xref: /openbmc/qemu/hw/i386/pc.c (revision 12a6c15e)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 #include "hw/i386/intel_iommu.h"
72 
73 /* debug PC/ISA interrupts */
74 //#define DEBUG_IRQ
75 
76 #ifdef DEBUG_IRQ
77 #define DPRINTF(fmt, ...)                                       \
78     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...)
81 #endif
82 
83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88 
89 #define E820_NR_ENTRIES		16
90 
91 struct e820_entry {
92     uint64_t address;
93     uint64_t length;
94     uint32_t type;
95 } QEMU_PACKED __attribute((__aligned__(4)));
96 
97 struct e820_table {
98     uint32_t count;
99     struct e820_entry entry[E820_NR_ENTRIES];
100 } QEMU_PACKED __attribute((__aligned__(4)));
101 
102 static struct e820_table e820_reserve;
103 static struct e820_entry *e820_table;
104 static unsigned e820_entries;
105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106 
107 void gsi_handler(void *opaque, int n, int level)
108 {
109     GSIState *s = opaque;
110 
111     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
112     if (n < ISA_NUM_IRQS) {
113         qemu_set_irq(s->i8259_irq[n], level);
114     }
115     qemu_set_irq(s->ioapic_irq[n], level);
116 }
117 
118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
119                            unsigned size)
120 {
121 }
122 
123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 {
125     return 0xffffffffffffffffULL;
126 }
127 
128 /* MSDOS compatibility mode FPU exception support */
129 static qemu_irq ferr_irq;
130 
131 void pc_register_ferr_irq(qemu_irq irq)
132 {
133     ferr_irq = irq;
134 }
135 
136 /* XXX: add IGNNE support */
137 void cpu_set_ferr(CPUX86State *s)
138 {
139     qemu_irq_raise(ferr_irq);
140 }
141 
142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
143                            unsigned size)
144 {
145     qemu_irq_lower(ferr_irq);
146 }
147 
148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 {
150     return 0xffffffffffffffffULL;
151 }
152 
153 /* TSC handling */
154 uint64_t cpu_get_tsc(CPUX86State *env)
155 {
156     return cpu_get_ticks();
157 }
158 
159 /* IRQ handling */
160 int cpu_get_pic_interrupt(CPUX86State *env)
161 {
162     X86CPU *cpu = x86_env_get_cpu(env);
163     int intno;
164 
165     if (!kvm_irqchip_in_kernel()) {
166         intno = apic_get_interrupt(cpu->apic_state);
167         if (intno >= 0) {
168             return intno;
169         }
170         /* read the irq from the PIC */
171         if (!apic_accept_pic_intr(cpu->apic_state)) {
172             return -1;
173         }
174     }
175 
176     intno = pic_read_irq(isa_pic);
177     return intno;
178 }
179 
180 static void pic_irq_request(void *opaque, int irq, int level)
181 {
182     CPUState *cs = first_cpu;
183     X86CPU *cpu = X86_CPU(cs);
184 
185     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
186     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
187         CPU_FOREACH(cs) {
188             cpu = X86_CPU(cs);
189             if (apic_accept_pic_intr(cpu->apic_state)) {
190                 apic_deliver_pic_intr(cpu->apic_state, level);
191             }
192         }
193     } else {
194         if (level) {
195             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
196         } else {
197             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
198         }
199     }
200 }
201 
202 /* PC cmos mappings */
203 
204 #define REG_EQUIPMENT_BYTE          0x14
205 
206 int cmos_get_fd_drive_type(FloppyDriveType fd0)
207 {
208     int val;
209 
210     switch (fd0) {
211     case FLOPPY_DRIVE_TYPE_144:
212         /* 1.44 Mb 3"5 drive */
213         val = 4;
214         break;
215     case FLOPPY_DRIVE_TYPE_288:
216         /* 2.88 Mb 3"5 drive */
217         val = 5;
218         break;
219     case FLOPPY_DRIVE_TYPE_120:
220         /* 1.2 Mb 5"5 drive */
221         val = 2;
222         break;
223     case FLOPPY_DRIVE_TYPE_NONE:
224     default:
225         val = 0;
226         break;
227     }
228     return val;
229 }
230 
231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
232                          int16_t cylinders, int8_t heads, int8_t sectors)
233 {
234     rtc_set_memory(s, type_ofs, 47);
235     rtc_set_memory(s, info_ofs, cylinders);
236     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
237     rtc_set_memory(s, info_ofs + 2, heads);
238     rtc_set_memory(s, info_ofs + 3, 0xff);
239     rtc_set_memory(s, info_ofs + 4, 0xff);
240     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
241     rtc_set_memory(s, info_ofs + 6, cylinders);
242     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
243     rtc_set_memory(s, info_ofs + 8, sectors);
244 }
245 
246 /* convert boot_device letter to something recognizable by the bios */
247 static int boot_device2nibble(char boot_device)
248 {
249     switch(boot_device) {
250     case 'a':
251     case 'b':
252         return 0x01; /* floppy boot */
253     case 'c':
254         return 0x02; /* hard drive boot */
255     case 'd':
256         return 0x03; /* CD-ROM boot */
257     case 'n':
258         return 0x04; /* Network boot */
259     }
260     return 0;
261 }
262 
263 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
264 {
265 #define PC_MAX_BOOT_DEVICES 3
266     int nbds, bds[3] = { 0, };
267     int i;
268 
269     nbds = strlen(boot_device);
270     if (nbds > PC_MAX_BOOT_DEVICES) {
271         error_setg(errp, "Too many boot devices for PC");
272         return;
273     }
274     for (i = 0; i < nbds; i++) {
275         bds[i] = boot_device2nibble(boot_device[i]);
276         if (bds[i] == 0) {
277             error_setg(errp, "Invalid boot device for PC: '%c'",
278                        boot_device[i]);
279             return;
280         }
281     }
282     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
283     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
284 }
285 
286 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
287 {
288     set_boot_dev(opaque, boot_device, errp);
289 }
290 
291 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
292 {
293     int val, nb, i;
294     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
295                                    FLOPPY_DRIVE_TYPE_NONE };
296 
297     /* floppy type */
298     if (floppy) {
299         for (i = 0; i < 2; i++) {
300             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
301         }
302     }
303     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
304         cmos_get_fd_drive_type(fd_type[1]);
305     rtc_set_memory(rtc_state, 0x10, val);
306 
307     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
308     nb = 0;
309     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
310         nb++;
311     }
312     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
313         nb++;
314     }
315     switch (nb) {
316     case 0:
317         break;
318     case 1:
319         val |= 0x01; /* 1 drive, ready for boot */
320         break;
321     case 2:
322         val |= 0x41; /* 2 drives, ready for boot */
323         break;
324     }
325     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
326 }
327 
328 typedef struct pc_cmos_init_late_arg {
329     ISADevice *rtc_state;
330     BusState *idebus[2];
331 } pc_cmos_init_late_arg;
332 
333 typedef struct check_fdc_state {
334     ISADevice *floppy;
335     bool multiple;
336 } CheckFdcState;
337 
338 static int check_fdc(Object *obj, void *opaque)
339 {
340     CheckFdcState *state = opaque;
341     Object *fdc;
342     uint32_t iobase;
343     Error *local_err = NULL;
344 
345     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
346     if (!fdc) {
347         return 0;
348     }
349 
350     iobase = object_property_get_uint(obj, "iobase", &local_err);
351     if (local_err || iobase != 0x3f0) {
352         error_free(local_err);
353         return 0;
354     }
355 
356     if (state->floppy) {
357         state->multiple = true;
358     } else {
359         state->floppy = ISA_DEVICE(obj);
360     }
361     return 0;
362 }
363 
364 static const char * const fdc_container_path[] = {
365     "/unattached", "/peripheral", "/peripheral-anon"
366 };
367 
368 /*
369  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
370  * and ACPI objects.
