xref: /openbmc/qemu/hw/i386/pc.c (revision 116694c3)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "monitor/monitor.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/i386/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "hw/acpi/acpi.h"
60 #include "hw/acpi/cpu_hotplug.h"
61 #include "hw/cpu/icc_bus.h"
62 #include "hw/boards.h"
63 #include "hw/pci/pci_host.h"
64 #include "acpi-build.h"
65 #include "hw/mem/pc-dimm.h"
66 #include "trace.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
72 
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...)                                       \
75     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
79 
80 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
81  * (128K) and other BIOS datastructures (less than 4K reported to be used at
82  * the moment, 32K should be enough for a while).  */
83 static unsigned acpi_data_size = 0x20000 + 0x8000;
84 void pc_set_legacy_acpi_data_size(void)
85 {
86     acpi_data_size = 0x10000;
87 }
88 
89 #define BIOS_CFG_IOPORT 0x510
90 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
91 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
92 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
93 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
94 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95 
96 #define E820_NR_ENTRIES		16
97 
98 struct e820_entry {
99     uint64_t address;
100     uint64_t length;
101     uint32_t type;
102 } QEMU_PACKED __attribute((__aligned__(4)));
103 
104 struct e820_table {
105     uint32_t count;
106     struct e820_entry entry[E820_NR_ENTRIES];
107 } QEMU_PACKED __attribute((__aligned__(4)));
108 
109 static struct e820_table e820_reserve;
110 static struct e820_entry *e820_table;
111 static unsigned e820_entries;
112 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113 
114 void gsi_handler(void *opaque, int n, int level)
115 {
116     GSIState *s = opaque;
117 
118     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
119     if (n < ISA_NUM_IRQS) {
120         qemu_set_irq(s->i8259_irq[n], level);
121     }
122     qemu_set_irq(s->ioapic_irq[n], level);
123 }
124 
125 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
126                            unsigned size)
127 {
128 }
129 
130 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
131 {
132     return 0xffffffffffffffffULL;
133 }
134 
135 /* MSDOS compatibility mode FPU exception support */
136 static qemu_irq ferr_irq;
137 
138 void pc_register_ferr_irq(qemu_irq irq)
139 {
140     ferr_irq = irq;
141 }
142 
143 /* XXX: add IGNNE support */
144 void cpu_set_ferr(CPUX86State *s)
145 {
146     qemu_irq_raise(ferr_irq);
147 }
148 
149 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
150                            unsigned size)
151 {
152     qemu_irq_lower(ferr_irq);
153 }
154 
155 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
156 {
157     return 0xffffffffffffffffULL;
158 }
159 
160 /* TSC handling */
161 uint64_t cpu_get_tsc(CPUX86State *env)
162 {
163     return cpu_get_ticks();
164 }
165 
166 /* SMM support */
167 
168 static cpu_set_smm_t smm_set;
169 static void *smm_arg;
170 
171 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
172 {
173     assert(smm_set == NULL);
174     assert(smm_arg == NULL);
175     smm_set = callback;
176     smm_arg = arg;
177 }
178 
179 void cpu_smm_update(CPUX86State *env)
180 {
181     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
182         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
183     }
184 }
185 
186 
187 /* IRQ handling */
188 int cpu_get_pic_interrupt(CPUX86State *env)
189 {
190     X86CPU *cpu = x86_env_get_cpu(env);
191     int intno;
192 
193     intno = apic_get_interrupt(cpu->apic_state);
194     if (intno >= 0) {
195         return intno;
196     }
197     /* read the irq from the PIC */
198     if (!apic_accept_pic_intr(cpu->apic_state)) {
199         return -1;
200     }
201 
202     intno = pic_read_irq(isa_pic);
203     return intno;
204 }
205 
206 static void pic_irq_request(void *opaque, int irq, int level)
207 {
208     CPUState *cs = first_cpu;
209     X86CPU *cpu = X86_CPU(cs);
210 
211     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
212     if (cpu->apic_state) {
213         CPU_FOREACH(cs) {
214             cpu = X86_CPU(cs);
215             if (apic_accept_pic_intr(cpu->apic_state)) {
216                 apic_deliver_pic_intr(cpu->apic_state, level);
217             }
218         }
219     } else {
220         if (level) {
221             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
222         } else {
223             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
224         }
225     }
226 }
227 
228 /* PC cmos mappings */
229 
230 #define REG_EQUIPMENT_BYTE          0x14
231 
232 static int cmos_get_fd_drive_type(FDriveType fd0)
233 {
234     int val;
235 
236     switch (fd0) {
237     case FDRIVE_DRV_144:
238         /* 1.44 Mb 3"5 drive */
239         val = 4;
240         break;
241     case FDRIVE_DRV_288:
242         /* 2.88 Mb 3"5 drive */
243         val = 5;
244         break;
245     case FDRIVE_DRV_120:
246         /* 1.2 Mb 5"5 drive */
247         val = 2;
248         break;
249     case FDRIVE_DRV_NONE:
250     default:
251         val = 0;
252         break;
253     }
254     return val;
255 }
256 
257 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
258                          int16_t cylinders, int8_t heads, int8_t sectors)
259 {
260     rtc_set_memory(s, type_ofs, 47);
261     rtc_set_memory(s, info_ofs, cylinders);
262     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
263     rtc_set_memory(s, info_ofs + 2, heads);
264     rtc_set_memory(s, info_ofs + 3, 0xff);
265     rtc_set_memory(s, info_ofs + 4, 0xff);
266     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
267     rtc_set_memory(s, info_ofs + 6, cylinders);
268     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
269     rtc_set_memory(s, info_ofs + 8, sectors);
270 }
271 
272 /* convert boot_device letter to something recognizable by the bios */
273 static int boot_device2nibble(char boot_device)
274 {
275     switch(boot_device) {
276     case 'a':
277     case 'b':
278         return 0x01; /* floppy boot */
279     case 'c':
280         return 0x02; /* hard drive boot */
281     case 'd':
282         return 0x03; /* CD-ROM boot */
283     case 'n':
284         return 0x04; /* Network boot */
285     }
286     return 0;
287 }
288 
289 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
290 {
291 #define PC_MAX_BOOT_DEVICES 3
292     int nbds, bds[3] = { 0, };
293     int i;
294 
295     nbds = strlen(boot_device);
296     if (nbds > PC_MAX_BOOT_DEVICES) {
297         error_setg(errp, "Too many boot devices for PC");
298         return;
299     }
300     for (i = 0; i < nbds; i++) {
301         bds[i] = boot_device2nibble(boot_device[i]);
302         if (bds[i] == 0) {
303             error_setg(errp, "Invalid boot device for PC: '%c'",
304                        boot_device[i]);
305             return;
306         }
307     }
308     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
309     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
310 }
311 
312 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
313 {
314     set_boot_dev(opaque, boot_device, errp);
315 }
316 
317 typedef struct pc_cmos_init_late_arg {
318     ISADevice *rtc_state;
319     BusState *idebus[2];
320 } pc_cmos_init_late_arg;
321 
322 static void pc_cmos_init_late(void *opaque)
