qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
411 
412     if (set_boot_dev(s, boot_device)) {
413         exit(1);
414     }
415 
416     /* floppy type */
417     if (floppy) {
418         for (i = 0; i < 2; i++) {
419             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
420         }
421     }
422     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
423         cmos_get_fd_drive_type(fd_type[1]);
424     rtc_set_memory(s, 0x10, val);
425 
426     val = 0;
427     nb = 0;
428     if (fd_type[0] < FDRIVE_DRV_NONE) {
429         nb++;
430     }
431     if (fd_type[1] < FDRIVE_DRV_NONE) {
432         nb++;
433     }
434     switch (nb) {
435     case 0:
436         break;
437     case 1:
438         val |= 0x01; /* 1 drive, ready for boot */
439         break;
440     case 2:
441         val |= 0x41; /* 2 drives, ready for boot */
442         break;
443     }
444     val |= 0x02; /* FPU is there */
445     val |= 0x04; /* PS/2 mouse installed */
446     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
447 
448     /* hard drives */
449     arg.rtc_state = s;
450     arg.idebus[0] = idebus0;
451     arg.idebus[1] = idebus1;
452     qemu_register_reset(pc_cmos_init_late, &arg);
453 }
454 
455 #define TYPE_PORT92 "port92"
456 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
457 
458 /* port 92 stuff: could be split off */
459 typedef struct Port92State {
460     ISADevice parent_obj;
461 
462     MemoryRegion io;
463     uint8_t outport;
464     qemu_irq *a20_out;
465 } Port92State;
466 
467 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
468                          unsigned size)
469 {
470     Port92State *s = opaque;
471 
472     DPRINTF("port92: write 0x%02x\n", val);
473     s->outport = val;
474     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
475     if (val & 1) {
476         qemu_system_reset_request();
477     }
478 }
479 
480 static uint64_t port92_read(void *opaque, hwaddr addr,
481                             unsigned size)
482 {
483     Port92State *s = opaque;
484     uint32_t ret;
485 
486     ret = s->outport;
487     DPRINTF("port92: read 0x%02x\n", ret);
488     return ret;
489 }
490 
491 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
492 {
493     Port92State *s = PORT92(dev);
494 
495     s->a20_out = a20_out;
496 }
497 
498 static const VMStateDescription vmstate_port92_isa = {
499     .name = "port92",
500     .version_id = 1,
501     .minimum_version_id = 1,
502     .minimum_version_id_old = 1,
503     .fields      = (VMStateField []) {
504         VMSTATE_UINT8(outport, Port92State),
505         VMSTATE_END_OF_LIST()
506     }
507 };
508 
509 static void port92_reset(DeviceState *d)
510 {
511     Port92State *s = PORT92(d);
512 
513     s->outport &= ~1;
514 }
515 
516 static const MemoryRegionOps port92_ops = {
517     .read = port92_read,
518     .write = port92_write,
519     .impl = {
520         .min_access_size = 1,
521         .max_access_size = 1,
522     },
523     .endianness = DEVICE_LITTLE_ENDIAN,
524 };
525 
526 static void port92_initfn(Object *obj)
527 {
528     Port92State *s = PORT92(obj);
529 
530     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
531 
532     s->outport = 0;
533 }
534 
535 static void port92_realizefn(DeviceState *dev, Error **errp)
536 {
537     ISADevice *isadev = ISA_DEVICE(dev);
538     Port92State *s = PORT92(dev);
539 
540     isa_register_ioport(isadev, &s->io, 0x92);
541 }
542 
543 static void port92_class_initfn(ObjectClass *klass, void *data)
544 {
545     DeviceClass *dc = DEVICE_CLASS(klass);
546 
547     dc->no_user = 1;
548     dc->realize = port92_realizefn;
549     dc->reset = port92_reset;
550     dc->vmsd = &vmstate_port92_isa;
551 }
552 
553 static const TypeInfo port92_info = {
554     .name          = TYPE_PORT92,
555     .parent        = TYPE_ISA_DEVICE,
556     .instance_size = sizeof(Port92State),
557     .instance_init = port92_initfn,
558     .class_init    = port92_class_initfn,
559 };
560 
561 static void port92_register_types(void)
562 {
563     type_register_static(&port92_info);
564 }
565 
