1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/hw.h" 25 #include "hw/i386/pc.h" 26 #include "hw/char/serial.h" 27 #include "hw/i386/apic.h" 28 #include "hw/block/fdc.h" 29 #include "hw/ide.h" 30 #include "hw/pci/pci.h" 31 #include "monitor/monitor.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/timer/hpet.h" 34 #include "hw/i386/smbios.h" 35 #include "hw/loader.h" 36 #include "elf.h" 37 #include "multiboot.h" 38 #include "hw/timer/mc146818rtc.h" 39 #include "hw/timer/i8254.h" 40 #include "hw/audio/pcspk.h" 41 #include "hw/pci/msi.h" 42 #include "hw/sysbus.h" 43 #include "sysemu/sysemu.h" 44 #include "sysemu/kvm.h" 45 #include "kvm_i386.h" 46 #include "hw/xen/xen.h" 47 #include "sysemu/blockdev.h" 48 #include "hw/block/block.h" 49 #include "ui/qemu-spice.h" 50 #include "exec/memory.h" 51 #include "exec/address-spaces.h" 52 #include "sysemu/arch_init.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/config-file.h" 55 #include "hw/acpi/acpi.h" 56 #include "hw/acpi/cpu_hotplug.h" 57 #include "hw/cpu/icc_bus.h" 58 #include "hw/boards.h" 59 #include "hw/pci/pci_host.h" 60 #include "acpi-build.h" 61 #include "hw/mem/pc-dimm.h" 62 #include "trace.h" 63 #include "qapi/visitor.h" 64 65 /* debug PC/ISA interrupts */ 66 //#define DEBUG_IRQ 67 68 #ifdef DEBUG_IRQ 69 #define DPRINTF(fmt, ...) \ 70 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 71 #else 72 #define DPRINTF(fmt, ...) 73 #endif 74 75 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ 76 #define ACPI_DATA_SIZE 0x10000 77 #define BIOS_CFG_IOPORT 0x510 78 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 79 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 80 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 81 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 82 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 83 84 #define E820_NR_ENTRIES 16 85 86 struct e820_entry { 87 uint64_t address; 88 uint64_t length; 89 uint32_t type; 90 } QEMU_PACKED __attribute((__aligned__(4))); 91 92 struct e820_table { 93 uint32_t count; 94 struct e820_entry entry[E820_NR_ENTRIES]; 95 } QEMU_PACKED __attribute((__aligned__(4))); 96 97 static struct e820_table e820_reserve; 98 static struct e820_entry *e820_table; 99 static unsigned e820_entries; 100 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 101 102 void gsi_handler(void *opaque, int n, int level) 103 { 104 GSIState *s = opaque; 105 106 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 107 if (n < ISA_NUM_IRQS) { 108 qemu_set_irq(s->i8259_irq[n], level); 109 } 110 qemu_set_irq(s->ioapic_irq[n], level); 111 } 112 113 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 114 unsigned size) 115 { 116 } 117 118 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 119 { 120 return 0xffffffffffffffffULL; 121 } 122 123 /* MSDOS compatibility mode FPU exception support */ 124 static qemu_irq ferr_irq; 125 126 void pc_register_ferr_irq(qemu_irq irq) 127 { 128 ferr_irq = irq; 129 } 130 131 /* XXX: add IGNNE support */ 132 void cpu_set_ferr(CPUX86State *s) 133 { 134 qemu_irq_raise(ferr_irq); 135 } 136 137 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 138 unsigned size) 139 { 140 qemu_irq_lower(ferr_irq); 141 } 142 143 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 144 { 145 return 0xffffffffffffffffULL; 146 } 147 148 /* TSC handling */ 149 uint64_t cpu_get_tsc(CPUX86State *env) 150 { 151 return cpu_get_ticks(); 152 } 153 154 /* SMM support */ 155 156 static cpu_set_smm_t smm_set; 157 static void *smm_arg; 158 159 void cpu_smm_register(cpu_set_smm_t callback, void *arg) 160 { 161 assert(smm_set == NULL); 162 assert(smm_arg == NULL); 163 smm_set = callback; 164 smm_arg = arg; 165 } 166 167 void cpu_smm_update(CPUX86State *env) 168 { 169 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) { 170 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg); 171 } 172 } 173 174 175 /* IRQ handling */ 176 int cpu_get_pic_interrupt(CPUX86State *env) 177 { 178 X86CPU *cpu = x86_env_get_cpu(env); 179 int intno; 180 181 intno = apic_get_interrupt(cpu->apic_state); 182 if (intno >= 0) { 183 return intno; 184 } 185 /* read the irq from the PIC */ 186 if (!apic_accept_pic_intr(cpu->apic_state)) { 187 return -1; 188 } 189 190 intno = pic_read_irq(isa_pic); 191 return intno; 192 } 193 194 static void pic_irq_request(void *opaque, int irq, int level) 195 { 196 CPUState *cs = first_cpu; 197 X86CPU *cpu = X86_CPU(cs); 198 199 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 200 if (cpu->apic_state) { 201 CPU_FOREACH(cs) { 202 cpu = X86_CPU(cs); 203 if (apic_accept_pic_intr(cpu->apic_state)) { 204 apic_deliver_pic_intr(cpu->apic_state, level); 205 } 206 } 207 } else { 208 if (level) { 209 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 210 } else { 211 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 212 } 213 } 214 } 215 216 /* PC cmos mappings */ 217 218 #define REG_EQUIPMENT_BYTE 0x14 219 220 static int cmos_get_fd_drive_type(FDriveType fd0) 221 { 222 int val; 223 224 switch (fd0) { 225 case FDRIVE_DRV_144: 226 /* 1.44 Mb 3"5 drive */ 227 val = 4; 228 break; 229 case FDRIVE_DRV_288: 230 /* 2.88 Mb 3"5 drive */ 231 val = 5; 232 break; 233 case FDRIVE_DRV_120: 234 /* 1.2 Mb 5"5 drive */ 235 val = 2; 236 break; 237 case FDRIVE_DRV_NONE: 238 default: 239 val = 0; 240 break; 241 } 242 return val; 243 } 244 245 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 246 int16_t cylinders, int8_t heads, int8_t sectors) 247 { 248 rtc_set_memory(s, type_ofs, 47); 249 rtc_set_memory(s, info_ofs, cylinders); 250 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 251 rtc_set_memory(s, info_ofs + 2, heads); 252 rtc_set_memory(s, info_ofs + 3, 0xff); 253 rtc_set_memory(s, info_ofs + 4, 0xff); 254 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 255 rtc_set_memory(s, info_ofs + 6, cylinders); 256 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 257 rtc_set_memory(s, info_ofs + 8, sectors); 258 } 259 260 /* convert boot_device letter to something recognizable by the bios */ 261 static int boot_device2nibble(char boot_device) 262 { 263 