323 {
324     pc_cmos_init_late_arg *arg = opaque;
325     ISADevice *s = arg->rtc_state;
326     int16_t cylinders;
327     int8_t heads, sectors;
328     int val;
329     int i, trans;
330 
331     val = 0;
332     if (ide_get_geometry(arg->idebus[0], 0,
333                          &cylinders, &heads, &sectors) >= 0) {
334         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
335         val |= 0xf0;
336     }
337     if (ide_get_geometry(arg->idebus[0], 1,
338                          &cylinders, &heads, &sectors) >= 0) {
339         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
340         val |= 0x0f;
341     }
342     rtc_set_memory(s, 0x12, val);
343 
344     val = 0;
345     for (i = 0; i < 4; i++) {
346         /* NOTE: ide_get_geometry() returns the physical
347            geometry.  It is always such that: 1 <= sects <= 63, 1
348            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
349            geometry can be different if a translation is done. */
350         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
351                              &cylinders, &heads, &sectors) >= 0) {
352             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
353             assert((trans & ~3) == 0);
354             val |= trans << (i * 2);
355         }
356     }
357     rtc_set_memory(s, 0x39, val);
358 
359     qemu_unregister_reset(pc_cmos_init_late, opaque);
360 }
361 
362 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
363                   const char *boot_device, MachineState *machine,
364                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
365                   ISADevice *s)
366 {
367     int val, nb, i;
368     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
369     static pc_cmos_init_late_arg arg;
370     PCMachineState *pc_machine = PC_MACHINE(machine);
371     Error *local_err = NULL;
372 
373     /* various important CMOS locations needed by PC/Bochs bios */
374 
375     /* memory size */
376     /* base memory (first MiB) */
377     val = MIN(ram_size / 1024, 640);
378     rtc_set_memory(s, 0x15, val);
379     rtc_set_memory(s, 0x16, val >> 8);
380     /* extended memory (next 64MiB) */
381     if (ram_size > 1024 * 1024) {
382         val = (ram_size - 1024 * 1024) / 1024;
383     } else {
384         val = 0;
385     }
386     if (val > 65535)
387         val = 65535;
388     rtc_set_memory(s, 0x17, val);
389     rtc_set_memory(s, 0x18, val >> 8);
390     rtc_set_memory(s, 0x30, val);
391     rtc_set_memory(s, 0x31, val >> 8);
392     /* memory between 16MiB and 4GiB */
393     if (ram_size > 16 * 1024 * 1024) {
394         val = (ram_size - 16 * 1024 * 1024) / 65536;
395     } else {
396         val = 0;
397     }
398     if (val > 65535)
399         val = 65535;
400     rtc_set_memory(s, 0x34, val);
401     rtc_set_memory(s, 0x35, val >> 8);
402     /* memory above 4GiB */
403     val = above_4g_mem_size / 65536;
404     rtc_set_memory(s, 0x5b, val);
405     rtc_set_memory(s, 0x5c, val >> 8);
406     rtc_set_memory(s, 0x5d, val >> 16);
407 
408     /* set the number of CPU */
409     rtc_set_memory(s, 0x5f, smp_cpus - 1);
410 
411     object_property_add_link(OBJECT(machine), "rtc_state",
412                              TYPE_ISA_DEVICE,
413                              (Object **)&pc_machine->rtc,
414                              object_property_allow_set_link,
415                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
416     object_property_set_link(OBJECT(machine), OBJECT(s),
417                              "rtc_state", &error_abort);
418 
419     set_boot_dev(s, boot_device, &local_err);
420     if (local_err) {
421         error_report_err(local_err);
422         exit(1);
423     }
424 
425     /* floppy type */
426     if (floppy) {
427         for (i = 0; i < 2; i++) {
428             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
429         }
430     }
431     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
432         cmos_get_fd_drive_type(fd_type[1]);
433     rtc_set_memory(s, 0x10, val);
434 
435     val = 0;
436     nb = 0;
437     if (fd_type[0] < FDRIVE_DRV_NONE) {
438         nb++;
439     }
440     if (fd_type[1] < FDRIVE_DRV_NONE) {
441         nb++;
442     }
443     switch (nb) {
444     case 0:
445         break;
446     case 1:
447         val |= 0x01; /* 1 drive, ready for boot */
448         break;
449     case 2:
450         val |= 0x41; /* 2 drives, ready for boot */
451         break;
452     }
453     val |= 0x02; /* FPU is there */
454     val |= 0x04; /* PS/2 mouse installed */
455     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
456 
457     /* hard drives */
458     arg.rtc_state = s;
459     arg.idebus[0] = idebus0;
460     arg.idebus[1] = idebus1;
461     qemu_register_reset(pc_cmos_init_late, &arg);
462 }
463 
464 #define TYPE_PORT92 "port92"
465 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
466 
467 /* port 92 stuff: could be split off */
468 typedef struct Port92State {
469     ISADevice parent_obj;
470 
471     MemoryRegion io;
472     uint8_t outport;
473     qemu_irq *a20_out;
474 } Port92State;
475 
476 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
477                          unsigned size)
478 {
479     Port92State *s = opaque;
480     int oldval = s->outport;
481 
482     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
483     s->outport = val;
484     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
485     if ((val & 1) && !(oldval & 1)) {
486         qemu_system_reset_request();
487     }
488 }
489 
490 static uint64_t port92_read(void *opaque, hwaddr addr,
491                             unsigned size)
492 {
493     Port92State *s = opaque;
494     uint32_t ret;
495 
496     ret = s->outport;
497     DPRINTF("port92: read 0x%02x\n", ret);
498     return ret;
499 }
500 
501 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
502 {
503     Port92State *s = PORT92(dev);
504 
505     s->a20_out = a20_out;
506 }
507 
508 static const VMStateDescription vmstate_port92_isa = {
509     .name = "port92",
510     .version_id = 1,
511     .minimum_version_id = 1,
512     .fields = (VMStateField[]) {
513         VMSTATE_UINT8(outport, Port92State),
514         VMSTATE_END_OF_LIST()
515     }
516 };
517 
518 static void port92_reset(DeviceState *d)
519 {
520     Port92State *s = PORT92(d);
521 
522     s->outport &= ~1;
523 }
524 
525 static const MemoryRegionOps port92_ops = {
526     .read = port92_read,
527     .write = port92_write,
528     .impl = {
529         .min_access_size = 1,
530         .max_access_size = 1,
531     },
532     .endianness = DEVICE_LITTLE_ENDIAN,
533 };
534 
535 static void port92_initfn(Object *obj)
536 {
537     Port92State *s = PORT92(obj);
538 
539     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
540 
541     s->outport = 0;
542 }
543 
544 static void port92_realizefn(DeviceState *dev, Error **errp)
545 {
546     ISADevice *isadev = ISA_DEVICE(dev);
547     Port92State *s = PORT92(dev);
548 
549     isa_register_ioport(isadev, &s->io, 0x92);
550 }
551 
552 static void port92_class_initfn(ObjectClass *klass, void *data)
553 {
554     DeviceClass *dc = DEVICE_CLASS(klass);
555 
556     dc->realize = port92_realizefn;
557     dc->reset = port92_reset;
558     dc->vmsd = &vmstate_port92_isa;
559     /*
560      * Reason: unlike ordinary ISA devices, this one needs additional
561      * wiring: its A20 output line needs to be wired up by
562      * port92_init().