566 type_init(port92_register_types)
567 
568 static void handle_a20_line_change(void *opaque, int irq, int level)
569 {
570     X86CPU *cpu = opaque;
571 
572     /* XXX: send to all CPUs ? */
573     /* XXX: add logic to handle multiple A20 line sources */
574     x86_cpu_set_a20(cpu, level);
575 }
576 
577 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
578 {
579     int index = le32_to_cpu(e820_table.count);
580     struct e820_entry *entry;
581 
582     if (index >= E820_NR_ENTRIES)
583         return -EBUSY;
584     entry = &e820_table.entry[index++];
585 
586     entry->address = cpu_to_le64(address);
587     entry->length = cpu_to_le64(length);
588     entry->type = cpu_to_le32(type);
589 
590     e820_table.count = cpu_to_le32(index);
591     return index;
592 }
593 
594 /* Calculates the limit to CPU APIC ID values
595  *
596  * This function returns the limit for the APIC ID value, so that all
597  * CPU APIC IDs are < pc_apic_id_limit().
598  *
599  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
600  */
601 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
602 {
603     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
604 }
605 
606 static FWCfgState *bochs_bios_init(void)
607 {
608     FWCfgState *fw_cfg;
609     uint8_t *smbios_table;
610     size_t smbios_len;
611     uint64_t *numa_fw_cfg;
612     int i, j;
613     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
614 
615     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
616     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
617      *
618      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
619      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
620      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
621      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
622      * may see".
623      *
624      * So, this means we must not use max_cpus, here, but the maximum possible
625      * APIC ID value, plus one.
626      *
627      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
628      *     the APIC ID, not the "CPU index"
629      */
630     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
631     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
632     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
633     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
634                      acpi_tables, acpi_tables_len);
635     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
636 
637     smbios_table = smbios_get_table(&smbios_len);
638     if (smbios_table)
639         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
640                          smbios_table, smbios_len);
641     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
642                      &e820_table, sizeof(e820_table));
643 
644     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
645     /* allocate memory for the NUMA channel: one (64bit) word for the number
646      * of nodes, one word for each VCPU->node and one word for each node to
647      * hold the amount of memory.
648      */
649     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
650     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
651     for (i = 0; i < max_cpus; i++) {
652         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
653         assert(apic_id < apic_id_limit);
654         for (j = 0; j < nb_numa_nodes; j++) {
655             if (test_bit(i, node_cpumask[j])) {
656                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
657                 break;
658             }
659         }
660     }
661     for (i = 0; i < nb_numa_nodes; i++) {
662         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
663     }
664     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
665                      (1 + apic_id_limit + nb_numa_nodes) *
666                      sizeof(*numa_fw_cfg));
667 
668     return fw_cfg;
669 }
670 
671 static long get_file_size(FILE *f)
672 {
673     long where, size;
674 
675     /* XXX: on Unix systems, using fstat() probably makes more sense */
676 
677     where = ftell(f);
678     fseek(f, 0, SEEK_END);
