xref: /openbmc/qemu/hw/i386/pc.c (revision 135b03cb)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/char/parallel.h"
30 #include "hw/i386/apic.h"
31 #include "hw/i386/topology.h"
32 #include "hw/i386/fw_cfg.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "migration/vmstate.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/irq.h"
50 #include "hw/audio/pcspk.h"
51 #include "hw/pci/msi.h"
52 #include "hw/sysbus.h"
53 #include "sysemu/sysemu.h"
54 #include "sysemu/tcg.h"
55 #include "sysemu/numa.h"
56 #include "sysemu/kvm.h"
57 #include "sysemu/qtest.h"
58 #include "sysemu/reset.h"
59 #include "sysemu/runstate.h"
60 #include "kvm_i386.h"
61 #include "hw/xen/xen.h"
62 #include "hw/xen/start_info.h"
63 #include "ui/qemu-spice.h"
64 #include "exec/memory.h"
65 #include "exec/address-spaces.h"
66 #include "sysemu/arch_init.h"
67 #include "qemu/bitmap.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "qemu/option.h"
71 #include "hw/acpi/acpi.h"
72 #include "hw/acpi/cpu_hotplug.h"
73 #include "hw/boards.h"
74 #include "acpi-build.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "qapi/error.h"
77 #include "qapi/qapi-visit-common.h"
78 #include "qapi/visitor.h"
79 #include "qom/cpu.h"
80 #include "hw/nmi.h"
81 #include "hw/usb.h"
82 #include "hw/i386/intel_iommu.h"
83 #include "hw/net/ne2000-isa.h"
84 #include "standard-headers/asm-x86/bootparam.h"
85 #include "hw/virtio/virtio-pmem-pci.h"
86 #include "hw/mem/memory-device.h"
87 #include "sysemu/replay.h"
88 #include "qapi/qmp/qerror.h"
89 #include "config-devices.h"
90 
91 /* debug PC/ISA interrupts */
92 //#define DEBUG_IRQ
93 
94 #ifdef DEBUG_IRQ
95 #define DPRINTF(fmt, ...)                                       \
96     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
97 #else
98 #define DPRINTF(fmt, ...)
99 #endif
100 
101 #define E820_NR_ENTRIES		16
102 
103 struct e820_entry {
104     uint64_t address;
105     uint64_t length;
106     uint32_t type;
107 } QEMU_PACKED __attribute((__aligned__(4)));
108 
109 struct e820_table {
110     uint32_t count;
111     struct e820_entry entry[E820_NR_ENTRIES];
112 } QEMU_PACKED __attribute((__aligned__(4)));
113 
114 static struct e820_table e820_reserve;
115 static struct e820_entry *e820_table;
116 static unsigned e820_entries;
117 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
118 
119 /* Physical Address of PVH entry point read from kernel ELF NOTE */
120 static size_t pvh_start_addr;
121 
122 GlobalProperty pc_compat_4_0[] = {};
123 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
124 
125 GlobalProperty pc_compat_3_1[] = {
126     { "intel-iommu", "dma-drain", "off" },
127     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
128     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
129     { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
130     { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
131     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
132     { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
133     { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
134     { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
135     { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
136     { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
137     { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
138     { "Skylake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
139     { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
140     { "Skylake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
141     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
142     { "Cascadelake-Server" "-" TYPE_X86_CPU,  "mpx", "on" },
143     { "Icelake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
144     { "Icelake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
145     { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
146     { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
147 };
148 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
149 
150 GlobalProperty pc_compat_3_0[] = {
151     { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
152     { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
153     { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
154 };
155 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
156 
157 GlobalProperty pc_compat_2_12[] = {
158     { TYPE_X86_CPU, "legacy-cache", "on" },
159     { TYPE_X86_CPU, "topoext", "off" },
160     { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
161     { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
162 };
163 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
164 
165 GlobalProperty pc_compat_2_11[] = {
166     { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
167     { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
168 };
169 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
170 
171 GlobalProperty pc_compat_2_10[] = {
172     { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
173     { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
174     { "q35-pcihost", "x-pci-hole64-fix", "off" },
175 };
176 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
177 
178 GlobalProperty pc_compat_2_9[] = {
179     { "mch", "extended-tseg-mbytes", "0" },
180 };
181 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
182 
183 GlobalProperty pc_compat_2_8[] = {
184     { TYPE_X86_CPU, "tcg-cpuid", "off" },
185     { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
186     { "ICH9-LPC", "x-smi-broadcast", "off" },
187     { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
188     { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
189 };
190 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
191 
192 GlobalProperty pc_compat_2_7[] = {
193     { TYPE_X86_CPU, "l3-cache", "off" },
194     { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
195     { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
196     { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
197     { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
198     { "isa-pcspk", "migrate", "off" },
199 };
200 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
201 
202 GlobalProperty pc_compat_2_6[] = {
203     { TYPE_X86_CPU, "cpuid-0xb", "off" },
204     { "vmxnet3", "romfile", "" },
205     { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
206     { "apic-common", "legacy-instance-id", "on", }
207 };
208 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
209 
210 GlobalProperty pc_compat_2_5[] = {};
211 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
212 
213 GlobalProperty pc_compat_2_4[] = {
214     PC_CPU_MODEL_IDS("2.4.0")
215     { "Haswell-" TYPE_X86_CPU, "abm", "off" },
216     { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
217     { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
218     { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
219     { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
220     { TYPE_X86_CPU, "check", "off" },
221     { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
222     { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
223     { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
224     { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
225     { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
226     { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
227     { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
228     { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
229 };
230 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
231 
232 GlobalProperty pc_compat_2_3[] = {
233     PC_CPU_MODEL_IDS("2.3.0")
234     { TYPE_X86_CPU, "arat", "off" },
235     { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
236     { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
237     { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
238     { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
239     { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
240     { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
241     { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
242     { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243     { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244     { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245     { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246     { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247     { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
248     { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
249     { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
250     { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
251     { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
252     { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
253     { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
254 };
255 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
256 
257 GlobalProperty pc_compat_2_2[] = {
258     PC_CPU_MODEL_IDS("2.2.0")
259     { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
260     { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
261     { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
262     { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
263     { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
264     { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
265     { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
266     { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
267     { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
268     { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
269     { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
270     { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
271     { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
272     { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
273     { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
274     { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
275     { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
276     { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
277 };
278 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
279 
280 GlobalProperty pc_compat_2_1[] = {
281     PC_CPU_MODEL_IDS("2.1.0")
282     { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
283     { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
284 };
285 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
286 
287 GlobalProperty pc_compat_2_0[] = {
288     PC_CPU_MODEL_IDS("2.0.0")
289     { "virtio-scsi-pci", "any_layout", "off" },
290     { "PIIX4_PM", "memory-hotplug-support", "off" },
291     { "apic", "version", "0x11" },
292     { "nec-usb-xhci", "superspeed-ports-first", "off" },
293     { "nec-usb-xhci", "force-pcie-endcap", "on" },
294     { "pci-serial", "prog_if", "0" },
295     { "pci-serial-2x", "prog_if", "0" },
296     { "pci-serial-4x", "prog_if", "0" },
297     { "virtio-net-pci", "guest_announce", "off" },
298     { "ICH9-LPC", "memory-hotplug-support", "off" },
299     { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
300     { "ioh3420", COMPAT_PROP_PCP, "off" },
301 };
302 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
303 
304 GlobalProperty pc_compat_1_7[] = {
305     PC_CPU_MODEL_IDS("1.7.0")
306     { TYPE_USB_DEVICE, "msos-desc", "no" },
307     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
308     { "hpet", HPET_INTCAP, "4" },
309 };
310 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
311 
312 GlobalProperty pc_compat_1_6[] = {
313     PC_CPU_MODEL_IDS("1.6.0")
314     { "e1000", "mitigation", "off" },
315     { "qemu64-" TYPE_X86_CPU, "model", "2" },
316     { "qemu32-" TYPE_X86_CPU, "model", "3" },
317     { "i440FX-pcihost", "short_root_bus", "1" },
318     { "q35-pcihost", "short_root_bus", "1" },
319 };
320 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
321 
322 GlobalProperty pc_compat_1_5[] = {
323     PC_CPU_MODEL_IDS("1.5.0")
324     { "Conroe-" TYPE_X86_CPU, "model", "2" },
325     { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
326     { "Penryn-" TYPE_X86_CPU, "model", "2" },
327     { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
328     { "Nehalem-" TYPE_X86_CPU, "model", "2" },
329     { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
330     { "virtio-net-pci", "any_layout", "off" },
331     { TYPE_X86_CPU, "pmu", "on" },
332     { "i440FX-pcihost", "short_root_bus", "0" },
333     { "q35-pcihost", "short_root_bus", "0" },
334 };
335 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
336 
337 GlobalProperty pc_compat_1_4[] = {
338     PC_CPU_MODEL_IDS("1.4.0")
339     { "scsi-hd", "discard_granularity", "0" },
340     { "scsi-cd", "discard_granularity", "0" },
341     { "scsi-disk", "discard_granularity", "0" },
342     { "ide-hd", "discard_granularity", "0" },
343     { "ide-cd", "discard_granularity", "0" },
344     { "ide-drive", "discard_granularity", "0" },
345     { "virtio-blk-pci", "discard_granularity", "0" },
346     /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
347     { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
348     { "virtio-net-pci", "ctrl_guest_offloads", "off" },
349     { "e1000", "romfile", "pxe-e1000.rom" },
350     { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
351     { "pcnet", "romfile", "pxe-pcnet.rom" },
352     { "rtl8139", "romfile", "pxe-rtl8139.rom" },
353     { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
354     { "486-" TYPE_X86_CPU, "model", "0" },
355     { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
356     { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
357 };
358 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
359 
360 void gsi_handler(void *opaque, int n, int level)
361 {
362     GSIState *s = opaque;
363 
364     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
365     if (n < ISA_NUM_IRQS) {
366         qemu_set_irq(s->i8259_irq[n], level);
367     }
368     qemu_set_irq(s->ioapic_irq[n], level);
369 }
370 
371 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
372                            unsigned size)
373 {
374 }
375 
376 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
377 {
378     return 0xffffffffffffffffULL;