563      */
564     dc->cannot_instantiate_with_device_add_yet = true;
565 }
566 
567 static const TypeInfo port92_info = {
568     .name          = TYPE_PORT92,
569     .parent        = TYPE_ISA_DEVICE,
570     .instance_size = sizeof(Port92State),
571     .instance_init = port92_initfn,
572     .class_init    = port92_class_initfn,
573 };
574 
575 static void port92_register_types(void)
576 {
577     type_register_static(&port92_info);
578 }
579 
580 type_init(port92_register_types)
581 
582 static void handle_a20_line_change(void *opaque, int irq, int level)
583 {
584     X86CPU *cpu = opaque;
585 
586     /* XXX: send to all CPUs ? */
587     /* XXX: add logic to handle multiple A20 line sources */
588     x86_cpu_set_a20(cpu, level);
589 }
590 
591 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
592 {
593     int index = le32_to_cpu(e820_reserve.count);
594     struct e820_entry *entry;
595 
596     if (type != E820_RAM) {
597         /* old FW_CFG_E820_TABLE entry -- reservations only */
598         if (index >= E820_NR_ENTRIES) {
599             return -EBUSY;
600         }
601         entry = &e820_reserve.entry[index++];
602 
603         entry->address = cpu_to_le64(address);
604         entry->length = cpu_to_le64(length);
605         entry->type = cpu_to_le32(type);
606 
607         e820_reserve.count = cpu_to_le32(index);
608     }
609 
610     /* new "etc/e820" file -- include ram too */
611     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
612     e820_table[e820_entries].address = cpu_to_le64(address);
613     e820_table[e820_entries].length = cpu_to_le64(length);
614     e820_table[e820_entries].type = cpu_to_le32(type);
615     e820_entries++;
616 
617     return e820_entries;
618 }
619 
620 int e820_get_num_entries(void)
621 {
622     return e820_entries;
623 }
624 
625 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
626 {
627     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
628         *address = le64_to_cpu(e820_table[idx].address);
629         *length = le64_to_cpu(e820_table[idx].length);
630         return true;
631     }
632     return false;
633 }
634 
635 /* Enables contiguous-apic-ID mode, for compatibility */
636 static bool compat_apic_id_mode;
637 
638 void enable_compat_apic_id_mode(void)
639 {
640     compat_apic_id_mode = true;
641 }
642 
643 /* Calculates initial APIC ID for a specific CPU index
644  *
645  * Currently we need to be able to calculate the APIC ID from the CPU index
646  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
647  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
648  * all CPUs up to max_cpus.
649  */
650 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
651 {
652     uint32_t correct_id;
653     static bool warned;
654 
655     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
656     if (compat_apic_id_mode) {
657         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
658             error_report("APIC IDs set in compatibility mode, "
659                          "CPU topology won't match the configuration");
660             warned = true;
661         }
662         return cpu_index;
663     } else {
664         return correct_id;
665     }
666 }
667 
668 /* Calculates the limit to CPU APIC ID values
669  *
670  * This function returns the limit for the APIC ID value, so that all
671  * CPU APIC IDs are < pc_apic_id_limit().
672  *
673  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
674  */
675 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
676 {
677     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
678 }
679 
680 static FWCfgState *bochs_bios_init(void)
681 {
682     FWCfgState *fw_cfg;
683     uint8_t *smbios_tables, *smbios_anchor;
684     size_t smbios_tables_len, smbios_anchor_len;
685     uint64_t *numa_fw_cfg;
686     int i, j;
687     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
688 
689     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
690     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
691      *
692      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
693      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
694      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
695      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
696      * may see".
697      *
698      * So, this means we must not use max_cpus, here, but the maximum possible
699      * APIC ID value, plus one.
700      *
701      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
702      *     the APIC ID, not the "CPU index"
703      */
704     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
705     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
706     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
707                      acpi_tables, acpi_tables_len);
708     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
709 
710     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
711     if (smbios_tables) {
712         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
713                          smbios_tables, smbios_tables_len);
714     }
715 
716     smbios_get_tables(&smbios_tables, &smbios_tables_len,
717                       &smbios_anchor, &smbios_anchor_len);
718     if (smbios_anchor) {
719         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
720                         smbios_tables, smbios_tables_len);
721         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
722                         smbios_anchor, smbios_anchor_len);
723     }
724 
725     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
726                      &e820_reserve, sizeof(e820_reserve));
727     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
728                     sizeof(struct e820_entry) * e820_entries);
729 
730     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
731     /* allocate memory for the NUMA channel: one (64bit) word for the number
732      * of nodes, one word for each VCPU->node and one word for each node to
733      * hold the amount of memory.
