xref: /openbmc/qemu/hw/i386/pc.c (revision 12dc273e98e4e111880b25c12bf671dc8951b8e6)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/i386/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/cpu/icc_bus.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
72 
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...)                                       \
75     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
79 
80 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
81  * (128K) and other BIOS datastructures (less than 4K reported to be used at
82  * the moment, 32K should be enough for a while).  */
83 static unsigned acpi_data_size = 0x20000 + 0x8000;
84 void pc_set_legacy_acpi_data_size(void)
85 {
86     acpi_data_size = 0x10000;
87 }
88 
89 #define BIOS_CFG_IOPORT 0x510
90 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
91 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
92 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
93 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
94 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95 
96 #define E820_NR_ENTRIES		16
97 
98 struct e820_entry {
99     uint64_t address;
100     uint64_t length;
101     uint32_t type;
102 } QEMU_PACKED __attribute((__aligned__(4)));
103 
104 struct e820_table {
105     uint32_t count;
106     struct e820_entry entry[E820_NR_ENTRIES];
107 } QEMU_PACKED __attribute((__aligned__(4)));
108 
109 static struct e820_table e820_reserve;
110 static struct e820_entry *e820_table;
111 static unsigned e820_entries;
112 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113 
114 void gsi_handler(void *opaque, int n, int level)
115 {
116     GSIState *s = opaque;
117 
118     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
119     if (n < ISA_NUM_IRQS) {
120         qemu_set_irq(s->i8259_irq[n], level);
121     }
122     qemu_set_irq(s->ioapic_irq[n], level);
123 }
124 
125 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
126                            unsigned size)
127 {
128 }
129 
130 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
131 {
132     return 0xffffffffffffffffULL;
133 }
134 
135 /* MSDOS compatibility mode FPU exception support */
136 static qemu_irq ferr_irq;
137 
138 void pc_register_ferr_irq(qemu_irq irq)
139 {
140     ferr_irq = irq;
141 }
142 
143 /* XXX: add IGNNE support */
144 void cpu_set_ferr(CPUX86State *s)
145 {
146     qemu_irq_raise(ferr_irq);
147 }
148 
149 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
150                            unsigned size)
151 {
152     qemu_irq_lower(ferr_irq);
153 }
154 
155 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
156 {
157     return 0xffffffffffffffffULL;
158 }
159 
160 /* TSC handling */
161 uint64_t cpu_get_tsc(CPUX86State *env)
162 {
163     return cpu_get_ticks();
164 }
165 
166 /* IRQ handling */
167 int cpu_get_pic_interrupt(CPUX86State *env)
168 {
169     X86CPU *cpu = x86_env_get_cpu(env);
170     int intno;
171 
172     intno = apic_get_interrupt(cpu->apic_state);
173     if (intno >= 0) {
174         return intno;
175     }
176     /* read the irq from the PIC */
177     if (!apic_accept_pic_intr(cpu->apic_state)) {
178         return -1;
179     }
180 
181     intno = pic_read_irq(isa_pic);
182     return intno;
183 }
184 
185 static void pic_irq_request(void *opaque, int irq, int level)
186 {
187     CPUState *cs = first_cpu;
188     X86CPU *cpu = X86_CPU(cs);
189 
190     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191     if (cpu->apic_state) {
192         CPU_FOREACH(cs) {
193             cpu = X86_CPU(cs);
194             if (apic_accept_pic_intr(cpu->apic_state)) {
195                 apic_deliver_pic_intr(cpu->apic_state, level);
196             }
197         }
198     } else {
199         if (level) {
200             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201         } else {
202             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
203         }
204     }
205 }
206 
207 /* PC cmos mappings */
208 
209 #define REG_EQUIPMENT_BYTE          0x14
210 
211 static int cmos_get_fd_drive_type(FDriveType fd0)
212 {
213     int val;
214 
215     switch (fd0) {
216     case FDRIVE_DRV_144:
217         /* 1.44 Mb 3"5 drive */
218         val = 4;
219         break;
220     case FDRIVE_DRV_288:
221         /* 2.88 Mb 3"5 drive */
222         val = 5;
223         break;
224     case FDRIVE_DRV_120:
225         /* 1.2 Mb 5"5 drive */
226         val = 2;
227         break;
228     case FDRIVE_DRV_NONE:
229     default:
230         val = 0;
231         break;
232     }
233     return val;
234 }
235 
236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237                          int16_t cylinders, int8_t heads, int8_t sectors)
238 {
239     rtc_set_memory(s, type_ofs, 47);
240     rtc_set_memory(s, info_ofs, cylinders);
241     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242     rtc_set_memory(s, info_ofs + 2, heads);
243     rtc_set_memory(s, info_ofs + 3, 0xff);
244     rtc_set_memory(s, info_ofs + 4, 0xff);
245     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246     rtc_set_memory(s, info_ofs + 6, cylinders);
247     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248     rtc_set_memory(s, info_ofs + 8, sectors);
249 }
250 
251 /* convert boot_device letter to something recognizable by the bios */
252 static int boot_device2nibble(char boot_device)
253 {
254     switch(boot_device) {
255     case 'a':
256     case 'b':
257         return 0x01; /* floppy boot */
258     case 'c':
259         return 0x02; /* hard drive boot */
260     case 'd':
261         return 0x03; /* CD-ROM boot */
262     case 'n':
263         return 0x04; /* Network boot */
264     }
265     return 0;
266 }
267 
268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
269 {
270 #define PC_MAX_BOOT_DEVICES 3
271     int nbds, bds[3] = { 0, };
272     int i;
273 
274     nbds = strlen(boot_device);
275     if (nbds > PC_MAX_BOOT_DEVICES) {
276         error_setg(errp, "Too many boot devices for PC");
277         return;
278     }
279     for (i = 0; i < nbds; i++) {
280         bds[i] = boot_device2nibble(boot_device[i]);
281         if (bds[i] == 0) {
282             error_setg(errp, "Invalid boot device for PC: '%c'",
283                        boot_device[i]);
284             return;
285         }
286     }
287     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
289 }
290 
291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
292 {
293     set_boot_dev(opaque, boot_device, errp);
294 }
295 
296 typedef struct pc_cmos_init_late_arg {
297     ISADevice *rtc_state;
298     BusState *idebus[2];
299 } pc_cmos_init_late_arg;
300 
301 static void pc_cmos_init_late(void *opaque)
302 {
303     pc_cmos_init_late_arg *arg = opaque;
304     ISADevice *s = arg->rtc_state;
305     int16_t cylinders;
306     int8_t heads, sectors;
307     int val;
308     int i, trans;
309 
310     val = 0;
311     if (ide_get_geometry(arg->idebus[0], 0,
312                          &cylinders, &heads, &sectors) >= 0) {
313         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