379 }
380 
381 /* MSDOS compatibility mode FPU exception support */
382 static qemu_irq ferr_irq;
383 
384 void pc_register_ferr_irq(qemu_irq irq)
385 {
386     ferr_irq = irq;
387 }
388 
389 /* XXX: add IGNNE support */
390 void cpu_set_ferr(CPUX86State *s)
391 {
392     qemu_irq_raise(ferr_irq);
393 }
394 
395 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
396                            unsigned size)
397 {
398     qemu_irq_lower(ferr_irq);
399 }
400 
401 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
402 {
403     return 0xffffffffffffffffULL;
404 }
405 
406 /* TSC handling */
407 uint64_t cpu_get_tsc(CPUX86State *env)
408 {
409     return cpu_get_ticks();
410 }
411 
412 /* IRQ handling */
413 int cpu_get_pic_interrupt(CPUX86State *env)
414 {
415     X86CPU *cpu = env_archcpu(env);
416     int intno;
417 
418     if (!kvm_irqchip_in_kernel()) {
419         intno = apic_get_interrupt(cpu->apic_state);
420         if (intno >= 0) {
421             return intno;
422         }
423         /* read the irq from the PIC */
424         if (!apic_accept_pic_intr(cpu->apic_state)) {
425             return -1;
426         }
427     }
428 
429     intno = pic_read_irq(isa_pic);
430     return intno;
431 }
432 
433 static void pic_irq_request(void *opaque, int irq, int level)
434 {
435     CPUState *cs = first_cpu;
436     X86CPU *cpu = X86_CPU(cs);
437 
438     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
439     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
440         CPU_FOREACH(cs) {
441             cpu = X86_CPU(cs);
442             if (apic_accept_pic_intr(cpu->apic_state)) {
443                 apic_deliver_pic_intr(cpu->apic_state, level);
444             }
445         }
446     } else {
447         if (level) {
448             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
449         } else {
450             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
451         }
452     }
453 }
454 
455 /* PC cmos mappings */
456 
457 #define REG_EQUIPMENT_BYTE          0x14
458 
459 int cmos_get_fd_drive_type(FloppyDriveType fd0)
460 {
461     int val;
462 
463     switch (fd0) {
464     case FLOPPY_DRIVE_TYPE_144:
465         /* 1.44 Mb 3"5 drive */
466         val = 4;
467         break;
468     case FLOPPY_DRIVE_TYPE_288:
469         /* 2.88 Mb 3"5 drive */
470         val = 5;
471         break;
472     case FLOPPY_DRIVE_TYPE_120:
473         /* 1.2 Mb 5"5 drive */
474         val = 2;
475         break;
476     case FLOPPY_DRIVE_TYPE_NONE:
477     default:
478         val = 0;
479         break;
480     }
481     return val;
482 }
483 
484 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
485                          int16_t cylinders, int8_t heads, int8_t sectors)
486 {
487     rtc_set_memory(s, type_ofs, 47);
488     rtc_set_memory(s, info_ofs, cylinders);
489     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
490     rtc_set_memory(s, info_ofs + 2, heads);
491     rtc_set_memory(s, info_ofs + 3, 0xff);
492     rtc_set_memory(s, info_ofs + 4, 0xff);
493     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
494     rtc_set_memory(s, info_ofs + 6, cylinders);
495     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
496     rtc_set_memory(s, info_ofs + 8, sectors);
497 }
498 
499 /* convert boot_device letter to something recognizable by the bios */
500 static int boot_device2nibble(char boot_device)
501 {
502     switch(boot_device) {
503     case 'a':
504     case 'b':
505         return 0x01; /* floppy boot */
506     case 'c':
507         return 0x02; /* hard drive boot */
508     case 'd':
509         return 0x03; /* CD-ROM boot */
510     case 'n':
511         return 0x04; /* Network boot */
512     }
513     return 0;
514 }
515 
516 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
517 {
518 #define PC_MAX_BOOT_DEVICES 3
519     int nbds, bds[3] = { 0, };
520     int i;
521 
522     nbds = strlen(boot_device);
523     if (nbds > PC_MAX_BOOT_DEVICES) {
524         error_setg(errp, "Too many boot devices for PC");
525         return;
526     }
527     for (i = 0; i < nbds; i++) {
528         bds[i] = boot_device2nibble(boot_device[i]);
529         if (bds[i] == 0) {
530             error_setg(errp, "Invalid boot device for PC: '%c'",
531                        boot_device[i]);
532             return;
533         }
534     }
535     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
536     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
537 }
538 
539 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
540 {
541     set_boot_dev(opaque, boot_device, errp);
542 }
543 
544 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
545 {
546     int val, nb, i;
547     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
548                                    FLOPPY_DRIVE_TYPE_NONE };
549 
550     /* floppy type */
551     if (floppy) {
552         for (i = 0; i < 2; i++) {
553             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
554         }
555     }
556     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
557         cmos_get_fd_drive_type(fd_type[1]);
558     rtc_set_memory(rtc_state, 0x10, val);
559 
560     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
561     nb = 0;
562     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
563         nb++;
564     }
565     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
566         nb++;
567     }
568     switch (nb) {
569     case 0:
570         break;
571     case 1:
572         val |= 0x01; /* 1 drive, ready for boot */
573         break;
574     case 2:
575         val |= 0x41; /* 2 drives, ready for boot */
576         break;
577     }
578     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
579 }
580 
581 typedef struct pc_cmos_init_late_arg {
582     ISADevice *rtc_state;
583     BusState *idebus[2];
584 } pc_cmos_init_late_arg;
585 
586 typedef struct check_fdc_state {
587     ISADevice *floppy;
588     bool multiple;
589 } CheckFdcState;
590 
591 static int check_fdc(Object *obj, void *opaque)
592 {
593     CheckFdcState *state = opaque;
594     Object *fdc;
595     uint32_t iobase;
596     Error *local_err = NULL;
597 
598     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
599     if (!fdc) {
600         return 0;
601     }
602 
603     iobase = object_property_get_uint(obj, "iobase", &local_err);
604     if (local_err || iobase != 0x3f0) {
605         error_free(local_err);
606         return 0;
607     }
608 
609     if (state->floppy) {
610         state->multiple = true;
611     } else {
612         state->floppy = ISA_DEVICE(obj);
613     }
614     return 0;
615 }
616 
617 static const char * const fdc_container_path[] = {
618     "/unattached", "/peripheral", "/peripheral-anon"
619 };
620 
621 /*
622  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
623  * and ACPI objects.
624  */
625 ISADevice *pc_find_fdc0(void)
626 {
627     int i;
628     Object *container;
629     CheckFdcState state = { 0 };
630 
631     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
632         container = container_get(qdev_get_machine(), fdc_container_path[i]);
633         object_child_foreach(container, check_fdc, &state);
634     }
635 
636     if (state.multiple) {
637         warn_report("multiple floppy disk controllers with "
638                     "iobase=0x3f0 have been found");
639         error_printf("the one being picked for CMOS setup might not reflect "
640                      "your intent");
641     }
642 
643     return state.floppy;
644 }
645 
646 static void pc_cmos_init_late(void *opaque)
647 {
648     pc_cmos_init_late_arg *arg = opaque;
649     ISADevice *s = arg->rtc_state;
650     int16_t cylinders;
651     int8_t heads, sectors;
652     int val;
653     int i, trans;
654 
655     val = 0;
656     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
657                                            &cylinders, &heads, &sectors) >= 0) {
658         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
659         val |= 0xf0;
660     }
661     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
662                                            &cylinders, &heads, &sectors) >= 0) {
663         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
664         val |= 0x0f;
665     }
666     rtc_set_memory(s, 0x12, val);
667 
668     val = 0;
669     for (i = 0; i < 4; i++) {
670         /* NOTE: ide_get_geometry() returns the physical
671            geometry.  It is always such that: 1 <= sects <= 63, 1
672            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
673            geometry can be different if a translation is done. */
674         if (arg->idebus[i / 2] &&
675             ide_get_geometry(arg->idebus[i / 2], i % 2,
676                              &cylinders, &heads, &sectors) >= 0) {
677             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
678             assert((trans & ~3) == 0);
679             val |= trans << (i * 2);
680         }
681     }
682     rtc_set_memory(s, 0x39, val);
683 
684     pc_cmos_init_floppy(s, pc_find_fdc0());
685 
686     qemu_unregister_reset(pc_cmos_init_late, opaque);
687 }
688 
689 void pc_cmos_init(PCMachineState *pcms,
690                   BusState *idebus0, BusState *idebus1,
691                   ISADevice *s)
692 {
693     int val;
694     static pc_cmos_init_late_arg arg;
695 
696     /* various important CMOS locations needed by PC/Bochs bios */
697 
698     /* memory size */
699     /* base memory (first MiB) */
700     val = MIN(pcms->below_4g_mem_size / KiB, 640);
701     rtc_set_memory(s, 0x15, val);
702     rtc_set_memory(s, 0x16, val >> 8);
703     /* extended memory (next 64MiB) */
704     if (pcms->below_4g_mem_size > 1 * MiB) {
705         val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
706     } else {
707         val = 0;
708     }
709     if (val > 65535)
710         val = 65535;
711     rtc_set_memory(s, 0x17, val);
712     rtc_set_memory(s, 0x18, val >> 8);
713     rtc_set_memory(s, 0x30, val);
714     rtc_set_memory(s, 0x31, val >> 8);
715     /* memory between 16MiB and 4GiB */
716     if (pcms->below_4g_mem_size > 16 * MiB) {
717         val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
718     } else {
719         val = 0;
720     }
721     if (val > 65535)
722         val = 65535;
723     rtc_set_memory(s, 0x34, val);
724     rtc_set_memory(s, 0x35, val >> 8);
725     /* memory above 4GiB */
726     val = pcms->above_4g_mem_size / 65536;
727     rtc_set_memory(s, 0x5b, val);
728     rtc_set_memory(s, 0x5c, val >> 8);
729     rtc_set_memory(s, 0x5d, val >> 16);
730 
731     object_property_add_link(OBJECT(pcms), "rtc_state",
732                              TYPE_ISA_DEVICE,
733                              (Object **)&pcms->rtc,
734                              object_property_allow_set_link,
735                              OBJ_PROP_LINK_STRONG, &error_abort);
736     object_property_set_link(OBJECT(pcms), OBJECT(s),
737                              "rtc_state", &error_abort);
738 
739     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
740 
741     val = 0;
742     val |= 0x02; /* FPU is there */
743     val |= 0x04; /* PS/2 mouse installed */
744     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
745 
746     /* hard drives and FDC */
747     arg.rtc_state = s;
748     arg.idebus[0] = idebus0;
749     arg.idebus[1] = idebus1;
750     qemu_register_reset(pc_cmos_init_late, &arg);
751 }
752 
753 #define TYPE_PORT92 "port92"
754 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
755 
756 /* port 92 stuff: could be split off */
757 typedef struct Port92State {
758     ISADevice parent_obj;
759 
760     MemoryRegion io;
761     uint8_t outport;
762     qemu_irq a20_out;
763 } Port92State;
764 
765 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
766                          unsigned size)
767 {
768     Port92State *s = opaque;
769     int oldval = s->outport;
770 
771     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
772     s->outport = val;
773     qemu_set_irq(s->a20_out, (val >> 1) & 1);
774     if ((val & 1) && !(oldval & 1)) {
775         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
776     }
777 }
778 
779 static uint64_t port92_read(void *opaque, hwaddr addr,
780                             unsigned size)
781 {
782     Port92State *s = opaque;
783     uint32_t ret;
784 
785     ret = s->outport;
786     DPRINTF("port92: read 0x%02x\n", ret);
787     return ret;
788 }
789 
790 static void port92_init(ISADevice *dev, qemu_irq a20_out)
791 {
792     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
793 }
794 
795 static const VMStateDescription vmstate_port92_isa = {
796     .name = "port92",
797     .version_id = 1,
798     .minimum_version_id = 1,
799     .fields = (VMStateField[]) {
800         VMSTATE_UINT8(outport, Port92State),
801         VMSTATE_END_OF_LIST()
802     }
803 };
804 
805 static void port92_reset(DeviceState *d)
806 {
807     Port92State *s = PORT92(d);
808 
809     s->outport &= ~1;
810 }
811 
812 static const MemoryRegionOps port92_ops = {
813     .read = port92_read,
814     .write = port92_write,
815     .impl = {
816         .min_access_size = 1,
817         .max_access_size = 1,
818     },
819     .endianness = DEVICE_LITTLE_ENDIAN,
820 };
821 
822 static void port92_initfn(Object *obj)
823 {
824     Port92State *s = PORT92(obj);
825 
826     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
827 
828     s->outport = 0;
829 
830     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
831 }
832 
833 static void port92_realizefn(DeviceState *dev, Error **errp)
834 {
835     ISADevice *isadev = ISA_DEVICE(dev);
836     Port92State *s = PORT92(dev);
837 
838     isa_register_ioport(isadev, &s->io, 0x92);
839 }
840 
841 static void port92_class_initfn(ObjectClass *klass, void *data)
842 {
843     DeviceClass *dc = DEVICE_CLASS(klass);
844 
845     dc->realize = port92_realizefn;
846     dc->reset = port92_reset;
847     dc->vmsd = &vmstate_port92_isa;
848     /*
849      * Reason: unlike ordinary ISA devices, this one needs additional
850      * wiring: its A20 output line needs to be wired up by
851      * port92_init().