switch(boot_device) { 264 case 'a': 265 case 'b': 266 return 0x01; /* floppy boot */ 267 case 'c': 268 return 0x02; /* hard drive boot */ 269 case 'd': 270 return 0x03; /* CD-ROM boot */ 271 case 'n': 272 return 0x04; /* Network boot */ 273 } 274 return 0; 275 } 276 277 static int set_boot_dev(ISADevice *s, const char *boot_device) 278 { 279 #define PC_MAX_BOOT_DEVICES 3 280 int nbds, bds[3] = { 0, }; 281 int i; 282 283 nbds = strlen(boot_device); 284 if (nbds > PC_MAX_BOOT_DEVICES) { 285 error_report("Too many boot devices for PC"); 286 return(1); 287 } 288 for (i = 0; i < nbds; i++) { 289 bds[i] = boot_device2nibble(boot_device[i]); 290 if (bds[i] == 0) { 291 error_report("Invalid boot device for PC: '%c'", 292 boot_device[i]); 293 return(1); 294 } 295 } 296 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 297 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 298 return(0); 299 } 300 301 static int pc_boot_set(void *opaque, const char *boot_device) 302 { 303 return set_boot_dev(opaque, boot_device); 304 } 305 306 typedef struct pc_cmos_init_late_arg { 307 ISADevice *rtc_state; 308 BusState *idebus[2]; 309 } pc_cmos_init_late_arg; 310 311 static void pc_cmos_init_late(void *opaque) 312 { 313 pc_cmos_init_late_arg *arg = opaque; 314 ISADevice *s = arg->rtc_state; 315 int16_t cylinders; 316 int8_t heads, sectors; 317 int val; 318 int i, trans; 319 320 val = 0; 321 if (ide_get_geometry(arg->idebus[0], 0, 322 &cylinders, &heads, §ors) >= 0) { 323 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 324 val |= 0xf0; 325 } 326 if (ide_get_geometry(arg->idebus[0], 1, 327 &cylinders, &heads, §ors) >= 0) { 328 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 329 val |= 0x0f; 330 } 331 rtc_set_memory(s, 0x12, val); 332 333 val = 0; 334 for (i = 0; i < 4; i++) { 335 /* NOTE: ide_get_geometry() returns the physical 336 geometry. It is always such that: 1 <= sects <= 63, 1 337 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 338 geometry can be different if a translation is done. */ 339 if (ide_get_geometry(arg->idebus[i / 2], i % 2, 340 &cylinders, &heads, §ors) >= 0) { 341 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 342 assert((trans & ~3) == 0); 343 val |= trans << (i * 2); 344 } 345 } 346 rtc_set_memory(s, 0x39, val); 347 348 qemu_unregister_reset(pc_cmos_init_late, opaque); 349 } 350 351 typedef struct RTCCPUHotplugArg { 352 Notifier cpu_added_notifier; 353 ISADevice *rtc_state; 354 } RTCCPUHotplugArg; 355 356 static void rtc_notify_cpu_added(Notifier *notifier, void *data) 357 { 358 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg, 359 cpu_added_notifier); 360 ISADevice *s = arg->rtc_state; 361 362 /* increment the number of CPUs */ 363 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1); 364 } 365 366 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, 367 const char *boot_device, 368 ISADevice *floppy, BusState *idebus0, BusState *idebus1, 369 ISADevice *s) 370 { 371 int val, nb, i; 372 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE }; 373 static pc_cmos_init_late_arg arg; 374 static RTCCPUHotplugArg cpu_hotplug_cb; 375 376 /* various important CMOS locations needed by PC/Bochs bios */ 377 378 /* memory size */ 379 /* base memory (first MiB) */ 380 val = MIN(ram_size / 1024, 640); 381 rtc_set_memory(s, 0x15, val); 382 rtc_set_memory(s, 0x16, val >> 8); 383 /* extended memory (next 64MiB) */ 384 if (ram_size > 1024 * 1024) { 385 val = (ram_size - 1024 * 1024) / 1024; 386 } else { 387 val = 0; 388 } 389 if (val > 65535) 390 val = 65535; 391 rtc_set_memory(s, 0x17, val); 392 rtc_set_memory(s, 0x18, val >> 8); 393 rtc_set_memory(s, 0x30, val); 394 rtc_set_memory(s, 0x31, val >> 8); 395 /* memory between 16MiB and 4GiB */ 396 if (ram_size > 16 * 1024 * 1024) { 397 val = (ram_size - 16 * 1024 * 1024) / 65536; 398 } else { 399 val = 0; 400 } 401 if (val > 65535) 402 val = 65535; 403 rtc_set_memory(s, 0x34, val); 404 rtc_set_memory(s, 0x35, val >> 8); 405 /* memory above 4GiB */ 406 val = above_4g_mem_size / 65536; 407 rtc_set_memory(s, 0x5b, val); 408 rtc_set_memory(s, 0x5c, val >> 8); 409 rtc_set_memory(s, 0x5d, val >> 16); 410 411 /* set the number of CPU */ 412 rtc_set_memory(s, 0x5f, smp_cpus - 1); 413 /* init CPU hotplug notifier */ 414 cpu_hotplug_cb.rtc_state = s; 415 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added; 416 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier); 417 418 if (set_boot_dev(s, boot_device)) { 419 exit(1); 420 } 421 422 /* floppy type */ 423 if (floppy) { 424 for (i = 0; i < 2; i++) { 425 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 426 } 427 } 428 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 429 cmos_get_fd_drive_type(fd_type[1]); 430 rtc_set_memory(s, 0x10, val); 431 432 val = 0; 433 nb = 0; 434 if (fd_type[0] < FDRIVE_DRV_NONE) { 435 nb++; 436 } 437 if (fd_type[1] < FDRIVE_DRV_NONE) { 438 nb++; 439 } 440 switch (nb) { 441 case 0: 442 break; 443 case 1: 444 val |= 0x01; /* 1 drive, ready for boot */ 445 break; 446 case 2: 447 val |= 0x41; /* 2 drives, ready for boot */ 448 break; 449 } 450 val |= 0x02; /* FPU is there */ 451 val |= 0x04; /* PS/2 mouse installed */ 452 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 453 454 /* hard drives */ 455 arg.rtc_state = s; 456 arg.idebus[0] = idebus0; 457 arg.idebus[1] = idebus1; 458 qemu_register_reset(pc_cmos_init_late, &arg); 459 } 460 461 #define TYPE_PORT92 "port92" 462 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 463 464 /* port 92 stuff: could be split off */ 465 typedef struct Port92State { 466 ISADevice parent_obj; 467 468 MemoryRegion io; 469 uint8_t outport; 470 qemu_irq *a20_out; 471 } Port92State; 472 473 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 474 unsigned size) 475 { 476 Port92State *s = opaque; 477 int oldval = s->outport; 478 479 DPRINTF("port92: write 0x%02x\n", val); 480 s->outport = val; 481 qemu_set_irq(*s->a20_out, (val >> 1) & 1); 482 if ((val & 1) && !