xref: /openbmc/qemu/hw/i386/pc.c (revision 0ec7b3e7)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 #include "hw/i386/intel_iommu.h"
72 
73 /* debug PC/ISA interrupts */
74 //#define DEBUG_IRQ
75 
76 #ifdef DEBUG_IRQ
77 #define DPRINTF(fmt, ...)                                       \
78     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...)
81 #endif
82 
83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88 
89 #define E820_NR_ENTRIES		16
90 
91 struct e820_entry {
92     uint64_t address;
93     uint64_t length;
94     uint32_t type;
95 } QEMU_PACKED __attribute((__aligned__(4)));
96 
97 struct e820_table {
98     uint32_t count;
99     struct e820_entry entry[E820_NR_ENTRIES];
100 } QEMU_PACKED __attribute((__aligned__(4)));
101 
102 static struct e820_table e820_reserve;
103 static struct e820_entry *e820_table;
104 static unsigned e820_entries;
105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106 
107 void gsi_handler(void *opaque, int n, int level)
108 {
109     GSIState *s = opaque;
110 
111     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
112     if (n < ISA_NUM_IRQS) {
113         qemu_set_irq(s->i8259_irq[n], level);
114     }
115     qemu_set_irq(s->ioapic_irq[n], level);
116 }
117 
118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
119                            unsigned size)
120 {
121 }
122 
123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 {
125     return 0xffffffffffffffffULL;
126 }
127 
128 /* MSDOS compatibility mode FPU exception support */
129 static qemu_irq ferr_irq;
130 
131 void pc_register_ferr_irq(qemu_irq irq)
132 {
133     ferr_irq = irq;
134 }
135 
136 /* XXX: add IGNNE support */
137 void cpu_set_ferr(CPUX86State *s)
138 {
139     qemu_irq_raise(ferr_irq);
140 }
141 
142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
143                            unsigned size)
144 {
145     qemu_irq_lower(ferr_irq);
146 }
147 
148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 {
150     return 0xffffffffffffffffULL;
151 }
152 
153 /* TSC handling */
154 uint64_t cpu_get_tsc(CPUX86State *env)
155 {
156     return cpu_get_ticks();
157 }
158 
159 /* IRQ handling */
160 int cpu_get_pic_interrupt(CPUX86State *env)
161 {
162     X86CPU *cpu = x86_env_get_cpu(env);
163     int intno;
164 
165     if (!kvm_irqchip_in_kernel()) {
166         intno = apic_get_interrupt(cpu->apic_state);
167         if (intno >= 0) {
168             return intno;
169         }
170         /* read the irq from the PIC */
171         if (!apic_accept_pic_intr(cpu->apic_state)) {
172             return -1;
173         }
174     }
175 
176     intno = pic_read_irq(isa_pic);
177     return intno;
178 }
179 
180 static void pic_irq_request(void *opaque, int irq, int level)
181 {
182     CPUState *cs = first_cpu;
183     X86CPU *cpu = X86_CPU(cs);
184 
185     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
186     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
187         CPU_FOREACH(cs) {
188             cpu = X86_CPU(cs);
189             if (apic_accept_pic_intr(cpu->apic_state)) {
190                 apic_deliver_pic_intr(cpu->apic_state, level);
191             }
192         }
193     } else {
194         if (level) {
195             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
196         } else {
197             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
198         }
199     }
200 }
201 
202 /* PC cmos mappings */
203 
204 #define REG_EQUIPMENT_BYTE          0x14
205 
206 int cmos_get_fd_drive_type(FloppyDriveType fd0)
207 {
208     int val;
209 
210     switch (fd0) {
211     case FLOPPY_DRIVE_TYPE_144:
212         /* 1.44 Mb 3"5 drive */
213         val = 4;
214         break;
215     case FLOPPY_DRIVE_TYPE_288:
216         /* 2.88 Mb 3"5 drive */
217         val = 5;
218         break;
219     case FLOPPY_DRIVE_TYPE_120:
220         /* 1.2 Mb 5"5 drive */
221         val = 2;
222         break;
223     case FLOPPY_DRIVE_TYPE_NONE:
224     default:
225         val = 0;
226         break;
227     }
228     return val;
229 }
230 
231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