734      */
735     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
736     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
737     for (i = 0; i < max_cpus; i++) {
738         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
739         assert(apic_id < apic_id_limit);
740         for (j = 0; j < nb_numa_nodes; j++) {
741             if (test_bit(i, numa_info[j].node_cpu)) {
742                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
743                 break;
744             }
745         }
746     }
747     for (i = 0; i < nb_numa_nodes; i++) {
748         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
749     }
750     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
751                      (1 + apic_id_limit + nb_numa_nodes) *
752                      sizeof(*numa_fw_cfg));
753 
754     return fw_cfg;
755 }
756 
757 static long get_file_size(FILE *f)
758 {
759     long where, size;
760 
761     /* XXX: on Unix systems, using fstat() probably makes more sense */
762 
763     where = ftell(f);
764     fseek(f, 0, SEEK_END);
765     size = ftell(f);
766     fseek(f, where, SEEK_SET);
767 
768     return size;
769 }
770 
771 static void load_linux(FWCfgState *fw_cfg,
772                        const char *kernel_filename,
773                        const char *initrd_filename,
774                        const char *kernel_cmdline,
775                        hwaddr max_ram_size)
776 {
777     uint16_t protocol;
778     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
779     uint32_t initrd_max;
780     uint8_t header[8192], *setup, *kernel, *initrd_data;
781     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
782     FILE *f;
783     char *vmode;
784 
785     /* Align to 16 bytes as a paranoia measure */
786     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
787 
788     /* load the kernel header */
789     f = fopen(kernel_filename, "rb");
790     if (!f || !(kernel_size = get_file_size(f)) ||
791         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
792         MIN(ARRAY_SIZE(header), kernel_size)) {
793         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
794                 kernel_filename, strerror(errno));
795         exit(1);
796     }
797 
798     /* kernel protocol version */
799 #if 0
800     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
801 #endif
802     if (ldl_p(header+0x202) == 0x53726448) {
803         protocol = lduw_p(header+0x206);
804     } else {
805         /* This looks like a multiboot kernel. If it is, let's stop
806            treating it like a Linux kernel. */
807         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
808                            kernel_cmdline, kernel_size, header)) {
809             return;
810         }
811         protocol = 0;
812     }
813 
814     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
815         /* Low kernel */
816         real_addr    = 0x90000;
817         cmdline_addr = 0x9a000 - cmdline_size;
818         prot_addr    = 0x10000;
819     } else if (protocol < 0x202) {
820         /* High but ancient kernel */
821         real_addr    = 0x90000;
822         cmdline_addr = 0x9a000 - cmdline_size;
823         prot_addr    = 0x100000;
824     } else {
825         /* High and recent kernel */
826         real_addr    = 0x10000;
827         cmdline_addr = 0x20000;
828         prot_addr    = 0x100000;
829     }
830 
831 #if 0
832     fprintf(stderr,
833             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
834             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
835             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
836             real_addr,
837             cmdline_addr,
838             prot_addr);
839 #endif
840 
841     /* highest address for loading the initrd */
842     if (protocol >= 0x203) {
843         initrd_max = ldl_p(header+0x22c);
844     } else {
845         initrd_max = 0x37ffffff;
846     }
847 
848     if (initrd_max >= max_ram_size - acpi_data_size) {
849         initrd_max = max_ram_size - acpi_data_size - 1;
850     }
851 
852     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
853     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
854     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
855 
856     if (protocol >= 0x202) {
857         stl_p(header+0x228, cmdline_addr);
858     } else {
859         stw_p(header+0x20, 0xA33F);
860         stw_p(header+0x22, cmdline_addr-real_addr);
861     }
862 
863     /* handle vga= parameter */
864     vmode = strstr(kernel_cmdline, "vga=");
865     if (vmode) {
866         unsigned int video_mode;
867         /* skip "vga=" */
868         vmode += 4;
869         if (!strncmp(vmode, "normal", 6)) {
870             video_mode = 0xffff;
871         } else if (!strncmp(vmode, "ext", 3)) {
872             video_mode = 0xfffe;
873         } else if (!strncmp(vmode, "ask", 3)) {
874             video_mode = 0xfffd;
875         } else {
876             video_mode = strtol(vmode, NULL, 0);
877         }
878         stw_p(header+0x1fa, video_mode);
879     }
880 
881     /* loader type */
882     /* High nybble = B reserved for QEMU; low nybble is revision number.
883        If this code is substantially changed, you may want to consider
884        incrementing the revision. */
885     if (protocol >= 0x200) {
886         header[0x210] = 0xB0;
887     }
888     /* heap */
889     if (protocol >= 0x201) {
890         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
891         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
892     }
893 
894     /* load initrd */
895     if (initrd_filename) {
896         if (protocol < 0x200) {
897             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
898             exit(1);
899         }
900 
901         initrd_size = get_image_size(initrd_filename);
902         if (initrd_size < 0) {
903             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
904                     initrd_filename, strerror(errno));
905             exit(1);
906         }
907 
908         initrd_addr = (initrd_max-initrd_size) & ~4095;
909 
910         initrd_data = g_malloc(initrd_size);
911         load_image(initrd_filename, initrd_data);
912 
913         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
914         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
915         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
916 
917         stl_p(header+0x218, initrd_addr);
918         stl_p(header+0x21c, initrd_size);
919     }
920 
921     /* load kernel and setup */
922     setup_size = header[0x1f1];
923     if (setup_size == 0) {
924         setup_size = 4;
925     }
926     setup_size = (setup_size+1)*512;
927     kernel_size -= setup_size;
928 
929     setup  = g_malloc(setup_size);
930     kernel = g_malloc(kernel_size);
931     fseek(f, 0, SEEK_SET);
932     if (fread(setup, 1, setup_size, f) != setup_size) {
933         fprintf(stderr, "fread() failed\n");
934         exit(1);
935     }
936     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
937         fprintf(stderr, "fread() failed\n");
938         exit(1);
939     }
940     fclose(f);
941     memcpy(setup, header, MIN(sizeof(header), setup_size));
942 
943     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
944     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
945     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
946 
947     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
948     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
949     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
950 
951     option_rom[nb_option_roms].name = "linuxboot.bin";
952     option_rom[nb_option_roms].bootindex = 0;
953     nb_option_roms++;
954 }
955 
956 #define NE2000_NB_MAX 6
957 
958 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
959                                               0x280, 0x380 };
960 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
961 
962 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
963 {
964     static int nb_ne2k = 0;
965 
966     if (nb_ne2k == NE2000_NB_MAX)
967         return;
968     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
969                     ne2000_irq[nb_ne2k], nd);
970     nb_ne2k++;
971 }
972 
973 DeviceState *cpu_get_current_apic(void)
974 {
975     if (current_cpu) {
976         X86CPU *cpu = X86_CPU(current_cpu);
977         return cpu->apic_state;
978     } else {
979         return NULL;
980     }
981 }
982 
983 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
984 {
985     X86CPU *cpu = opaque;
986 
987     if (level) {
988         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
989     }
990 }
991 
992 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
993                           DeviceState *icc_bridge, Error **errp)
994 {
995     X86CPU *cpu = NULL;