679     size = ftell(f);
680     fseek(f, where, SEEK_SET);
681 
682     return size;
683 }
684 
685 static void load_linux(FWCfgState *fw_cfg,
686                        const char *kernel_filename,
687                        const char *initrd_filename,
688                        const char *kernel_cmdline,
689                        hwaddr max_ram_size)
690 {
691     uint16_t protocol;
692     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
693     uint32_t initrd_max;
694     uint8_t header[8192], *setup, *kernel, *initrd_data;
695     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
696     FILE *f;
697     char *vmode;
698 
699     /* Align to 16 bytes as a paranoia measure */
700     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
701 
702     /* load the kernel header */
703     f = fopen(kernel_filename, "rb");
704     if (!f || !(kernel_size = get_file_size(f)) ||
705         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
706         MIN(ARRAY_SIZE(header), kernel_size)) {
707         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
708                 kernel_filename, strerror(errno));
709         exit(1);
710     }
711 
712     /* kernel protocol version */
713 #if 0
714     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
715 #endif
716     if (ldl_p(header+0x202) == 0x53726448) {
717         protocol = lduw_p(header+0x206);
718     } else {
719         /* This looks like a multiboot kernel. If it is, let's stop
720            treating it like a Linux kernel. */
721         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
722                            kernel_cmdline, kernel_size, header)) {
723             return;
724         }
725         protocol = 0;
726     }
727 
728     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
729         /* Low kernel */
730         real_addr    = 0x90000;
731         cmdline_addr = 0x9a000 - cmdline_size;
732         prot_addr    = 0x10000;
733     } else if (protocol < 0x202) {
734         /* High but ancient kernel */
735         real_addr    = 0x90000;
736         cmdline_addr = 0x9a000 - cmdline_size;
737         prot_addr    = 0x100000;
738     } else {
739         /* High and recent kernel */
740         real_addr    = 0x10000;
741         cmdline_addr = 0x20000;
742         prot_addr    = 0x100000;
743     }
744 
745 #if 0
746     fprintf(stderr,
747             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
748             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
749             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
750             real_addr,
751             cmdline_addr,
752             prot_addr);
753 #endif
754 
755     /* highest address for loading the initrd */
756     if (protocol >= 0x203) {
757         initrd_max = ldl_p(header+0x22c);
758     } else {
759         initrd_max = 0x37ffffff;
760     }
761 
762     if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
763     	initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
764 
765     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
766     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
767     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
768 
769     if (protocol >= 0x202) {
770         stl_p(header+0x228, cmdline_addr);
771     } else {
772         stw_p(header+0x20, 0xA33F);
773         stw_p(header+0x22, cmdline_addr-real_addr);
774     }
775 
776     /* handle vga= parameter */
777     vmode = strstr(kernel_cmdline, "vga=");
778     if (vmode) {
779         unsigned int video_mode;
780         /* skip "vga=" */
781         vmode += 4;
782         if (!strncmp(vmode, "normal", 6)) {
783             video_mode = 0xffff;
784         } else if (!strncmp(vmode, "ext", 3)) {
785             video_mode = 0xfffe;
786         } else if (!strncmp(vmode, "ask", 3)) {
787             video_mode = 0xfffd;
788         } else {
789             video_mode = strtol(vmode, NULL, 0);
790         }
791         stw_p(header+0x1fa, video_mode);
792     }
793 
794     /* loader type */
795     /* High nybble = B reserved for QEMU; low nybble is revision number.