232                          int16_t cylinders, int8_t heads, int8_t sectors)
233 {
234     rtc_set_memory(s, type_ofs, 47);
235     rtc_set_memory(s, info_ofs, cylinders);
236     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
237     rtc_set_memory(s, info_ofs + 2, heads);
238     rtc_set_memory(s, info_ofs + 3, 0xff);
239     rtc_set_memory(s, info_ofs + 4, 0xff);
240     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
241     rtc_set_memory(s, info_ofs + 6, cylinders);
242     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
243     rtc_set_memory(s, info_ofs + 8, sectors);
244 }
245 
246 /* convert boot_device letter to something recognizable by the bios */
247 static int boot_device2nibble(char boot_device)
248 {
249     switch(boot_device) {
250     case 'a':
251     case 'b':
252         return 0x01; /* floppy boot */
253     case 'c':
254         return 0x02; /* hard drive boot */
255     case 'd':
256         return 0x03; /* CD-ROM boot */
257     case 'n':
258         return 0x04; /* Network boot */
259     }
260     return 0;
261 }
262 
263 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
264 {
265 #define PC_MAX_BOOT_DEVICES 3
266     int nbds, bds[3] = { 0, };
267     int i;
268 
269     nbds = strlen(boot_device);
270     if (nbds > PC_MAX_BOOT_DEVICES) {
271         error_setg(errp, "Too many boot devices for PC");
272         return;
273     }
274     for (i = 0; i < nbds; i++) {
275         bds[i] = boot_device2nibble(boot_device[i]);
276         if (bds[i] == 0) {
277             error_setg(errp, "Invalid boot device for PC: '%c'",
278                        boot_device[i]);
279             return;
280         }
281     }
282     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
283     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
284 }
285 
286 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
287 {
288     set_boot_dev(opaque, boot_device, errp);
289 }
290 
291 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
292 {
293     int val, nb, i;
294     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
295                                    FLOPPY_DRIVE_TYPE_NONE };
296 
297     /* floppy type */
298     if (floppy) {
299         for (i = 0; i < 2; i++) {
300             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
301         }
302     }
303     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
304         cmos_get_fd_drive_type(fd_type[1]);
305     rtc_set_memory(rtc_state, 0x10, val);
306 
307     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
308     nb = 0;
309     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
310         nb++;
311     }
312     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
313         nb++;
314     }
315     switch (nb) {
316     case 0:
317         break;
318     case 1:
319         val |= 0x01; /* 1 drive, ready for boot */
320         break;
321     case 2:
322         val |= 0x41; /* 2 drives, ready for boot */
323         break;
324     }
325     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
326 }
327 
328 typedef struct pc_cmos_init_late_arg {
329     ISADevice *rtc_state;
330     BusState *idebus[2];
331 } pc_cmos_init_late_arg;
332 
333 typedef struct check_fdc_state {
334     ISADevice *floppy;
335     bool multiple;
336 } CheckFdcState;
337 
338 static int check_fdc(Object *obj, void *opaque)
339 {
340     CheckFdcState *state = opaque;
341     Object *fdc;
342     uint32_t iobase;
343     Error *local_err = NULL;
344 
345     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
346     if (!fdc) {
347         return 0;
348     }
349 
350     iobase = object_property_get_int(obj, "iobase", &local_err);
351     if (local_err || iobase != 0x3f0) {
352         error_free(local_err);
353         return 0;
354     }
355 
356     if (state->floppy) {
357         state->multiple = true;
358     } else {
359         state->floppy = ISA_DEVICE(obj);
360     }
361     return 0;
362 }
363 
364 static const char * const fdc_container_path[] = {
365     "/unattached", "/peripheral", "/peripheral-anon"
366 };
367 
368 /*
369  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
370  * and ACPI objects.