371  */
372 ISADevice *pc_find_fdc0(void)
373 {
374     int i;
375     Object *container;
376     CheckFdcState state = { 0 };
377 
378     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
379         container = container_get(qdev_get_machine(), fdc_container_path[i]);
380         object_child_foreach(container, check_fdc, &state);
381     }
382 
383     if (state.multiple) {
384         warn_report("multiple floppy disk controllers with "
385                     "iobase=0x3f0 have been found");
386         error_printf("the one being picked for CMOS setup might not reflect "
387                      "your intent\n");
388     }
389 
390     return state.floppy;
391 }
392 
393 static void pc_cmos_init_late(void *opaque)
394 {
395     pc_cmos_init_late_arg *arg = opaque;
396     ISADevice *s = arg->rtc_state;
397     int16_t cylinders;
398     int8_t heads, sectors;
399     int val;
400     int i, trans;
401 
402     val = 0;
403     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
404                                            &cylinders, &heads, &sectors) >= 0) {
405         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
406         val |= 0xf0;
407     }
408     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
409                                            &cylinders, &heads, &sectors) >= 0) {
410         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
411         val |= 0x0f;
412     }
413     rtc_set_memory(s, 0x12, val);
414 
415     val = 0;
416     for (i = 0; i < 4; i++) {
417         /* NOTE: ide_get_geometry() returns the physical
418            geometry.  It is always such that: 1 <= sects <= 63, 1
419            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
420            geometry can be different if a translation is done. */
421         if (arg->idebus[i / 2] &&
422             ide_get_geometry(arg->idebus[i / 2], i % 2,
423                              &cylinders, &heads, &sectors) >= 0) {
424             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
425             assert((trans & ~3) == 0);
426             val |= trans << (i * 2);
427         }
428     }
429     rtc_set_memory(s, 0x39, val);
430 
431     pc_cmos_init_floppy(s, pc_find_fdc0());
432 
433     qemu_unregister_reset(pc_cmos_init_late, opaque);
434 }
435 
436 void pc_cmos_init(PCMachineState *pcms,
437                   BusState *idebus0, BusState *idebus1,
438                   ISADevice *s)
439 {
440     int val;
441     static pc_cmos_init_late_arg arg;
442 
443     /* various important CMOS locations needed by PC/Bochs bios */
444 
445     /* memory size */
446     /* base memory (first MiB) */
447     val = MIN(pcms->below_4g_mem_size / 1024, 640);
448     rtc_set_memory(s, 0x15, val);
449     rtc_set_memory(s, 0x16, val >> 8);
450     /* extended memory (next 64MiB) */
451     if (pcms->below_4g_mem_size > 1024 * 1024) {
452         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
453     } else {
454         val = 0;
455     }
456     if (val > 65535)
457         val = 65535;
458     rtc_set_memory(s, 0x17, val);
459     rtc_set_memory(s, 0x18, val >> 8);
460     rtc_set_memory(s, 0x30, val);
461     rtc_set_memory(s, 0x31, val >> 8);
462     /* memory between 16MiB and 4GiB */
463     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
464         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
465     } else {
466         val = 0;
467     }
468     if (val > 65535)
469         val = 65535;
470     rtc_set_memory(s, 0x34, val);
471     rtc_set_memory(s, 0x35, val >> 8);
472     /* memory above 4GiB */
473     val = pcms->above_4g_mem_size / 65536;
474     rtc_set_memory(s, 0x5b, val);
475     rtc_set_memory(s, 0x5c, val >> 8);
476     rtc_set_memory(s, 0x5d, val >> 16);
477 
478     object_property_add_link(OBJECT(pcms), "rtc_state",
479                              TYPE_ISA_DEVICE,
480                              (Object **)&pcms->rtc,
481                              object_property_allow_set_link,
482                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
483     object_property_set_link(OBJECT(pcms), OBJECT(s),
484                              "rtc_state", &error_abort);
485 
486     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
487 
488     val = 0;
489     val |= 0x02; /* FPU is there */
490     val |= 0x04; /* PS/2 mouse installed */
491     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
492 
493     /* hard drives and FDC */
494     arg.rtc_state = s;
495     arg.idebus[0] = idebus0;
496     arg.idebus[1] = idebus1;
497     qemu_register_reset(pc_cmos_init_late, &arg);
498 }
499 
500 #define TYPE_PORT92 "port92"
501 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
502 
503 /* port 92 stuff: could be split off */
504 typedef struct Port92State {
505     ISADevice parent_obj;
506 
507     MemoryRegion io;
508     uint8_t outport;
509     qemu_irq a20_out;
510 } Port92State;
511 
512 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
513                          unsigned size)
514 {
515     Port92State *s = opaque;
516     int oldval = s->outport;
517 
518     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
519     s->outport = val;
520     qemu_set_irq(s->a20_out, (val >> 1) & 1);
521     if ((val & 1) && !(oldval & 1)) {
522         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
523     }
524 }
525 
526 static uint64_t port92_read(void *opaque, hwaddr addr,
527                             unsigned size)
528 {
529     Port92State *s = opaque;
530     uint32_t ret;
531 
532     ret = s->outport;
533     DPRINTF("port92: read 0x%02x\n", ret);
534     return ret;
535 }
536 
537 static void port92_init(ISADevice *dev, qemu_irq a20_out)
538 {
539     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
540 }
541 
542 static const VMStateDescription vmstate_port92_isa = {
543     .name = "port92",
544     .version_id = 1,
545     .minimum_version_id = 1,
546     .fields = (VMStateField[]) {
547         VMSTATE_UINT8(outport, Port92State),
548         VMSTATE_END_OF_LIST()
549     }
550 };
551 
552 static void port92_reset(DeviceState *d)
553 {
554     Port92State *s = PORT92(d);
555 
556     s->outport &= ~1;
557 }
558 
559 static const MemoryRegionOps port92_ops = {
560     .read = port92_read,
561     .write = port92_write,
562     .impl = {
563         .min_access_size = 1,
564         .max_access_size = 1,
565     },
566     .endianness = DEVICE_LITTLE_ENDIAN,
567 };
568 
569 static void port92_initfn(Object *obj)
570 {
571     Port92State *s = PORT92(obj);
572 
573     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
574 
575     s->outport = 0;
576 
577     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
578 }
579 
580 static void port92_realizefn(DeviceState *dev, Error **errp)
581 {
582     ISADevice *isadev = ISA_DEVICE(dev);
583     Port92State *s = PORT92(dev);
584 
585     isa_register_ioport(isadev, &s->io, 0x92);
586 }
587 
588 static void port92_class_initfn(ObjectClass *klass, void *data)
589 {
590     DeviceClass *dc = DEVICE_CLASS(klass);
591 
592     dc->realize = port92_realizefn;
593     dc->reset = port92_reset;
594     dc->vmsd = &vmstate_port92_isa;
595     /*
596      * Reason: unlike ordinary ISA devices, this one needs additional
597      * wiring: its A20 output line needs to be wired up by
598      * port92_init().
599      */
600     dc->user_creatable = false;
601 }
602 
603 static const TypeInfo port92_info = {
604     .name          = TYPE_PORT92,
605     .parent        = TYPE_ISA_DEVICE,
606     .instance_size = sizeof(Port92State),
607     .instance_init = port92_initfn,
608     .class_init    = port92_class_initfn,
609 };
610 
611 static void port92_register_types(void)
612 {
613     type_register_static(&port92_info);
614 }
615 
616 type_init(port92_register_types)
617 
618 static void handle_a20_line_change(void *opaque, int irq, int level)
619 {
620     X86CPU *cpu = opaque;
621 
622     /* XXX: send to all CPUs ? */
623     /* XXX: add logic to handle multiple A20 line sources */
624     x86_cpu_set_a20(cpu, level);
625 }
626 
627 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
628 {
629     int index = le32_to_cpu(e820_reserve.count);
630     struct e820_entry *entry;
631 
632     if (type != E820_RAM) {
633         /* old FW_CFG_E820_TABLE entry -- reservations only */
634         if (index >= E820_NR_ENTRIES) {
635             return -EBUSY;
636         }
637         entry = &e820_reserve.entry[index++];
638 
639         entry->address = cpu_to_le64(address);
640         entry->length = cpu_to_le64(length);
641         entry->type = cpu_to_le32(type);
642 
643         e820_reserve.count = cpu_to_le32(index);
644     }
645 
646     /* new "etc/e820" file -- include ram too */
647     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
648     e820_table[e820_entries].address = cpu_to_le64(address);
649     e820_table[e820_entries].length = cpu_to_le64(length);
650     e820_table[e820_entries].type = cpu_to_le32(type);
651     e820_entries++;
652 
653     return e820_entries;
654 }
655 
656 int e820_get_num_entries(void)
657 {
658     return e820_entries;
659 }
660 
661 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
662 {
663     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
664         *address = le64_to_cpu(e820_table[idx].address);
665         *length = le64_to_cpu(e820_table[idx].length);
666         return true;
667     }
668     return false;
669 }
670 
671 /* Enables contiguous-apic-ID mode, for compatibility */
672 static bool compat_apic_id_mode;
673 
674 void enable_compat_apic_id_mode(void)
675 {
676     compat_apic_id_mode = true;
677 }
678 
679 /* Calculates initial APIC ID for a specific CPU index
680  *
681  * Currently we need to be able to calculate the APIC ID from the CPU index
682  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
683  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
684  * all CPUs up to max_cpus.