852      */
853     dc->user_creatable = false;
854 }
855 
856 static const TypeInfo port92_info = {
857     .name          = TYPE_PORT92,
858     .parent        = TYPE_ISA_DEVICE,
859     .instance_size = sizeof(Port92State),
860     .instance_init = port92_initfn,
861     .class_init    = port92_class_initfn,
862 };
863 
864 static void port92_register_types(void)
865 {
866     type_register_static(&port92_info);
867 }
868 
869 type_init(port92_register_types)
870 
871 static void handle_a20_line_change(void *opaque, int irq, int level)
872 {
873     X86CPU *cpu = opaque;
874 
875     /* XXX: send to all CPUs ? */
876     /* XXX: add logic to handle multiple A20 line sources */
877     x86_cpu_set_a20(cpu, level);
878 }
879 
880 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
881 {
882     int index = le32_to_cpu(e820_reserve.count);
883     struct e820_entry *entry;
884 
885     if (type != E820_RAM) {
886         /* old FW_CFG_E820_TABLE entry -- reservations only */
887         if (index >= E820_NR_ENTRIES) {
888             return -EBUSY;
889         }
890         entry = &e820_reserve.entry[index++];
891 
892         entry->address = cpu_to_le64(address);
893         entry->length = cpu_to_le64(length);
894         entry->type = cpu_to_le32(type);
895 
896         e820_reserve.count = cpu_to_le32(index);
897     }
898 
899     /* new "etc/e820" file -- include ram too */
900     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
901     e820_table[e820_entries].address = cpu_to_le64(address);
902     e820_table[e820_entries].length = cpu_to_le64(length);
903     e820_table[e820_entries].type = cpu_to_le32(type);
904     e820_entries++;
905 
906     return e820_entries;
907 }
908 
909 int e820_get_num_entries(void)
910 {
911     return e820_entries;
912 }
913 
914 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
915 {
916     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
917         *address = le64_to_cpu(e820_table[idx].address);
918         *length = le64_to_cpu(e820_table[idx].length);
919         return true;
920     }
921     return false;
922 }
923 
924 /* Calculates initial APIC ID for a specific CPU index
925  *
926  * Currently we need to be able to calculate the APIC ID from the CPU index
927  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
928  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
929  * all CPUs up to max_cpus.
930  */
931 static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
932                                            unsigned int cpu_index)
933 {
934     MachineState *ms = MACHINE(pcms);
935     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
936     uint32_t correct_id;
937     static bool warned;
938 
939     correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores,
940                                          ms->smp.threads, cpu_index);
941     if (pcmc->compat_apic_id_mode) {
942         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
943             error_report("APIC IDs set in compatibility mode, "
944                          "CPU topology won't match the configuration");
945             warned = true;
946         }
947         return cpu_index;
948     } else {
949         return correct_id;
950     }
951 }
952 
953 static void pc_build_smbios(PCMachineState *pcms)
954 {
955     uint8_t *smbios_tables, *smbios_anchor;
956     size_t smbios_tables_len, smbios_anchor_len;
957     struct smbios_phys_mem_area *mem_array;
958     unsigned i, array_count;
959     MachineState *ms = MACHINE(pcms);
960     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
961 
962     /* tell smbios about cpuid version and features */
963     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
964 
965     smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
966     if (smbios_tables) {
967         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
968                          smbios_tables, smbios_tables_len);
969     }
970 
971     /* build the array of physical mem area from e820 table */
972     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
973     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
974         uint64_t addr, len;
975 
976         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
977             mem_array[array_count].address = addr;
978             mem_array[array_count].length = len;
979             array_count++;
980         }
981     }
982     smbios_get_tables(ms, mem_array, array_count,
983                       &smbios_tables, &smbios_tables_len,
984                       &smbios_anchor, &smbios_anchor_len);
985     g_free(mem_array);
986 
987     if (smbios_anchor) {
988         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
989                         smbios_tables, smbios_tables_len);
990         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
991                         smbios_anchor, smbios_anchor_len);
992     }
993 }
994 
995 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
996 {
997     FWCfgState *fw_cfg;
998     uint64_t *numa_fw_cfg;
999     int i;
1000     const CPUArchIdList *cpus;
1001     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1002 
1003     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1004     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1005 
1006     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1007      *
1008      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1009      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1010      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1011      * for CPU hotplug also uses APIC ID and not "CPU index".
1012      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1013      * but the "limit to the APIC ID values SeaBIOS may see".
1014      *
1015      * So for compatibility reasons with old BIOSes we are stuck with
1016      * "etc/max-cpus" actually being apic_id_limit
1017      */
1018     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1019     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1020     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1021                      acpi_tables, acpi_tables_len);
1022     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1023 
1024     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1025                      &e820_reserve, sizeof(e820_reserve));
1026     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1027                     sizeof(struct e820_entry) * e820_entries);
1028 
1029     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1030     /* allocate memory for the NUMA channel: one (64bit) word for the number
1031      * of nodes, one word for each VCPU->node and one word for each node to
1032      * hold the amount of memory.
1033      */
1034     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1035     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1036     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1037     for (i = 0; i < cpus->len; i++) {
1038         unsigned int apic_id = cpus->cpus[i].arch_id;
1039         assert(apic_id < pcms->apic_id_limit);
1040         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1041     }
1042     for (i = 0; i < nb_numa_nodes; i++) {
1043         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1044             cpu_to_le64(numa_info[i].node_mem);
1045     }
1046     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1047                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
1048                      sizeof(*numa_fw_cfg));
1049 
1050     return fw_cfg;
1051 }
1052 
1053 static long get_file_size(FILE *f)
1054 {
1055     long where, size;
1056 
1057     /* XXX: on Unix systems, using fstat() probably makes more sense */
1058 
1059     where = ftell(f);
1060     fseek(f, 0, SEEK_END);
1061     size = ftell(f);
1062     fseek(f, where, SEEK_SET);
1063 
1064     return size;
1065 }
1066 
1067 struct setup_data {
1068     uint64_t next;
1069     uint32_t type;
1070     uint32_t len;
1071     uint8_t data[0];
1072 } __attribute__((packed));
1073 
1074 
1075 /*
1076  * The entry point into the kernel for PVH boot is different from
1077  * the native entry point.  The PVH entry is defined by the x86/HVM
1078  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1079  *
1080  * This function is passed to load_elf() when it is called from
1081  * load_elfboot() which then additionally checks for an ELF Note of
1082  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1083  * parse the PVH entry address from the ELF Note.
1084  *
1085  * Due to trickery in elf_opts.h, load_elf() is actually available as
1086  * load_elf32() or load_elf64() and this routine needs to be able
1087  * to deal with being called as 32 or 64 bit.
1088  *
1089  * The address of the PVH entry point is saved to the 'pvh_start_addr'
1090  * global variable.  (although the entry point is 32-bit, the kernel
1091  * binary can be either 32-bit or 64-bit).
1092  */
1093 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1094 {
1095     size_t *elf_note_data_addr;
1096 
1097     /* Check if ELF Note header passed in is valid */
1098     if (arg1 == NULL) {
1099         return 0;
1100     }
1101 
1102     if (is64) {
1103         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1104         uint64_t nhdr_size64 = sizeof(struct elf64_note);
1105         uint64_t phdr_align = *(uint64_t *)arg2;
1106         uint64_t nhdr_namesz = nhdr64->n_namesz;
1107 
1108         elf_note_data_addr =
1109             ((void *)nhdr64) + nhdr_size64 +
1110             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1111     } else {
1112         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1113         uint32_t nhdr_size32 = sizeof(struct elf32_note);
1114         uint32_t phdr_align = *(uint32_t *)arg2;
1115         uint32_t nhdr_namesz = nhdr32->n_namesz;
1116 
1117         elf_note_data_addr =
1118             ((void *)nhdr32) + nhdr_size32 +
1119             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1120     }
1121 
1122     pvh_start_addr = *elf_note_data_addr;
1123 
1124     return pvh_start_addr;
1125 }
1126 
1127 static bool load_elfboot(const char *kernel_filename,
1128                    int kernel_file_size,
1129                    uint8_t *header,
1130                    size_t pvh_xen_start_addr,
1131                    FWCfgState *fw_cfg)
1132 {
1133     uint32_t flags = 0;
1134     uint32_t mh_load_addr = 0;
1135     uint32_t elf_kernel_size = 0;
1136     uint64_t elf_entry;
1137     uint64_t elf_low, elf_high;
1138     int kernel_size;
1139 
1140     if (ldl_p(header) != 0x464c457f) {
1141         return false; /* no elfboot */
1142     }
1143 
1144     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1145     flags = elf_is64 ?