996     Error *local_err = NULL;
997 
998     if (icc_bridge == NULL) {
999         error_setg(&local_err, "Invalid icc-bridge value");
1000         goto out;
1001     }
1002 
1003     cpu = cpu_x86_create(cpu_model, &local_err);
1004     if (local_err != NULL) {
1005         goto out;
1006     }
1007 
1008     qdev_set_parent_bus(DEVICE(cpu), qdev_get_child_bus(icc_bridge, "icc"));
1009     object_unref(OBJECT(cpu));
1010 
1011     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1012     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1013 
1014 out:
1015     if (local_err) {
1016         error_propagate(errp, local_err);
1017         object_unref(OBJECT(cpu));
1018         cpu = NULL;
1019     }
1020     return cpu;
1021 }
1022 
1023 static const char *current_cpu_model;
1024 
1025 void pc_hot_add_cpu(const int64_t id, Error **errp)
1026 {
1027     DeviceState *icc_bridge;
1028     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1029 
1030     if (id < 0) {
1031         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1032         return;
1033     }
1034 
1035     if (cpu_exists(apic_id)) {
1036         error_setg(errp, "Unable to add CPU: %" PRIi64
1037                    ", it already exists", id);
1038         return;
1039     }
1040 
1041     if (id >= max_cpus) {
1042         error_setg(errp, "Unable to add CPU: %" PRIi64
1043                    ", max allowed: %d", id, max_cpus - 1);
1044         return;
1045     }
1046 
1047     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1048         error_setg(errp, "Unable to add CPU: %" PRIi64
1049                    ", resulting APIC ID (%" PRIi64 ") is too large",
1050                    id, apic_id);
1051         return;
1052     }
1053 
1054     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1055                                                  TYPE_ICC_BRIDGE, NULL));
1056     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1057 }
1058 
1059 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1060 {
1061     int i;
1062     X86CPU *cpu = NULL;
1063     Error *error = NULL;
1064     unsigned long apic_id_limit;
1065 
1066     /* init CPUs */
1067     if (cpu_model == NULL) {
1068 #ifdef TARGET_X86_64
1069         cpu_model = "qemu64";
1070 #else
1071         cpu_model = "qemu32";
1072 #endif
1073     }
1074     current_cpu_model = cpu_model;
1075 
1076     apic_id_limit = pc_apic_id_limit(max_cpus);
1077     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1078         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1079                      apic_id_limit - 1);
1080         exit(1);
1081     }
1082 
1083     for (i = 0; i < smp_cpus; i++) {
1084         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1085                          icc_bridge, &error);
1086         if (error) {
1087             error_report_err(error);
1088             exit(1);
1089         }
1090     }
1091 
1092     /* map APIC MMIO area if CPU has APIC */
1093     if (cpu && cpu->apic_state) {
1094         /* XXX: what if the base changes? */
1095         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1096                                 APIC_DEFAULT_ADDRESS, 0x1000);
1097     }
1098 
1099     /* tell smbios about cpuid version and features */
1100     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1101 }
1102 
1103 /* pci-info ROM file. Little endian format */
1104 typedef struct PcRomPciInfo {
1105     uint64_t w32_min;
1106     uint64_t w32_max;
1107     uint64_t w64_min;
1108     uint64_t w64_max;
1109 } PcRomPciInfo;
1110 
1111 typedef struct PcGuestInfoState {
1112     PcGuestInfo info;
1113     Notifier machine_done;
1114 } PcGuestInfoState;
1115 
1116 static
1117 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1118 {
1119     PcGuestInfoState *guest_info_state = container_of(notifier,
1120                                                       PcGuestInfoState,
1121                                                       machine_done);
1122     acpi_setup(&guest_info_state->info);
1123 }
1124 
1125 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1126                                 ram_addr_t above_4g_mem_size)
1127 {
1128     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1129     PcGuestInfo *guest_info = &guest_info_state->info;
1130     int i, j;
1131 
1132     guest_info->ram_size_below_4g = below_4g_mem_size;
1133     guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1134     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1135     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1136     guest_info->numa_nodes = nb_numa_nodes;
1137     guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1138                                     sizeof *guest_info->node_mem);
1139     for (i = 0; i < nb_numa_nodes; i++) {
1140         guest_info->node_mem[i] = numa_info[i].node_mem;
1141     }
1142 
1143     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1144                                      sizeof *guest_info->node_cpu);
1145 
1146     for (i = 0; i < max_cpus; i++) {
1147         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1148         assert(apic_id < guest_info->apic_id_limit);
1149         for (j = 0; j < nb_numa_nodes; j++) {
1150             if (test_bit(i, numa_info[j].node_cpu)) {
1151                 guest_info->node_cpu[apic_id] = j;
1152                 break;
1153             }
1154         }
1155     }
1156 
1157     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1158     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1159     return guest_info;
1160 }
1161 
1162 /* setup pci memory address space mapping into system address space */
1163 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1164                             MemoryRegion *pci_address_space)
1165 {
1166     /* Set to lower priority than RAM */
1167     memory_region_add_subregion_overlap(system_memory, 0x0,
1168                                         pci_address_space, -1);
1169 }
1170 
1171 void pc_acpi_init(const char *default_dsdt)
1172 {
1173     char *filename;
1174 
1175     if (acpi_tables != NULL) {
1176         /* manually set via -acpitable, leave it alone */
1177         return;
1178     }
1179 
1180     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1181     if (filename == NULL) {
1182         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1183     } else {
1184         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1185                                           &error_abort);
1186         Error *err = NULL;
1187 
1188         qemu_opt_set(opts, "file", filename, &error_abort);
1189 
1190         acpi_table_add_builtin(opts, &err);
1191         if (err) {
1192             error_report("WARNING: failed to load %s: %s", filename,
1193                          error_get_pretty(err));
1194             error_free(err);
1195         }
1196         g_free(filename);
1197     }
1198 }
1199 
1200 FWCfgState *xen_load_linux(const char *kernel_filename,
1201                            const char *kernel_cmdline,
1202                            const char *initrd_filename,
1203                            ram_addr_t below_4g_mem_size,
1204                            PcGuestInfo *guest_info)
1205 {
1206     int i;
1207     FWCfgState *fw_cfg;
1208 
1209     assert(kernel_filename != NULL);
1210 
1211     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1212     rom_set_fw(fw_cfg);
1213 
1214     load_linux(fw_cfg, kernel_filename, initrd_filename,
1215                kernel_cmdline, below_4g_mem_size);
1216     for (i = 0; i < nb_option_roms; i++) {
1217         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1218                !strcmp(option_rom[i].name, "multiboot.bin"));
1219         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1220     }
1221     guest_info->fw_cfg = fw_cfg;
1222     return fw_cfg;
1223 }
1224 
1225 FWCfgState *pc_memory_init(MachineState *machine,
1226                            MemoryRegion *system_memory,
1227                            ram_addr_t below_4g_mem_size,
1228                            ram_addr_t above_4g_mem_size,
1229                            MemoryRegion *rom_memory,
1230                            MemoryRegion **ram_memory,
1231                            PcGuestInfo *guest_info)
1232 {
1233     int linux_boot, i;
1234     MemoryRegion *ram, *option_rom_mr;
1235     MemoryRegion *ram_below_4g, *ram_above_4g;
1236     FWCfgState *fw_cfg;
1237     PCMachineState *pcms = PC_MACHINE(machine);
1238 
1239     assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1240 
1241     linux_boot = (machine->kernel_filename != NULL);
1242 
1243     /* Allocate RAM.  We allocate it as a single memory region and use
1244      * aliases to address portions of it, mostly for backwards compatibility
1245      * with older qemus that used qemu_ram_alloc().