314         val |= 0xf0;
315     }
316     if (ide_get_geometry(arg->idebus[0], 1,
317                          &cylinders, &heads, &sectors) >= 0) {
318         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
319         val |= 0x0f;
320     }
321     rtc_set_memory(s, 0x12, val);
322 
323     val = 0;
324     for (i = 0; i < 4; i++) {
325         /* NOTE: ide_get_geometry() returns the physical
326            geometry.  It is always such that: 1 <= sects <= 63, 1
327            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
328            geometry can be different if a translation is done. */
329         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
330                              &cylinders, &heads, &sectors) >= 0) {
331             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
332             assert((trans & ~3) == 0);
333             val |= trans << (i * 2);
334         }
335     }
336     rtc_set_memory(s, 0x39, val);
337 
338     qemu_unregister_reset(pc_cmos_init_late, opaque);
339 }
340 
341 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
342                   const char *boot_device, MachineState *machine,
343                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
344                   ISADevice *s)
345 {
346     int val, nb, i;
347     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
348     static pc_cmos_init_late_arg arg;
349     PCMachineState *pc_machine = PC_MACHINE(machine);
350     Error *local_err = NULL;
351 
352     /* various important CMOS locations needed by PC/Bochs bios */
353 
354     /* memory size */
355     /* base memory (first MiB) */
356     val = MIN(ram_size / 1024, 640);
357     rtc_set_memory(s, 0x15, val);
358     rtc_set_memory(s, 0x16, val >> 8);
359     /* extended memory (next 64MiB) */
360     if (ram_size > 1024 * 1024) {
361         val = (ram_size - 1024 * 1024) / 1024;
362     } else {
363         val = 0;
364     }
365     if (val > 65535)
366         val = 65535;
367     rtc_set_memory(s, 0x17, val);
368     rtc_set_memory(s, 0x18, val >> 8);
369     rtc_set_memory(s, 0x30, val);
370     rtc_set_memory(s, 0x31, val >> 8);
371     /* memory between 16MiB and 4GiB */
372     if (ram_size > 16 * 1024 * 1024) {
373         val = (ram_size - 16 * 1024 * 1024) / 65536;
374     } else {
375         val = 0;
376     }
377     if (val > 65535)
378         val = 65535;
379     rtc_set_memory(s, 0x34, val);
380     rtc_set_memory(s, 0x35, val >> 8);
381     /* memory above 4GiB */
382     val = above_4g_mem_size / 65536;
383     rtc_set_memory(s, 0x5b, val);
384     rtc_set_memory(s, 0x5c, val >> 8);
385     rtc_set_memory(s, 0x5d, val >> 16);
386 
387     /* set the number of CPU */
388     rtc_set_memory(s, 0x5f, smp_cpus - 1);
389 
390     object_property_add_link(OBJECT(machine), "rtc_state",
391                              TYPE_ISA_DEVICE,
392                              (Object **)&pc_machine->rtc,
393                              object_property_allow_set_link,
394                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
395     object_property_set_link(OBJECT(machine), OBJECT(s),
396                              "rtc_state", &error_abort);
397 
398     set_boot_dev(s, boot_device, &local_err);
399     if (local_err) {
400         error_report_err(local_err);
401         exit(1);
402     }
403 
404     /* floppy type */
405     if (floppy) {
406         for (i = 0; i < 2; i++) {
407             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
408         }
409     }
410     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
411         cmos_get_fd_drive_type(fd_type[1]);
412     rtc_set_memory(s, 0x10, val);
413 
414     val = 0;
415     nb = 0;
416     if (fd_type[0] < FDRIVE_DRV_NONE) {
417         nb++;
418     }
419     if (fd_type[1] < FDRIVE_DRV_NONE) {
420         nb++;
421     }
422     switch (nb) {
423     case 0:
424         break;
425     case 1:
426         val |= 0x01; /* 1 drive, ready for boot */
427         break;
428     case 2:
429         val |= 0x41; /* 2 drives, ready for boot */
430         break;
431     }
432     val |= 0x02; /* FPU is there */
433     val |= 0x04; /* PS/2 mouse installed */
434     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
435 
436     /* hard drives */
437     arg.rtc_state = s;
438     arg.idebus[0] = idebus0;
439     arg.idebus[1] = idebus1;
440     qemu_register_reset(pc_cmos_init_late, &arg);
441 }
442 
443 #define TYPE_PORT92 "port92"
444 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
445 
446 /* port 92 stuff: could be split off */
447 typedef struct Port92State {
448     ISADevice parent_obj;
449 
450     MemoryRegion io;
451     uint8_t outport;
452     qemu_irq *a20_out;
453 } Port92State;
454 
455 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
456                          unsigned size)
457 {
458     Port92State *s = opaque;
459     int oldval = s->outport;
460 
461     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
462     s->outport = val;
463     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
464     if ((val & 1) && !(oldval & 1)) {
465         qemu_system_reset_request();
466     }
467 }
468 
469 static uint64_t port92_read(void *opaque, hwaddr addr,
470                             unsigned size)
471 {
472     Port92State *s = opaque;
473     uint32_t ret;
474 
475     ret = s->outport;
476     DPRINTF("port92: read 0x%02x\n", ret);
477     return ret;
478 }
479 
480 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
481 {
482     Port92State *s = PORT92(dev);
483 
484     s->a20_out = a20_out;
485 }
486 
487 static const VMStateDescription vmstate_port92_isa = {
488     .name = "port92",
489     .version_id = 1,
490     .minimum_version_id = 1,
491     .fields = (VMStateField[]) {
492         VMSTATE_UINT8(outport, Port92State),
493         VMSTATE_END_OF_LIST()
494     }
495 };
496 
497 static void port92_reset(DeviceState *d)
498 {
499     Port92State *s = PORT92(d);
500 
501     s->outport &= ~1;
502 }
503 
504 static const MemoryRegionOps port92_ops = {
505     .read = port92_read,
506     .write = port92_write,
507     .impl = {
508         .min_access_size = 1,
509         .max_access_size = 1,
510     },
511     .endianness = DEVICE_LITTLE_ENDIAN,
512 };
513 
514 static void port92_initfn(Object *obj)
515 {
516     Port92State *s = PORT92(obj);
517 
518     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
519 
520     s->outport = 0;
521 }
522 
523 static void port92_realizefn(DeviceState *dev, Error **errp)
524 {
525     ISADevice *isadev = ISA_DEVICE(dev);
526     Port92State *s = PORT92(dev);
527 
528     isa_register_ioport(isadev, &s->io, 0x92);
529 }
530 
531 static void port92_class_initfn(ObjectClass *klass, void *data)
532 {
533     DeviceClass *dc = DEVICE_CLASS(klass);
534 
535     dc->realize = port92_realizefn;
536     dc->reset = port92_reset;
537     dc->vmsd = &vmstate_port92_isa;
538     /*
539      * Reason: unlike ordinary ISA devices, this one needs additional
540      * wiring: its A20 output line needs to be wired up by
541      * port92_init().