1146         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1147 
1148     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1149         error_report("elfboot unsupported flags = %x", flags);
1150         exit(1);
1151     }
1152 
1153     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1154     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1155                            NULL, &elf_note_type, &elf_entry,
1156                            &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1157                            0, 0);
1158 
1159     if (kernel_size < 0) {
1160         error_report("Error while loading elf kernel");
1161         exit(1);
1162     }
1163     mh_load_addr = elf_low;
1164     elf_kernel_size = elf_high - elf_low;
1165 
1166     if (pvh_start_addr == 0) {
1167         error_report("Error loading uncompressed kernel without PVH ELF Note");
1168         exit(1);
1169     }
1170     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1171     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1172     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1173 
1174     return true;
1175 }
1176 
1177 static void load_linux(PCMachineState *pcms,
1178                        FWCfgState *fw_cfg)
1179 {
1180     uint16_t protocol;
1181     int setup_size, kernel_size, cmdline_size;
1182     int dtb_size, setup_data_offset;
1183     uint32_t initrd_max;
1184     uint8_t header[8192], *setup, *kernel;
1185     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1186     FILE *f;
1187     char *vmode;
1188     MachineState *machine = MACHINE(pcms);
1189     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1190     struct setup_data *setup_data;
1191     const char *kernel_filename = machine->kernel_filename;
1192     const char *initrd_filename = machine->initrd_filename;
1193     const char *dtb_filename = machine->dtb;
1194     const char *kernel_cmdline = machine->kernel_cmdline;
1195 
1196     /* Align to 16 bytes as a paranoia measure */
1197     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1198 
1199     /* load the kernel header */
1200     f = fopen(kernel_filename, "rb");
1201     if (!f || !(kernel_size = get_file_size(f)) ||
1202         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1203         MIN(ARRAY_SIZE(header), kernel_size)) {
1204         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1205                 kernel_filename, strerror(errno));
1206         exit(1);
1207     }
1208 
1209     /* kernel protocol version */
1210 #if 0
1211     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1212 #endif
1213     if (ldl_p(header+0x202) == 0x53726448) {
1214         protocol = lduw_p(header+0x206);
1215     } else {
1216         /*
1217          * This could be a multiboot kernel. If it is, let's stop treating it
1218          * like a Linux kernel.
1219          * Note: some multiboot images could be in the ELF format (the same of
1220          * PVH), so we try multiboot first since we check the multiboot magic
1221          * header before to load it.
1222          */
1223         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1224                            kernel_cmdline, kernel_size, header)) {
1225             return;
1226         }
1227         /*
1228          * Check if the file is an uncompressed kernel file (ELF) and load it,
1229          * saving the PVH entry point used by the x86/HVM direct boot ABI.
1230          * If load_elfboot() is successful, populate the fw_cfg info.
1231          */
1232         if (pcmc->pvh_enabled &&
1233             load_elfboot(kernel_filename, kernel_size,
1234                          header, pvh_start_addr, fw_cfg)) {
1235             fclose(f);
1236 
1237             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1238                 strlen(kernel_cmdline) + 1);
1239             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1240 
1241             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1242             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1243                              header, sizeof(header));
1244 
1245             /* load initrd */
1246             if (initrd_filename) {
1247                 gsize initrd_size;
1248                 gchar *initrd_data;
1249                 GError *gerr = NULL;
1250 
1251                 if (!g_file_get_contents(initrd_filename, &initrd_data,
1252                             &initrd_size, &gerr)) {
1253                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1254                             initrd_filename, gerr->message);
1255                     exit(1);
1256                 }
1257 
1258                 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1259                 if (initrd_size >= initrd_max) {
1260                     fprintf(stderr, "qemu: initrd is too large, cannot support."
1261                             "(max: %"PRIu32", need %"PRId64")\n",
1262                             initrd_max, (uint64_t)initrd_size);
1263                     exit(1);
1264                 }
1265 
1266                 initrd_addr = (initrd_max - initrd_size) & ~4095;
1267 
1268                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1269                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1270                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1271                                  initrd_size);
1272             }
1273 
1274             option_rom[nb_option_roms].bootindex = 0;
1275             option_rom[nb_option_roms].name = "pvh.bin";
1276             nb_option_roms++;
1277 
1278             return;
1279         }
1280         protocol = 0;
1281     }
1282 
1283     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1284         /* Low kernel */
1285         real_addr    = 0x90000;
1286         cmdline_addr = 0x9a000 - cmdline_size;
1287         prot_addr    = 0x10000;
1288     } else if (protocol < 0x202) {
1289         /* High but ancient kernel */
1290         real_addr    = 0x90000;
1291         cmdline_addr = 0x9a000 - cmdline_size;
1292         prot_addr    = 0x100000;
1293     } else {
1294         /* High and recent kernel */
1295         real_addr    = 0x10000;
1296         cmdline_addr = 0x20000;
1297         prot_addr    = 0x100000;
1298     }
1299 
1300 #if 0
1301     fprintf(stderr,
1302             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
1303             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
1304             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
1305             real_addr,
1306             cmdline_addr,
1307             prot_addr);
1308 #endif
1309 
1310     /* highest address for loading the initrd */
1311     if (protocol >= 0x20c &&
1312         lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1313         /*
1314          * Linux has supported initrd up to 4 GB for a very long time (2007,
1315          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1316          * though it only sets initrd_max to 2 GB to "work around bootloader
1317          * bugs". Luckily, QEMU firmware(which does something like bootloader)
1318          * has supported this.
1319          *
1320          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1321          * be loaded into any address.
1322          *
1323          * In addition, initrd_max is uint32_t simply because QEMU doesn't
1324          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1325          * field).
1326          *
1327          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1328          */
1329         initrd_max = UINT32_MAX;
1330     } else if (protocol >= 0x203) {
1331         initrd_max = ldl_p(header+0x22c);
1332     } else {
1333         initrd_max = 0x37ffffff;
1334     }
1335 
1336     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1337         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1338     }
1339 
1340     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1341     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1342     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1343 
1344     if (protocol >= 0x202) {
1345         stl_p(header+0x228, cmdline_addr);
1346     } else {
1347         stw_p(header+0x20, 0xA33F);
1348         stw_p(header+0x22, cmdline_addr-real_addr);
1349     }
1350 
1351     /* handle vga= parameter */
1352     vmode = strstr(kernel_cmdline, "vga=");
1353     if (vmode) {
1354         unsigned int video_mode;
1355         /* skip "vga=" */
1356         vmode += 4;
1357         if (!strncmp(vmode, "normal", 6)) {
1358             video_mode = 0xffff;
1359         } else if (!strncmp(vmode, "ext", 3)) {
1360             video_mode = 0xfffe;
1361         } else if (!strncmp(vmode, "ask", 3)) {
1362             video_mode = 0xfffd;
1363         } else {
1364             video_mode = strtol(vmode, NULL, 0);
1365         }
1366         stw_p(header+0x1fa, video_mode);
1367     }
1368 
1369     /* loader type */
1370     /* High nybble = B reserved for QEMU; low nybble is revision number.
1371        If this code is substantially changed, you may want to consider
1372        incrementing the revision. */
1373     if (protocol >= 0x200) {
1374         header[0x210] = 0xB0;
1375     }
1376     /* heap */
1377     if (protocol >= 0x201) {
1378         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
1379         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1380     }
1381 
1382     /* load initrd */
1383     if (initrd_filename) {
1384         gsize initrd_size;
1385         gchar *initrd_data;
1386         GError *gerr = NULL;
1387 
1388         if (protocol < 0x200) {
1389             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1390             exit(1);
1391         }
1392 
1393         if (!g_file_get_contents(initrd_filename, &initrd_data,
1394                                  &initrd_size, &gerr)) {
1395             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1396                     initrd_filename, gerr->message);
1397             exit(1);
1398         }
1399         if (initrd_size >= initrd_max) {
1400             fprintf(stderr, "qemu: initrd is too large, cannot support."
1401                     "(max: %"PRIu32", need %"PRId64")\n",
1402                     initrd_max, (uint64_t)initrd_size);
1403             exit(1);
1404         }
1405 
1406         initrd_addr = (initrd_max-initrd_size) & ~4095;
1407 
1408         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1409         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1410         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1411 
1412         stl_p(header+0x218, initrd_addr);
1413         stl_p(header+0x21c, initrd_size);
1414     }
1415 
1416     /* load kernel and setup */
1417     setup_size = header[0x1f1];
1418     if (setup_size == 0) {
1419         setup_size = 4;
1420     }
1421     setup_size = (setup_size+1)*512;
1422     if (setup_size > kernel_size) {
1423         fprintf(stderr, "qemu: invalid kernel header\n");
1424         exit(1);
1425     }
1426     kernel_size -= setup_size;
1427 
1428     setup  = g_malloc(setup_size);
1429     kernel = g_malloc(kernel_size);
1430     fseek(f, 0, SEEK_SET);
1431     if (fread(setup, 1, setup_size, f) != setup_size) {
1432         fprintf(stderr, "fread() failed\n");
1433         exit(1);
1434     }
1435     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1436         fprintf(stderr, "fread() failed\n");
1437         exit(1);
1438     }
1439     fclose(f);
1440 
1441     /* append dtb to kernel */
1442     if (dtb_filename) {
1443         if (protocol < 0x209) {
1444             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1445             exit(1);
1446         }
1447 
1448         dtb_size = get_image_size(dtb_filename);
1449         if (dtb_size <= 0) {
1450             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1451                     dtb_filename, strerror(errno));
1452             exit(1);
1453         }
1454 
1455         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1456         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1457         kernel = g_realloc(kernel, kernel_size);
1458 
1459         stq_p(header+0x250, prot_addr + setup_data_offset);
1460 
1461         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1462         setup_data->next = 0;
1463         setup_data->type = cpu_to_le32(SETUP_DTB);
1464         setup_data->len = cpu_to_le32(dtb_size);
1465 
1466         load_image_size(dtb_filename, setup_data->data, dtb_size);
1467     }
1468 
1469     memcpy(setup, header, MIN(sizeof(header), setup_size));
1470 
1471     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1472     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1473     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1474 
1475     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1476     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1477     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1478 
1479     option_rom[nb_option_roms].bootindex = 0;
1480     option_rom[nb_option_roms].name = "linuxboot.bin";
1481     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1482         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1483     }
1484     nb_option_roms++;
1485 }
1486 
1487 #define NE2000_NB_MAX 6
1488 
1489 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1490                                               0x280, 0x380 };
1491 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1492 
1493 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1494 {
1495     static int nb_ne2k = 0;
1496 
1497     if (nb_ne2k == NE2000_NB_MAX)
1498         return;
1499     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1500                     ne2000_irq[nb_ne2k], nd);
1501     nb_ne2k++;
1502 }
1503 
1504 DeviceState *cpu_get_current_apic(void)
1505 {
1506     if (current_cpu) {
1507         X86CPU *cpu = X86_CPU(current_cpu);
1508         return cpu->apic_state;
1509     } else {
1510         return NULL;
1511     }
1512 }
1513 
1514 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1515 {
1516     X86CPU *cpu = opaque;
1517 
1518     if (level) {
1519         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1520     }
1521 }
1522 
1523 static void pc_new_cpu(PCMachineState *pcms, int64_t apic_id, Error **errp)
1524 {
1525     Object *cpu = NULL;
1526     Error *local_err = NULL;
1527     CPUX86State *env = NULL;
1528 
1529     cpu = object_new(MACHINE(pcms)->cpu_type);
1530 
1531     env = &X86_CPU(cpu)->env;
1532     env->nr_dies = pcms->smp_dies;
1533 
1534     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1535     object_property_set_bool(cpu, true, "realized", &local_err);
1536 
1537     object_unref(cpu);
1538     error_propagate(errp, local_err);
1539 }
1540 
1541 /*
1542  * This function is very similar to smp_parse()
1543  * in hw/core/machine.c but includes CPU die support.