685  */
686 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
687 {
688     uint32_t correct_id;
689     static bool warned;
690 
691     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
692     if (compat_apic_id_mode) {
693         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
694             error_report("APIC IDs set in compatibility mode, "
695                          "CPU topology won't match the configuration");
696             warned = true;
697         }
698         return cpu_index;
699     } else {
700         return correct_id;
701     }
702 }
703 
704 static void pc_build_smbios(PCMachineState *pcms)
705 {
706     uint8_t *smbios_tables, *smbios_anchor;
707     size_t smbios_tables_len, smbios_anchor_len;
708     struct smbios_phys_mem_area *mem_array;
709     unsigned i, array_count;
710     MachineState *ms = MACHINE(pcms);
711     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
712 
713     /* tell smbios about cpuid version and features */
714     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
715 
716     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
717     if (smbios_tables) {
718         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
719                          smbios_tables, smbios_tables_len);
720     }
721 
722     /* build the array of physical mem area from e820 table */
723     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
724     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
725         uint64_t addr, len;
726 
727         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
728             mem_array[array_count].address = addr;
729             mem_array[array_count].length = len;
730             array_count++;
731         }
732     }
733     smbios_get_tables(mem_array, array_count,
734                       &smbios_tables, &smbios_tables_len,
735                       &smbios_anchor, &smbios_anchor_len);
736     g_free(mem_array);
737 
738     if (smbios_anchor) {
739         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
740                         smbios_tables, smbios_tables_len);
741         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
742                         smbios_anchor, smbios_anchor_len);
743     }
744 }
745 
746 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
747 {
748     FWCfgState *fw_cfg;
749     uint64_t *numa_fw_cfg;
750     int i;
751     const CPUArchIdList *cpus;
752     MachineClass *mc = MACHINE_GET_CLASS(pcms);
753 
754     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
755     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
756 
757     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
758      *
759      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
760      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
761      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
762      * for CPU hotplug also uses APIC ID and not "CPU index".
763      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
764      * but the "limit to the APIC ID values SeaBIOS may see".
765      *
766      * So for compatibility reasons with old BIOSes we are stuck with
767      * "etc/max-cpus" actually being apic_id_limit
768      */
769     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
770     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
771     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
772                      acpi_tables, acpi_tables_len);
773     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
774 
775     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
776                      &e820_reserve, sizeof(e820_reserve));
777     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
778                     sizeof(struct e820_entry) * e820_entries);
779 
780     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
781     /* allocate memory for the NUMA channel: one (64bit) word for the number
782      * of nodes, one word for each VCPU->node and one word for each node to
783      * hold the amount of memory.
784      */
785     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
786     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
787     cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
788     for (i = 0; i < cpus->len; i++) {
789         unsigned int apic_id = cpus->cpus[i].arch_id;
790         assert(apic_id < pcms->apic_id_limit);
791         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
792     }
793     for (i = 0; i < nb_numa_nodes; i++) {
794         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
795             cpu_to_le64(numa_info[i].node_mem);
796     }
797     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
798                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
799                      sizeof(*numa_fw_cfg));
800 
801     return fw_cfg;
802 }
803 
804 static long get_file_size(FILE *f)
805 {
806     long where, size;
807 
808     /* XXX: on Unix systems, using fstat() probably makes more sense */
809 
810     where = ftell(f);
811     fseek(f, 0, SEEK_END);
812     size = ftell(f);
813     fseek(f, where, SEEK_SET);
814 
815     return size;
816 }
817 
818 /* setup_data types */
819 #define SETUP_NONE     0
820 #define SETUP_E820_EXT 1
821 #define SETUP_DTB      2
822 #define SETUP_PCI      3
823 #define SETUP_EFI      4
824 
825 struct setup_data {
826     uint64_t next;
827     uint32_t type;
828     uint32_t len;
829     uint8_t data[0];
830 } __attribute__((packed));
831 
832 static void load_linux(PCMachineState *pcms,
833                        FWCfgState *fw_cfg)
834 {
835     uint16_t protocol;
836     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
837     int dtb_size, setup_data_offset;
838     uint32_t initrd_max;
839     uint8_t header[8192], *setup, *kernel, *initrd_data;
840     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
841     FILE *f;
842     char *vmode;
843     MachineState *machine = MACHINE(pcms);
844     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
845     struct setup_data *setup_data;
846     const char *kernel_filename = machine->kernel_filename;
847     const char *initrd_filename = machine->initrd_filename;
848     const char *dtb_filename = machine->dtb;
849     const char *kernel_cmdline = machine->kernel_cmdline;
850 
851     /* Align to 16 bytes as a paranoia measure */
852     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
853 
854     /* load the kernel header */
855     f = fopen(kernel_filename, "rb");
856     if (!f || !(kernel_size = get_file_size(f)) ||
857         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
858         MIN(ARRAY_SIZE(header), kernel_size)) {
859         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
860                 kernel_filename, strerror(errno));
861         exit(1);
862     }
863 
864     /* kernel protocol version */
865 #if 0
866     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
867 #endif
868     if (ldl_p(header+0x202) == 0x53726448) {
869         protocol = lduw_p(header+0x206);
870     } else {
871         /* This looks like a multiboot kernel. If it is, let's stop
872            treating it like a Linux kernel. */
873         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
874                            kernel_cmdline, kernel_size, header)) {
875             return;
876         }
877         protocol = 0;
878     }
879 
880     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
881         /* Low kernel */
882         real_addr    = 0x90000;
883         cmdline_addr = 0x9a000 - cmdline_size;
884         prot_addr    = 0x10000;
885     } else if (protocol < 0x202) {
886         /* High but ancient kernel */
887         real_addr    = 0x90000;
888         cmdline_addr = 0x9a000 - cmdline_size;
889         prot_addr    = 0x100000;
890     } else {
891         /* High and recent kernel */
892         real_addr    = 0x10000;
893         cmdline_addr = 0x20000;
894         prot_addr    = 0x100000;
895     }
896 
897 #if 0
898     fprintf(stderr,
899             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
900             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
901             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
902             real_addr,
903             cmdline_addr,
904             prot_addr);
905 #endif
906 
907     /* highest address for loading the initrd */
908     if (protocol >= 0x203) {
909         initrd_max = ldl_p(header+0x22c);
910     } else {
911         initrd_max = 0x37ffffff;
912     }
913 
914     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
915         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
916     }
917 
918     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
919     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
920     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
921 
922     if (protocol >= 0x202) {
923         stl_p(header+0x228, cmdline_addr);
924     } else {
925         stw_p(header+0x20, 0xA33F);
926         stw_p(header+0x22, cmdline_addr-real_addr);
927     }
928 
929     /* handle vga= parameter */
930     vmode = strstr(kernel_cmdline, "vga=");
931     if (vmode) {
932         unsigned int video_mode;
933         /* skip "vga=" */
934         vmode += 4;
935         if (!strncmp(vmode, "normal", 6)) {
936             video_mode = 0xffff;
937         } else if (!strncmp(vmode, "ext", 3)) {
938             video_mode = 0xfffe;
939         } else if (!strncmp(vmode, "ask", 3)) {
940             video_mode = 0xfffd;
941         } else {
942             video_mode = strtol(vmode, NULL, 0);
943         }
944         stw_p(header+0x1fa, video_mode);
945     }
946 
947     /* loader type */
948     /* High nybble = B reserved for QEMU; low nybble is revision number.