542      */
543     dc->cannot_instantiate_with_device_add_yet = true;
544 }
545 
546 static const TypeInfo port92_info = {
547     .name          = TYPE_PORT92,
548     .parent        = TYPE_ISA_DEVICE,
549     .instance_size = sizeof(Port92State),
550     .instance_init = port92_initfn,
551     .class_init    = port92_class_initfn,
552 };
553 
554 static void port92_register_types(void)
555 {
556     type_register_static(&port92_info);
557 }
558 
559 type_init(port92_register_types)
560 
561 static void handle_a20_line_change(void *opaque, int irq, int level)
562 {
563     X86CPU *cpu = opaque;
564 
565     /* XXX: send to all CPUs ? */
566     /* XXX: add logic to handle multiple A20 line sources */
567     x86_cpu_set_a20(cpu, level);
568 }
569 
570 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
571 {
572     int index = le32_to_cpu(e820_reserve.count);
573     struct e820_entry *entry;
574 
575     if (type != E820_RAM) {
576         /* old FW_CFG_E820_TABLE entry -- reservations only */
577         if (index >= E820_NR_ENTRIES) {
578             return -EBUSY;
579         }
580         entry = &e820_reserve.entry[index++];
581 
582         entry->address = cpu_to_le64(address);
583         entry->length = cpu_to_le64(length);
584         entry->type = cpu_to_le32(type);
585 
586         e820_reserve.count = cpu_to_le32(index);
587     }
588 
589     /* new "etc/e820" file -- include ram too */
590     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
591     e820_table[e820_entries].address = cpu_to_le64(address);
592     e820_table[e820_entries].length = cpu_to_le64(length);
593     e820_table[e820_entries].type = cpu_to_le32(type);
594     e820_entries++;
595 
596     return e820_entries;
597 }
598 
599 int e820_get_num_entries(void)
600 {
601     return e820_entries;
602 }
603 
604 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
605 {
606     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
607         *address = le64_to_cpu(e820_table[idx].address);
608         *length = le64_to_cpu(e820_table[idx].length);
609         return true;
610     }
611     return false;
612 }
613 
614 /* Enables contiguous-apic-ID mode, for compatibility */
615 static bool compat_apic_id_mode;
616 
617 void enable_compat_apic_id_mode(void)
618 {
619     compat_apic_id_mode = true;
620 }
621 
622 /* Calculates initial APIC ID for a specific CPU index
623  *
624  * Currently we need to be able to calculate the APIC ID from the CPU index
625  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
626  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
627  * all CPUs up to max_cpus.
628  */
629 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
630 {
631     uint32_t correct_id;
632     static bool warned;
633 
634     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
635     if (compat_apic_id_mode) {
636         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
637             error_report("APIC IDs set in compatibility mode, "
638                          "CPU topology won't match the configuration");
639             warned = true;
640         }
641         return cpu_index;
642     } else {
643         return correct_id;
644     }
645 }
646 
647 /* Calculates the limit to CPU APIC ID values
648  *
649  * This function returns the limit for the APIC ID value, so that all
650  * CPU APIC IDs are < pc_apic_id_limit().
651  *
652  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
653  */
654 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
655 {
656     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
657 }
658 
659 static FWCfgState *bochs_bios_init(void)
660 {
661     FWCfgState *fw_cfg;
662     uint8_t *smbios_tables, *smbios_anchor;
663     size_t smbios_tables_len, smbios_anchor_len;
664     uint64_t *numa_fw_cfg;
665     int i, j;
666     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
667 
668     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
669     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
670      *
671      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
672      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
673      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
674      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
675      * may see".
676      *
677      * So, this means we must not use max_cpus, here, but the maximum possible
678      * APIC ID value, plus one.
679      *
680      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
681      *     the APIC ID, not the "CPU index"
682      */
683     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
684     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
685     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
686                      acpi_tables, acpi_tables_len);
687     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
688 
689     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
690     if (smbios_tables) {
691         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
692                          smbios_tables, smbios_tables_len);
693     }
694 
695     smbios_get_tables(&smbios_tables, &smbios_tables_len,
696                       &smbios_anchor, &smbios_anchor_len);
697     if (smbios_anchor) {
698         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
699                         smbios_tables, smbios_tables_len);
700         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
701                         smbios_anchor, smbios_anchor_len);
702     }
703 
704     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
705                      &e820_reserve, sizeof(e820_reserve));
706     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
707                     sizeof(struct e820_entry) * e820_entries);
708 
709     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
710     /* allocate memory for the NUMA channel: one (64bit) word for the number
711      * of nodes, one word for each VCPU->node and one word for each node to
712      * hold the amount of memory.