(oldval & 1)) { 483 qemu_system_reset_request(); 484 } 485 } 486 487 static uint64_t port92_read(void *opaque, hwaddr addr, 488 unsigned size) 489 { 490 Port92State *s = opaque; 491 uint32_t ret; 492 493 ret = s->outport; 494 DPRINTF("port92: read 0x%02x\n", ret); 495 return ret; 496 } 497 498 static void port92_init(ISADevice *dev, qemu_irq *a20_out) 499 { 500 Port92State *s = PORT92(dev); 501 502 s->a20_out = a20_out; 503 } 504 505 static const VMStateDescription vmstate_port92_isa = { 506 .name = "port92", 507 .version_id = 1, 508 .minimum_version_id = 1, 509 .fields = (VMStateField[]) { 510 VMSTATE_UINT8(outport, Port92State), 511 VMSTATE_END_OF_LIST() 512 } 513 }; 514 515 static void port92_reset(DeviceState *d) 516 { 517 Port92State *s = PORT92(d); 518 519 s->outport &= ~1; 520 } 521 522 static const MemoryRegionOps port92_ops = { 523 .read = port92_read, 524 .write = port92_write, 525 .impl = { 526 .min_access_size = 1, 527 .max_access_size = 1, 528 }, 529 .endianness = DEVICE_LITTLE_ENDIAN, 530 }; 531 532 static void port92_initfn(Object *obj) 533 { 534 Port92State *s = PORT92(obj); 535 536 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 537 538 s->outport = 0; 539 } 540 541 static void port92_realizefn(DeviceState *dev, Error **errp) 542 { 543 ISADevice *isadev = ISA_DEVICE(dev); 544 Port92State *s = PORT92(dev); 545 546 isa_register_ioport(isadev, &s->io, 0x92); 547 } 548 549 static void port92_class_initfn(ObjectClass *klass, void *data) 550 { 551 DeviceClass *dc = DEVICE_CLASS(klass); 552 553 dc->realize = port92_realizefn; 554 dc->reset = port92_reset; 555 dc->vmsd = &vmstate_port92_isa; 556 /* 557 * Reason: unlike ordinary ISA devices, this one needs additional 558 * wiring: its A20 output line needs to be wired up by 559 * port92_init(). 560 */ 561 dc->cannot_instantiate_with_device_add_yet = true; 562 } 563 564 static const TypeInfo port92_info = { 565 .name = TYPE_PORT92, 566 .parent = TYPE_ISA_DEVICE, 567 .instance_size = sizeof(Port92State), 568 .instance_init = port92_initfn, 569 .class_init = port92_class_initfn, 570 }; 571 572 static void port92_register_types(void) 573 { 574 type_register_static(&port92_info); 575 } 576 577 type_init(port92_register_types) 578 579 static void handle_a20_line_change(void *opaque, int irq, int level) 580 { 581 X86CPU *cpu = opaque; 582 583 /* XXX: send to all CPUs ? */ 584 /* XXX: add logic to handle multiple A20 line sources */ 585 x86_cpu_set_a20(cpu, level); 586 } 587 588 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 589 { 590 int index = le32_to_cpu(e820_reserve.count); 591 struct e820_entry *entry; 592 593 if (type != E820_RAM) { 594 /* old FW_CFG_E820_TABLE entry -- reservations only */ 595 if (index >= E820_NR_ENTRIES) { 596 return -EBUSY; 597 } 598 entry = &e820_reserve.entry[index++]; 599 600 entry->address = cpu_to_le64(address); 601 entry->length = cpu_to_le64(length); 602 entry->type = cpu_to_le32(type); 603 604 e820_reserve.count = cpu_to_le32(index); 605 } 606 607 /* new "etc/e820" file -- include ram too */ 608 e820_table = g_realloc(e820_table, 609 sizeof(struct e820_entry) * (e820_entries+1)); 610 e820_table[e820_entries].address = cpu_to_le64(address); 611 e820_table[e820_entries].length = cpu_to_le64(length); 612 e820_table[e820_entries].type = cpu_to_le32(type); 613 e820_entries++; 614 615 return e820_entries; 616 } 617 618 int e820_get_num_entries(void) 619 { 620 return e820_entries; 621 } 622 623 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 624 { 625 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 626 *address = le64_to_cpu(e820_table[idx].address); 627 *length = le64_to_cpu(e820_table[idx].length); 628 return true; 629 } 630 return false; 631 } 632 633 /* Calculates the limit to CPU APIC ID values 634 * 635 * This function returns the limit for the APIC ID value, so that all 636 * CPU APIC IDs are < pc_apic_id_limit(). 637 * 638 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 639 */ 640 static unsigned int pc_apic_id_limit(unsigned int max_cpus) 641 { 642 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 643 } 644 645 static FWCfgState *bochs_bios_init(void) 646 { 647 FWCfgState *fw_cfg; 648 uint8_t *smbios_tables, *smbios_anchor; 649 size_t smbios_tables_len, smbios_anchor_len; 650 uint64_t *numa_fw_cfg; 651 int i, j; 652 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus); 653 654 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); 655 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 656 * 657 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug 658 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC 659 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the 660 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS 661 * may see". 662 * 663 * So, this means we must not use max_cpus, here, but the maximum possible 664 * APIC ID value, plus one. 665 * 666 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is 667 * the APIC ID, not the "CPU index" 668 */ 669 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit); 670 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); 671 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 672 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 673 acpi_tables, acpi_tables_len); 674 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 675 676 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 677 if (smbios_tables) { 678 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 679 smbios_tables, smbios_tables_len); 680 } 681 682 smbios_get_tables(&smbios_tables, &smbios_tables_len, 683 &smbios_anchor, &smbios_anchor_len); 684 if (smbios_anchor) { 685 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 686 smbios_tables, smbios_tables_len); 687 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 688 smbios_anchor, smbios_anchor_len); 689 } 690 691 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 692 &e820_reserve, sizeof(e820_reserve)); 693 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 694 sizeof(struct e820_entry) * e820_entries); 695 696 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 697 /* allocate memory for the NUMA channel: one (64bit) word for the number 698 * of nodes, one word for each VCPU->node and one word for each node to 699 * hold the amount of memory. 