1544  */
1545 void pc_smp_parse(MachineState *ms, QemuOpts *opts)
1546 {
1547     PCMachineState *pcms = PC_MACHINE(ms);
1548 
1549     if (opts) {
1550         unsigned cpus    = qemu_opt_get_number(opts, "cpus", 0);
1551         unsigned sockets = qemu_opt_get_number(opts, "sockets", 0);
1552         unsigned dies = qemu_opt_get_number(opts, "dies", 1);
1553         unsigned cores   = qemu_opt_get_number(opts, "cores", 0);
1554         unsigned threads = qemu_opt_get_number(opts, "threads", 0);
1555 
1556         /* compute missing values, prefer sockets over cores over threads */
1557         if (cpus == 0 || sockets == 0) {
1558             cores = cores > 0 ? cores : 1;
1559             threads = threads > 0 ? threads : 1;
1560             if (cpus == 0) {
1561                 sockets = sockets > 0 ? sockets : 1;
1562                 cpus = cores * threads * dies * sockets;
1563             } else {
1564                 ms->smp.max_cpus =
1565                         qemu_opt_get_number(opts, "maxcpus", cpus);
1566                 sockets = ms->smp.max_cpus / (cores * threads * dies);
1567             }
1568         } else if (cores == 0) {
1569             threads = threads > 0 ? threads : 1;
1570             cores = cpus / (sockets * dies * threads);
1571             cores = cores > 0 ? cores : 1;
1572         } else if (threads == 0) {
1573             threads = cpus / (cores * dies * sockets);
1574             threads = threads > 0 ? threads : 1;
1575         } else if (sockets * dies * cores * threads < cpus) {
1576             error_report("cpu topology: "
1577                          "sockets (%u) * dies (%u) * cores (%u) * threads (%u) < "
1578                          "smp_cpus (%u)",
1579                          sockets, dies, cores, threads, cpus);
1580             exit(1);
1581         }
1582 
1583         ms->smp.max_cpus =
1584                 qemu_opt_get_number(opts, "maxcpus", cpus);
1585 
1586         if (ms->smp.max_cpus < cpus) {
1587             error_report("maxcpus must be equal to or greater than smp");
1588             exit(1);
1589         }
1590 
1591         if (sockets * dies * cores * threads > ms->smp.max_cpus) {
1592             error_report("cpu topology: "
1593                          "sockets (%u) * dies (%u) * cores (%u) * threads (%u) > "
1594                          "maxcpus (%u)",
1595                          sockets, dies, cores, threads,
1596                          ms->smp.max_cpus);
1597             exit(1);
1598         }
1599 
1600         if (sockets * dies * cores * threads != ms->smp.max_cpus) {
1601             warn_report("Invalid CPU topology deprecated: "
1602                         "sockets (%u) * dies (%u) * cores (%u) * threads (%u) "
1603                         "!= maxcpus (%u)",
1604                         sockets, dies, cores, threads,
1605                         ms->smp.max_cpus);
1606         }
1607 
1608         ms->smp.cpus = cpus;
1609         ms->smp.cores = cores;
1610         ms->smp.threads = threads;
1611         pcms->smp_dies = dies;
1612     }
1613 
1614     if (ms->smp.cpus > 1) {
1615         Error *blocker = NULL;
1616         error_setg(&blocker, QERR_REPLAY_NOT_SUPPORTED, "smp");
1617         replay_add_blocker(blocker);
1618     }
1619 }
1620 
1621 void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp)
1622 {
1623     PCMachineState *pcms = PC_MACHINE(ms);
1624     int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
1625     Error *local_err = NULL;
1626 
1627     if (id < 0) {
1628         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1629         return;
1630     }
1631 
1632     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1633         error_setg(errp, "Unable to add CPU: %" PRIi64
1634                    ", resulting APIC ID (%" PRIi64 ") is too large",
1635                    id, apic_id);
1636         return;
1637     }
1638 
1639     pc_new_cpu(PC_MACHINE(ms), apic_id, &local_err);
1640     if (local_err) {
1641         error_propagate(errp, local_err);
1642         return;
1643     }
1644 }
1645 
1646 void pc_cpus_init(PCMachineState *pcms)
1647 {
1648     int i;
1649     const CPUArchIdList *possible_cpus;
1650     MachineState *ms = MACHINE(pcms);
1651     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1652     PCMachineClass *pcmc = PC_MACHINE_CLASS(mc);
1653 
1654     x86_cpu_set_default_version(pcmc->default_cpu_version);
1655 
1656     /* Calculates the limit to CPU APIC ID values
1657      *
1658      * Limit for the APIC ID value, so that all
1659      * CPU APIC IDs are < pcms->apic_id_limit.
1660      *
1661      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1662      */
1663     pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
1664                                                      ms->smp.max_cpus - 1) + 1;
1665     possible_cpus = mc->possible_cpu_arch_ids(ms);
1666     for (i = 0; i < ms->smp.cpus; i++) {
1667         pc_new_cpu(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
1668     }
1669 }
1670 
1671 static void pc_build_feature_control_file(PCMachineState *pcms)
1672 {
1673     MachineState *ms = MACHINE(pcms);
1674     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1675     CPUX86State *env = &cpu->env;
1676     uint32_t unused, ecx, edx;
1677     uint64_t feature_control_bits = 0;
1678     uint64_t *val;
1679 
1680     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1681     if (ecx & CPUID_EXT_VMX) {
1682         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1683     }
1684 
1685     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1686         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1687         (env->mcg_cap & MCG_LMCE_P)) {
1688         feature_control_bits |= FEATURE_CONTROL_LMCE;
1689     }
1690 
1691     if (!feature_control_bits) {
1692         return;
1693     }
1694 
1695     val = g_malloc(sizeof(*val));
1696     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1697     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1698 }
1699 
1700 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1701 {
1702     if (cpus_count > 0xff) {
1703         /* If the number of CPUs can't be represented in 8 bits, the
1704          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1705          * to make old BIOSes fail more predictably.
1706          */
1707         rtc_set_memory(rtc, 0x5f, 0);
1708     } else {
1709         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1710     }
1711 }
1712 
1713 static
1714 void pc_machine_done(Notifier *notifier, void *data)
1715 {
1716     PCMachineState *pcms = container_of(notifier,
1717                                         PCMachineState, machine_done);
1718     PCIBus *bus = pcms->bus;
1719 
1720     /* set the number of CPUs */
1721     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1722 
1723     if (bus) {
1724         int extra_hosts = 0;
1725 
1726         QLIST_FOREACH(bus, &bus->child, sibling) {
1727             /* look for expander root buses */
1728             if (pci_bus_is_root(bus)) {
1729                 extra_hosts++;
1730             }
1731         }
1732         if (extra_hosts && pcms->fw_cfg) {
1733             uint64_t *val = g_malloc(sizeof(*val));
1734             *val = cpu_to_le64(extra_hosts);
1735             fw_cfg_add_file(pcms->fw_cfg,
1736                     "etc/extra-pci-roots", val, sizeof(*val));
1737         }
1738     }
1739 
1740     acpi_setup();
1741     if (pcms->fw_cfg) {
1742         pc_build_smbios(pcms);
1743         pc_build_feature_control_file(pcms);
1744         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1745         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1746     }
1747 
1748     if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1749         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1750 
1751         if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1752             iommu->intr_eim != ON_OFF_AUTO_ON) {
1753             error_report("current -smp configuration requires "
1754                          "Extended Interrupt Mode enabled. "
1755                          "You can add an IOMMU using: "
1756                          "-device intel-iommu,intremap=on,eim=on");
1757             exit(EXIT_FAILURE);
1758         }
1759     }
1760 }
1761 
1762 void pc_guest_info_init(PCMachineState *pcms)
1763 {
1764     int i;
1765 
1766     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1767     pcms->numa_nodes = nb_numa_nodes;
1768     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1769                                     sizeof *pcms->node_mem);
1770     for (i = 0; i < nb_numa_nodes; i++) {
1771         pcms->node_mem[i] = numa_info[i].node_mem;
1772     }
1773 
1774     pcms->machine_done.notify = pc_machine_done;
1775     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1776 }
1777 
1778 /* setup pci memory address space mapping into system address space */
1779 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1780                             MemoryRegion *pci_address_space)
1781 {
1782     /* Set to lower priority than RAM */
1783     memory_region_add_subregion_overlap(system_memory, 0x0,
1784                                         pci_address_space, -1);
1785 }
1786 
1787 void xen_load_linux(PCMachineState *pcms)
1788 {
1789     int i;
1790     FWCfgState *fw_cfg;
1791 
1792     assert(MACHINE(pcms)->kernel_filename != NULL);
1793 
1794     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1795     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1796     rom_set_fw(fw_cfg);
1797 
1798     load_linux(pcms, fw_cfg);
1799     for (i = 0; i < nb_option_roms; i++) {
1800         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1801                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1802                !strcmp(option_rom[i].name, "pvh.bin") ||
1803                !strcmp(option_rom[i].name, "multiboot.bin"));
1804         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1805     }
1806     pcms->fw_cfg = fw_cfg;
1807 }
1808 
1809 void pc_memory_init(PCMachineState *pcms,
1810                     MemoryRegion *system_memory,
1811                     MemoryRegion *rom_memory,
1812                     MemoryRegion **ram_memory)
1813 {
1814     int linux_boot, i;
1815     MemoryRegion *ram, *option_rom_mr;
1816     MemoryRegion *ram_below_4g, *ram_above_4g;
1817     FWCfgState *fw_cfg;
1818     MachineState *machine = MACHINE(pcms);
1819     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1820 
1821     assert(machine->ram_size == pcms->below_4g_mem_size +
1822                                 pcms->above_4g_mem_size);
1823 
1824     linux_boot = (machine->kernel_filename != NULL);
1825 
1826     /* Allocate RAM.  We allocate it as a single memory region and use
1827      * aliases to address portions of it, mostly for backwards compatibility
1828      * with older qemus that used qemu_ram_alloc().