713      */
714     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
715     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
716     for (i = 0; i < max_cpus; i++) {
717         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
718         assert(apic_id < apic_id_limit);
719         for (j = 0; j < nb_numa_nodes; j++) {
720             if (test_bit(i, numa_info[j].node_cpu)) {
721                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
722                 break;
723             }
724         }
725     }
726     for (i = 0; i < nb_numa_nodes; i++) {
727         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
728     }
729     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
730                      (1 + apic_id_limit + nb_numa_nodes) *
731                      sizeof(*numa_fw_cfg));
732 
733     return fw_cfg;
734 }
735 
736 static long get_file_size(FILE *f)
737 {
738     long where, size;
739 
740     /* XXX: on Unix systems, using fstat() probably makes more sense */
741 
742     where = ftell(f);
743     fseek(f, 0, SEEK_END);
744     size = ftell(f);
745     fseek(f, where, SEEK_SET);
746 
747     return size;
748 }
749 
750 static void load_linux(FWCfgState *fw_cfg,
751                        const char *kernel_filename,
752                        const char *initrd_filename,
753                        const char *kernel_cmdline,
754                        hwaddr max_ram_size)
755 {
756     uint16_t protocol;
757     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
758     uint32_t initrd_max;
759     uint8_t header[8192], *setup, *kernel, *initrd_data;
760     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
761     FILE *f;
762     char *vmode;
763 
764     /* Align to 16 bytes as a paranoia measure */
765     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
766 
767     /* load the kernel header */
768     f = fopen(kernel_filename, "rb");
769     if (!f || !(kernel_size = get_file_size(f)) ||
770         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
771         MIN(ARRAY_SIZE(header), kernel_size)) {
772         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
773                 kernel_filename, strerror(errno));
774         exit(1);
775     }
776 
777     /* kernel protocol version */
778 #if 0
779     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
780 #endif
781     if (ldl_p(header+0x202) == 0x53726448) {
782         protocol = lduw_p(header+0x206);
783     } else {
784         /* This looks like a multiboot kernel. If it is, let's stop
785            treating it like a Linux kernel. */
786         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
787                            kernel_cmdline, kernel_size, header)) {
788             return;
789         }
790         protocol = 0;
791     }
792 
793     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
794         /* Low kernel */
795         real_addr    = 0x90000;
796         cmdline_addr = 0x9a000 - cmdline_size;
797         prot_addr    = 0x10000;
798     } else if (protocol < 0x202) {
799         /* High but ancient kernel */
800         real_addr    = 0x90000;
801         cmdline_addr = 0x9a000 - cmdline_size;
802         prot_addr    = 0x100000;
803     } else {
804         /* High and recent kernel */
805         real_addr    = 0x10000;
806         cmdline_addr = 0x20000;
807         prot_addr    = 0x100000;
808     }
809 
810 #if 0
811     fprintf(stderr,
812             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
813             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
814             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
815             real_addr,
816             cmdline_addr,
817             prot_addr);
818 #endif
819 
820     /* highest address for loading the initrd */
821     if (protocol >= 0x203) {
822         initrd_max = ldl_p(header+0x22c);
823     } else {
824         initrd_max = 0x37ffffff;
825     }
826 
827     if (initrd_max >= max_ram_size - acpi_data_size) {
828         initrd_max = max_ram_size - acpi_data_size - 1;
829     }
830 
831     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
832     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
833     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
834 
835     if (protocol >= 0x202) {
836         stl_p(header+0x228, cmdline_addr);
837     } else {
838         stw_p(header+0x20, 0xA33F);
839         stw_p(header+0x22, cmdline_addr-real_addr);
840     }
841 
842     /* handle vga= parameter */
843     vmode = strstr(kernel_cmdline, "vga=");
844     if (vmode) {
845         unsigned int video_mode;
846         /* skip "vga=" */
847         vmode += 4;
848         if (!strncmp(vmode, "normal", 6)) {
849             video_mode = 0xffff;
850         } else if (!strncmp(vmode, "ext", 3)) {
851             video_mode = 0xfffe;
852         } else if (!strncmp(vmode, "ask", 3)) {
853             video_mode = 0xfffd;
854         } else {
855             video_mode = strtol(vmode, NULL, 0);
856         }
857         stw_p(header+0x1fa, video_mode);
858     }
859 
860     /* loader type */
861     /* High nybble = B reserved for QEMU; low nybble is revision number.
862        If this code is substantially changed, you may want to consider
863        incrementing the revision. */
864     if (protocol >= 0x200) {
865         header[0x210] = 0xB0;
866     }
867     /* heap */
868     if (protocol >= 0x201) {
869         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
870         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
871     }
872 
873     /* load initrd */
874     if (initrd_filename) {
875         if (protocol < 0x200) {
876             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
877             exit(1);
878         }
879 
880         initrd_size = get_image_size(initrd_filename);
881         if (initrd_size < 0) {
882             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
883                     initrd_filename, strerror(errno));
884             exit(1);
885         }
886 
887         initrd_addr = (initrd_max-initrd_size) & ~4095;
888 
889         initrd_data = g_malloc(initrd_size);
890         load_image(initrd_filename, initrd_data);
891 
892         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
893         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
894         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
895 
896         stl_p(header+0x218, initrd_addr);
897         stl_p(header+0x21c, initrd_size);
898     }
899 
900     /* load kernel and setup */
901     setup_size = header[0x1f1];
902     if (setup_size == 0) {
903         setup_size = 4;
904     }
905     setup_size = (setup_size+1)*512;
906     kernel_size -= setup_size;
907 
908     setup  = g_malloc(setup_size);
909     kernel = g_malloc(kernel_size);
910     fseek(f, 0, SEEK_SET);
911     if (fread(setup, 1, setup_size, f) != setup_size) {
912         fprintf(stderr, "fread() failed\n");
913         exit(1);
914     }
915     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
916         fprintf(stderr, "fread() failed\n");
917         exit(1);
918     }
919     fclose(f);
920     memcpy(setup, header, MIN(sizeof(header), setup_size));
921 
922     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
923     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
924     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
925 
926     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
927     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
928     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
929 
930     option_rom[nb_option_roms].name = "linuxboot.bin";
931     option_rom[nb_option_roms].bootindex = 0;
932     nb_option_roms++;
933 }
934 
935 #define NE2000_NB_MAX 6
936 
937 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
938                                               0x280, 0x380 };
939 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
940 
941 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
942 {
943     static int nb_ne2k = 0;
944 
945     if (nb_ne2k == NE2000_NB_MAX)
946         return;
947     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
948                     ne2000_irq[nb_ne2k], nd);
949     nb_ne2k++;
950 }
951 
952 DeviceState *cpu_get_current_apic(void)
953 {
954     if (current_cpu) {
955         X86CPU *cpu = X86_CPU(current_cpu);
956         return cpu->apic_state;
957     } else {
958         return NULL;
959     }
960 }
961 
962 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
963 {
964     X86CPU *cpu = opaque;
965 
966     if (level) {
967         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
968     }
969 }
970 
971 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
972                           DeviceState *icc_bridge, Error **errp)
973 {
974     X86CPU *cpu = NULL;
975     Error *local_err = NULL;
976 
977     if (icc_bridge == NULL) {
978         error_setg(&local_err, "Invalid icc-bridge value");
979         goto out;
980     }
981 
982     cpu = cpu_x86_create(cpu_model, &local_err);
983     if (local_err != NULL) {
984         goto out;
985     }
986 
987     qdev_set_parent_bus(DEVICE(cpu), qdev_get_child_bus(icc_bridge, "icc"));
988 
989     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