371  */
372 ISADevice *pc_find_fdc0(void)
373 {
374     int i;
375     Object *container;
376     CheckFdcState state = { 0 };
377 
378     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
379         container = container_get(qdev_get_machine(), fdc_container_path[i]);
380         object_child_foreach(container, check_fdc, &state);
381     }
382 
383     if (state.multiple) {
384         error_report("warning: multiple floppy disk controllers with "
385                      "iobase=0x3f0 have been found");
386         error_printf("the one being picked for CMOS setup might not reflect "
387                      "your intent\n");
388     }
389 
390     return state.floppy;
391 }
392 
393 static void pc_cmos_init_late(void *opaque)
394 {
395     pc_cmos_init_late_arg *arg = opaque;
396     ISADevice *s = arg->rtc_state;
397     int16_t cylinders;
398     int8_t heads, sectors;
399     int val;
400     int i, trans;
401 
402     val = 0;
403     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
404                                            &cylinders, &heads, &sectors) >= 0) {
405         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
406         val |= 0xf0;
407     }
408     if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
409                                            &cylinders, &heads, &sectors) >= 0) {
410         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
411         val |= 0x0f;
412     }
413     rtc_set_memory(s, 0x12, val);
414 
415     val = 0;
416     for (i = 0; i < 4; i++) {
417         /* NOTE: ide_get_geometry() returns the physical
418            geometry.  It is always such that: 1 <= sects <= 63, 1
419            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
420            geometry can be different if a translation is done. */
421         if (arg->idebus[i / 2] &&
422             ide_get_geometry(arg->idebus[i / 2], i % 2,
423                              &cylinders, &heads, &sectors) >= 0) {
424             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
425             assert((trans & ~3) == 0);
426             val |= trans << (i * 2);
427         }
428     }
429     rtc_set_memory(s, 0x39, val);
430 
431     pc_cmos_init_floppy(s, pc_find_fdc0());
432 
433     qemu_unregister_reset(pc_cmos_init_late, opaque);
434 }
435 
436 void pc_cmos_init(PCMachineState *pcms,
437                   BusState *idebus0, BusState *idebus1,
438                   ISADevice *s)
439 {
440     int val;
441     static pc_cmos_init_late_arg arg;
442 
443     /* various important CMOS locations needed by PC/Bochs bios */
444 
445     /* memory size */
446     /* base memory (first MiB) */
447     val = MIN(pcms->below_4g_mem_size / 1024, 640);
448     rtc_set_memory(s, 0x15, val);
449     rtc_set_memory(s, 0x16, val >> 8);
450     /* extended memory (next 64MiB) */
451     if (pcms->below_4g_mem_size > 1024 * 1024) {
452         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
453     } else {
454         val = 0;
455     }
456     if (val > 65535)
457         val = 65535;
458     rtc_set_memory(s, 0x17, val);
459     rtc_set_memory(s, 0x18, val >> 8);
460     rtc_set_memory(s, 0x30, val);
461     rtc_set_memory(s, 0x31, val >> 8);
462     /* memory between 16MiB and 4GiB */
463     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
464         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
465     } else {
466         val = 0;
467     }
468     if (val > 65535)
469         val = 65535;
470     rtc_set_memory(s, 0x34, val);
471     rtc_set_memory(s, 0x35, val >> 8);
472     /* memory above 4GiB */
473     val = pcms->above_4g_mem_size / 65536;