796        If this code is substantially changed, you may want to consider
797        incrementing the revision. */
798     if (protocol >= 0x200) {
799         header[0x210] = 0xB0;
800     }
801     /* heap */
802     if (protocol >= 0x201) {
803         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
804         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
805     }
806 
807     /* load initrd */
808     if (initrd_filename) {
809         if (protocol < 0x200) {
810             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
811             exit(1);
812         }
813 
814         initrd_size = get_image_size(initrd_filename);
815         if (initrd_size < 0) {
816             fprintf(stderr, "qemu: error reading initrd %s\n",
817                     initrd_filename);
818             exit(1);
819         }
820 
821         initrd_addr = (initrd_max-initrd_size) & ~4095;
822 
823         initrd_data = g_malloc(initrd_size);
824         load_image(initrd_filename, initrd_data);
825 
826         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
827         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
828         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
829 
830         stl_p(header+0x218, initrd_addr);
831         stl_p(header+0x21c, initrd_size);
832     }
833 
834     /* load kernel and setup */
835     setup_size = header[0x1f1];
836     if (setup_size == 0) {
837         setup_size = 4;
838     }
839     setup_size = (setup_size+1)*512;
840     kernel_size -= setup_size;
841 
842     setup  = g_malloc(setup_size);
843     kernel = g_malloc(kernel_size);
844     fseek(f, 0, SEEK_SET);
845     if (fread(setup, 1, setup_size, f) != setup_size) {
846         fprintf(stderr, "fread() failed\n");
847         exit(1);
848     }
849     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
850         fprintf(stderr, "fread() failed\n");
851         exit(1);
852     }
853     fclose(f);
854     memcpy(setup, header, MIN(sizeof(header), setup_size));
855 
856     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
857     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
858     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
859 
860     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
861     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
862     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
863 
864     option_rom[nb_option_roms].name = "linuxboot.bin";
865     option_rom[nb_option_roms].bootindex = 0;
866     nb_option_roms++;
867 }
868 
869 #define NE2000_NB_MAX 6
870 
871 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
872                                               0x280, 0x380 };
873 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
874 
875 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
876 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
877 
878 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
879 {
880     static int nb_ne2k = 0;
881 
882     if (nb_ne2k == NE2000_NB_MAX)
883         return;
884     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
885                     ne2000_irq[nb_ne2k], nd);
886     nb_ne2k++;
887 }
888 
889 DeviceState *cpu_get_current_apic(void)
890 {
891     if (current_cpu) {
892         X86CPU *cpu = X86_CPU(current_cpu);
893         return cpu->env.apic_state;
894     } else {
895         return NULL;
896     }
897 }
898 
899 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
900 {
901     X86CPU *cpu = opaque;
902 
903     if (level) {
904         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
905     }
906 }
907 
908 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
909                           DeviceState *icc_bridge, Error **errp)
910 {
911     X86CPU *cpu;
912     Error *local_err = NULL;
913 
914     cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
915     if (local_err != NULL) {
916         error_propagate(errp, local_err);
917         return NULL;
918     }
919 
920     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
921     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
922 
923     if (local_err) {
924         error_propagate(errp, local_err);
925         object_unref(OBJECT(cpu));
926         cpu = NULL;
927     }
928     return cpu;
929 }
930 
931 static const char *current_cpu_model;
932 
933 void pc_hot_add_cpu(const int64_t id, Error **errp)
934 {
935     DeviceState *icc_bridge;
936     int64_t apic_id = x86_cpu_apic_id_from_index(id);
937 
938     if (id < 0) {
939         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
940         return;
941     }
942 
943     if (cpu_exists(apic_id)) {
944         error_setg(errp, "Unable to add CPU: %" PRIi64
945                    ", it already exists", id);
946         return;
947     }
948 
949     if (id >= max_cpus) {
950         error_setg(errp, "Unable to add CPU: %" PRIi64
951                    ", max allowed: %d", id, max_cpus - 1);
952         return;
953     }
954 
955     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
956                                                  TYPE_ICC_BRIDGE, NULL));
957     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
958 }
959 
960 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
961 {
962     int i;
963     X86CPU *cpu = NULL;
964     Error *error = NULL;
965 
966     /* init CPUs */
967     if (cpu_model == NULL) {
968 #ifdef TARGET_X86_64
969         cpu_model = "qemu64";
970 #else
971         cpu_model = "qemu32";
972 #endif
973     }
974     current_cpu_model = cpu_model;
975 
976     for (i = 0; i < smp_cpus; i++) {