990     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
991 
992 out:
993     if (local_err) {
994         error_propagate(errp, local_err);
995         object_unref(OBJECT(cpu));
996         cpu = NULL;
997     }
998     return cpu;
999 }
1000 
1001 static const char *current_cpu_model;
1002 
1003 void pc_hot_add_cpu(const int64_t id, Error **errp)
1004 {
1005     DeviceState *icc_bridge;
1006     X86CPU *cpu;
1007     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1008     Error *local_err = NULL;
1009 
1010     if (id < 0) {
1011         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1012         return;
1013     }
1014 
1015     if (cpu_exists(apic_id)) {
1016         error_setg(errp, "Unable to add CPU: %" PRIi64
1017                    ", it already exists", id);
1018         return;
1019     }
1020 
1021     if (id >= max_cpus) {
1022         error_setg(errp, "Unable to add CPU: %" PRIi64
1023                    ", max allowed: %d", id, max_cpus - 1);
1024         return;
1025     }
1026 
1027     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1028         error_setg(errp, "Unable to add CPU: %" PRIi64
1029                    ", resulting APIC ID (%" PRIi64 ") is too large",
1030                    id, apic_id);
1031         return;
1032     }
1033 
1034     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1035                                                  TYPE_ICC_BRIDGE, NULL));
1036     cpu = pc_new_cpu(current_cpu_model, apic_id, icc_bridge, &local_err);
1037     if (local_err) {
1038         error_propagate(errp, local_err);
1039         return;
1040     }
1041     object_unref(OBJECT(cpu));
1042 }
1043 
1044 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1045 {
1046     int i;
1047     X86CPU *cpu = NULL;
1048     Error *error = NULL;
1049     unsigned long apic_id_limit;
1050 
1051     /* init CPUs */
1052     if (cpu_model == NULL) {
1053 #ifdef TARGET_X86_64
1054         cpu_model = "qemu64";
1055 #else
1056         cpu_model = "qemu32";
1057 #endif
1058     }
1059     current_cpu_model = cpu_model;
1060 
1061     apic_id_limit = pc_apic_id_limit(max_cpus);
1062     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1063         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1064                      apic_id_limit - 1);
1065         exit(1);
1066     }
1067 
1068     for (i = 0; i < smp_cpus; i++) {
1069         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1070                          icc_bridge, &error);
1071         if (error) {
1072             error_report_err(error);
1073             exit(1);
1074         }
1075         object_unref(OBJECT(cpu));
1076     }
1077 
1078     /* map APIC MMIO area if CPU has APIC */
1079     if (cpu && cpu->apic_state) {
1080         /* XXX: what if the base changes? */
1081         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1082                                 APIC_DEFAULT_ADDRESS, 0x1000);
1083     }
1084 
1085     /* tell smbios about cpuid version and features */
1086     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1087 }
1088 
1089 /* pci-info ROM file. Little endian format */
1090 typedef struct PcRomPciInfo {
1091     uint64_t w32_min;
1092     uint64_t w32_max;
1093     uint64_t w64_min;
1094     uint64_t w64_max;
1095 } PcRomPciInfo;
1096 
1097 typedef struct PcGuestInfoState {
1098     PcGuestInfo info;
1099     Notifier machine_done;
1100 } PcGuestInfoState;
1101 
1102 static
1103 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1104 {
1105     PcGuestInfoState *guest_info_state = container_of(notifier,
1106                                                       PcGuestInfoState,
1107                                                       machine_done);
1108     PCIBus *bus = find_i440fx();
1109 
1110     if (bus) {
1111         int extra_hosts = 0;
1112 
1113         QLIST_FOREACH(bus, &bus->child, sibling) {
1114             /* look for expander root buses */
1115             if (pci_bus_is_root(bus)) {
1116                 extra_hosts++;
1117             }
1118         }
1119         if (extra_hosts && guest_info_state->info.fw_cfg) {
1120             uint64_t *val = g_malloc(sizeof(*val));
1121             *val = cpu_to_le64(extra_hosts);
1122             fw_cfg_add_file(guest_info_state->info.fw_cfg,
1123                     "etc/extra-pci-roots", val, sizeof(*val));
1124         }
1125     }
1126 
1127     acpi_setup(&guest_info_state->info);
1128 }
1129 
1130 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1131                                 ram_addr_t above_4g_mem_size)
1132 {
1133     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1134     PcGuestInfo *guest_info = &guest_info_state->info;
1135     int i, j;
1136 
1137     guest_info->ram_size_below_4g = below_4g_mem_size;
1138     guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1139     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1140     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1141     guest_info->numa_nodes = nb_numa_nodes;
1142     guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1143                                     sizeof *guest_info->node_mem);
1144     for (i = 0; i < nb_numa_nodes; i++) {
1145         guest_info->node_mem[i] = numa_info[i].node_mem;
1146     }
1147 
1148     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1149                                      sizeof *guest_info->node_cpu);
1150 
1151     for (i = 0; i < max_cpus; i++) {
1152         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1153         assert(apic_id < guest_info->apic_id_limit);
1154         for (j = 0; j < nb_numa_nodes; j++) {
1155             if (test_bit(i, numa_info[j].node_cpu)) {
1156                 guest_info->node_cpu[apic_id] = j;
1157                 break;
1158             }
1159         }
1160     }
1161 
1162     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1163     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1164     return guest_info;
1165 }
1166 
1167 /* setup pci memory address space mapping into system address space */
1168 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1169                             MemoryRegion *pci_address_space)
1170 {
1171     /* Set to lower priority than RAM */
1172     memory_region_add_subregion_overlap(system_memory, 0x0,
1173                                         pci_address_space, -1);
1174 }
1175 
1176 void pc_acpi_init(const char *default_dsdt)
1177 {
1178     char *filename;
1179 
1180     if (acpi_tables != NULL) {
1181         /* manually set via -acpitable, leave it alone */
1182         return;
1183     }
1184 
1185     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1186     if (filename == NULL) {
1187         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1188     } else {
1189         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1190                                           &error_abort);
1191         Error *err = NULL;
1192 
1193         qemu_opt_set(opts, "file", filename, &error_abort);
1194 
1195         acpi_table_add_builtin(opts, &err);
1196         if (err) {
1197             error_report("WARNING: failed to load %s: %s", filename,
1198                          error_get_pretty(err));
1199             error_free(err);
1200         }
1201         g_free(filename);
1202     }
1203 }
1204 
1205 FWCfgState *xen_load_linux(const char *kernel_filename,
1206                            const char *kernel_cmdline,
1207                            const char *initrd_filename,
1208                            ram_addr_t below_4g_mem_size,
1209                            PcGuestInfo *guest_info)
1210 {
1211     int i;
1212     FWCfgState *fw_cfg;
1213 
1214     assert(kernel_filename != NULL);
1215 
1216     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1217     rom_set_fw(fw_cfg);
1218 
1219     load_linux(fw_cfg, kernel_filename, initrd_filename,
1220                kernel_cmdline, below_4g_mem_size);
1221     for (i = 0; i < nb_option_roms; i++) {
1222         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1223                !strcmp(option_rom[i].name, "multiboot.bin"));
1224         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1225     }
1226     guest_info->fw_cfg = fw_cfg;
1227     return fw_cfg;
1228 }
1229 
1230 FWCfgState *pc_memory_init(MachineState *machine,
1231                            MemoryRegion *system_memory,
1232                            ram_addr_t below_4g_mem_size,
1233                            ram_addr_t above_4g_mem_size,
1234                            MemoryRegion *rom_memory,
1235                            MemoryRegion **ram_memory,
1236                            PcGuestInfo *guest_info)
1237 {
1238     int linux_boot, i;
1239     MemoryRegion *ram, *option_rom_mr;
1240     MemoryRegion *ram_below_4g, *ram_above_4g;
1241     FWCfgState *fw_cfg;
1242     PCMachineState *pcms = PC_MACHINE(machine);
1243 
1244     assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1245 
1246     linux_boot = (machine->kernel_filename != NULL);
1247 
1248     /* Allocate RAM.  We allocate it as a single memory region and use
1249      * aliases to address portions of it, mostly for backwards compatibility
1250      * with older qemus that used qemu_ram_alloc().