1829      */
1830     ram = g_malloc(sizeof(*ram));
1831     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1832                                          machine->ram_size);
1833     *ram_memory = ram;
1834     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1835     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1836                              0, pcms->below_4g_mem_size);
1837     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1838     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1839     if (pcms->above_4g_mem_size > 0) {
1840         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1841         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1842                                  pcms->below_4g_mem_size,
1843                                  pcms->above_4g_mem_size);
1844         memory_region_add_subregion(system_memory, 0x100000000ULL,
1845                                     ram_above_4g);
1846         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1847     }
1848 
1849     if (!pcmc->has_reserved_memory &&
1850         (machine->ram_slots ||
1851          (machine->maxram_size > machine->ram_size))) {
1852         MachineClass *mc = MACHINE_GET_CLASS(machine);
1853 
1854         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1855                      mc->name);
1856         exit(EXIT_FAILURE);
1857     }
1858 
1859     /* always allocate the device memory information */
1860     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1861 
1862     /* initialize device memory address space */
1863     if (pcmc->has_reserved_memory &&
1864         (machine->ram_size < machine->maxram_size)) {
1865         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1866 
1867         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1868             error_report("unsupported amount of memory slots: %"PRIu64,
1869                          machine->ram_slots);
1870             exit(EXIT_FAILURE);
1871         }
1872 
1873         if (QEMU_ALIGN_UP(machine->maxram_size,
1874                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1875             error_report("maximum memory size must by aligned to multiple of "
1876                          "%d bytes", TARGET_PAGE_SIZE);
1877             exit(EXIT_FAILURE);
1878         }
1879 
1880         machine->device_memory->base =
1881             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1882 
1883         if (pcmc->enforce_aligned_dimm) {
1884             /* size device region assuming 1G page max alignment per slot */
1885             device_mem_size += (1 * GiB) * machine->ram_slots;
1886         }
1887 
1888         if ((machine->device_memory->base + device_mem_size) <
1889             device_mem_size) {
1890             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1891                          machine->maxram_size);
1892             exit(EXIT_FAILURE);
1893         }
1894 
1895         memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1896                            "device-memory", device_mem_size);
1897         memory_region_add_subregion(system_memory, machine->device_memory->base,
1898                                     &machine->device_memory->mr);
1899     }
1900 
1901     /* Initialize PC system firmware */
1902     pc_system_firmware_init(pcms, rom_memory);
1903 
1904     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1905     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1906                            &error_fatal);
1907     if (pcmc->pci_enabled) {
1908         memory_region_set_readonly(option_rom_mr, true);
1909     }
1910     memory_region_add_subregion_overlap(rom_memory,
1911                                         PC_ROM_MIN_VGA,
1912                                         option_rom_mr,
1913                                         1);
1914 
1915     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1916 
1917     rom_set_fw(fw_cfg);
1918 
1919     if (pcmc->has_reserved_memory && machine->device_memory->base) {
1920         uint64_t *val = g_malloc(sizeof(*val));
1921         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1922         uint64_t res_mem_end = machine->device_memory->base;
1923 
1924         if (!pcmc->broken_reserved_end) {
1925             res_mem_end += memory_region_size(&machine->device_memory->mr);
1926         }
1927         *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1928         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1929     }
1930 
1931     if (linux_boot) {
1932         load_linux(pcms, fw_cfg);
1933     }
1934 
1935     for (i = 0; i < nb_option_roms; i++) {
1936         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1937     }
1938     pcms->fw_cfg = fw_cfg;
1939 
1940     /* Init default IOAPIC address space */
1941     pcms->ioapic_as = &address_space_memory;
1942 }
1943 
1944 /*
1945  * The 64bit pci hole starts after "above 4G RAM" and
1946  * potentially the space reserved for memory hotplug.
1947  */
1948 uint64_t pc_pci_hole64_start(void)
1949 {
1950     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1951     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1952     MachineState *ms = MACHINE(pcms);
1953     uint64_t hole64_start = 0;
1954 
1955     if (pcmc->has_reserved_memory && ms->device_memory->base) {
1956         hole64_start = ms->device_memory->base;
1957         if (!pcmc->broken_reserved_end) {
1958             hole64_start += memory_region_size(&ms->device_memory->mr);
1959         }
1960     } else {
1961         hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1962     }
1963 
1964     return ROUND_UP(hole64_start, 1 * GiB);
1965 }
1966 
1967 qemu_irq pc_allocate_cpu_irq(void)
1968 {
1969     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1970 }
1971 
1972 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1973 {
1974     DeviceState *dev = NULL;
1975 
1976     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1977     if (pci_bus) {
1978         PCIDevice *pcidev = pci_vga_init(pci_bus);
1979         dev = pcidev ? &pcidev->qdev : NULL;
1980     } else if (isa_bus) {
1981         ISADevice *isadev = isa_vga_init(isa_bus);
1982         dev = isadev ? DEVICE(isadev) : NULL;
1983     }
1984     rom_reset_order_override();
1985     return dev;
1986 }
1987 
1988 static const MemoryRegionOps ioport80_io_ops = {
1989     .write = ioport80_write,
1990     .read = ioport80_read,
1991     .endianness = DEVICE_NATIVE_ENDIAN,
1992     .impl = {
1993         .min_access_size = 1,
1994         .max_access_size = 1,
1995     },
1996 };
1997 
1998 static const MemoryRegionOps ioportF0_io_ops = {
1999     .write = ioportF0_write,
2000     .read = ioportF0_read,
2001     .endianness = DEVICE_NATIVE_ENDIAN,
2002     .impl = {
2003         .min_access_size = 1,
2004         .max_access_size = 1,
2005     },
2006 };
2007 
2008 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
2009 {
2010     int i;
2011     DriveInfo *fd[MAX_FD];
2012     qemu_irq *a20_line;
2013     ISADevice *i8042, *port92, *vmmouse;
2014 
2015     serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
2016     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
2017 
2018     for (i = 0; i < MAX_FD; i++) {
2019         fd[i] = drive_get(IF_FLOPPY, 0, i);
2020         create_fdctrl |= !!fd[i];
2021     }
2022     if (create_fdctrl) {
2023         fdctrl_init_isa(isa_bus, fd);
2024     }
2025 
2026     i8042 = isa_create_simple(isa_bus, "i8042");
2027     if (!no_vmport) {
2028         vmport_init(isa_bus);
2029         vmmouse = isa_try_create(isa_bus, "vmmouse");
2030     } else {
2031         vmmouse = NULL;
2032     }
2033     if (vmmouse) {
2034         DeviceState *dev = DEVICE(vmmouse);
2035         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
2036         qdev_init_nofail(dev);
2037     }
2038     port92 = isa_create_simple(isa_bus, "port92");
2039 
2040     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
2041     i8042_setup_a20_line(i8042, a20_line[0]);
2042     port92_init(port92, a20_line[1]);
2043     g_free(a20_line);
2044 }
2045 
2046 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
2047                           ISADevice **rtc_state,
2048                           bool create_fdctrl,
2049                           bool no_vmport,
2050                           bool has_pit,
2051                           uint32_t hpet_irqs)
2052 {
2053     int i;
2054     DeviceState *hpet = NULL;
2055     int pit_isa_irq = 0;
2056     qemu_irq pit_alt_irq = NULL;
2057     qemu_irq rtc_irq = NULL;
2058     ISADevice *pit = NULL;
2059     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
2060     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
2061 
2062     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
2063     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
2064 
2065     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
2066     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
2067 
2068     /*
2069      * Check if an HPET shall be created.
2070      *
2071      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
2072      * when the HPET wants to take over. Thus we have to disable the latter.
2073      */
2074     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
2075         /* In order to set property, here not using sysbus_try_create_simple */
2076         hpet = qdev_try_create(NULL, TYPE_HPET);
2077         if (hpet) {
2078             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
2079              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
2080              * IRQ8 and IRQ2.
2081              */
2082             uint8_t compat = object_property_get_uint(OBJECT(hpet),
2083                     HPET_INTCAP, NULL);
2084             if (!compat) {
2085                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
2086             }
2087             qdev_init_nofail(hpet);
2088             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2089 
2090             for (i = 0; i < GSI_NUM_PINS; i++) {
2091                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2092             }
2093             pit_isa_irq = -1;
2094             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2095             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2096         }
2097     }
2098     *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2099 
2100     qemu_register_boot_set(pc_boot_set, *rtc_state);
2101 
2102     if (!xen_enabled() && has_pit) {
2103         if (kvm_pit_in_kernel()) {
2104             pit = kvm_pit_init(isa_bus, 0x40);
2105         } else {
2106             pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2107         }
2108         if (hpet) {
2109             /* connect PIT to output control line of the HPET */
2110             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2111         }
2112         pcspk_init(isa_bus, pit);
2113     }
2114 
2115     i8257_dma_init(isa_bus, 0);
2116 
2117     /* Super I/O */
2118     pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2119 }
2120 
2121 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2122 {
2123     int i;
2124 
2125     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2126     for (i = 0; i < nb_nics; i++) {
2127         NICInfo *nd = &nd_table[i];
2128         const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2129 
2130         if (g_str_equal(model, "ne2k_isa")) {
2131             pc_init_ne2k_isa(isa_bus, nd);
2132         } else {
2133             pci_nic_init_nofail(nd, pci_bus, model, NULL);
2134         }
2135     }
2136     rom_reset_order_override();
2137 }
2138 
2139 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2140 {
2141     DeviceState *dev;
2142     SysBusDevice *d;
2143     unsigned int i;
2144 
2145     if (kvm_ioapic_in_kernel()) {
2146         dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2147     } else {
2148         dev = qdev_create(NULL, TYPE_IOAPIC);
2149     }
2150     if (parent_name) {
2151         object_property_add_child(object_resolve_path(parent_name, NULL),
2152                                   "ioapic", OBJECT(dev), NULL);
2153     }
2154     qdev_init_nofail(dev);
2155     d = SYS_BUS_DEVICE(dev);
2156     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2157 
2158     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2159         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2160     }
2161 }
2162 
2163 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2164                                Error **errp)
2165 {
2166     const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2167     const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2168     const MachineState *ms = MACHINE(hotplug_dev);
2169     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2170     const uint64_t legacy_align = TARGET_PAGE_SIZE;
2171     Error *local_err = NULL;
2172 
2173     /*
2174      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2175      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2176      * addition to cover this case.
2177      */
2178     if (!pcms->acpi_dev || !acpi_enabled) {
2179         error_setg(errp,
2180                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2181         return;
2182     }
2183 
2184     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2185         error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2186         return;
2187     }
2188 
2189     hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2190     if (local_err) {
2191         error_propagate(errp, local_err);
2192         return;
2193     }
2194 
2195     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2196                      pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2197 }
2198 
2199 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2200                            DeviceState *dev, Error **errp)
2201 {
2202     Error *local_err = NULL;
2203     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2204     MachineState *ms = MACHINE(hotplug_dev);
2205     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2206 
2207     pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2208     if (local_err) {
2209         goto out;
2210     }
2211 
2212     if (is_nvdimm) {
2213         nvdimm_plug(ms->nvdimms_state);
2214     }
2215 
2216     hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2217 out:
2218     error_propagate(errp, local_err);
2219 }
2220 
2221 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2222                                      DeviceState *dev, Error **errp)
2223 {
2224     Error *local_err = NULL;
2225     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2226 
2227     /*
2228      * When -no-acpi is used with Q35 machine type, no ACPI is built,
2229      * but pcms->acpi_dev is still created. Check !acpi_enabled in
2230      * addition to cover this case.