949        If this code is substantially changed, you may want to consider
950        incrementing the revision. */
951     if (protocol >= 0x200) {
952         header[0x210] = 0xB0;
953     }
954     /* heap */
955     if (protocol >= 0x201) {
956         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
957         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
958     }
959 
960     /* load initrd */
961     if (initrd_filename) {
962         if (protocol < 0x200) {
963             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
964             exit(1);
965         }
966 
967         initrd_size = get_image_size(initrd_filename);
968         if (initrd_size < 0) {
969             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
970                     initrd_filename, strerror(errno));
971             exit(1);
972         }
973 
974         initrd_addr = (initrd_max-initrd_size) & ~4095;
975 
976         initrd_data = g_malloc(initrd_size);
977         load_image(initrd_filename, initrd_data);
978 
979         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
980         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
981         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
982 
983         stl_p(header+0x218, initrd_addr);
984         stl_p(header+0x21c, initrd_size);
985     }
986 
987     /* load kernel and setup */
988     setup_size = header[0x1f1];
989     if (setup_size == 0) {
990         setup_size = 4;
991     }
992     setup_size = (setup_size+1)*512;
993     if (setup_size > kernel_size) {
994         fprintf(stderr, "qemu: invalid kernel header\n");
995         exit(1);
996     }
997     kernel_size -= setup_size;
998 
999     setup  = g_malloc(setup_size);
1000     kernel = g_malloc(kernel_size);
1001     fseek(f, 0, SEEK_SET);
1002     if (fread(setup, 1, setup_size, f) != setup_size) {
1003         fprintf(stderr, "fread() failed\n");
1004         exit(1);
1005     }
1006     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1007         fprintf(stderr, "fread() failed\n");
1008         exit(1);
1009     }
1010     fclose(f);
1011 
1012     /* append dtb to kernel */
1013     if (dtb_filename) {
1014         if (protocol < 0x209) {
1015             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1016             exit(1);
1017         }
1018 
1019         dtb_size = get_image_size(dtb_filename);
1020         if (dtb_size <= 0) {
1021             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1022                     dtb_filename, strerror(errno));
1023             exit(1);
1024         }
1025 
1026         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1027         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1028         kernel = g_realloc(kernel, kernel_size);
1029 
1030         stq_p(header+0x250, prot_addr + setup_data_offset);
1031 
1032         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1033         setup_data->next = 0;
1034         setup_data->type = cpu_to_le32(SETUP_DTB);
1035         setup_data->len = cpu_to_le32(dtb_size);
1036 
1037         load_image_size(dtb_filename, setup_data->data, dtb_size);
1038     }
1039 
1040     memcpy(setup, header, MIN(sizeof(header), setup_size));
1041 
1042     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1043     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1044     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1045 
1046     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1047     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1048     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1049 
1050     option_rom[nb_option_roms].bootindex = 0;
1051     option_rom[nb_option_roms].name = "linuxboot.bin";
1052     if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1053         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1054     }
1055     nb_option_roms++;
1056 }
1057 
1058 #define NE2000_NB_MAX 6
1059 
1060 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1061                                               0x280, 0x380 };
1062 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1063 
1064 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1065 {
1066     static int nb_ne2k = 0;
1067 
1068     if (nb_ne2k == NE2000_NB_MAX)
1069         return;
1070     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1071                     ne2000_irq[nb_ne2k], nd);
1072     nb_ne2k++;
1073 }
1074 
1075 DeviceState *cpu_get_current_apic(void)
1076 {
1077     if (current_cpu) {
1078         X86CPU *cpu = X86_CPU(current_cpu);
1079         return cpu->apic_state;
1080     } else {
1081         return NULL;
1082     }
1083 }
1084 
1085 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1086 {
1087     X86CPU *cpu = opaque;
1088 
1089     if (level) {
1090         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1091     }
1092 }
1093 
1094 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1095 {
1096     Object *cpu = NULL;
1097     Error *local_err = NULL;
1098 
1099     cpu = object_new(typename);
1100 
1101     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1102     object_property_set_bool(cpu, true, "realized", &local_err);
1103 
1104     object_unref(cpu);
1105     error_propagate(errp, local_err);
1106 }
1107 
1108 void pc_hot_add_cpu(const int64_t id, Error **errp)
1109 {
1110     ObjectClass *oc;
1111     MachineState *ms = MACHINE(qdev_get_machine());
1112     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1113     Error *local_err = NULL;
1114 
1115     if (id < 0) {
1116         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1117         return;
1118     }
1119 
1120     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1121         error_setg(errp, "Unable to add CPU: %" PRIi64
1122                    ", resulting APIC ID (%" PRIi64 ") is too large",
1123                    id, apic_id);
1124         return;
1125     }
1126 
1127     assert(ms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1128     oc = OBJECT_CLASS(CPU_GET_CLASS(ms->possible_cpus->cpus[0].cpu));
1129     pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1130     if (local_err) {
1131         error_propagate(errp, local_err);
1132         return;
1133     }
1134 }
1135 
1136 void pc_cpus_init(PCMachineState *pcms)
1137 {
1138     int i;
1139     CPUClass *cc;
1140     ObjectClass *oc;
1141     const char *typename;
1142     gchar **model_pieces;
1143     const CPUArchIdList *possible_cpus;
1144     MachineState *machine = MACHINE(pcms);
1145     MachineClass *mc = MACHINE_GET_CLASS(pcms);
1146 
1147     /* init CPUs */
1148     if (machine->cpu_model == NULL) {
1149 #ifdef TARGET_X86_64
1150         machine->cpu_model = "qemu64";
1151 #else
1152         machine->cpu_model = "qemu32";
1153 #endif
1154     }
1155 
1156     model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1157     if (!model_pieces[0]) {
1158         error_report("Invalid/empty CPU model name");
1159         exit(1);
1160     }
1161 
1162     oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1163     if (oc == NULL) {
1164         error_report("Unable to find CPU definition: %s", model_pieces[0]);
1165         exit(1);
1166     }
1167     typename = object_class_get_name(oc);
1168     cc = CPU_CLASS(oc);
1169     cc->parse_features(typename, model_pieces[1], &error_fatal);
1170     g_strfreev(model_pieces);
1171 
1172     /* Calculates the limit to CPU APIC ID values
1173      *
1174      * Limit for the APIC ID value, so that all
1175      * CPU APIC IDs are < pcms->apic_id_limit.
1176      *
1177      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1178      */
1179     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1180     possible_cpus = mc->possible_cpu_arch_ids(machine);
1181     for (i = 0; i < smp_cpus; i++) {
1182         pc_new_cpu(typename, possible_cpus->cpus[i].arch_id, &error_fatal);
1183     }
1184 }
1185 
1186 static void pc_build_feature_control_file(PCMachineState *pcms)
1187 {
1188     MachineState *ms = MACHINE(pcms);
1189     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1190     CPUX86State *env = &cpu->env;
1191     uint32_t unused, ecx, edx;
1192     uint64_t feature_control_bits = 0;
1193     uint64_t *val;
1194 
1195     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1196     if (ecx & CPUID_EXT_VMX) {
1197         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1198     }
1199 
1200     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1201         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1202         (env->mcg_cap & MCG_LMCE_P)) {
1203         feature_control_bits |= FEATURE_CONTROL_LMCE;
1204     }
1205 
1206     if (!feature_control_bits) {
1207         return;
1208     }
1209 
1210     val = g_malloc(sizeof(*val));
1211     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1212     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1213 }
1214 
1215 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1216 {
1217     if (cpus_count > 0xff) {
1218         /* If the number of CPUs can't be represented in 8 bits, the
1219          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1220          * to make old BIOSes fail more predictably.