1251      */
1252     ram = g_malloc(sizeof(*ram));
1253     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1254                                          machine->ram_size);
1255     *ram_memory = ram;
1256     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1257     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1258                              0, below_4g_mem_size);
1259     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1260     e820_add_entry(0, below_4g_mem_size, E820_RAM);
1261     if (above_4g_mem_size > 0) {
1262         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1263         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1264                                  below_4g_mem_size, above_4g_mem_size);
1265         memory_region_add_subregion(system_memory, 0x100000000ULL,
1266                                     ram_above_4g);
1267         e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1268     }
1269 
1270     if (!guest_info->has_reserved_memory &&
1271         (machine->ram_slots ||
1272          (machine->maxram_size > machine->ram_size))) {
1273         MachineClass *mc = MACHINE_GET_CLASS(machine);
1274 
1275         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1276                      mc->name);
1277         exit(EXIT_FAILURE);
1278     }
1279 
1280     /* initialize hotplug memory address space */
1281     if (guest_info->has_reserved_memory &&
1282         (machine->ram_size < machine->maxram_size)) {
1283         ram_addr_t hotplug_mem_size =
1284             machine->maxram_size - machine->ram_size;
1285 
1286         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1287             error_report("unsupported amount of memory slots: %"PRIu64,
1288                          machine->ram_slots);
1289             exit(EXIT_FAILURE);
1290         }
1291 
1292         if (QEMU_ALIGN_UP(machine->maxram_size,
1293                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1294             error_report("maximum memory size must by aligned to multiple of "
1295                          "%d bytes", TARGET_PAGE_SIZE);
1296             exit(EXIT_FAILURE);
1297         }
1298 
1299         pcms->hotplug_memory.base =
1300             ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1301 
1302         if (pcms->enforce_aligned_dimm) {
1303             /* size hotplug region assuming 1G page max alignment per slot */
1304             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1305         }
1306 
1307         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1308             hotplug_mem_size) {
1309             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1310                          machine->maxram_size);
1311             exit(EXIT_FAILURE);
1312         }
1313 
1314         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1315                            "hotplug-memory", hotplug_mem_size);
1316         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1317                                     &pcms->hotplug_memory.mr);
1318     }
1319 
1320     /* Initialize PC system firmware */
1321     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1322 
1323     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1324     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1325                            &error_abort);
1326     vmstate_register_ram_global(option_rom_mr);
1327     memory_region_add_subregion_overlap(rom_memory,
1328                                         PC_ROM_MIN_VGA,
1329                                         option_rom_mr,
1330                                         1);
1331 
1332     fw_cfg = bochs_bios_init();
1333     rom_set_fw(fw_cfg);
1334 
1335     if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1336         uint64_t *val = g_malloc(sizeof(*val));
1337         *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory.base, 0x1ULL << 30));
1338         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1339     }
1340 
1341     if (linux_boot) {
1342         load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1343                    machine->kernel_cmdline, below_4g_mem_size);
1344     }
1345 
1346     for (i = 0; i < nb_option_roms; i++) {
1347         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1348     }
1349     guest_info->fw_cfg = fw_cfg;
1350     return fw_cfg;
1351 }
1352 
1353 qemu_irq pc_allocate_cpu_irq(void)
1354 {
1355     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1356 }
1357 
1358 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1359 {
1360     DeviceState *dev = NULL;
1361 
1362     if (pci_bus) {
1363         PCIDevice *pcidev = pci_vga_init(pci_bus);
1364         dev = pcidev ? &pcidev->qdev : NULL;
1365     } else if (isa_bus) {
1366         ISADevice *isadev = isa_vga_init(isa_bus);
1367         dev = isadev ? DEVICE(isadev) : NULL;
1368     }
1369     return dev;
1370 }
1371 
1372 static void cpu_request_exit(void *opaque, int irq, int level)
1373 {
1374     CPUState *cpu = current_cpu;
1375 
1376     if (cpu && level) {
1377         cpu_exit(cpu);
1378     }
1379 }
1380 
1381 static const MemoryRegionOps ioport80_io_ops = {
1382     .write = ioport80_write,
1383     .read = ioport80_read,
1384     .endianness = DEVICE_NATIVE_ENDIAN,
1385     .impl = {
1386         .min_access_size = 1,
1387         .max_access_size = 1,
1388     },
1389 };
1390 
1391 static const MemoryRegionOps ioportF0_io_ops = {
1392     .write = ioportF0_write,
1393     .read = ioportF0_read,
1394     .endianness = DEVICE_NATIVE_ENDIAN,
1395     .impl = {
1396         .min_access_size = 1,
1397         .max_access_size = 1,
1398     },
1399 };
1400 
1401 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1402                           ISADevice **rtc_state,
1403                           bool create_fdctrl,
1404                           ISADevice **floppy,
1405                           bool no_vmport,
1406                           uint32 hpet_irqs)
1407 {
1408     int i;
1409     DriveInfo *fd[MAX_FD];
1410     DeviceState *hpet = NULL;
1411     int pit_isa_irq = 0;
1412     qemu_irq pit_alt_irq = NULL;
1413     qemu_irq rtc_irq = NULL;
1414     qemu_irq *a20_line;
1415     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1416     qemu_irq *cpu_exit_irq;
1417     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1418     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1419 
1420     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1421     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1422 
1423     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1424     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1425 
1426     /*
1427      * Check if an HPET shall be created.