977         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
978                          icc_bridge, &error);
979         if (error) {
980             error_report("%s", error_get_pretty(error));
981             error_free(error);
982             exit(1);
983         }
984     }
985 
986     /* map APIC MMIO area if CPU has APIC */
987     if (cpu && cpu->env.apic_state) {
988         /* XXX: what if the base changes? */
989         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
990                                 APIC_DEFAULT_ADDRESS, 0x1000);
991     }
992 }
993 
994 /* pci-info ROM file. Little endian format */
995 typedef struct PcRomPciInfo {
996     uint64_t w32_min;
997     uint64_t w32_max;
998     uint64_t w64_min;
999     uint64_t w64_max;
1000 } PcRomPciInfo;
1001 
1002 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1003 {
1004     PcRomPciInfo *info;
1005     Object *pci_info;
1006     bool ambiguous = false;
1007 
1008     if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1009         return;
1010     }
1011     pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
1012     g_assert(!ambiguous);
1013     if (!pci_info) {
1014         return;
1015     }
1016 
1017     info = g_malloc(sizeof *info);
1018     info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
1019                                 PCI_HOST_PROP_PCI_HOLE_START, NULL));
1020     info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
1021                                 PCI_HOST_PROP_PCI_HOLE_END, NULL));
1022     info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
1023                                 PCI_HOST_PROP_PCI_HOLE64_START, NULL));
1024     info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
1025                                 PCI_HOST_PROP_PCI_HOLE64_END, NULL));
1026     /* Pass PCI hole info to guest via a side channel.
1027      * Required so guest PCI enumeration does the right thing. */
1028     fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1029 }
1030 
1031 typedef struct PcGuestInfoState {
1032     PcGuestInfo info;
1033     Notifier machine_done;
1034 } PcGuestInfoState;
1035 
1036 static
1037 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1038 {
1039     PcGuestInfoState *guest_info_state = container_of(notifier,
1040                                                       PcGuestInfoState,
1041                                                       machine_done);
1042     pc_fw_cfg_guest_info(&guest_info_state->info);
1043 }
1044 
1045 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1046                                 ram_addr_t above_4g_mem_size)
1047 {
1048     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1049     PcGuestInfo *guest_info = &guest_info_state->info;
1050 
1051     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1052     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1053     return guest_info;
1054 }
1055 
1056 void pc_init_pci64_hole(PcPciInfo *pci_info, uint64_t pci_hole64_start,
1057                         uint64_t pci_hole64_size)
1058 {
1059     if ((sizeof(hwaddr) == 4) || (!pci_hole64_size)) {
1060         return;
1061     }
1062     /*
1063      * BIOS does not set MTRR entries for the 64 bit window, so no need to
1064      * align address to power of two.  Align address at 1G, this makes sure
1065      * it can be exactly covered with a PAT entry even when using huge
1066      * pages.
1067      */
1068     pci_info->w64.begin = ROUND_UP(pci_hole64_start, 0x1ULL << 30);
1069     pci_info->w64.end = pci_info->w64.begin + pci_hole64_size;
1070     assert(pci_info->w64.begin <= pci_info->w64.end);
1071 }
1072 
1073 void pc_acpi_init(const char *default_dsdt)
1074 {
1075     char *filename;
1076 
1077     if (acpi_tables != NULL) {
1078         /* manually set via -acpitable, leave it alone */
1079         return;
1080     }
1081 
1082     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1083     if (filename == NULL) {
1084         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1085     } else {
1086         char *arg;
1087         QemuOpts *opts;
1088         Error *err = NULL;
1089 
1090         arg = g_strdup_printf("file=%s", filename);
1091 
1092         /* creates a deep copy of "arg" */
1093         opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1094         g_assert(opts != NULL);
1095 
1096         acpi_table_add(opts, &err);
1097         if (err) {
1098             error_report("WARNING: failed to load %s: %s", filename,
1099                          error_get_pretty(err));
1100             error_free(err);
1101         }
1102         g_free(arg);
1103         g_free(filename);
1104     }
1105 }
1106 
1107 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1108                            const char *kernel_filename,
1109                            const char *kernel_cmdline,
1110                            const char *initrd_filename,
1111                            ram_addr_t below_4g_mem_size,
1112                            ram_addr_t above_4g_mem_size,
1113                            MemoryRegion *rom_memory,
1114                            MemoryRegion **ram_memory,
1115                            PcGuestInfo *guest_info)
1116 {
1117     int linux_boot, i;
1118     MemoryRegion *ram, *option_rom_mr;
1119     MemoryRegion *ram_below_4g, *ram_above_4g;
1120     FWCfgState *fw_cfg;
1121 
1122     linux_boot = (kernel_filename != NULL);
1123 
1124     /* Allocate RAM.  We allocate it as a single memory region and use
1125      * aliases to address portions of it, mostly for backwards compatibility
1126      * with older qemus that used qemu_ram_alloc().