1221          */
1222         rtc_set_memory(rtc, 0x5f, 0);
1223     } else {
1224         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1225     }
1226 }
1227 
1228 static
1229 void pc_machine_done(Notifier *notifier, void *data)
1230 {
1231     PCMachineState *pcms = container_of(notifier,
1232                                         PCMachineState, machine_done);
1233     PCIBus *bus = pcms->bus;
1234 
1235     /* set the number of CPUs */
1236     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1237 
1238     if (bus) {
1239         int extra_hosts = 0;
1240 
1241         QLIST_FOREACH(bus, &bus->child, sibling) {
1242             /* look for expander root buses */
1243             if (pci_bus_is_root(bus)) {
1244                 extra_hosts++;
1245             }
1246         }
1247         if (extra_hosts && pcms->fw_cfg) {
1248             uint64_t *val = g_malloc(sizeof(*val));
1249             *val = cpu_to_le64(extra_hosts);
1250             fw_cfg_add_file(pcms->fw_cfg,
1251                     "etc/extra-pci-roots", val, sizeof(*val));
1252         }
1253     }
1254 
1255     acpi_setup();
1256     if (pcms->fw_cfg) {
1257         pc_build_smbios(pcms);
1258         pc_build_feature_control_file(pcms);
1259         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1260         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1261     }
1262 
1263     if (pcms->apic_id_limit > 255) {
1264         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1265 
1266         if (!iommu || !iommu->x86_iommu.intr_supported ||
1267             iommu->intr_eim != ON_OFF_AUTO_ON) {
1268             error_report("current -smp configuration requires "
1269                          "Extended Interrupt Mode enabled. "
1270                          "You can add an IOMMU using: "
1271                          "-device intel-iommu,intremap=on,eim=on");
1272             exit(EXIT_FAILURE);
1273         }
1274     }
1275 }
1276 
1277 void pc_guest_info_init(PCMachineState *pcms)
1278 {
1279     int i;
1280 
1281     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1282     pcms->numa_nodes = nb_numa_nodes;
1283     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1284                                     sizeof *pcms->node_mem);
1285     for (i = 0; i < nb_numa_nodes; i++) {
1286         pcms->node_mem[i] = numa_info[i].node_mem;
1287     }
1288 
1289     pcms->machine_done.notify = pc_machine_done;
1290     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1291 }
1292 
1293 /* setup pci memory address space mapping into system address space */
1294 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1295                             MemoryRegion *pci_address_space)
1296 {
1297     /* Set to lower priority than RAM */
1298     memory_region_add_subregion_overlap(system_memory, 0x0,
1299                                         pci_address_space, -1);
1300 }
1301 
1302 void pc_acpi_init(const char *default_dsdt)
1303 {
1304     char *filename;
1305 
1306     if (acpi_tables != NULL) {
1307         /* manually set via -acpitable, leave it alone */
1308         return;
1309     }
1310 
1311     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1312     if (filename == NULL) {
1313         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1314     } else {
1315         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1316                                           &error_abort);
1317         Error *err = NULL;
1318 
1319         qemu_opt_set(opts, "file", filename, &error_abort);
1320 
1321         acpi_table_add_builtin(opts, &err);
1322         if (err) {
1323             warn_reportf_err(err, "failed to load %s: ", filename);
1324         }
1325         g_free(filename);
1326     }
1327 }
1328 
1329 void xen_load_linux(PCMachineState *pcms)
1330 {
1331     int i;
1332     FWCfgState *fw_cfg;
1333 
1334     assert(MACHINE(pcms)->kernel_filename != NULL);
1335 
1336     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1337     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1338     rom_set_fw(fw_cfg);
1339 
1340     load_linux(pcms, fw_cfg);
1341     for (i = 0; i < nb_option_roms; i++) {
1342         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1343                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1344                !strcmp(option_rom[i].name, "multiboot.bin"));
1345         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1346     }
1347     pcms->fw_cfg = fw_cfg;
1348 }
1349 
1350 void pc_memory_init(PCMachineState *pcms,
1351                     MemoryRegion *system_memory,
1352                     MemoryRegion *rom_memory,
1353                     MemoryRegion **ram_memory)
1354 {
1355     int linux_boot, i;
1356     MemoryRegion *ram, *option_rom_mr;
1357     MemoryRegion *ram_below_4g, *ram_above_4g;
1358     FWCfgState *fw_cfg;
1359     MachineState *machine = MACHINE(pcms);
1360     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1361 
1362     assert(machine->ram_size == pcms->below_4g_mem_size +
1363                                 pcms->above_4g_mem_size);
1364 
1365     linux_boot = (machine->kernel_filename != NULL);
1366 
1367     /* Allocate RAM.  We allocate it as a single memory region and use
1368      * aliases to address portions of it, mostly for backwards compatibility
1369      * with older qemus that used qemu_ram_alloc().
1370      */
1371     ram = g_malloc(sizeof(*ram));
1372     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1373                                          machine->ram_size);
1374     *ram_memory = ram;
1375     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1376     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1377                              0, pcms->below_4g_mem_size);
1378     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1379     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1380     if (pcms->above_4g_mem_size > 0) {
1381         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1382         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1383                                  pcms->below_4g_mem_size,
1384                                  pcms->above_4g_mem_size);
1385         memory_region_add_subregion(system_memory, 0x100000000ULL,
1386                                     ram_above_4g);
1387         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1388     }
1389 
1390     if (!pcmc->has_reserved_memory &&
1391         (machine->ram_slots ||
1392          (machine->maxram_size > machine->ram_size))) {
1393         MachineClass *mc = MACHINE_GET_CLASS(machine);
1394 
1395         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1396                      mc->name);
1397         exit(EXIT_FAILURE);
1398     }
1399 
1400     /* initialize hotplug memory address space */
1401     if (pcmc->has_reserved_memory &&
1402         (machine->ram_size < machine->maxram_size)) {
1403         ram_addr_t hotplug_mem_size =
1404             machine->maxram_size - machine->ram_size;
1405 
1406         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1407             error_report("unsupported amount of memory slots: %"PRIu64,
1408                          machine->ram_slots);
1409             exit(EXIT_FAILURE);
1410         }
1411 
1412         if (QEMU_ALIGN_UP(machine->maxram_size,
1413                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1414             error_report("maximum memory size must by aligned to multiple of "
1415                          "%d bytes", TARGET_PAGE_SIZE);
1416             exit(EXIT_FAILURE);
1417         }
1418 
1419         pcms->hotplug_memory.base =
1420             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1421 
1422         if (pcmc->enforce_aligned_dimm) {
1423             /* size hotplug region assuming 1G page max alignment per slot */
1424             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1425         }
1426 
1427         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1428             hotplug_mem_size) {
1429             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1430                          machine->maxram_size);
1431             exit(EXIT_FAILURE);
1432         }
1433 
1434         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1435                            "hotplug-memory", hotplug_mem_size);
1436         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1437                                     &pcms->hotplug_memory.mr);
1438     }
1439 
1440     /* Initialize PC system firmware */
1441     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1442 
1443     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1444     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1445                            &error_fatal);
1446     if (pcmc->pci_enabled) {
1447         memory_region_set_readonly(option_rom_mr, true);
1448     }
1449     memory_region_add_subregion_overlap(rom_memory,
1450                                         PC_ROM_MIN_VGA,
1451                                         option_rom_mr,
1452                                         1);
1453 
1454     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1455 
1456     rom_set_fw(fw_cfg);
1457 
1458     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1459         uint64_t *val = g_malloc(sizeof(*val));
1460         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1461         uint64_t res_mem_end = pcms->hotplug_memory.base;
1462 
1463         if (!pcmc->broken_reserved_end) {
1464             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1465         }
1466         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1467         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1468     }
1469 
1470     if (linux_boot) {
1471         load_linux(pcms, fw_cfg);
1472     }
1473 
1474     for (i = 0; i < nb_option_roms; i++) {
1475         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1476     }
1477     pcms->fw_cfg = fw_cfg;
1478 
1479     /* Init default IOAPIC address space */
1480     pcms->ioapic_as = &address_space_memory;
1481 }
1482 
1483 qemu_irq pc_allocate_cpu_irq(void)
1484 {
1485     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1486 }
1487 
1488 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1489 {
1490     DeviceState *dev = NULL;
1491 
1492     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1493     if (pci_bus) {
1494         PCIDevice *pcidev = pci_vga_init(pci_bus);
1495         dev = pcidev ? &pcidev->qdev : NULL;
1496     } else if (isa_bus) {
1497         ISADevice *isadev = isa_vga_init(isa_bus);
1498         dev = isadev ? DEVICE(isadev) : NULL;
1499     }
1500     rom_reset_order_override();
1501     return dev;
1502 }
1503 
1504 static const MemoryRegionOps ioport80_io_ops = {
1505     .write = ioport80_write,
1506     .read = ioport80_read,
1507     .endianness = DEVICE_NATIVE_ENDIAN,
1508     .impl = {
1509         .min_access_size = 1,
1510         .max_access_size = 1,
1511     },
1512 };
1513 
1514 static const MemoryRegionOps ioportF0_io_ops = {
1515     .write = ioportF0_write,
1516     .read = ioportF0_read,
1517     .endianness = DEVICE_NATIVE_ENDIAN,
1518     .impl = {
1519         .min_access_size = 1,
1520         .max_access_size = 1,
1521     },
1522 };
1523 
1524 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1525                           ISADevice **rtc_state,
1526                           bool create_fdctrl,
1527                           bool no_vmport,
1528                           bool has_pit,
1529                           uint32_t hpet_irqs)
1530 {
1531     int i;
1532     DriveInfo *fd[MAX_FD];
1533     DeviceState *hpet = NULL;
1534     int pit_isa_irq = 0;
1535     qemu_irq pit_alt_irq = NULL;
1536     qemu_irq rtc_irq = NULL;
1537     qemu_irq *a20_line;
1538     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1539     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1540     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1541 
1542     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1543     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1544 
1545     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1546     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1547 
1548     /*
1549      * Check if an HPET shall be created.