474     rtc_set_memory(s, 0x5b, val);
475     rtc_set_memory(s, 0x5c, val >> 8);
476     rtc_set_memory(s, 0x5d, val >> 16);
477 
478     object_property_add_link(OBJECT(pcms), "rtc_state",
479                              TYPE_ISA_DEVICE,
480                              (Object **)&pcms->rtc,
481                              object_property_allow_set_link,
482                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
483     object_property_set_link(OBJECT(pcms), OBJECT(s),
484                              "rtc_state", &error_abort);
485 
486     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
487 
488     val = 0;
489     val |= 0x02; /* FPU is there */
490     val |= 0x04; /* PS/2 mouse installed */
491     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
492 
493     /* hard drives and FDC */
494     arg.rtc_state = s;
495     arg.idebus[0] = idebus0;
496     arg.idebus[1] = idebus1;
497     qemu_register_reset(pc_cmos_init_late, &arg);
498 }
499 
500 #define TYPE_PORT92 "port92"
501 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
502 
503 /* port 92 stuff: could be split off */
504 typedef struct Port92State {
505     ISADevice parent_obj;
506 
507     MemoryRegion io;
508     uint8_t outport;
509     qemu_irq a20_out;
510 } Port92State;
511 
512 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
513                          unsigned size)
514 {
515     Port92State *s = opaque;
516     int oldval = s->outport;
517 
518     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
519     s->outport = val;
520     qemu_set_irq(s->a20_out, (val >> 1) & 1);
521     if ((val & 1) && !(oldval & 1)) {
522         qemu_system_reset_request();
523     }
524 }
525 
526 static uint64_t port92_read(void *opaque, hwaddr addr,
527                             unsigned size)
528 {
529     Port92State *s = opaque;
530     uint32_t ret;
531 
532     ret = s->outport;
533     DPRINTF("port92: read 0x%02x\n", ret);
534     return ret;
535 }
536 
537 static void port92_init(ISADevice *dev, qemu_irq a20_out)
538 {
539     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
540 }
541 
542 static const VMStateDescription vmstate_port92_isa = {
543     .name = "port92",
544     .version_id = 1,
545     .minimum_version_id = 1,
546     .fields = (VMStateField[]) {
547         VMSTATE_UINT8(outport, Port92State),
548         VMSTATE_END_OF_LIST()
549     }
550 };
551 
552 static void port92_reset(DeviceState *d)
553 {
554     Port92State *s = PORT92(d);
555 
556     s->outport &= ~1;
557 }
558 
559 static const MemoryRegionOps port92_ops = {
560     .read = port92_read,
561     .write = port92_write,
562     .impl = {
563         .min_access_size = 1,
564         .max_access_size = 1,
565     },
566     .endianness = DEVICE_LITTLE_ENDIAN,
567 };
568 
569 static void port92_initfn(Object *obj)
570 {
571     Port92State *s = PORT92(obj);
572 
573     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
574 
575     s->outport = 0;
576 
577     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
578 }
579 
580 static void port92_realizefn(DeviceState *dev, Error **errp)
581 {
582     ISADevice *isadev = ISA_DEVICE(dev);
583     Port92State *s = PORT92(dev);
584 
585     isa_register_ioport(isadev, &s->io, 0x92);
586 }
587 
588 static void port92_class_initfn(ObjectClass *klass, void *data)
589 {
590     DeviceClass *dc = DEVICE_CLASS(klass);
591 
592     dc->realize = port92_realizefn;
593     dc->reset = port92_reset;
594     dc->vmsd = &vmstate_port92_isa;
595     /*
596      * Reason: unlike ordinary ISA devices, this one needs additional
597      * wiring: its A20 output line needs to be wired up by
598      * port92_init().