1127      */
1128     ram = g_malloc(sizeof(*ram));
1129     memory_region_init_ram(ram, NULL, "pc.ram",
1130                            below_4g_mem_size + above_4g_mem_size);
1131     vmstate_register_ram_global(ram);
1132     *ram_memory = ram;
1133     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1134     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1135                              0, below_4g_mem_size);
1136     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1137     if (above_4g_mem_size > 0) {
1138         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1139         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1140                                  below_4g_mem_size, above_4g_mem_size);
1141         memory_region_add_subregion(system_memory, 0x100000000ULL,
1142                                     ram_above_4g);
1143     }
1144 
1145 
1146     /* Initialize PC system firmware */
1147     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1148 
1149     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1150     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1151     vmstate_register_ram_global(option_rom_mr);
1152     memory_region_add_subregion_overlap(rom_memory,
1153                                         PC_ROM_MIN_VGA,
1154                                         option_rom_mr,
1155                                         1);
1156 
1157     fw_cfg = bochs_bios_init();
1158     rom_set_fw(fw_cfg);
1159 
1160     if (linux_boot) {
1161         load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1162     }
1163 
1164     for (i = 0; i < nb_option_roms; i++) {
1165         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1166     }
1167     guest_info->fw_cfg = fw_cfg;
1168     return fw_cfg;
1169 }
1170 
1171 qemu_irq *pc_allocate_cpu_irq(void)
1172 {
1173     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1174 }
1175 
1176 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1177 {
1178     DeviceState *dev = NULL;
1179 
1180     if (pci_bus) {
1181         PCIDevice *pcidev = pci_vga_init(pci_bus);
1182         dev = pcidev ? &pcidev->qdev : NULL;
1183     } else if (isa_bus) {
1184         ISADevice *isadev = isa_vga_init(isa_bus);
1185         dev = isadev ? DEVICE(isadev) : NULL;
1186     }
1187     return dev;
1188 }
1189 
1190 static void cpu_request_exit(void *opaque, int irq, int level)
1191 {
1192     CPUState *cpu = current_cpu;
1193 
1194     if (cpu && level) {
1195         cpu_exit(cpu);
1196     }
1197 }
1198 
1199 static const MemoryRegionOps ioport80_io_ops = {
1200     .write = ioport80_write,
1201     .read = ioport80_read,
1202     .endianness = DEVICE_NATIVE_ENDIAN,
1203     .impl = {
1204         .min_access_size = 1,
1205         .max_access_size = 1,
1206     },
1207 };
1208 
1209 static const MemoryRegionOps ioportF0_io_ops = {
1210     .write = ioportF0_write,
1211     .read = ioportF0_read,
1212     .endianness = DEVICE_NATIVE_ENDIAN,
1213     .impl = {
1214         .min_access_size = 1,
1215         .max_access_size = 1,
1216     },
1217 };
1218 
1219 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1220                           ISADevice **rtc_state,
1221                           ISADevice **floppy,
1222                           bool no_vmport)
1223 {
1224     int i;
1225     DriveInfo *fd[MAX_FD];
1226     DeviceState *hpet = NULL;
1227     int pit_isa_irq = 0;
1228     qemu_irq pit_alt_irq = NULL;
1229     qemu_irq rtc_irq = NULL;
1230     qemu_irq *a20_line;
1231     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1232     qemu_irq *cpu_exit_irq;
1233     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1234     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1235 
1236     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1237     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1238 
1239     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1240     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1241 
1242     /*
1243      * Check if an HPET shall be created.