1246      */
1247     ram = g_malloc(sizeof(*ram));
1248     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1249                                          machine->ram_size);
1250     *ram_memory = ram;
1251     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1252     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1253                              0, below_4g_mem_size);
1254     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1255     e820_add_entry(0, below_4g_mem_size, E820_RAM);
1256     if (above_4g_mem_size > 0) {
1257         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1258         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1259                                  below_4g_mem_size, above_4g_mem_size);
1260         memory_region_add_subregion(system_memory, 0x100000000ULL,
1261                                     ram_above_4g);
1262         e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1263     }
1264 
1265     if (!guest_info->has_reserved_memory &&
1266         (machine->ram_slots ||
1267          (machine->maxram_size > machine->ram_size))) {
1268         MachineClass *mc = MACHINE_GET_CLASS(machine);
1269 
1270         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1271                      mc->name);
1272         exit(EXIT_FAILURE);
1273     }
1274 
1275     /* initialize hotplug memory address space */
1276     if (guest_info->has_reserved_memory &&
1277         (machine->ram_size < machine->maxram_size)) {
1278         ram_addr_t hotplug_mem_size =
1279             machine->maxram_size - machine->ram_size;
1280 
1281         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1282             error_report("unsupported amount of memory slots: %"PRIu64,
1283                          machine->ram_slots);
1284             exit(EXIT_FAILURE);
1285         }
1286 
1287         if (QEMU_ALIGN_UP(machine->maxram_size,
1288                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1289             error_report("maximum memory size must by aligned to multiple of "
1290                          "%d bytes", TARGET_PAGE_SIZE);
1291             exit(EXIT_FAILURE);
1292         }
1293 
1294         pcms->hotplug_memory_base =
1295             ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1296 
1297         if (pcms->enforce_aligned_dimm) {
1298             /* size hotplug region assuming 1G page max alignment per slot */
1299             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1300         }
1301 
1302         if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1303             hotplug_mem_size) {
1304             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1305                          machine->maxram_size);
1306             exit(EXIT_FAILURE);
1307         }
1308 
1309         memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1310                            "hotplug-memory", hotplug_mem_size);
1311         memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1312                                     &pcms->hotplug_memory);
1313     }
1314 
1315     /* Initialize PC system firmware */
1316     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1317 
1318     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1319     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1320                            &error_abort);
1321     vmstate_register_ram_global(option_rom_mr);
1322     memory_region_add_subregion_overlap(rom_memory,
1323                                         PC_ROM_MIN_VGA,
1324                                         option_rom_mr,
1325                                         1);
1326 
1327     fw_cfg = bochs_bios_init();
1328     rom_set_fw(fw_cfg);
1329 
1330     if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1331         uint64_t *val = g_malloc(sizeof(*val));
1332         *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1333         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1334     }
1335 
1336     if (linux_boot) {
1337         load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1338                    machine->kernel_cmdline, below_4g_mem_size);
1339     }
1340 
1341     for (i = 0; i < nb_option_roms; i++) {
1342         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1343     }
1344     guest_info->fw_cfg = fw_cfg;
1345     return fw_cfg;
1346 }
1347 
1348 qemu_irq *pc_allocate_cpu_irq(void)
1349 {
1350     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1351 }
1352 
1353 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1354 {
1355     DeviceState *dev = NULL;
1356 
1357     if (pci_bus) {
1358         PCIDevice *pcidev = pci_vga_init(pci_bus);
1359         dev = pcidev ? &pcidev->qdev : NULL;
1360     } else if (isa_bus) {
1361         ISADevice *isadev = isa_vga_init(isa_bus);
1362         dev = isadev ? DEVICE(isadev) : NULL;
1363     }
1364     return dev;
1365 }
1366 
1367 static void cpu_request_exit(void *opaque, int irq, int level)
1368 {
1369     CPUState *cpu = current_cpu;
1370 
1371     if (cpu && level) {
1372         cpu_exit(cpu);
1373     }
1374 }
1375 
1376 static const MemoryRegionOps ioport80_io_ops = {
1377     .write = ioport80_write,
1378     .read = ioport80_read,
1379     .endianness = DEVICE_NATIVE_ENDIAN,
1380     .impl = {
1381         .min_access_size = 1,
1382         .max_access_size = 1,
1383     },
1384 };
1385 
1386 static const MemoryRegionOps ioportF0_io_ops = {
1387     .write = ioportF0_write,
1388     .read = ioportF0_read,
1389     .endianness = DEVICE_NATIVE_ENDIAN,
1390     .impl = {
1391         .min_access_size = 1,
1392         .max_access_size = 1,
1393     },
1394 };
1395 
1396 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1397                           ISADevice **rtc_state,
1398                           bool create_fdctrl,
1399                           ISADevice **floppy,
1400                           bool no_vmport,
1401                           uint32 hpet_irqs)
1402 {
1403     int i;
1404     DriveInfo *fd[MAX_FD];
1405     DeviceState *hpet = NULL;
1406     int pit_isa_irq = 0;
1407     qemu_irq pit_alt_irq = NULL;
1408     qemu_irq rtc_irq = NULL;
1409     qemu_irq *a20_line;
1410     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1411     qemu_irq *cpu_exit_irq;
1412     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1413     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1414 
1415     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1416     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1417 
1418     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1419     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1420 
1421     /*
1422      * Check if an HPET shall be created.
1423      *
1424      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1425      * when the HPET wants to take over. Thus we have to disable the latter.
1426      */
1427     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1428         /* In order to set property, here not using sysbus_try_create_simple */
1429         hpet = qdev_try_create(NULL, TYPE_HPET);
1430         if (hpet) {
1431             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1432              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1433              * IRQ8 and IRQ2.