1550      *
1551      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1552      * when the HPET wants to take over. Thus we have to disable the latter.
1553      */
1554     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1555         /* In order to set property, here not using sysbus_try_create_simple */
1556         hpet = qdev_try_create(NULL, TYPE_HPET);
1557         if (hpet) {
1558             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1559              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1560              * IRQ8 and IRQ2.
1561              */
1562             uint8_t compat = object_property_get_uint(OBJECT(hpet),
1563                     HPET_INTCAP, NULL);
1564             if (!compat) {
1565                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1566             }
1567             qdev_init_nofail(hpet);
1568             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1569 
1570             for (i = 0; i < GSI_NUM_PINS; i++) {
1571                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1572             }
1573             pit_isa_irq = -1;
1574             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1575             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1576         }
1577     }
1578     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1579 
1580     qemu_register_boot_set(pc_boot_set, *rtc_state);
1581 
1582     if (!xen_enabled() && has_pit) {
1583         if (kvm_pit_in_kernel()) {
1584             pit = kvm_pit_init(isa_bus, 0x40);
1585         } else {
1586             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1587         }
1588         if (hpet) {
1589             /* connect PIT to output control line of the HPET */
1590             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1591         }
1592         pcspk_init(isa_bus, pit);
1593     }
1594 
1595     serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1596     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1597 
1598     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1599     i8042 = isa_create_simple(isa_bus, "i8042");
1600     i8042_setup_a20_line(i8042, a20_line[0]);
1601     if (!no_vmport) {
1602         vmport_init(isa_bus);
1603         vmmouse = isa_try_create(isa_bus, "vmmouse");
1604     } else {
1605         vmmouse = NULL;
1606     }
1607     if (vmmouse) {
1608         DeviceState *dev = DEVICE(vmmouse);
1609         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1610         qdev_init_nofail(dev);
1611     }
1612     port92 = isa_create_simple(isa_bus, "port92");
1613     port92_init(port92, a20_line[1]);
1614     g_free(a20_line);
1615 
1616     DMA_init(isa_bus, 0);
1617 
1618     for(i = 0; i < MAX_FD; i++) {
1619         fd[i] = drive_get(IF_FLOPPY, 0, i);
1620         create_fdctrl |= !!fd[i];
1621     }
1622     if (create_fdctrl) {
1623         fdctrl_init_isa(isa_bus, fd);
1624     }
1625 }
1626 
1627 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1628 {
1629     int i;
1630 
1631     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1632     for (i = 0; i < nb_nics; i++) {
1633         NICInfo *nd = &nd_table[i];
1634 
1635         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1636             pc_init_ne2k_isa(isa_bus, nd);
1637         } else {
1638             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1639         }
1640     }
1641     rom_reset_order_override();
1642 }
1643 
1644 void pc_pci_device_init(PCIBus *pci_bus)
1645 {
1646     int max_bus;
1647     int bus;
1648 
1649     /* Note: if=scsi is deprecated with PC machine types */
1650     max_bus = drive_get_max_bus(IF_SCSI);
1651     for (bus = 0; bus <= max_bus; bus++) {
1652         pci_create_simple(pci_bus, -1, "lsi53c895a");
1653         /*
1654          * By not creating frontends here, we make
1655          * scsi_legacy_handle_cmdline() create them, and warn that
1656          * this usage is deprecated.
1657          */
1658     }
1659 }
1660 
1661 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1662 {
1663     DeviceState *dev;
1664     SysBusDevice *d;
1665     unsigned int i;
1666 
1667     if (kvm_ioapic_in_kernel()) {
1668         dev = qdev_create(NULL, "kvm-ioapic");
1669     } else {
1670         dev = qdev_create(NULL, "ioapic");
1671     }
1672     if (parent_name) {
1673         object_property_add_child(object_resolve_path(parent_name, NULL),
1674                                   "ioapic", OBJECT(dev), NULL);
1675     }
1676     qdev_init_nofail(dev);
1677     d = SYS_BUS_DEVICE(dev);
1678     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1679 
1680     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1681         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1682     }
1683 }
1684 
1685 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1686                          DeviceState *dev, Error **errp)
1687 {
1688     HotplugHandlerClass *hhc;
1689     Error *local_err = NULL;
1690     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1691     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1692     PCDIMMDevice *dimm = PC_DIMM(dev);
1693     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1694     MemoryRegion *mr;
1695     uint64_t align = TARGET_PAGE_SIZE;
1696     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1697 
1698     mr = ddc->get_memory_region(dimm, &local_err);
1699     if (local_err) {
1700         goto out;
1701     }
1702 
1703     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1704         align = memory_region_get_alignment(mr);
1705     }
1706 
1707     if (!pcms->acpi_dev) {
1708         error_setg(&local_err,
1709                    "memory hotplug is not enabled: missing acpi device");
1710         goto out;
1711     }
1712 
1713     if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1714         error_setg(&local_err,
1715                    "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1716         goto out;
1717     }
1718 
1719     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1720     if (local_err) {
1721         goto out;
1722     }
1723 
1724     if (is_nvdimm) {
1725         nvdimm_plug(&pcms->acpi_nvdimm_state);
1726     }
1727 
1728     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1729     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1730 out:
1731     error_propagate(errp, local_err);
1732 }
1733 
1734 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1735                                    DeviceState *dev, Error **errp)
1736 {
1737     HotplugHandlerClass *hhc;
1738     Error *local_err = NULL;
1739     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1740 
1741     if (!pcms->acpi_dev) {
1742         error_setg(&local_err,
1743                    "memory hotplug is not enabled: missing acpi device");
1744         goto out;
1745     }
1746 
1747     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1748         error_setg(&local_err,
1749                    "nvdimm device hot unplug is not supported yet.");
1750         goto out;
1751     }
1752 
1753     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1754     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1755 
1756 out:
1757     error_propagate(errp, local_err);
1758 }
1759 
1760 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1761                            DeviceState *dev, Error **errp)
1762 {
1763     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1764     PCDIMMDevice *dimm = PC_DIMM(dev);
1765     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1766     MemoryRegion *mr;
1767     HotplugHandlerClass *hhc;
1768     Error *local_err = NULL;
1769 
1770     mr = ddc->get_memory_region(dimm, &local_err);
1771     if (local_err) {
1772         goto out;
1773     }
1774 
1775     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1776     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1777 
1778     if (local_err) {
1779         goto out;
1780     }
1781 
1782     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1783     object_unparent(OBJECT(dev));
1784 
1785  out:
1786     error_propagate(errp, local_err);
1787 }
1788 
1789 static int pc_apic_cmp(const void *a, const void *b)
1790 {
1791    CPUArchId *apic_a = (CPUArchId *)a;
1792    CPUArchId *apic_b = (CPUArchId *)b;
1793 
1794    return apic_a->arch_id - apic_b->arch_id;
1795 }
1796 
1797 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1798  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1799  * entry corresponding to CPU's apic_id returns NULL.