599      */
600     dc->cannot_instantiate_with_device_add_yet = true;
601 }
602 
603 static const TypeInfo port92_info = {
604     .name          = TYPE_PORT92,
605     .parent        = TYPE_ISA_DEVICE,
606     .instance_size = sizeof(Port92State),
607     .instance_init = port92_initfn,
608     .class_init    = port92_class_initfn,
609 };
610 
611 static void port92_register_types(void)
612 {
613     type_register_static(&port92_info);
614 }
615 
616 type_init(port92_register_types)
617 
618 static void handle_a20_line_change(void *opaque, int irq, int level)
619 {
620     X86CPU *cpu = opaque;
621 
622     /* XXX: send to all CPUs ? */
623     /* XXX: add logic to handle multiple A20 line sources */
624     x86_cpu_set_a20(cpu, level);
625 }
626 
627 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
628 {
629     int index = le32_to_cpu(e820_reserve.count);
630     struct e820_entry *entry;
631 
632     if (type != E820_RAM) {
633         /* old FW_CFG_E820_TABLE entry -- reservations only */
634         if (index >= E820_NR_ENTRIES) {
635             return -EBUSY;
636         }
637         entry = &e820_reserve.entry[index++];
638 
639         entry->address = cpu_to_le64(address);
640         entry->length = cpu_to_le64(length);
641         entry->type = cpu_to_le32(type);
642 
643         e820_reserve.count = cpu_to_le32(index);
644     }
645 
646     /* new "etc/e820" file -- include ram too */
647     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
648     e820_table[e820_entries].address = cpu_to_le64(address);
649     e820_table[e820_entries].length = cpu_to_le64(length);
650     e820_table[e820_entries].type = cpu_to_le32(type);
651     e820_entries++;
652 
653     return e820_entries;
654 }
655 
656 int e820_get_num_entries(void)
657 {
658     return e820_entries;
659 }
660 
661 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
662 {
663     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
664         *address = le64_to_cpu(e820_table[idx].address);
665         *length = le64_to_cpu(e820_table[idx].length);
666         return true;
667     }
668     return false;
669 }
670 
671 /* Enables contiguous-apic-ID mode, for compatibility */
672 static bool compat_apic_id_mode;
673 
674 void enable_compat_apic_id_mode(void)
675 {
676     compat_apic_id_mode = true;
677 }
678 
679 /* Calculates initial APIC ID for a specific CPU index
680  *
681  * Currently we need to be able to calculate the APIC ID from the CPU index
682  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
683  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
684  * all CPUs up to max_cpus.
685  */
686 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
687 {
688     uint32_t correct_id;
689     static bool warned;
690 
691     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
692     if (compat_apic_id_mode) {
693         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
694             error_report("APIC IDs set in compatibility mode, "
695                          "CPU topology won't match the configuration");
696             warned = true;
697         }
698         return cpu_index;
699     } else {
700         return correct_id;
701     }
702 }
703 
704 static void pc_build_smbios(PCMachineState *pcms)
705 {
706     uint8_t *smbios_tables, *smbios_anchor;
707     size_t smbios_tables_len, smbios_anchor_len;
708     struct smbios_phys_mem_area *mem_array;
709     unsigned i, array_count;
710     X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
711 
712     /* tell smbios about cpuid version and features */
713     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
714 
715     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
716     if (smbios_tables) {
717         fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
718                          smbios_tables, smbios_tables_len);
719     }
720 
721     /* build the array of physical mem area from e820 table */
722     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
723     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
724         uint64_t addr, len;
725 
726         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
727             mem_array[array_count].address = addr;
728             mem_array[array_count].length = len;
729             array_count++;
730         }
731     }
732     smbios_get_tables(mem_array, array_count,
733                       &smbios_tables, &smbios_tables_len,
734                       &smbios_anchor, &smbios_anchor_len);
735     g_free(mem_array);
736 
737     if (smbios_anchor) {
738         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
739                         smbios_tables, smbios_tables_len);
740         fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
741                         smbios_anchor, smbios_anchor_len);
742     }
743 }
744 
745 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
746 {
747     FWCfgState *fw_cfg;
748     uint64_t *numa_fw_cfg;
749     int i, j;
750 
751     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
752     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
753 
754     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
755      *
756      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
757      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
758      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
759      * for CPU hotplug also uses APIC ID and not "CPU index".
760      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
761      * but the "limit to the APIC ID values SeaBIOS may see".
762      *
763      * So for compatibility reasons with old BIOSes we are stuck with
764      * "etc/max-cpus" actually being apic_id_limit
765      */
766     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
767     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
768     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
769                      acpi_tables, acpi_tables_len);
770     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
771 
772     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
773                      &e820_reserve, sizeof(e820_reserve));
774     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
775                     sizeof(struct e820_entry) * e820_entries);
776 
777     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
778     /* allocate memory for the NUMA channel: one (64bit) word for the number
779      * of nodes, one word for each VCPU->node and one word for each node to
780      * hold the amount of memory.