2231      */
2232     if (!pcms->acpi_dev || !acpi_enabled) {
2233         error_setg(&local_err,
2234                    "memory hotplug is not enabled: missing acpi device or acpi disabled");
2235         goto out;
2236     }
2237 
2238     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2239         error_setg(&local_err,
2240                    "nvdimm device hot unplug is not supported yet.");
2241         goto out;
2242     }
2243 
2244     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2245                                    &local_err);
2246 out:
2247     error_propagate(errp, local_err);
2248 }
2249 
2250 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2251                              DeviceState *dev, Error **errp)
2252 {
2253     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2254     Error *local_err = NULL;
2255 
2256     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2257     if (local_err) {
2258         goto out;
2259     }
2260 
2261     pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2262     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2263  out:
2264     error_propagate(errp, local_err);
2265 }
2266 
2267 static int pc_apic_cmp(const void *a, const void *b)
2268 {
2269    CPUArchId *apic_a = (CPUArchId *)a;
2270    CPUArchId *apic_b = (CPUArchId *)b;
2271 
2272    return apic_a->arch_id - apic_b->arch_id;
2273 }
2274 
2275 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2276  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2277  * entry corresponding to CPU's apic_id returns NULL.
2278  */
2279 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2280 {
2281     CPUArchId apic_id, *found_cpu;
2282 
2283     apic_id.arch_id = id;
2284     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2285         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2286         pc_apic_cmp);
2287     if (found_cpu && idx) {
2288         *idx = found_cpu - ms->possible_cpus->cpus;
2289     }
2290     return found_cpu;
2291 }
2292 
2293 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2294                         DeviceState *dev, Error **errp)
2295 {
2296     CPUArchId *found_cpu;
2297     Error *local_err = NULL;
2298     X86CPU *cpu = X86_CPU(dev);
2299     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2300 
2301     if (pcms->acpi_dev) {
2302         hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2303         if (local_err) {
2304             goto out;
2305         }
2306     }
2307 
2308     /* increment the number of CPUs */
2309     pcms->boot_cpus++;
2310     if (pcms->rtc) {
2311         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2312     }
2313     if (pcms->fw_cfg) {
2314         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2315     }
2316 
2317     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2318     found_cpu->cpu = OBJECT(dev);
2319 out:
2320     error_propagate(errp, local_err);
2321 }
2322 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2323                                      DeviceState *dev, Error **errp)
2324 {
2325     int idx = -1;
2326     Error *local_err = NULL;
2327     X86CPU *cpu = X86_CPU(dev);
2328     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2329 
2330     if (!pcms->acpi_dev) {
2331         error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2332         goto out;
2333     }
2334 
2335     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2336     assert(idx != -1);
2337     if (idx == 0) {
2338         error_setg(&local_err, "Boot CPU is unpluggable");
2339         goto out;
2340     }
2341 
2342     hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2343                                    &local_err);
2344     if (local_err) {
2345         goto out;
2346     }
2347 
2348  out:
2349     error_propagate(errp, local_err);
2350 
2351 }
2352 
2353 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2354                              DeviceState *dev, Error **errp)
2355 {
2356     CPUArchId *found_cpu;
2357     Error *local_err = NULL;
2358     X86CPU *cpu = X86_CPU(dev);
2359     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2360 
2361     hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2362     if (local_err) {
2363         goto out;
2364     }
2365 
2366     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2367     found_cpu->cpu = NULL;
2368     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2369 
2370     /* decrement the number of CPUs */
2371     pcms->boot_cpus--;
2372     /* Update the number of CPUs in CMOS */
2373     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2374     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2375  out:
2376     error_propagate(errp, local_err);
2377 }
2378 
2379 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2380                             DeviceState *dev, Error **errp)
2381 {
2382     int idx;
2383     CPUState *cs;
2384     CPUArchId *cpu_slot;
2385     X86CPUTopoInfo topo;
2386     X86CPU *cpu = X86_CPU(dev);
2387     CPUX86State *env = &cpu->env;
2388     MachineState *ms = MACHINE(hotplug_dev);
2389     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2390     unsigned int smp_cores = ms->smp.cores;
2391     unsigned int smp_threads = ms->smp.threads;
2392 
2393     if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2394         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2395                    ms->cpu_type);
2396         return;
2397     }
2398 
2399     env->nr_dies = pcms->smp_dies;
2400 
2401     /*
2402      * If APIC ID is not set,
2403      * set it based on socket/die/core/thread properties.
2404      */
2405     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2406         int max_socket = (ms->smp.max_cpus - 1) /
2407                                 smp_threads / smp_cores / pcms->smp_dies;
2408 
2409         if (cpu->socket_id < 0) {
2410             error_setg(errp, "CPU socket-id is not set");
2411             return;
2412         } else if (cpu->socket_id > max_socket) {
2413             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2414                        cpu->socket_id, max_socket);
2415             return;
2416         } else if (cpu->die_id > pcms->smp_dies - 1) {
2417             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
2418                        cpu->die_id, max_socket);
2419             return;
2420         }
2421         if (cpu->core_id < 0) {
2422             error_setg(errp, "CPU core-id is not set");
2423             return;
2424         } else if (cpu->core_id > (smp_cores - 1)) {
2425             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2426                        cpu->core_id, smp_cores - 1);
2427             return;
2428         }
2429         if (cpu->thread_id < 0) {
2430             error_setg(errp, "CPU thread-id is not set");
2431             return;
2432         } else if (cpu->thread_id > (smp_threads - 1)) {
2433             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2434                        cpu->thread_id, smp_threads - 1);
2435             return;
2436         }
2437 
2438         topo.pkg_id = cpu->socket_id;
2439         topo.die_id = cpu->die_id;
2440         topo.core_id = cpu->core_id;
2441         topo.smt_id = cpu->thread_id;
2442         cpu->apic_id = apicid_from_topo_ids(pcms->smp_dies, smp_cores,
2443                                             smp_threads, &topo);
2444     }
2445 
2446     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2447     if (!cpu_slot) {
2448         MachineState *ms = MACHINE(pcms);
2449 
2450         x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2451                                  smp_cores, smp_threads, &topo);
2452         error_setg(errp,
2453             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
2454             " APIC ID %" PRIu32 ", valid index range 0:%d",
2455             topo.pkg_id, topo.die_id, topo.core_id, topo.smt_id,
2456             cpu->apic_id, ms->possible_cpus->len - 1);
2457         return;
2458     }
2459 
2460     if (cpu_slot->cpu) {
2461         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2462                    idx, cpu->apic_id);
2463         return;
2464     }
2465 
2466     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2467      * so that machine_query_hotpluggable_cpus would show correct values
2468      */
2469     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2470      * once -smp refactoring is complete and there will be CPU private
2471      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2472     x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2473                              smp_cores, smp_threads, &topo);
2474     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2475         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2476             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2477         return;
2478     }
2479     cpu->socket_id = topo.pkg_id;
2480 
2481     if (cpu->die_id != -1 && cpu->die_id != topo.die_id) {
2482         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
2483             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo.die_id);
2484         return;
2485     }
2486     cpu->die_id = topo.die_id;
2487 
2488     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2489         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2490             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2491         return;
2492     }
2493     cpu->core_id = topo.core_id;
2494 
2495     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2496         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2497             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2498         return;
2499     }
2500     cpu->thread_id = topo.smt_id;
2501 
2502     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
2503         !kvm_hv_vpindex_settable()) {
2504         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2505         return;
2506     }
2507 
2508     cs = CPU(cpu);
2509     cs->cpu_index = idx;
2510 
2511     numa_cpu_pre_plug(cpu_slot, dev, errp);
2512 }
2513 
2514 static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
2515                                         DeviceState *dev, Error **errp)
2516 {
2517     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2518     Error *local_err = NULL;
2519 
2520     if (!hotplug_dev2) {
2521         /*
2522          * Without a bus hotplug handler, we cannot control the plug/unplug
2523          * order. This should never be the case on x86, however better add
2524          * a safety net.
2525          */
2526         error_setg(errp, "virtio-pmem-pci not supported on this bus.");
2527         return;
2528     }
2529     /*
2530      * First, see if we can plug this memory device at all. If that
2531      * succeeds, branch of to the actual hotplug handler.
2532      */
2533     memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2534                            &local_err);
2535     if (!local_err) {
2536         hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2537     }
2538     error_propagate(errp, local_err);
2539 }
2540 
2541 static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
2542                                     DeviceState *dev, Error **errp)
2543 {
2544     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2545     Error *local_err = NULL;
2546 
2547     /*
2548      * Plug the memory device first and then branch off to the actual
2549      * hotplug handler. If that one fails, we can easily undo the memory
2550      * device bits.