700 */ 701 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); 702 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 703 for (i = 0; i < max_cpus; i++) { 704 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 705 assert(apic_id < apic_id_limit); 706 for (j = 0; j < nb_numa_nodes; j++) { 707 if (test_bit(i, numa_info[j].node_cpu)) { 708 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); 709 break; 710 } 711 } 712 } 713 for (i = 0; i < nb_numa_nodes; i++) { 714 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem); 715 } 716 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 717 (1 + apic_id_limit + nb_numa_nodes) * 718 sizeof(*numa_fw_cfg)); 719 720 return fw_cfg; 721 } 722 723 static long get_file_size(FILE *f) 724 { 725 long where, size; 726 727 /* XXX: on Unix systems, using fstat() probably makes more sense */ 728 729 where = ftell(f); 730 fseek(f, 0, SEEK_END); 731 size = ftell(f); 732 fseek(f, where, SEEK_SET); 733 734 return size; 735 } 736 737 static void load_linux(FWCfgState *fw_cfg, 738 const char *kernel_filename, 739 const char *initrd_filename, 740 const char *kernel_cmdline, 741 hwaddr max_ram_size) 742 { 743 uint16_t protocol; 744 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 745 uint32_t initrd_max; 746 uint8_t header[8192], *setup, *kernel, *initrd_data; 747 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 748 FILE *f; 749 char *vmode; 750 751 /* Align to 16 bytes as a paranoia measure */ 752 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 753 754 /* load the kernel header */ 755 f = fopen(kernel_filename, "rb"); 756 if (!f || !(kernel_size = get_file_size(f)) || 757 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 758 MIN(ARRAY_SIZE(header), kernel_size)) { 759 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 760 kernel_filename, strerror(errno)); 761 exit(1); 762 } 763 764 /* kernel protocol version */ 765 #if 0 766 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 767 #endif 768 if (ldl_p(header+0x202) == 0x53726448) { 769 protocol = lduw_p(header+0x206); 770 } else { 771 /* This looks like a multiboot kernel. If it is, let's stop 772 treating it like a Linux kernel. */ 773 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 774 kernel_cmdline, kernel_size, header)) { 775 return; 776 } 777 protocol = 0; 778 } 779 780 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 781 /* Low kernel */ 782 real_addr = 0x90000; 783 cmdline_addr = 0x9a000 - cmdline_size; 784 prot_addr = 0x10000; 785 } else if (protocol < 0x202) { 786 /* High but ancient kernel */ 787 real_addr = 0x90000; 788 cmdline_addr = 0x9a000 - cmdline_size; 789 prot_addr = 0x100000; 790 } else { 791 /* High and recent kernel */ 792 real_addr = 0x10000; 793 cmdline_addr = 0x20000; 794 prot_addr = 0x100000; 795 } 796 797 #if 0 798 fprintf(stderr, 799 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 800 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 801 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 802 real_addr, 803 cmdline_addr, 804 prot_addr); 805 #endif 806 807 /* highest address for loading the initrd */ 808 if (protocol >= 0x203) { 809 initrd_max = ldl_p(header+0x22c); 810 } else { 811 initrd_max = 0x37ffffff; 812 } 813 814 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) 815 initrd_max = max_ram_size-ACPI_DATA_SIZE-1; 816 817 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 818 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 819 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 820 821 if (protocol >= 0x202) { 822 stl_p(header+0x228, cmdline_addr); 823 } else { 824 stw_p(header+0x20, 0xA33F); 825 stw_p(header+0x22, cmdline_addr-real_addr); 826 } 827 828 /* handle vga= parameter */ 829 vmode = strstr(kernel_cmdline, "vga="); 830 if (vmode) { 831 unsigned int video_mode; 832 /* skip "vga=" */ 833 vmode += 4; 834 if (!strncmp(vmode, "normal", 6)) { 835 video_mode = 0xffff; 836 } else if (!strncmp(vmode, "ext", 3)) { 837 video_mode = 0xfffe; 838 } else if (!strncmp(vmode, "ask", 3)) { 839 video_mode = 0xfffd; 840 } else { 841 video_mode = strtol(vmode, NULL, 0); 842 } 843 stw_p(header+0x1fa, video_mode); 844 } 845 846 /* loader type */ 847 /* High nybble = B reserved for QEMU; low nybble is revision number. 848 If this code is substantially changed, you may want to consider 849 incrementing the revision. */ 850 if (protocol >= 0x200) { 851 header[0x210] = 0xB0; 852 } 853 /* heap */ 854 if (protocol >= 0x201) { 855 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 856 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 857 } 858 859 /* load initrd */ 860 if (initrd_filename) { 861 if (protocol < 0x200) { 862 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 863 exit(1); 864 } 865 866 initrd_size = get_image_size(initrd_filename); 867 if (initrd_size < 0) { 868 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 869 initrd_filename, strerror(errno)); 870 exit(1); 871 } 872 873 initrd_addr = (initrd_max-initrd_size) & ~4095; 874 875 initrd_data = g_malloc(initrd_size); 876 load_image(initrd_filename, initrd_data); 877 878 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 879 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 880 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 881 882 stl_p(header+0x218, initrd_addr); 883 stl_p(header+0x21c, initrd_size); 884 } 885 886 /* load kernel and setup */ 887 setup_size = header[0x1f1]; 888 if (setup_size == 0) { 889 setup_size = 4; 890 } 891 setup_size = (setup_size+1)*512; 892 kernel_size -= setup_size; 893 894 setup = g_malloc(setup_size); 895 kernel = g_malloc(kernel_size); 896 fseek(f, 0, SEEK_SET); 897 if (fread(setup, 1, setup_size, f) != setup_size) { 898 fprintf(stderr, "fread() failed\n"); 899 exit(1); 900 } 901 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 902 fprintf(stderr, "fread() failed\n"); 903 exit(1); 904 } 905 fclose(f); 906 memcpy(setup, header, MIN(sizeof(header), setup_size)); 907 908 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 