1428      *
1429      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1430      * when the HPET wants to take over. Thus we have to disable the latter.
1431      */
1432     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1433         /* In order to set property, here not using sysbus_try_create_simple */
1434         hpet = qdev_try_create(NULL, TYPE_HPET);
1435         if (hpet) {
1436             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1437              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1438              * IRQ8 and IRQ2.
1439              */
1440             uint8_t compat = object_property_get_int(OBJECT(hpet),
1441                     HPET_INTCAP, NULL);
1442             if (!compat) {
1443                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1444             }
1445             qdev_init_nofail(hpet);
1446             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1447 
1448             for (i = 0; i < GSI_NUM_PINS; i++) {
1449                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1450             }
1451             pit_isa_irq = -1;
1452             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1453             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1454         }
1455     }
1456     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1457 
1458     qemu_register_boot_set(pc_boot_set, *rtc_state);
1459 
1460     if (!xen_enabled()) {
1461         if (kvm_irqchip_in_kernel()) {
1462             pit = kvm_pit_init(isa_bus, 0x40);
1463         } else {
1464             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1465         }
1466         if (hpet) {
1467             /* connect PIT to output control line of the HPET */
1468             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1469         }
1470         pcspk_init(isa_bus, pit);
1471     }
1472 
1473     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1474     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1475 
1476     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1477     i8042 = isa_create_simple(isa_bus, "i8042");
1478     i8042_setup_a20_line(i8042, &a20_line[0]);
1479     if (!no_vmport) {
1480         vmport_init(isa_bus);
1481         vmmouse = isa_try_create(isa_bus, "vmmouse");
1482     } else {
1483         vmmouse = NULL;
1484     }
1485     if (vmmouse) {
1486         DeviceState *dev = DEVICE(vmmouse);
1487         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1488         qdev_init_nofail(dev);
1489     }
1490     port92 = isa_create_simple(isa_bus, "port92");
1491     port92_init(port92, &a20_line[1]);
1492 
1493     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1494     DMA_init(0, cpu_exit_irq);
1495 
1496     for(i = 0; i < MAX_FD; i++) {
1497         fd[i] = drive_get(IF_FLOPPY, 0, i);
1498         create_fdctrl |= !!fd[i];
1499     }
1500     *floppy = create_fdctrl ? fdctrl_init_isa(isa_bus, fd) : NULL;
1501 }
1502 
1503 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1504 {
1505     int i;
1506 
1507     for (i = 0; i < nb_nics; i++) {
1508         NICInfo *nd = &nd_table[i];
1509 
1510         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1511             pc_init_ne2k_isa(isa_bus, nd);
1512         } else {
1513             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1514         }
1515     }
1516 }
1517 
1518 void pc_pci_device_init(PCIBus *pci_bus)
1519 {
1520     int max_bus;
1521     int bus;
1522 
1523     max_bus = drive_get_max_bus(IF_SCSI);
1524     for (bus = 0; bus <= max_bus; bus++) {
1525         pci_create_simple(pci_bus, -1, "lsi53c895a");
1526     }
1527 }
1528 
1529 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1530 {
1531     DeviceState *dev;
1532     SysBusDevice *d;
1533     unsigned int i;
1534 
1535     if (kvm_irqchip_in_kernel()) {
1536         dev = qdev_create(NULL, "kvm-ioapic");
1537     } else {
1538         dev = qdev_create(NULL, "ioapic");
1539     }
1540     if (parent_name) {
1541         object_property_add_child(object_resolve_path(parent_name, NULL),
1542                                   "ioapic", OBJECT(dev), NULL);
1543     }
1544     qdev_init_nofail(dev);
1545     d = SYS_BUS_DEVICE(dev);
1546     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1547 
1548     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1549         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1550     }
1551 }
1552 
1553 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1554                          DeviceState *dev, Error **errp)
1555 {
1556     HotplugHandlerClass *hhc;
1557     Error *local_err = NULL;
1558     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1559     PCDIMMDevice *dimm = PC_DIMM(dev);
1560     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1561     MemoryRegion *mr = ddc->get_memory_region(dimm);
1562     uint64_t align = TARGET_PAGE_SIZE;
1563 
1564     if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1565         align = memory_region_get_alignment(mr);
1566     }
1567 
1568     if (!pcms->acpi_dev) {
1569         error_setg(&local_err,
1570                    "memory hotplug is not enabled: missing acpi device");
1571         goto out;
1572     }
1573 
1574     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1575     if (local_err) {
1576         goto out;
1577     }
1578 
1579     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1580     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1581 out:
1582     error_propagate(errp, local_err);
1583 }
1584 
1585 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1586                                    DeviceState *dev, Error **errp)
1587 {
1588     HotplugHandlerClass *hhc;
1589     Error *local_err = NULL;
1590     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1591 
1592     if (!pcms->acpi_dev) {
1593         error_setg(&local_err,
1594                    "memory hotplug is not enabled: missing acpi device");
1595         goto out;
1596     }
1597 
1598     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1599     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1600 
1601 out:
1602     error_propagate(errp, local_err);
1603 }
1604 
1605 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1606                            DeviceState *dev, Error **errp)
1607 {
1608     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1609     PCDIMMDevice *dimm = PC_DIMM(dev);
1610     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1611     MemoryRegion *mr = ddc->get_memory_region(dimm);
1612     HotplugHandlerClass *hhc;
1613     Error *local_err = NULL;
1614 
1615     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1616     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1617 
1618     if (local_err) {
1619         goto out;
1620     }
1621 
1622     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1623     object_unparent(OBJECT(dev));
1624 
1625  out:
1626     error_propagate(errp, local_err);
1627 }
1628 
1629 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1630                         DeviceState *dev, Error **errp)
1631 {
1632     HotplugHandlerClass *hhc;
1633     Error *local_err = NULL;
1634     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1635 
1636     if (!dev->hotplugged) {
1637         goto out;
1638     }
1639 
1640     if (!pcms->acpi_dev) {
1641         error_setg(&local_err,
1642                    "cpu hotplug is not enabled: missing acpi device");
1643         goto out;
1644     }
1645 
1646     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1647     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1648     if (local_err) {
1649         goto out;
1650     }
1651 
1652     /* increment the number of CPUs */
1653     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1654 out:
1655     error_propagate(errp, local_err);
1656 }
1657 
1658 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1659                                       DeviceState *dev, Error **errp)
1660 {
1661     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1662         pc_dimm_plug(hotplug_dev, dev, errp);
1663     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1664         pc_cpu_plug(hotplug_dev, dev, errp);
1665     }
1666 }
1667 
1668 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1669                                                 DeviceState *dev, Error **errp)
1670 {
1671     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1672         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1673     } else {
1674         error_setg(errp, "acpi: device unplug request for not supported device"
1675                    " type: %s", object_get_typename(OBJECT(dev)));
1676     }
1677 }
1678 
1679 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1680                                         DeviceState *dev, Error **errp)
1681 {
1682     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1683         pc_dimm_unplug(hotplug_dev, dev, errp);
1684     } else {
1685         error_setg(errp, "acpi: device unplug for not supported device"
1686                    " type: %s", object_get_typename(OBJECT(dev)));
1687     }
1688 }
1689 
1690 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1691                                              DeviceState *dev)
1692 {
1693     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1694 
1695     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1696         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1697         return HOTPLUG_HANDLER(machine);
1698     }
1699 
1700     return pcmc->get_hotplug_handler ?