1800  */
1801 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1802 {
1803     CPUArchId apic_id, *found_cpu;
1804 
1805     apic_id.arch_id = id;
1806     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1807         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1808         pc_apic_cmp);
1809     if (found_cpu && idx) {
1810         *idx = found_cpu - ms->possible_cpus->cpus;
1811     }
1812     return found_cpu;
1813 }
1814 
1815 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1816                         DeviceState *dev, Error **errp)
1817 {
1818     CPUArchId *found_cpu;
1819     HotplugHandlerClass *hhc;
1820     Error *local_err = NULL;
1821     X86CPU *cpu = X86_CPU(dev);
1822     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1823 
1824     if (pcms->acpi_dev) {
1825         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1826         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1827         if (local_err) {
1828             goto out;
1829         }
1830     }
1831 
1832     /* increment the number of CPUs */
1833     pcms->boot_cpus++;
1834     if (pcms->rtc) {
1835         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1836     }
1837     if (pcms->fw_cfg) {
1838         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1839     }
1840 
1841     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1842     found_cpu->cpu = OBJECT(dev);
1843 out:
1844     error_propagate(errp, local_err);
1845 }
1846 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1847                                      DeviceState *dev, Error **errp)
1848 {
1849     int idx = -1;
1850     HotplugHandlerClass *hhc;
1851     Error *local_err = NULL;
1852     X86CPU *cpu = X86_CPU(dev);
1853     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1854 
1855     pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1856     assert(idx != -1);
1857     if (idx == 0) {
1858         error_setg(&local_err, "Boot CPU is unpluggable");
1859         goto out;
1860     }
1861 
1862     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1863     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1864 
1865     if (local_err) {
1866         goto out;
1867     }
1868 
1869  out:
1870     error_propagate(errp, local_err);
1871 
1872 }
1873 
1874 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1875                              DeviceState *dev, Error **errp)
1876 {
1877     CPUArchId *found_cpu;
1878     HotplugHandlerClass *hhc;
1879     Error *local_err = NULL;
1880     X86CPU *cpu = X86_CPU(dev);
1881     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1882 
1883     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1884     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1885 
1886     if (local_err) {
1887         goto out;
1888     }
1889 
1890     found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1891     found_cpu->cpu = NULL;
1892     object_unparent(OBJECT(dev));
1893 
1894     /* decrement the number of CPUs */
1895     pcms->boot_cpus--;
1896     /* Update the number of CPUs in CMOS */
1897     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1898     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1899  out:
1900     error_propagate(errp, local_err);
1901 }
1902 
1903 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1904                             DeviceState *dev, Error **errp)
1905 {
1906     int idx;
1907     CPUState *cs;
1908     CPUArchId *cpu_slot;
1909     X86CPUTopoInfo topo;
1910     X86CPU *cpu = X86_CPU(dev);
1911     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1912 
1913     /* if APIC ID is not set, set it based on socket/core/thread properties */
1914     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1915         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1916 
1917         if (cpu->socket_id < 0) {
1918             error_setg(errp, "CPU socket-id is not set");
1919             return;
1920         } else if (cpu->socket_id > max_socket) {
1921             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1922                        cpu->socket_id, max_socket);
1923             return;
1924         }
1925         if (cpu->core_id < 0) {
1926             error_setg(errp, "CPU core-id is not set");
1927             return;
1928         } else if (cpu->core_id > (smp_cores - 1)) {
1929             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1930                        cpu->core_id, smp_cores - 1);
1931             return;
1932         }
1933         if (cpu->thread_id < 0) {
1934             error_setg(errp, "CPU thread-id is not set");
1935             return;
1936         } else if (cpu->thread_id > (smp_threads - 1)) {
1937             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1938                        cpu->thread_id, smp_threads - 1);
1939             return;
1940         }
1941 
1942         topo.pkg_id = cpu->socket_id;
1943         topo.core_id = cpu->core_id;
1944         topo.smt_id = cpu->thread_id;
1945         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1946     }
1947 
1948     cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1949     if (!cpu_slot) {
1950         MachineState *ms = MACHINE(pcms);
1951 
1952         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1953         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1954                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1955                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1956                    ms->possible_cpus->len - 1);
1957         return;
1958     }
1959 
1960     if (cpu_slot->cpu) {
1961         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1962                    idx, cpu->apic_id);
1963         return;
1964     }
1965 
1966     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1967      * so that machine_query_hotpluggable_cpus would show correct values
1968      */
1969     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1970      * once -smp refactoring is complete and there will be CPU private
1971      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1972     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1973     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1974         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1975             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1976         return;
1977     }
1978     cpu->socket_id = topo.pkg_id;
1979 
1980     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1981         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1982             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1983         return;
1984     }
1985     cpu->core_id = topo.core_id;
1986 
1987     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1988         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1989             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1990         return;
1991     }
1992     cpu->thread_id = topo.smt_id;
1993 
1994     cs = CPU(cpu);
1995     cs->cpu_index = idx;
1996 
1997     numa_cpu_pre_plug(cpu_slot, dev, errp);
1998 }
1999 
2000 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2001                                           DeviceState *dev, Error **errp)
2002 {
2003     if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2004         pc_cpu_pre_plug(hotplug_dev, dev, errp);
2005     }
2006 }
2007 
2008 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2009                                       DeviceState *dev, Error **errp)
2010 {
2011     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2012         pc_dimm_plug(hotplug_dev, dev, errp);
2013     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2014         pc_cpu_plug(hotplug_dev, dev, errp);
2015     }
2016 }
2017 
2018 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2019                                                 DeviceState *dev, Error **errp)
2020 {
2021     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2022         pc_dimm_unplug_request(hotplug_dev, dev, errp);
2023     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2024         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2025     } else {
2026         error_setg(errp, "acpi: device unplug request for not supported device"
2027                    " type: %s", object_get_typename(OBJECT(dev)));
2028     }
2029 }
2030 
2031 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2032                                         DeviceState *dev, Error **errp)
2033 {
2034     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2035         pc_dimm_unplug(hotplug_dev, dev, errp);
2036     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2037         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2038     } else {
2039         error_setg(errp, "acpi: device unplug for not supported device"
2040                    " type: %s", object_get_typename(OBJECT(dev)));
2041     }
2042 }
2043 
2044 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2045                                              DeviceState *dev)
2046 {
2047     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2048 
2049     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2050         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2051         return HOTPLUG_HANDLER(machine);
2052     }
2053 
2054     return pcmc->get_hotplug_handler ?
2055         pcmc->get_hotplug_handler(machine, dev) : NULL;
2056 }
2057 
2058 static void
2059 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2060                                           const char *name, void *opaque,
2061                                           Error **errp)
2062 {
2063     PCMachineState *pcms = PC_MACHINE(obj);
2064     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2065 
2066     visit_type_int(v, name, &value, errp);
2067 }
2068 
2069 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2070                                             const char *name, void *opaque,
2071                                             Error **errp)
2072 {
2073     PCMachineState *pcms = PC_MACHINE(obj);
2074     uint64_t value = pcms->max_ram_below_4g;
2075 
2076     visit_type_size(v, name, &value, errp);
2077 }
2078 
2079 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2080                                             const char *name, void *opaque,
2081                                             Error **errp)
2082 {
2083     PCMachineState *pcms = PC_MACHINE(obj);
2084     Error *error = NULL;
2085     uint64_t value;
2086 
2087     visit_type_size(v, name, &value, &error);
2088     if (error) {
2089         error_propagate(errp, error);
2090         return;
2091     }
2092     if (value > (1ULL << 32)) {
2093         error_setg(&error,
2094                    "Machine option 'max-ram-below-4g=%"PRIu64
2095                    "' expects size less than or equal to 4G", value);