909 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 910 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 911 912 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 913 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 914 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 915 916 option_rom[nb_option_roms].name = "linuxboot.bin"; 917 option_rom[nb_option_roms].bootindex = 0; 918 nb_option_roms++; 919 } 920 921 #define NE2000_NB_MAX 6 922 923 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 924 0x280, 0x380 }; 925 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 926 927 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 928 { 929 static int nb_ne2k = 0; 930 931 if (nb_ne2k == NE2000_NB_MAX) 932 return; 933 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 934 ne2000_irq[nb_ne2k], nd); 935 nb_ne2k++; 936 } 937 938 DeviceState *cpu_get_current_apic(void) 939 { 940 if (current_cpu) { 941 X86CPU *cpu = X86_CPU(current_cpu); 942 return cpu->apic_state; 943 } else { 944 return NULL; 945 } 946 } 947 948 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 949 { 950 X86CPU *cpu = opaque; 951 952 if (level) { 953 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 954 } 955 } 956 957 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id, 958 DeviceState *icc_bridge, Error **errp) 959 { 960 X86CPU *cpu; 961 Error *local_err = NULL; 962 963 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err); 964 if (local_err != NULL) { 965 error_propagate(errp, local_err); 966 return NULL; 967 } 968 969 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); 970 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); 971 972 if (local_err) { 973 error_propagate(errp, local_err); 974 object_unref(OBJECT(cpu)); 975 cpu = NULL; 976 } 977 return cpu; 978 } 979 980 static const char *current_cpu_model; 981 982 void pc_hot_add_cpu(const int64_t id, Error **errp) 983 { 984 DeviceState *icc_bridge; 985 int64_t apic_id = x86_cpu_apic_id_from_index(id); 986 987 if (id < 0) { 988 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 989 return; 990 } 991 992 if (cpu_exists(apic_id)) { 993 error_setg(errp, "Unable to add CPU: %" PRIi64 994 ", it already exists", id); 995 return; 996 } 997 998 if (id >= max_cpus) { 999 error_setg(errp, "Unable to add CPU: %" PRIi64 1000 ", max allowed: %d", id, max_cpus - 1); 1001 return; 1002 } 1003 1004 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1005 error_setg(errp, "Unable to add CPU: %" PRIi64 1006 ", resulting APIC ID (%" PRIi64 ") is too large", 1007 id, apic_id); 1008 return; 1009 } 1010 1011 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge", 1012 TYPE_ICC_BRIDGE, NULL)); 1013 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp); 1014 } 1015 1016 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge) 1017 { 1018 int i; 1019 X86CPU *cpu = NULL; 1020 Error *error = NULL; 1021 unsigned long apic_id_limit; 1022 1023 /* init CPUs */ 1024 if (cpu_model == NULL) { 1025 #ifdef TARGET_X86_64 1026 cpu_model = "qemu64"; 1027 #else 1028 cpu_model = "qemu32"; 1029 #endif 1030 } 1031 current_cpu_model = cpu_model; 1032 1033 apic_id_limit = pc_apic_id_limit(max_cpus); 1034 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) { 1035 error_report("max_cpus is too large. APIC ID of last CPU is %lu", 1036 apic_id_limit - 1); 1037 exit(1); 1038 } 1039 1040 for (i = 0; i < smp_cpus; i++) { 1041 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i), 1042 icc_bridge, &error); 1043 if (error) { 1044 error_report("%s", error_get_pretty(error)); 1045 error_free(error); 1046 exit(1); 1047 } 1048 } 1049 1050 /* map APIC MMIO area if CPU has APIC */ 1051 if (cpu && cpu->apic_state) { 1052 /* XXX: what if the base changes? */ 1053 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0, 1054 APIC_DEFAULT_ADDRESS, 0x1000); 1055 } 1056 1057 /* tell smbios about cpuid version and features */ 1058 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 1059 } 1060 1061 /* pci-info ROM file. Little endian format */ 1062 typedef struct PcRomPciInfo { 1063 uint64_t w32_min; 1064 uint64_t w32_max; 1065 uint64_t w64_min; 1066 uint64_t w64_max; 1067 } PcRomPciInfo; 1068 1069 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info) 1070 { 1071 PcRomPciInfo *info; 1072 Object *pci_info; 1073 bool ambiguous = false; 1074 1075 if (!guest_info->has_pci_info || !guest_info->fw_cfg) { 1076 return; 1077 } 1078 pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous); 1079 g_assert(!ambiguous); 1080 if (!pci_info) { 1081 return; 1082 } 1083 1084 info = g_malloc(sizeof *info); 1085 info->w32_min = cpu_to_le64(object_property_get_int(pci_info, 1086 PCI_HOST_PROP_PCI_HOLE_START, NULL)); 1087 info->w32_max = cpu_to_le64(object_property_get_int(pci_info, 1088 PCI_HOST_PROP_PCI_HOLE_END, NULL)); 1089 info->w64_min = cpu_to_le64(object_property_get_int(pci_info, 1090 PCI_HOST_PROP_PCI_HOLE64_START, NULL)); 1091 info->w64_max = cpu_to_le64(object_property_get_int(pci_info, 1092 PCI_HOST_PROP_PCI_HOLE64_END, NULL)); 1093 /* Pass PCI hole info to guest via a side channel. 1094 * Required so guest PCI enumeration does the right thing. */ 1095 fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info); 1096 } 1097 1098 typedef struct PcGuestInfoState { 1099 PcGuestInfo info; 1100 Notifier machine_done; 1101 } PcGuestInfoState; 1102 1103 static 1104 void pc_guest_info_machine_done(Notifier *notifier, void *data) 1105 { 1106 PcGuestInfoState *guest_info_state = container_of(notifier, 1107 PcGuestInfoState, 1108 machine_done); 1109 pc_fw_cfg_guest_info(&guest_info_state->info); 1110 acpi_setup(&guest_info_state->info); 1111 } 1112 1113 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size, 1114 ram_addr_t above_4g_mem_size) 1115 { 1116 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1117 PcGuestInfo *guest_info = &guest_info_state->info; 1118 int i, j; 1119 1120 guest_info->ram_size_below_4g = below_4g_mem_size; 1121 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size; 1122 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus); 1123 