781      */
782     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
783     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
784     for (i = 0; i < max_cpus; i++) {
785         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
786         assert(apic_id < pcms->apic_id_limit);
787         j = numa_get_node_for_cpu(i);
788         if (j < nb_numa_nodes) {
789             numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
790         }
791     }
792     for (i = 0; i < nb_numa_nodes; i++) {
793         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
794             cpu_to_le64(numa_info[i].node_mem);
795     }
796     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
797                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
798                      sizeof(*numa_fw_cfg));
799 
800     return fw_cfg;
801 }
802 
803 static long get_file_size(FILE *f)
804 {
805     long where, size;
806 
807     /* XXX: on Unix systems, using fstat() probably makes more sense */
808 
809     where = ftell(f);
810     fseek(f, 0, SEEK_END);
811     size = ftell(f);
812     fseek(f, where, SEEK_SET);
813 
814     return size;
815 }
816 
817 /* setup_data types */
818 #define SETUP_NONE     0
819 #define SETUP_E820_EXT 1
820 #define SETUP_DTB      2
821 #define SETUP_PCI      3
822 #define SETUP_EFI      4
823 
824 struct setup_data {
825     uint64_t next;
826     uint32_t type;
827     uint32_t len;
828     uint8_t data[0];
829 } __attribute__((packed));
830 
831 static void load_linux(PCMachineState *pcms,
832                        FWCfgState *fw_cfg)
833 {
834     uint16_t protocol;
835     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
836     int dtb_size, setup_data_offset;
837     uint32_t initrd_max;
838     uint8_t header[8192], *setup, *kernel, *initrd_data;
839     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
840     FILE *f;
841     char *vmode;
842     MachineState *machine = MACHINE(pcms);
843     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
844     struct setup_data *setup_data;
845     const char *kernel_filename = machine->kernel_filename;
846     const char *initrd_filename = machine->initrd_filename;
847     const char *dtb_filename = machine->dtb;
848     const char *kernel_cmdline = machine->kernel_cmdline;
849 
850     /* Align to 16 bytes as a paranoia measure */
851     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
852 
853     /* load the kernel header */
854     f = fopen(kernel_filename, "rb");
855     if (!f || !(kernel_size = get_file_size(f)) ||
856         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
857         MIN(ARRAY_SIZE(header), kernel_size)) {
858         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
859                 kernel_filename, strerror(errno));
860         exit(1);
861     }
862 
863     /* kernel protocol version */
864 #if 0
865     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
866 #endif
867     if (ldl_p(header+0x202) == 0x53726448) {
868         protocol = lduw_p(header+0x206);
869     } else {
870         /* This looks like a multiboot kernel. If it is, let's stop
871            treating it like a Linux kernel. */
872         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
873                            kernel_cmdline, kernel_size, header)) {
874             return;
875         }
876         protocol = 0;
877     }
878 
879     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
880         /* Low kernel */
881         real_addr    = 0x90000;
882         cmdline_addr = 0x9a000 - cmdline_size;
883         prot_addr    = 0x10000;
884     } else if (protocol < 0x202) {
885         /* High but ancient kernel */
886         real_addr    = 0x90000;
887         cmdline_addr = 0x9a000 - cmdline_size;
888         prot_addr    = 0x100000;
889     } else {
890         /* High and recent kernel */
891         real_addr    = 0x10000;
892         cmdline_addr = 0x20000;
893         prot_addr    = 0x100000;
894     }
895 
896 #if 0
897     fprintf(stderr,
898             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
899             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
900             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
901             real_addr,
902             cmdline_addr,
903             prot_addr);
904 #endif
905 
906     /* highest address for loading the initrd */
907     if (protocol >= 0x203) {
908         initrd_max = ldl_p(header+0x22c);
909     } else {
910         initrd_max = 0x37ffffff;
911     }
912 
913     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
914         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
915     }
916 
917     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
918     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
919     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
920 
921     if (protocol >= 0x202) {
922         stl_p(header+0x228, cmdline_addr);
923     } else {
924         stw_p(header+0x20, 0xA33F);
925         stw_p(header+0x22, cmdline_addr-real_addr);
926     }
927 
928     /* handle vga= parameter */
929     vmode = strstr(kernel_cmdline, "vga=");
930     if (vmode) {
931         unsigned int video_mode;
932         /* skip "vga=" */
933         vmode += 4;
934         if (!strncmp(vmode, "normal", 6)) {
935             video_mode = 0xffff;
936         } else if (!strncmp(vmode, "ext", 3)) {
937             video_mode = 0xfffe;
938         } else if (!strncmp(vmode, "ask", 3)) {
939             video_mode = 0xfffd;
940         } else {
941             video_mode = strtol(vmode, NULL, 0);
942         }
943         stw_p(header+0x1fa, video_mode);
944     }
945 
946     /* loader type */
947     /* High nybble = B reserved for QEMU; low nybble is revision number.