2551      */
2552     memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2553     hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2554     if (local_err) {
2555         memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2556     }
2557     error_propagate(errp, local_err);
2558 }
2559 
2560 static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
2561                                               DeviceState *dev, Error **errp)
2562 {
2563     /* We don't support virtio pmem hot unplug */
2564     error_setg(errp, "virtio pmem device unplug not supported.");
2565 }
2566 
2567 static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
2568                                       DeviceState *dev, Error **errp)
2569 {
2570     /* We don't support virtio pmem hot unplug */
2571 }
2572 
2573 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2574                                           DeviceState *dev, Error **errp)
2575 {
2576     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2577         pc_memory_pre_plug(hotplug_dev, dev, errp);
2578     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2579         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2580     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2581         pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
2582     }
2583 }
2584 
2585 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2586                                       DeviceState *dev, Error **errp)
2587 {
2588     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2589         pc_memory_plug(hotplug_dev, dev, errp);
2590     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2591         pc_cpu_plug(hotplug_dev, dev, errp);
2592     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2593         pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
2594     }
2595 }
2596 
2597 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2598                                                 DeviceState *dev, Error **errp)
2599 {
2600     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2601         pc_memory_unplug_request(hotplug_dev, dev, errp);
2602     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2603         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2604     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2605         pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
2606     } else {
2607         error_setg(errp, "acpi: device unplug request for not supported device"
2608                    " type: %s", object_get_typename(OBJECT(dev)));
2609     }
2610 }
2611 
2612 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2613                                         DeviceState *dev, Error **errp)
2614 {
2615     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2616         pc_memory_unplug(hotplug_dev, dev, errp);
2617     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2618         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2619     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2620         pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
2621     } else {
2622         error_setg(errp, "acpi: device unplug for not supported device"
2623                    " type: %s", object_get_typename(OBJECT(dev)));
2624     }
2625 }
2626 
2627 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2628                                              DeviceState *dev)
2629 {
2630     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2631         object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
2632         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2633         return HOTPLUG_HANDLER(machine);
2634     }
2635 
2636     return NULL;
2637 }
2638 
2639 static void
2640 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2641                                          const char *name, void *opaque,
2642                                          Error **errp)
2643 {
2644     MachineState *ms = MACHINE(obj);
2645     int64_t value = 0;
2646 
2647     if (ms->device_memory) {
2648         value = memory_region_size(&ms->device_memory->mr);
2649     }
2650 
2651     visit_type_int(v, name, &value, errp);
2652 }
2653 
2654 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2655                                             const char *name, void *opaque,
2656                                             Error **errp)
2657 {
2658     PCMachineState *pcms = PC_MACHINE(obj);
2659     uint64_t value = pcms->max_ram_below_4g;
2660 
2661     visit_type_size(v, name, &value, errp);
2662 }
2663 
2664 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2665                                             const char *name, void *opaque,
2666                                             Error **errp)
2667 {
2668     PCMachineState *pcms = PC_MACHINE(obj);
2669     Error *error = NULL;
2670     uint64_t value;
2671 
2672     visit_type_size(v, name, &value, &error);
2673     if (error) {
2674         error_propagate(errp, error);
2675         return;
2676     }
2677     if (value > 4 * GiB) {
2678         error_setg(&error,
2679                    "Machine option 'max-ram-below-4g=%"PRIu64
2680                    "' expects size less than or equal to 4G", value);
2681         error_propagate(errp, error);
2682         return;
2683     }
2684 
2685     if (value < 1 * MiB) {
2686         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2687                     "BIOS may not work with less than 1MiB", value);
2688     }
2689 
2690     pcms->max_ram_below_4g = value;
2691 }
2692 
2693 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2694                                   void *opaque, Error **errp)
2695 {
2696     PCMachineState *pcms = PC_MACHINE(obj);
2697     OnOffAuto vmport = pcms->vmport;
2698 
2699     visit_type_OnOffAuto(v, name, &vmport, errp);
2700 }
2701 
2702 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2703                                   void *opaque, Error **errp)
2704 {
2705     PCMachineState *pcms = PC_MACHINE(obj);
2706 
2707     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2708 }
2709 
2710 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2711 {
2712     bool smm_available = false;
2713 
2714     if (pcms->smm == ON_OFF_AUTO_OFF) {
2715         return false;
2716     }
2717 
2718     if (tcg_enabled() || qtest_enabled()) {
2719         smm_available = true;
2720     } else if (kvm_enabled()) {
2721         smm_available = kvm_has_smm();
2722     }
2723 
2724     if (smm_available) {
2725         return true;
2726     }
2727 
2728     if (pcms->smm == ON_OFF_AUTO_ON) {
2729         error_report("System Management Mode not supported by this hypervisor.");
2730         exit(1);
2731     }
2732     return false;
2733 }
2734 
2735 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2736                                void *opaque, Error **errp)
2737 {
2738     PCMachineState *pcms = PC_MACHINE(obj);
2739     OnOffAuto smm = pcms->smm;
2740 
2741     visit_type_OnOffAuto(v, name, &smm, errp);
2742 }
2743 
2744 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2745                                void *opaque, Error **errp)
2746 {
2747     PCMachineState *pcms = PC_MACHINE(obj);
2748 
2749     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2750 }
2751 
2752 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2753 {
2754     PCMachineState *pcms = PC_MACHINE(obj);
2755 
2756     return pcms->smbus_enabled;
2757 }
2758 
2759 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2760 {
2761     PCMachineState *pcms = PC_MACHINE(obj);
2762 
2763     pcms->smbus_enabled = value;
2764 }
2765 
2766 static bool pc_machine_get_sata(Object *obj, Error **errp)
2767 {
2768     PCMachineState *pcms = PC_MACHINE(obj);
2769 
2770     return pcms->sata_enabled;
2771 }
2772 
2773 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2774 {
2775     PCMachineState *pcms = PC_MACHINE(obj);
2776 
2777     pcms->sata_enabled = value;
2778 }
2779 
2780 static bool pc_machine_get_pit(Object *obj, Error **errp)
2781 {
2782     PCMachineState *pcms = PC_MACHINE(obj);
2783 
2784     return pcms->pit_enabled;
2785 }
2786 
2787 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2788 {
2789     PCMachineState *pcms = PC_MACHINE(obj);
2790 
2791     pcms->pit_enabled = value;
2792 }
2793 
2794 static void pc_machine_initfn(Object *obj)
2795 {
2796     PCMachineState *pcms = PC_MACHINE(obj);
2797 
2798     pcms->max_ram_below_4g = 0; /* use default */
2799     pcms->smm = ON_OFF_AUTO_AUTO;
2800 #ifdef CONFIG_VMPORT
2801     pcms->vmport = ON_OFF_AUTO_AUTO;
2802 #else
2803     pcms->vmport = ON_OFF_AUTO_OFF;
2804 #endif /* CONFIG_VMPORT */
2805     /* acpi build is enabled by default if machine supports it */
2806     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2807     pcms->smbus_enabled = true;
2808     pcms->sata_enabled = true;
2809     pcms->pit_enabled = true;
2810     pcms->smp_dies = 1;
2811 
2812     pc_system_flash_create(pcms);
2813 }
2814 
2815 static void pc_machine_reset(MachineState *machine)
2816 {
2817     CPUState *cs;
2818     X86CPU *cpu;
2819 
2820     qemu_devices_reset();
2821 
2822     /* Reset APIC after devices have been reset to cancel
2823      * any changes that qemu_devices_reset() might have done.
2824      */
2825     CPU_FOREACH(cs) {
2826         cpu = X86_CPU(cs);
2827 
2828         if (cpu->apic_state) {
2829             device_reset(cpu->apic_state);
2830         }
2831     }
2832 }
2833 
2834 static CpuInstanceProperties
2835 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2836 {
2837     MachineClass *mc = MACHINE_GET_CLASS(ms);
2838     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2839 
2840     assert(cpu_index < possible_cpus->len);
2841     return possible_cpus->cpus[cpu_index].props;
2842 }
2843 
2844 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2845 {
2846    X86CPUTopoInfo topo;
2847    PCMachineState *pcms = PC_MACHINE(ms);
2848 
2849    assert(idx < ms->possible_cpus->len);
2850    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2851                             pcms->smp_dies, ms->smp.cores,
2852                             ms->smp.threads, &topo);
2853    return topo.pkg_id % nb_numa_nodes;
2854 }
2855 
2856 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2857 {
2858     PCMachineState *pcms = PC_MACHINE(ms);
2859     int i;
2860     unsigned int max_cpus = ms->smp.max_cpus;
2861 
2862     if (ms->possible_cpus) {
2863         /*
2864          * make sure that max_cpus hasn't changed since the first use, i.e.
2865          * -smp hasn't been parsed after it
2866         */
2867         assert(ms->possible_cpus->len == max_cpus);
2868         return ms->possible_cpus;
2869     }
2870 
2871     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2872                                   sizeof(CPUArchId) * max_cpus);
2873     ms->possible_cpus->len = max_cpus;
2874     for (i = 0; i < ms->possible_cpus->len; i++) {
2875         X86CPUTopoInfo topo;
2876 
2877         ms->possible_cpus->cpus[i].type = ms->cpu_type;
2878         ms->possible_cpus->cpus[i].vcpus_count = 1;
2879         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
2880         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2881                                  pcms->smp_dies, ms->smp.cores,
2882                                  ms->smp.threads, &topo);
2883         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2884         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2885         ms->possible_cpus->cpus[i].props.has_die_id = true;
2886         ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
2887         ms->possible_cpus->cpus[i].props.has_core_id = true;
2888         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2889         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2890         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2891     }
2892     return ms->possible_cpus;
2893 }
2894 
2895 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2896 {
2897     /* cpu index isn't used */
2898     CPUState *cs;
2899 
2900     CPU_FOREACH(cs) {
2901         X86CPU *cpu = X86_CPU(cs);
2902 
2903         if (!cpu->apic_state) {
2904             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2905         } else {
2906             apic_deliver_nmi(cpu->apic_state);
2907         }
2908     }
2909 }
2910 
2911 static void pc_machine_class_init(ObjectClass *oc, void *data)
2912 {
2913     MachineClass *mc = MACHINE_CLASS(oc);
2914     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2915     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2916     NMIClass *nc = NMI_CLASS(oc);
2917 
2918     pcmc->pci_enabled = true;
2919     pcmc->has_acpi_build = true;
2920     pcmc->rsdp_in_ram = true;
2921     pcmc->smbios_defaults = true;
2922     pcmc->smbios_uuid_encoded = true;
2923     pcmc->gigabyte_align = true;
2924     pcmc->has_reserved_memory = true;
2925     pcmc->kvmclock_enabled = true;
2926     pcmc->enforce_aligned_dimm = true;
2927     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2928      * to be used at the moment, 32K should be enough for a while.  */
2929     pcmc->acpi_data_size = 0x20000 + 0x8000;
2930     pcmc->save_tsc_khz = true;
2931     pcmc->linuxboot_dma_enabled = true;
2932     pcmc->pvh_enabled = true;
2933     assert(!mc->get_hotplug_handler);
2934     mc->get_hotplug_handler = pc_get_hotplug_handler;
2935     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2936     mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2937     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2938     mc->auto_enable_numa_with_memhp = true;
2939     mc->has_hotpluggable_cpus = true;
2940     mc->default_boot_order = "cad";
2941     mc->hot_add_cpu = pc_hot_add_cpu;
2942     mc->smp_parse = pc_smp_parse;
2943     mc->block_default_type = IF_IDE;
2944     mc->max_cpus = 255;
2945     mc->reset = pc_machine_reset;
2946     hc->pre_plug = pc_machine_device_pre_plug_cb;
2947     hc->plug = pc_machine_device_plug_cb;
2948     hc->unplug_request = pc_machine_device_unplug_request_cb;
2949     hc->unplug = pc_machine_device_unplug_cb;
2950     nc->nmi_monitor_handler = x86_nmi;
2951     mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2952     mc->nvdimm_supported = true;
2953     mc->numa_mem_supported = true;
2954 
2955     object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2956         pc_machine_get_device_memory_region_size, NULL,
2957         NULL, NULL, &error_abort);
2958 
2959     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2960         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2961         NULL, NULL, &error_abort);
2962 
2963     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2964         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2965 
2966     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2967         pc_machine_get_smm, pc_machine_set_smm,
2968         NULL, NULL, &error_abort);
2969     object_class_property_set_description(oc, PC_MACHINE_SMM,
2970         "Enable SMM (pc & q35)", &error_abort);
2971 
2972     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2973         pc_machine_get_vmport, pc_machine_set_vmport,
2974         NULL, NULL, &error_abort);
2975     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2976         "Enable vmport (pc & q35)", &error_abort);
2977 
2978     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2979         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2980 
2981     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2982         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2983 
2984     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2985         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2986 }
2987 
2988 static const TypeInfo pc_machine_info = {
2989     .name = TYPE_PC_MACHINE,
2990     .parent = TYPE_MACHINE,
2991     .abstract = true,
2992     .instance_size = sizeof(PCMachineState),
2993     .instance_init = pc_machine_initfn,
2994     .class_size = sizeof(PCMachineClass),
2995     .class_init = pc_machine_class_init,
2996     .interfaces = (InterfaceInfo[]) {
2997          { TYPE_HOTPLUG_HANDLER },
2998          { TYPE_NMI },
2999          { }
3000     },
3001 };
3002 
3003 static void pc_machine_register_types(void)
3004 {
3005     type_register_static(&pc_machine_info);
3006 }
3007 
3008 type_init(pc_machine_register_types)
3009