guest_info->apic_xrupt_override = kvm_allows_irq0_override(); 1124 guest_info->numa_nodes = nb_numa_nodes; 1125 guest_info->node_mem = g_malloc0(guest_info->numa_nodes * 1126 sizeof *guest_info->node_mem); 1127 for (i = 0; i < nb_numa_nodes; i++) { 1128 guest_info->node_mem[i] = numa_info[i].node_mem; 1129 } 1130 1131 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit * 1132 sizeof *guest_info->node_cpu); 1133 1134 for (i = 0; i < max_cpus; i++) { 1135 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 1136 assert(apic_id < guest_info->apic_id_limit); 1137 for (j = 0; j < nb_numa_nodes; j++) { 1138 if (test_bit(i, numa_info[j].node_cpu)) { 1139 guest_info->node_cpu[apic_id] = j; 1140 break; 1141 } 1142 } 1143 } 1144 1145 guest_info_state->machine_done.notify = pc_guest_info_machine_done; 1146 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1147 return guest_info; 1148 } 1149 1150 /* setup pci memory address space mapping into system address space */ 1151 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1152 MemoryRegion *pci_address_space) 1153 { 1154 /* Set to lower priority than RAM */ 1155 memory_region_add_subregion_overlap(system_memory, 0x0, 1156 pci_address_space, -1); 1157 } 1158 1159 void pc_acpi_init(const char *default_dsdt) 1160 { 1161 char *filename; 1162 1163 if (acpi_tables != NULL) { 1164 /* manually set via -acpitable, leave it alone */ 1165 return; 1166 } 1167 1168 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1169 if (filename == NULL) { 1170 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 1171 } else { 1172 char *arg; 1173 QemuOpts *opts; 1174 Error *err = NULL; 1175 1176 arg = g_strdup_printf("file=%s", filename); 1177 1178 /* creates a deep copy of "arg" */ 1179 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0); 1180 g_assert(opts != NULL); 1181 1182 acpi_table_add_builtin(opts, &err); 1183 if (err) { 1184 error_report("WARNING: failed to load %s: %s", filename, 1185 error_get_pretty(err)); 1186 error_free(err); 1187 } 1188 g_free(arg); 1189 g_free(filename); 1190 } 1191 } 1192 1193 FWCfgState *pc_memory_init(MachineState *machine, 1194 MemoryRegion *system_memory, 1195 ram_addr_t below_4g_mem_size, 1196 ram_addr_t above_4g_mem_size, 1197 MemoryRegion *rom_memory, 1198 MemoryRegion **ram_memory, 1199 PcGuestInfo *guest_info) 1200 { 1201 int linux_boot, i; 1202 MemoryRegion *ram, *option_rom_mr; 1203 MemoryRegion *ram_below_4g, *ram_above_4g; 1204 FWCfgState *fw_cfg; 1205 PCMachineState *pcms = PC_MACHINE(machine); 1206 1207 assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size); 1208 1209 linux_boot = (machine->kernel_filename != NULL); 1210 1211 /* Allocate RAM. We allocate it as a single memory region and use 1212 * aliases to address portions of it, mostly for backwards compatibility 1213 * with older qemus that used qemu_ram_alloc(). 1214 */ 1215 ram = g_malloc(sizeof(*ram)); 1216 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1217 machine->ram_size); 1218 *ram_memory = ram; 1219 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1220 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1221 0, below_4g_mem_size); 1222 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1223 e820_add_entry(0, below_4g_mem_size, E820_RAM); 1224 if (above_4g_mem_size > 0) { 1225 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1226 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1227 below_4g_mem_size, above_4g_mem_size); 1228 memory_region_add_subregion(system_memory, 0x100000000ULL, 1229 ram_above_4g); 1230 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM); 1231 } 1232 1233 if (!guest_info->has_reserved_memory && 1234 (machine->ram_slots || 1235 (machine->maxram_size > machine->ram_size))) { 1236 MachineClass *mc = MACHINE_GET_CLASS(machine); 1237 1238 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1239 mc->name); 1240 exit(EXIT_FAILURE); 1241 } 1242 1243 /* initialize hotplug memory address space */ 1244 if (guest_info->has_reserved_memory && 1245 (machine->ram_size < machine->maxram_size)) { 1246 ram_addr_t hotplug_mem_size = 1247 machine->maxram_size - machine->ram_size; 1248 1249 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1250 error_report("unsupported amount of memory slots: %"PRIu64, 1251 machine->ram_slots); 1252 exit(EXIT_FAILURE); 1253 } 1254 1255 pcms->hotplug_memory_base = 1256 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30); 1257 1258 if ((pcms->hotplug_memory_base + hotplug_mem_size) < 1259 hotplug_mem_size) { 1260 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1261 machine->maxram_size); 1262 exit(EXIT_FAILURE); 1263 } 1264 1265 memory_region_init(&pcms->hotplug_memory, OBJECT(pcms), 1266 "hotplug-memory", hotplug_mem_size); 1267 memory_region_add_subregion(system_memory, pcms->hotplug_memory_base, 1268 &pcms->hotplug_memory); 1269 } 1270 1271 /* Initialize PC system firmware */ 1272 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw); 1273 1274 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1275 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE); 1276 vmstate_register_ram_global(option_rom_mr); 1277 memory_region_add_subregion_overlap(rom_memory, 1278 PC_ROM_MIN_VGA, 1279 option_rom_mr, 1280 1); 1281 1282 fw_cfg = bochs_bios_init(); 1283 rom_set_fw(fw_cfg); 1284 1285 if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) { 1286 uint64_t *val = g_malloc(sizeof(*val)); 1287 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30)); 1288 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1289 } 1290 1291 if (linux_boot) { 1292 load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename, 1293 machine->kernel_cmdline, below_4g_mem_size); 1294 } 1295 1296 for (i = 0; i < nb_option_roms; i++) { 1297 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1298 } 1299 guest_info->fw_cfg = fw_cfg; 1300 return fw_cfg; 1301 } 1302 1303 qemu_irq *pc_allocate_cpu_irq(void) 1304 { 1305 return qemu_allocate_irqs(pic_irq_request, NULL, 1); 1306 } 1307 1308 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1309 { 1310 DeviceState *dev = NULL; 1311 1312 if (pci_bus) { 