1434              */
1435             uint8_t compat = object_property_get_int(OBJECT(hpet),
1436                     HPET_INTCAP, NULL);
1437             if (!compat) {
1438                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1439             }
1440             qdev_init_nofail(hpet);
1441             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1442 
1443             for (i = 0; i < GSI_NUM_PINS; i++) {
1444                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1445             }
1446             pit_isa_irq = -1;
1447             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1448             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1449         }
1450     }
1451     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1452 
1453     qemu_register_boot_set(pc_boot_set, *rtc_state);
1454 
1455     if (!xen_enabled()) {
1456         if (kvm_irqchip_in_kernel()) {
1457             pit = kvm_pit_init(isa_bus, 0x40);
1458         } else {
1459             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1460         }
1461         if (hpet) {
1462             /* connect PIT to output control line of the HPET */
1463             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1464         }
1465         pcspk_init(isa_bus, pit);
1466     }
1467 
1468     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1469     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1470 
1471     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1472     i8042 = isa_create_simple(isa_bus, "i8042");
1473     i8042_setup_a20_line(i8042, &a20_line[0]);
1474     if (!no_vmport) {
1475         vmport_init(isa_bus);
1476         vmmouse = isa_try_create(isa_bus, "vmmouse");
1477     } else {
1478         vmmouse = NULL;
1479     }
1480     if (vmmouse) {
1481         DeviceState *dev = DEVICE(vmmouse);
1482         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1483         qdev_init_nofail(dev);
1484     }
1485     port92 = isa_create_simple(isa_bus, "port92");
1486     port92_init(port92, &a20_line[1]);
1487 
1488     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1489     DMA_init(0, cpu_exit_irq);
1490 
1491     for(i = 0; i < MAX_FD; i++) {
1492         fd[i] = drive_get(IF_FLOPPY, 0, i);
1493         create_fdctrl |= !!fd[i];
1494     }
1495     *floppy = create_fdctrl ? fdctrl_init_isa(isa_bus, fd) : NULL;
1496 }
1497 
1498 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1499 {
1500     int i;
1501 
1502     for (i = 0; i < nb_nics; i++) {
1503         NICInfo *nd = &nd_table[i];
1504 
1505         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1506             pc_init_ne2k_isa(isa_bus, nd);
1507         } else {
1508             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1509         }
1510     }
1511 }
1512 
1513 void pc_pci_device_init(PCIBus *pci_bus)
1514 {
1515     int max_bus;
1516     int bus;
1517 
1518     max_bus = drive_get_max_bus(IF_SCSI);
1519     for (bus = 0; bus <= max_bus; bus++) {
1520         pci_create_simple(pci_bus, -1, "lsi53c895a");
1521     }
1522 }
1523 
1524 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1525 {
1526     DeviceState *dev;
1527     SysBusDevice *d;
1528     unsigned int i;
1529 
1530     if (kvm_irqchip_in_kernel()) {
1531         dev = qdev_create(NULL, "kvm-ioapic");
1532     } else {
1533         dev = qdev_create(NULL, "ioapic");
1534     }
1535     if (parent_name) {
1536         object_property_add_child(object_resolve_path(parent_name, NULL),
1537                                   "ioapic", OBJECT(dev), NULL);
1538     }
1539     qdev_init_nofail(dev);
1540     d = SYS_BUS_DEVICE(dev);
1541     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1542 
1543     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1544         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1545     }
1546 }
1547 
1548 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1549                          DeviceState *dev, Error **errp)
1550 {
1551     int slot;
1552     HotplugHandlerClass *hhc;
1553     Error *local_err = NULL;
1554     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1555     MachineState *machine = MACHINE(hotplug_dev);
1556     PCDIMMDevice *dimm = PC_DIMM(dev);
1557     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1558     MemoryRegion *mr = ddc->get_memory_region(dimm);
1559     uint64_t existing_dimms_capacity = 0;
1560     uint64_t align = TARGET_PAGE_SIZE;
1561     uint64_t addr;
1562 
1563     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
1564     if (local_err) {
1565         goto out;
1566     }
1567 
1568     if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1569         align = memory_region_get_alignment(mr);
1570     }
1571 
1572     addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1573                                  memory_region_size(&pcms->hotplug_memory),
1574                                  !addr ? NULL : &addr, align,
1575                                  memory_region_size(mr), &local_err);
1576     if (local_err) {
1577         goto out;
1578     }
1579 
1580     existing_dimms_capacity = pc_existing_dimms_capacity(&local_err);
1581     if (local_err) {
1582         goto out;
1583     }
1584 
1585     if (existing_dimms_capacity + memory_region_size(mr) >
1586         machine->maxram_size - machine->ram_size) {
1587         error_setg(&local_err, "not enough space, currently 0x%" PRIx64
1588                    " in use of total hot pluggable 0x" RAM_ADDR_FMT,
1589                    existing_dimms_capacity,
1590                    machine->maxram_size - machine->ram_size);
1591         goto out;
1592     }
1593 
1594     object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1595     if (local_err) {
1596         goto out;
1597     }
1598     trace_mhp_pc_dimm_assigned_address(addr);
1599 
1600     slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1601     if (local_err) {
1602         goto out;
1603     }
1604 
1605     slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1606                                  machine->ram_slots, &local_err);
1607     if (local_err) {
1608         goto out;
1609     }
1610     object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1611     if (local_err) {
1612         goto out;
1613     }
1614     trace_mhp_pc_dimm_assigned_slot(slot);
1615 
1616     if (!pcms->acpi_dev) {
1617         error_setg(&local_err,
1618                    "memory hotplug is not enabled: missing acpi device");
1619         goto out;
1620     }
1621 
1622     if (kvm_enabled() && !kvm_has_free_slot(machine)) {
1623         error_setg(&local_err, "hypervisor has no free memory slots left");
1624         goto out;
1625     }
1626 
1627     memory_region_add_subregion(&pcms->hotplug_memory,
1628                                 addr - pcms->hotplug_memory_base, mr);
1629     vmstate_register_ram(mr, dev);
1630 
1631     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1632     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1633 out:
1634     error_propagate(errp, local_err);
1635 }
1636 
1637 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1638                                    DeviceState *dev, Error **errp)
1639 {
1640     HotplugHandlerClass *hhc;
1641     Error *local_err = NULL;
1642     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1643 
1644     if (!pcms->acpi_dev) {
1645         error_setg(&local_err,
1646                    "memory hotplug is not enabled: missing acpi device");
1647         goto out;
1648     }
1649 
1650     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1651     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1652 
1653 out:
1654     error_propagate(errp, local_err);
1655 }
1656 
1657 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1658                            DeviceState *dev, Error **errp)
1659 {
1660     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1661     PCDIMMDevice *dimm = PC_DIMM(dev);
1662     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1663     MemoryRegion *mr = ddc->get_memory_region(dimm);
1664     HotplugHandlerClass *hhc;
1665     Error *local_err = NULL;
1666 
1667     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1668     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1669 
1670     if (local_err) {
1671         goto out;
1672     }
1673 
1674     memory_region_del_subregion(&pcms->hotplug_memory, mr);
1675     vmstate_unregister_ram(mr, dev);
1676 
1677     object_unparent(OBJECT(dev));
1678 
1679  out:
1680     error_propagate(errp, local_err);
1681 }
1682 
1683 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1684                         DeviceState *dev, Error **errp)
1685 {
1686     HotplugHandlerClass *hhc;
1687     Error *local_err = NULL;
1688     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1689 
1690     if (!dev->hotplugged) {
1691         goto out;
1692     }
1693 
1694     if (!pcms->acpi_dev) {
1695         error_setg(&local_err,
1696                    "cpu hotplug is not enabled: missing acpi device");
1697         goto out;
1698     }
1699 
1700     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1701     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1702     if (local_err) {
1703         goto out;
1704     }
1705 
1706     /* increment the number of CPUs */
1707     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1708 out:
1709     error_propagate(errp, local_err);
1710 }
1711 
1712 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1713                                       DeviceState *dev, Error **errp)
1714 {
1715     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1716         pc_dimm_plug(hotplug_dev, dev, errp);
1717     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1718         pc_cpu_plug(hotplug_dev, dev, errp);
1719     }
1720 }
1721 
1722 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1723                                                 DeviceState *dev, Error **errp)
1724 {
1725     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1726         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1727     } else {
1728         error_setg(errp, "acpi: device unplug request for not supported device"
1729                    " type: %s", object_get_typename(OBJECT(dev)));
1730     }
1731 }
1732 
1733 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1734                                         DeviceState *dev, Error **errp)
1735 {
1736     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1737         pc_dimm_unplug(hotplug_dev, dev, errp);
1738     } else {
1739         error_setg(errp, "acpi: device unplug for not supported device"
1740                    " type: %s", object_get_typename(OBJECT(dev)));
1741     }
1742 }
1743 
1744 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1745                                              DeviceState *dev)
1746 {
1747     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1748 
1749     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1750         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1751         return HOTPLUG_HANDLER(machine);
1752     }
1753 
1754     return pcmc->get_hotplug_handler ?