1701         pcmc->get_hotplug_handler(machine, dev) : NULL;
1702 }
1703 
1704 static void
1705 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1706                                           const char *name, Error **errp)
1707 {
1708     PCMachineState *pcms = PC_MACHINE(obj);
1709     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1710 
1711     visit_type_int(v, &value, name, errp);
1712 }
1713 
1714 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1715                                          void *opaque, const char *name,
1716                                          Error **errp)
1717 {
1718     PCMachineState *pcms = PC_MACHINE(obj);
1719     uint64_t value = pcms->max_ram_below_4g;
1720 
1721     visit_type_size(v, &value, name, errp);
1722 }
1723 
1724 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1725                                          void *opaque, const char *name,
1726                                          Error **errp)
1727 {
1728     PCMachineState *pcms = PC_MACHINE(obj);
1729     Error *error = NULL;
1730     uint64_t value;
1731 
1732     visit_type_size(v, &value, name, &error);
1733     if (error) {
1734         error_propagate(errp, error);
1735         return;
1736     }
1737     if (value > (1ULL << 32)) {
1738         error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1739                   "Machine option 'max-ram-below-4g=%"PRIu64
1740                   "' expects size less than or equal to 4G", value);
1741         error_propagate(errp, error);
1742         return;
1743     }
1744 
1745     if (value < (1ULL << 20)) {
1746         error_report("Warning: small max_ram_below_4g(%"PRIu64
1747                      ") less than 1M.  BIOS may not work..",
1748                      value);
1749     }
1750 
1751     pcms->max_ram_below_4g = value;
1752 }
1753 
1754 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1755                                   const char *name, Error **errp)
1756 {
1757     PCMachineState *pcms = PC_MACHINE(obj);
1758     OnOffAuto vmport = pcms->vmport;
1759 
1760     visit_type_OnOffAuto(v, &vmport, name, errp);
1761 }
1762 
1763 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1764                                   const char *name, Error **errp)
1765 {
1766     PCMachineState *pcms = PC_MACHINE(obj);
1767 
1768     visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1769 }
1770 
1771 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1772 {
1773     PCMachineState *pcms = PC_MACHINE(obj);
1774 
1775     return pcms->enforce_aligned_dimm;
1776 }
1777 
1778 static void pc_machine_initfn(Object *obj)
1779 {
1780     PCMachineState *pcms = PC_MACHINE(obj);
1781 
1782     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1783                         pc_machine_get_hotplug_memory_region_size,
1784                         NULL, NULL, NULL, NULL);
1785 
1786     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1787     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1788                         pc_machine_get_max_ram_below_4g,
1789                         pc_machine_set_max_ram_below_4g,
1790                         NULL, NULL, NULL);
1791     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1792                                     "Maximum ram below the 4G boundary (32bit boundary)",
1793                                     NULL);
1794 
1795     pcms->vmport = ON_OFF_AUTO_AUTO;
1796     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1797                         pc_machine_get_vmport,
1798                         pc_machine_set_vmport,
1799                         NULL, NULL, NULL);
1800     object_property_set_description(obj, PC_MACHINE_VMPORT,
1801                                     "Enable vmport (pc & q35)",
1802                                     NULL);
1803 
1804     pcms->enforce_aligned_dimm = true;
1805     object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1806                              pc_machine_get_aligned_dimm,
1807                              NULL, NULL);
1808 }
1809 
1810 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1811 {
1812     unsigned pkg_id, core_id, smt_id;
1813     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1814                           &pkg_id, &core_id, &smt_id);
1815     return pkg_id;
1816 }
1817 
1818 static void pc_machine_class_init(ObjectClass *oc, void *data)
1819 {
1820     MachineClass *mc = MACHINE_CLASS(oc);
1821     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1822     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1823 
1824     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1825     mc->get_hotplug_handler = pc_get_hotpug_handler;
1826     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1827     hc->plug = pc_machine_device_plug_cb;
1828     hc->unplug_request = pc_machine_device_unplug_request_cb;
1829     hc->unplug = pc_machine_device_unplug_cb;
1830 }
1831 
1832 static const TypeInfo pc_machine_info = {
1833     .name = TYPE_PC_MACHINE,
1834     .parent = TYPE_MACHINE,
1835     .abstract = true,
1836     .instance_size = sizeof(PCMachineState),
1837     .instance_init = pc_machine_initfn,
1838     .class_size = sizeof(PCMachineClass),
1839     .class_init = pc_machine_class_init,
1840     .interfaces = (InterfaceInfo[]) {
1841          { TYPE_HOTPLUG_HANDLER },
1842          { }
1843     },
1844 };
1845 
1846 static void pc_machine_register_types(void)
1847 {
1848     type_register_static(&pc_machine_info);
1849 }
1850 
1851 type_init(pc_machine_register_types)
1852