2096         error_propagate(errp, error);
2097         return;
2098     }
2099 
2100     if (value < (1ULL << 20)) {
2101         warn_report("small max_ram_below_4g(%"PRIu64
2102                     ") less than 1M.  BIOS may not work..",
2103                     value);
2104     }
2105 
2106     pcms->max_ram_below_4g = value;
2107 }
2108 
2109 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2110                                   void *opaque, Error **errp)
2111 {
2112     PCMachineState *pcms = PC_MACHINE(obj);
2113     OnOffAuto vmport = pcms->vmport;
2114 
2115     visit_type_OnOffAuto(v, name, &vmport, errp);
2116 }
2117 
2118 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2119                                   void *opaque, Error **errp)
2120 {
2121     PCMachineState *pcms = PC_MACHINE(obj);
2122 
2123     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2124 }
2125 
2126 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2127 {
2128     bool smm_available = false;
2129 
2130     if (pcms->smm == ON_OFF_AUTO_OFF) {
2131         return false;
2132     }
2133 
2134     if (tcg_enabled() || qtest_enabled()) {
2135         smm_available = true;
2136     } else if (kvm_enabled()) {
2137         smm_available = kvm_has_smm();
2138     }
2139 
2140     if (smm_available) {
2141         return true;
2142     }
2143 
2144     if (pcms->smm == ON_OFF_AUTO_ON) {
2145         error_report("System Management Mode not supported by this hypervisor.");
2146         exit(1);
2147     }
2148     return false;
2149 }
2150 
2151 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2152                                void *opaque, Error **errp)
2153 {
2154     PCMachineState *pcms = PC_MACHINE(obj);
2155     OnOffAuto smm = pcms->smm;
2156 
2157     visit_type_OnOffAuto(v, name, &smm, errp);
2158 }
2159 
2160 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2161                                void *opaque, Error **errp)
2162 {
2163     PCMachineState *pcms = PC_MACHINE(obj);
2164 
2165     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2166 }
2167 
2168 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2169 {
2170     PCMachineState *pcms = PC_MACHINE(obj);
2171 
2172     return pcms->acpi_nvdimm_state.is_enabled;
2173 }
2174 
2175 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2176 {
2177     PCMachineState *pcms = PC_MACHINE(obj);
2178 
2179     pcms->acpi_nvdimm_state.is_enabled = value;
2180 }
2181 
2182 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2183 {
2184     PCMachineState *pcms = PC_MACHINE(obj);
2185 
2186     return pcms->smbus;
2187 }
2188 
2189 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2190 {
2191     PCMachineState *pcms = PC_MACHINE(obj);
2192 
2193     pcms->smbus = value;
2194 }
2195 
2196 static bool pc_machine_get_sata(Object *obj, Error **errp)
2197 {
2198     PCMachineState *pcms = PC_MACHINE(obj);
2199 
2200     return pcms->sata;
2201 }
2202 
2203 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2204 {
2205     PCMachineState *pcms = PC_MACHINE(obj);
2206 
2207     pcms->sata = value;
2208 }
2209 
2210 static bool pc_machine_get_pit(Object *obj, Error **errp)
2211 {
2212     PCMachineState *pcms = PC_MACHINE(obj);
2213 
2214     return pcms->pit;
2215 }
2216 
2217 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2218 {
2219     PCMachineState *pcms = PC_MACHINE(obj);
2220 
2221     pcms->pit = value;
2222 }
2223 
2224 static void pc_machine_initfn(Object *obj)
2225 {
2226     PCMachineState *pcms = PC_MACHINE(obj);
2227 
2228     pcms->max_ram_below_4g = 0; /* use default */
2229     pcms->smm = ON_OFF_AUTO_AUTO;
2230     pcms->vmport = ON_OFF_AUTO_AUTO;
2231     /* nvdimm is disabled on default. */
2232     pcms->acpi_nvdimm_state.is_enabled = false;
2233     /* acpi build is enabled by default if machine supports it */
2234     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2235     pcms->smbus = true;
2236     pcms->sata = true;
2237     pcms->pit = true;
2238 }
2239 
2240 static void pc_machine_reset(void)
2241 {
2242     CPUState *cs;
2243     X86CPU *cpu;
2244 
2245     qemu_devices_reset();
2246 
2247     /* Reset APIC after devices have been reset to cancel
2248      * any changes that qemu_devices_reset() might have done.
2249      */
2250     CPU_FOREACH(cs) {
2251         cpu = X86_CPU(cs);
2252 
2253         if (cpu->apic_state) {
2254             device_reset(cpu->apic_state);
2255         }
2256     }
2257 }
2258 
2259 static CpuInstanceProperties
2260 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2261 {
2262     MachineClass *mc = MACHINE_GET_CLASS(ms);
2263     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2264 
2265     assert(cpu_index < possible_cpus->len);
2266     return possible_cpus->cpus[cpu_index].props;
2267 }
2268 
2269 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2270 {
2271     int i;
2272 
2273     if (ms->possible_cpus) {
2274         /*
2275          * make sure that max_cpus hasn't changed since the first use, i.e.
2276          * -smp hasn't been parsed after it
2277         */
2278         assert(ms->possible_cpus->len == max_cpus);
2279         return ms->possible_cpus;
2280     }
2281 
2282     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2283                                   sizeof(CPUArchId) * max_cpus);
2284     ms->possible_cpus->len = max_cpus;
2285     for (i = 0; i < ms->possible_cpus->len; i++) {
2286         X86CPUTopoInfo topo;
2287 
2288         ms->possible_cpus->cpus[i].vcpus_count = 1;
2289         ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2290         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2291                                  smp_cores, smp_threads, &topo);
2292         ms->possible_cpus->cpus[i].props.has_socket_id = true;
2293         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2294         ms->possible_cpus->cpus[i].props.has_core_id = true;
2295         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2296         ms->possible_cpus->cpus[i].props.has_thread_id = true;
2297         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2298 
2299         /* default distribution of CPUs over NUMA nodes */
2300         if (nb_numa_nodes) {
2301             /* preset values but do not enable them i.e. 'has_node_id = false',
2302              * numa init code will enable them later if manual mapping wasn't
2303              * present on CLI */
2304             ms->possible_cpus->cpus[i].props.node_id =
2305                 topo.pkg_id % nb_numa_nodes;
2306         }
2307     }
2308     return ms->possible_cpus;
2309 }
2310 
2311 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2312 {
2313     /* cpu index isn't used */
2314     CPUState *cs;
2315 
2316     CPU_FOREACH(cs) {
2317         X86CPU *cpu = X86_CPU(cs);
2318 
2319         if (!cpu->apic_state) {
2320             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2321         } else {
2322             apic_deliver_nmi(cpu->apic_state);
2323         }
2324     }
2325 }
2326 
2327 static void pc_machine_class_init(ObjectClass *oc, void *data)
2328 {
2329     MachineClass *mc = MACHINE_CLASS(oc);
2330     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2331     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2332     NMIClass *nc = NMI_CLASS(oc);
2333 
2334     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2335     pcmc->pci_enabled = true;
2336     pcmc->has_acpi_build = true;
2337     pcmc->rsdp_in_ram = true;
2338     pcmc->smbios_defaults = true;
2339     pcmc->smbios_uuid_encoded = true;
2340     pcmc->gigabyte_align = true;
2341     pcmc->has_reserved_memory = true;
2342     pcmc->kvmclock_enabled = true;
2343     pcmc->enforce_aligned_dimm = true;
2344     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2345      * to be used at the moment, 32K should be enough for a while.  */
2346     pcmc->acpi_data_size = 0x20000 + 0x8000;
2347     pcmc->save_tsc_khz = true;
2348     pcmc->linuxboot_dma_enabled = true;
2349     mc->get_hotplug_handler = pc_get_hotpug_handler;
2350     mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2351     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2352     mc->has_hotpluggable_cpus = true;
2353     mc->default_boot_order = "cad";
2354     mc->hot_add_cpu = pc_hot_add_cpu;
2355     mc->block_default_type = IF_IDE;
2356     mc->max_cpus = 255;
2357     mc->reset = pc_machine_reset;
2358     hc->pre_plug = pc_machine_device_pre_plug_cb;
2359     hc->plug = pc_machine_device_plug_cb;
2360     hc->unplug_request = pc_machine_device_unplug_request_cb;
2361     hc->unplug = pc_machine_device_unplug_cb;
2362     nc->nmi_monitor_handler = x86_nmi;
2363 
2364     object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2365         pc_machine_get_hotplug_memory_region_size, NULL,
2366         NULL, NULL, &error_abort);
2367 
2368     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2369         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2370         NULL, NULL, &error_abort);
2371 
2372     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2373         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2374 
2375     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2376         pc_machine_get_smm, pc_machine_set_smm,
2377         NULL, NULL, &error_abort);
2378     object_class_property_set_description(oc, PC_MACHINE_SMM,
2379         "Enable SMM (pc & q35)", &error_abort);
2380 
2381     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2382         pc_machine_get_vmport, pc_machine_set_vmport,
2383         NULL, NULL, &error_abort);
2384     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2385         "Enable vmport (pc & q35)", &error_abort);
2386 
2387     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2388         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2389 
2390     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2391         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2392 
2393     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2394         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2395 
2396     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2397         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2398 }
2399 
2400 static const TypeInfo pc_machine_info = {
2401     .name = TYPE_PC_MACHINE,
2402     .parent = TYPE_MACHINE,
2403     .abstract = true,
2404     .instance_size = sizeof(PCMachineState),
2405     .instance_init = pc_machine_initfn,
2406     .class_size = sizeof(PCMachineClass),
2407     .class_init = pc_machine_class_init,
2408     .interfaces = (InterfaceInfo[]) {
2409          { TYPE_HOTPLUG_HANDLER },
2410          { TYPE_NMI },
2411          { }
2412     },
2413 };
2414 
2415 static void pc_machine_register_types(void)
2416 {
2417     type_register_static(&pc_machine_info);
2418 }
2419 
2420 type_init(pc_machine_register_types)
2421