1755         pcmc->get_hotplug_handler(machine, dev) : NULL;
1756 }
1757 
1758 static void
1759 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1760                                           const char *name, Error **errp)
1761 {
1762     PCMachineState *pcms = PC_MACHINE(obj);
1763     int64_t value = memory_region_size(&pcms->hotplug_memory);
1764 
1765     visit_type_int(v, &value, name, errp);
1766 }
1767 
1768 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1769                                          void *opaque, const char *name,
1770                                          Error **errp)
1771 {
1772     PCMachineState *pcms = PC_MACHINE(obj);
1773     uint64_t value = pcms->max_ram_below_4g;
1774 
1775     visit_type_size(v, &value, name, errp);
1776 }
1777 
1778 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1779                                          void *opaque, const char *name,
1780                                          Error **errp)
1781 {
1782     PCMachineState *pcms = PC_MACHINE(obj);
1783     Error *error = NULL;
1784     uint64_t value;
1785 
1786     visit_type_size(v, &value, name, &error);
1787     if (error) {
1788         error_propagate(errp, error);
1789         return;
1790     }
1791     if (value > (1ULL << 32)) {
1792         error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1793                   "Machine option 'max-ram-below-4g=%"PRIu64
1794                   "' expects size less than or equal to 4G", value);
1795         error_propagate(errp, error);
1796         return;
1797     }
1798 
1799     if (value < (1ULL << 20)) {
1800         error_report("Warning: small max_ram_below_4g(%"PRIu64
1801                      ") less than 1M.  BIOS may not work..",
1802                      value);
1803     }
1804 
1805     pcms->max_ram_below_4g = value;
1806 }
1807 
1808 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1809                                   const char *name, Error **errp)
1810 {
1811     PCMachineState *pcms = PC_MACHINE(obj);
1812     OnOffAuto vmport = pcms->vmport;
1813 
1814     visit_type_OnOffAuto(v, &vmport, name, errp);
1815 }
1816 
1817 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1818                                   const char *name, Error **errp)
1819 {
1820     PCMachineState *pcms = PC_MACHINE(obj);
1821 
1822     visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1823 }
1824 
1825 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1826 {
1827     PCMachineState *pcms = PC_MACHINE(obj);
1828 
1829     return pcms->enforce_aligned_dimm;
1830 }
1831 
1832 static void pc_machine_initfn(Object *obj)
1833 {
1834     PCMachineState *pcms = PC_MACHINE(obj);
1835 
1836     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1837                         pc_machine_get_hotplug_memory_region_size,
1838                         NULL, NULL, NULL, NULL);
1839 
1840     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1841     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1842                         pc_machine_get_max_ram_below_4g,
1843                         pc_machine_set_max_ram_below_4g,
1844                         NULL, NULL, NULL);
1845     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1846                                     "Maximum ram below the 4G boundary (32bit boundary)",
1847                                     NULL);
1848 
1849     pcms->vmport = ON_OFF_AUTO_AUTO;
1850     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1851                         pc_machine_get_vmport,
1852                         pc_machine_set_vmport,
1853                         NULL, NULL, NULL);
1854     object_property_set_description(obj, PC_MACHINE_VMPORT,
1855                                     "Enable vmport (pc & q35)",
1856                                     NULL);
1857 
1858     pcms->enforce_aligned_dimm = true;
1859     object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1860                              pc_machine_get_aligned_dimm,
1861                              NULL, NULL);
1862 }
1863 
1864 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1865 {
1866     unsigned pkg_id, core_id, smt_id;
1867     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1868                           &pkg_id, &core_id, &smt_id);
1869     return pkg_id;
1870 }
1871 
1872 static void pc_machine_class_init(ObjectClass *oc, void *data)
1873 {
1874     MachineClass *mc = MACHINE_CLASS(oc);
1875     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1876     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1877 
1878     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1879     mc->get_hotplug_handler = pc_get_hotpug_handler;
1880     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1881     hc->plug = pc_machine_device_plug_cb;
1882     hc->unplug_request = pc_machine_device_unplug_request_cb;
1883     hc->unplug = pc_machine_device_unplug_cb;
1884 }
1885 
1886 static const TypeInfo pc_machine_info = {
1887     .name = TYPE_PC_MACHINE,
1888     .parent = TYPE_MACHINE,
1889     .abstract = true,
1890     .instance_size = sizeof(PCMachineState),
1891     .instance_init = pc_machine_initfn,
1892     .class_size = sizeof(PCMachineClass),
1893     .class_init = pc_machine_class_init,
1894     .interfaces = (InterfaceInfo[]) {
1895          { TYPE_HOTPLUG_HANDLER },
1896          { }
1897     },
1898 };
1899 
1900 static void pc_machine_register_types(void)
1901 {
1902     type_register_static(&pc_machine_info);
1903 }
1904 
1905 type_init(pc_machine_register_types)
1906