948        If this code is substantially changed, you may want to consider
949        incrementing the revision. */
950     if (protocol >= 0x200) {
951         header[0x210] = 0xB0;
952     }
953     /* heap */
954     if (protocol >= 0x201) {
955         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
956         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
957     }
958 
959     /* load initrd */
960     if (initrd_filename) {
961         if (protocol < 0x200) {
962             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
963             exit(1);
964         }
965 
966         initrd_size = get_image_size(initrd_filename);
967         if (initrd_size < 0) {
968             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
969                     initrd_filename, strerror(errno));
970             exit(1);
971         }
972 
973         initrd_addr = (initrd_max-initrd_size) & ~4095;
974 
975         initrd_data = g_malloc(initrd_size);
976         load_image(initrd_filename, initrd_data);
977 
978         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
979         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
980         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
981 
982         stl_p(header+0x218, initrd_addr);
983         stl_p(header+0x21c, initrd_size);
984     }
985 
986     /* load kernel and setup */
987     setup_size = header[0x1f1];
988     if (setup_size == 0) {
989         setup_size = 4;
990     }
991     setup_size = (setup_size+1)*512;
992     if (setup_size > kernel_size) {
993         fprintf(stderr, "qemu: invalid kernel header\n");
994         exit(1);
995     }
996     kernel_size -= setup_size;
997 
998     setup  = g_malloc(setup_size);
999     kernel = g_malloc(kernel_size);
1000     fseek(f, 0, SEEK_SET);
1001     if (fread(setup, 1, setup_size, f) != setup_size) {
1002         fprintf(stderr, "fread() failed\n");
1003         exit(1);
1004     }
1005     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1006         fprintf(stderr, "fread() failed\n");
1007         exit(1);
1008     }
1009     fclose(f);
1010 
1011     /* append dtb to kernel */
1012     if (dtb_filename) {
1013         if (protocol < 0x209) {
1014             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1015             exit(1);
1016         }
1017 
1018         dtb_size = get_image_size(dtb_filename);
1019         if (dtb_size <= 0) {
1020             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1021                     dtb_filename, strerror(errno));
1022             exit(1);
1023         }
1024 
1025         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1026         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1027         kernel = g_realloc(kernel, kernel_size);
1028 
1029         stq_p(header+0x250, prot_addr + setup_data_offset);
1030 
1031         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1032         setup_data->next = 0;
1033         setup_data->type = cpu_to_le32(SETUP_DTB);
1034         setup_data->len = cpu_to_le32(dtb_size);
1035 
1036         load_image_size(dtb_filename, setup_data->data, dtb_size);
1037     }
1038 
1039     memcpy(setup, header, MIN(sizeof(header), setup_size));
1040 
1041     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1042     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1043     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1044 
1045     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1046     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1047     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1048 
1049     if (fw_cfg_dma_enabled(fw_cfg)) {
1050         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1051         option_rom[nb_option_roms].bootindex = 0;
1052     } else {
1053         option_rom[nb_option_roms].name = "linuxboot.bin";
1054         option_rom[nb_option_roms].bootindex = 0;
1055     }
1056     nb_option_roms++;
1057 }
1058 
1059 #define NE2000_NB_MAX 6
1060 