1313 PCIDevice *pcidev = pci_vga_init(pci_bus); 1314 dev = pcidev ? &pcidev->qdev : NULL; 1315 } else if (isa_bus) { 1316 ISADevice *isadev = isa_vga_init(isa_bus); 1317 dev = isadev ? DEVICE(isadev) : NULL; 1318 } 1319 return dev; 1320 } 1321 1322 static void cpu_request_exit(void *opaque, int irq, int level) 1323 { 1324 CPUState *cpu = current_cpu; 1325 1326 if (cpu && level) { 1327 cpu_exit(cpu); 1328 } 1329 } 1330 1331 static const MemoryRegionOps ioport80_io_ops = { 1332 .write = ioport80_write, 1333 .read = ioport80_read, 1334 .endianness = DEVICE_NATIVE_ENDIAN, 1335 .impl = { 1336 .min_access_size = 1, 1337 .max_access_size = 1, 1338 }, 1339 }; 1340 1341 static const MemoryRegionOps ioportF0_io_ops = { 1342 .write = ioportF0_write, 1343 .read = ioportF0_read, 1344 .endianness = DEVICE_NATIVE_ENDIAN, 1345 .impl = { 1346 .min_access_size = 1, 1347 .max_access_size = 1, 1348 }, 1349 }; 1350 1351 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1352 ISADevice **rtc_state, 1353 ISADevice **floppy, 1354 bool no_vmport, 1355 uint32 hpet_irqs) 1356 { 1357 int i; 1358 DriveInfo *fd[MAX_FD]; 1359 DeviceState *hpet = NULL; 1360 int pit_isa_irq = 0; 1361 qemu_irq pit_alt_irq = NULL; 1362 qemu_irq rtc_irq = NULL; 1363 qemu_irq *a20_line; 1364 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1365 qemu_irq *cpu_exit_irq; 1366 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1367 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1368 1369 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1370 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1371 1372 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1373 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1374 1375 /* 1376 * Check if an HPET shall be created. 1377 * 1378 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1379 * when the HPET wants to take over. Thus we have to disable the latter. 1380 */ 1381 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1382 /* In order to set property, here not using sysbus_try_create_simple */ 1383 hpet = qdev_try_create(NULL, TYPE_HPET); 1384 if (hpet) { 1385 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1386 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1387 * IRQ8 and IRQ2. 1388 */ 1389 uint8_t compat = object_property_get_int(OBJECT(hpet), 1390 HPET_INTCAP, NULL); 1391 if (!compat) { 1392 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1393 } 1394 qdev_init_nofail(hpet); 1395 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1396 1397 for (i = 0; i < GSI_NUM_PINS; i++) { 1398 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1399 } 1400 pit_isa_irq = -1; 1401 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1402 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1403 } 1404 } 1405 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1406 1407 qemu_register_boot_set(pc_boot_set, *rtc_state); 1408 1409 if (!xen_enabled()) { 1410 if (kvm_irqchip_in_kernel()) { 1411 pit = kvm_pit_init(isa_bus, 0x40); 1412 } else { 1413 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1414 } 1415 if (hpet) { 1416 /* connect PIT to output control line of the HPET */ 1417 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1418 } 1419 pcspk_init(isa_bus, pit); 1420 } 1421 1422 for(i = 0; i < MAX_SERIAL_PORTS; i++) { 1423 if (serial_hds[i]) { 1424 serial_isa_init(isa_bus, i, serial_hds[i]); 1425 } 1426 } 1427 1428 for(i = 0; i < MAX_PARALLEL_PORTS; i++) { 1429 if (parallel_hds[i]) { 1430 parallel_init(isa_bus, i, parallel_hds[i]); 1431 } 1432 } 1433 1434 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1435 i8042 = isa_create_simple(isa_bus, "i8042"); 1436 i8042_setup_a20_line(i8042, &a20_line[0]); 1437 if (!no_vmport) { 1438 vmport_init(isa_bus); 1439 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1440 } else { 1441 vmmouse = NULL; 1442 } 1443 if (vmmouse) { 1444 DeviceState *dev = DEVICE(vmmouse); 1445 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1446 qdev_init_nofail(dev); 1447 } 1448 port92 = isa_create_simple(isa_bus, "port92"); 1449 port92_init(port92, &a20_line[1]); 1450 1451 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); 1452 DMA_init(0, cpu_exit_irq); 1453 1454 for(i = 0; i < MAX_FD; i++) { 1455 fd[i] = drive_get(IF_FLOPPY, 0, i); 1456 } 1457 *floppy = fdctrl_init_isa(isa_bus, fd); 1458 } 1459 1460 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1461 { 1462 int i; 1463 1464 for (i = 0; i < nb_nics; i++) { 1465 NICInfo *nd = &nd_table[i]; 1466 1467 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1468 pc_init_ne2k_isa(isa_bus, nd); 1469 } else { 1470 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1471 } 1472 } 1473 } 1474 1475 void pc_pci_device_init(PCIBus *pci_bus) 1476 { 1477 int max_bus; 1478 int bus; 1479 1480 max_bus = drive_get_max_bus(IF_SCSI); 1481 for (bus = 0; bus <= max_bus; bus++) { 1482 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1483 } 1484 } 1485 1486 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1487 { 1488 DeviceState *dev; 1489 SysBusDevice *d; 1490 unsigned int i; 1491 1492 if (kvm_irqchip_in_kernel()) { 1493 dev = qdev_create(NULL, "kvm-ioapic"); 1494 } else { 1495 dev = qdev_create(NULL, "ioapic"); 1496 } 1497 if (parent_name) { 1498 object_property_add_child(object_resolve_path(parent_name, NULL), 1499 "ioapic", OBJECT(dev), NULL); 1500 } 1501 qdev_init_nofail(dev); 1502 d = SYS_BUS_DEVICE(dev); 1503 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1504 1505 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1506 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1507 } 1508 } 1509 1510 static void pc_generic_machine_class_init(ObjectClass *oc, void *data) 1511 { 1512 MachineClass *mc = MACHINE_CLASS(oc); 1513 QEMUMachine *qm = data; 1514 1515 mc->name = qm->name; 1516 mc->alias = qm->alias; 1517 mc->desc = qm->desc; 1518 mc->init = qm->init; 1519 mc->reset = qm->reset; 1520 mc->hot_add_cpu = qm->hot_add_cpu; 1521 mc->kvm_type = qm->kvm_type; 1522 mc->block_default_type = qm->block_default_type; 1523 mc->max_cpus = qm->max_cpus; 1524 mc->no_serial = qm->no_serial; 1525 mc->no_parallel = qm->no_parallel; 1526 mc->use_virtcon = qm->use_virtcon; 1527 mc->use_sclp = qm->use_sclp; 1528 mc->no_floppy = qm->no_floppy; 1529 mc->no_cdrom = qm->no_cdrom; 1530 mc->no_sdcard = qm->no_sdcard; 1531 mc->is_default = qm->is_default; 1532 mc->default_machine_opts = qm->default_machine_opts; 1533 mc->default_boot_order = qm->default_boot_order; 1534 mc->compat_props = qm->compat_props; 1535 mc->hw_version = qm->hw_version; 1536 } 1537 1538 void qemu_register_pc_machine(QEMUMachine *m) 1539 { 1540 char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL); 1541 TypeInfo ti = { 1542 .name = name, 1543 .parent = TYPE_PC_MACHINE, 1544 .class_init = pc_generic_machine_class_init, 1545 .class_data = (void *)m, 1546 }; 1547 1548 type_register(&ti); 1549 g_free(name); 1550 } 1551 1552 static void pc_dimm_plug(HotplugHandler *hotplug_dev, 1553 DeviceState *dev, Error **errp) 1554 { 1555 int slot; 1556 HotplugHandlerClass *hhc; 1557 Error *local_err = NULL; 1558 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1559 MachineState *machine = MACHINE(hotplug_dev); 1560 PCDIMMDevice *dimm = PC_DIMM(dev); 1561 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1562 MemoryRegion *mr = ddc->get_memory_region(dimm); 1563 uint64_t addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 1564 &local_err); 1565 if (local_err) { 1566 goto out; 1567 } 1568 1569 addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base, 1570 memory_region_size(&pcms->hotplug_memory), 1571 !addr ? NULL : &addr, 1572 memory_region_size(mr), &local_err); 1573 if (local_err) { 1574 goto out; 1575 } 1576 1577 object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err); 1578 if (local_err) { 1579 goto out; 1580 } 1581 trace_mhp_pc_dimm_assigned_address(addr); 1582 1583 slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err); 1584 if (local_err) { 1585 goto out; 1586 } 1587 1588 slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot, 1589 machine->ram_slots, &local_err); 1590 if (local_err) { 1591 goto out; 1592 } 1593 object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err); 1594 if (local_err) { 1595 goto out; 1596 } 1597 trace_mhp_pc_dimm_assigned_slot(slot); 1598 1599 if (!pcms->acpi_dev) { 1600 error_setg(&local_err, 1601 "memory hotplug is not enabled: missing acpi device"); 1602 goto out; 1603 } 1604 1605 memory_region_add_subregion(&pcms->hotplug_memory, 1606 addr - pcms->hotplug_memory_base, mr); 1607 vmstate_register_ram(mr, dev); 1608 1609 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1610 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1611 out: 1612 error_propagate(errp, local_err); 1613 } 1614 1615 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1616 DeviceState *dev, Error **errp) 1617 { 1618 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1619 pc_dimm_plug(hotplug_dev, dev, errp); 1620 } 1621 } 1622 1623 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 1624 DeviceState *dev) 1625 { 1626 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); 1627 1628 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1629 return HOTPLUG_HANDLER(machine); 1630 } 1631 1632 return pcmc->get_hotplug_handler ? 1633 pcmc->get_hotplug_handler(machine, dev) : NULL; 1634 } 1635 1636 static void 1637 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque, 1638 const char *name, Error **errp) 1639 { 1640 PCMachineState *pcms = PC_MACHINE(obj); 1641 int64_t value = memory_region_size(&pcms->hotplug_memory); 1642 1643 visit_type_int(v, &value, name, errp); 1644 } 1645 1646 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 1647 void *opaque, const char *name, 1648 Error **errp) 1649 { 1650 PCMachineState *pcms = PC_MACHINE(obj); 1651 uint64_t value = pcms->max_ram_below_4g; 1652 1653 visit_type_size(v, &value, name, errp); 1654 } 1655 1656 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 1657 void *opaque, const char *name, 1658 Error **errp) 1659 { 1660 PCMachineState *pcms = PC_MACHINE(obj); 1661 Error *error = NULL; 1662 uint64_t value; 1663 1664 visit_type_size(v, &value, name, &error); 1665 if (error) { 1666 error_propagate(errp, error); 1667 return; 1668 } 1669 if (value > (1ULL << 32)) { 1670 error_set(&error, ERROR_CLASS_GENERIC_ERROR, 1671 "Machine option 'max-ram-below-4g=%"PRIu64 1672 "' expects size less than or equal to 4G", value); 1673 error_propagate(errp, error); 1674 return; 1675 } 1676 1677 if (value < (1ULL << 20)) { 1678 error_report("Warning: small max_ram_below_4g(%"PRIu64 1679 ") less than 1M. BIOS may not work..", 1680 value); 1681 } 1682 1683 pcms->max_ram_below_4g = value; 1684 } 1685 1686 static void pc_machine_initfn(Object *obj) 1687 { 1688 PCMachineState *pcms = PC_MACHINE(obj); 1689 1690 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int", 1691 pc_machine_get_hotplug_memory_region_size, 1692 NULL, NULL, NULL, NULL); 1693 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */ 1694 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 1695 pc_machine_get_max_ram_below_4g, 1696 pc_machine_set_max_ram_below_4g, 1697 NULL, NULL, NULL); 1698 } 1699 1700 static void pc_machine_class_init(ObjectClass *oc, void *data) 1701 { 1702 MachineClass *mc = MACHINE_CLASS(oc); 1703 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 1704 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 1705 1706 pcmc->get_hotplug_handler = mc->get_hotplug_handler; 1707 mc->get_hotplug_handler = pc_get_hotpug_handler; 1708 hc->plug = pc_machine_device_plug_cb; 1709 } 1710 1711 static const TypeInfo pc_machine_info = { 1712 .name = TYPE_PC_MACHINE, 1713 .parent = TYPE_MACHINE, 1714 .abstract = true, 1715 .instance_size = sizeof(PCMachineState), 1716 .instance_init = pc_machine_initfn, 1717 .class_size = sizeof(PCMachineClass), 1718 .class_init = pc_machine_class_init, 1719 .interfaces = (InterfaceInfo[]) { 1720 { TYPE_HOTPLUG_HANDLER }, 1721 { } 1722 }, 1723 }; 1724 1725 static void pc_machine_register_types(void) 1726 { 1727 type_register_static(&pc_machine_info); 1728 } 1729 1730 type_init(pc_machine_register_types) 1731