1244      *
1245      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1246      * when the HPET wants to take over. Thus we have to disable the latter.
1247      */
1248     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1249         hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1250 
1251         if (hpet) {
1252             for (i = 0; i < GSI_NUM_PINS; i++) {
1253                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1254             }
1255             pit_isa_irq = -1;
1256             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1257             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1258         }
1259     }
1260     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1261 
1262     qemu_register_boot_set(pc_boot_set, *rtc_state);
1263 
1264     if (!xen_enabled()) {
1265         if (kvm_irqchip_in_kernel()) {
1266             pit = kvm_pit_init(isa_bus, 0x40);
1267         } else {
1268             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1269         }
1270         if (hpet) {
1271             /* connect PIT to output control line of the HPET */
1272             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1273         }
1274         pcspk_init(isa_bus, pit);
1275     }
1276 
1277     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1278         if (serial_hds[i]) {
1279             serial_isa_init(isa_bus, i, serial_hds[i]);
1280         }
1281     }
1282 
1283     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1284         if (parallel_hds[i]) {
1285             parallel_init(isa_bus, i, parallel_hds[i]);
1286         }
1287     }
1288 
1289     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1290     i8042 = isa_create_simple(isa_bus, "i8042");
1291     i8042_setup_a20_line(i8042, &a20_line[0]);
1292     if (!no_vmport) {
1293         vmport_init(isa_bus);
1294         vmmouse = isa_try_create(isa_bus, "vmmouse");
1295     } else {
1296         vmmouse = NULL;
1297     }
1298     if (vmmouse) {
1299         DeviceState *dev = DEVICE(vmmouse);
1300         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1301         qdev_init_nofail(dev);
1302     }
1303     port92 = isa_create_simple(isa_bus, "port92");
1304     port92_init(port92, &a20_line[1]);
1305 
1306     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1307     DMA_init(0, cpu_exit_irq);
1308 
1309     for(i = 0; i < MAX_FD; i++) {
1310         fd[i] = drive_get(IF_FLOPPY, 0, i);
1311     }
1312     *floppy = fdctrl_init_isa(isa_bus, fd);
1313 }
1314 
1315 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1316 {
1317     int i;
1318 
1319     for (i = 0; i < nb_nics; i++) {
1320         NICInfo *nd = &nd_table[i];
1321 
1322         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1323             pc_init_ne2k_isa(isa_bus, nd);
1324         } else {
1325             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1326         }
1327     }
1328 }
1329 
1330 void pc_pci_device_init(PCIBus *pci_bus)
1331 {
1332     int max_bus;
1333     int bus;
1334 
1335     max_bus = drive_get_max_bus(IF_SCSI);
1336     for (bus = 0; bus <= max_bus; bus++) {
1337         pci_create_simple(pci_bus, -1, "lsi53c895a");
1338     }
1339 }
1340 
1341 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1342 {
1343     DeviceState *dev;
1344     SysBusDevice *d;
1345     unsigned int i;
1346 
1347     if (kvm_irqchip_in_kernel()) {
1348         dev = qdev_create(NULL, "kvm-ioapic");
1349     } else {
1350         dev = qdev_create(NULL, "ioapic");
1351     }
1352     if (parent_name) {
1353         object_property_add_child(object_resolve_path(parent_name, NULL),
1354                                   "ioapic", OBJECT(dev), NULL);
1355     }
1356     qdev_init_nofail(dev);
1357     d = SYS_BUS_DEVICE(dev);
1358     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1359 
1360     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1361         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1362     }
1363 }
1364