1061 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1062                                               0x280, 0x380 };
1063 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1064 
1065 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1066 {
1067     static int nb_ne2k = 0;
1068 
1069     if (nb_ne2k == NE2000_NB_MAX)
1070         return;
1071     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1072                     ne2000_irq[nb_ne2k], nd);
1073     nb_ne2k++;
1074 }
1075 
1076 DeviceState *cpu_get_current_apic(void)
1077 {
1078     if (current_cpu) {
1079         X86CPU *cpu = X86_CPU(current_cpu);
1080         return cpu->apic_state;
1081     } else {
1082         return NULL;
1083     }
1084 }
1085 
1086 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1087 {
1088     X86CPU *cpu = opaque;
1089 
1090     if (level) {
1091         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1092     }
1093 }
1094 
1095 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1096 {
1097     Object *cpu = NULL;
1098     Error *local_err = NULL;
1099 
1100     cpu = object_new(typename);
1101 
1102     object_property_set_int(cpu, apic_id, "apic-id", &local_err);
1103     object_property_set_bool(cpu, true, "realized", &local_err);
1104 
1105     object_unref(cpu);
1106     if (local_err) {
1107         error_propagate(errp, local_err);
1108     }
1109 }
1110 
1111 void pc_hot_add_cpu(const int64_t id, Error **errp)
1112 {
1113     ObjectClass *oc;
1114     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1115     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1116     Error *local_err = NULL;
1117 
1118     if (id < 0) {
1119         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1120         return;
1121     }
1122 
1123     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1124         error_setg(errp, "Unable to add CPU: %" PRIi64
1125                    ", resulting APIC ID (%" PRIi64 ") is too large",
1126                    id, apic_id);
1127         return;
1128     }
1129 
1130     assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1131     oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu));
1132     pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1133     if (local_err) {
1134         error_propagate(errp, local_err);
1135         return;
1136     }
1137 }
1138 
1139 void pc_cpus_init(PCMachineState *pcms)
1140 {
1141     int i;
1142     CPUClass *cc;
1143     ObjectClass *oc;
1144     const char *typename;
1145     gchar **model_pieces;
1146     MachineState *machine = MACHINE(pcms);
1147 
1148     /* init CPUs */
1149     if (machine->cpu_model == NULL) {
1150 #ifdef TARGET_X86_64
1151         machine->cpu_model = "qemu64";
1152 #else
1153         machine->cpu_model = "qemu32";
1154 #endif
1155     }
1156 
1157     model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1158     if (!model_pieces[0]) {
1159         error_report("Invalid/empty CPU model name");
1160         exit(1);
1161     }
1162 
1163     oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1164     if (oc == NULL) {
1165         error_report("Unable to find CPU definition: %s", model_pieces[0]);
1166         exit(1);
1167     }
1168     typename = object_class_get_name(oc);
1169     cc = CPU_CLASS(oc);
1170     cc->parse_features(typename, model_pieces[1], &error_fatal);
1171     g_strfreev(model_pieces);
1172 
1173     /* Calculates the limit to CPU APIC ID values
1174      *
1175      * Limit for the APIC ID value, so that all
1176      * CPU APIC IDs are < pcms->apic_id_limit.
1177      *
1178      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1179      */
1180     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1181     pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1182                                     sizeof(CPUArchId) * max_cpus);
1183     for (i = 0; i < max_cpus; i++) {
1184         pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1185         pcms->possible_cpus->len++;
1186         if (i < smp_cpus) {
1187             pc_new_cpu(typename, x86_cpu_apic_id_from_index(i), &error_fatal);
1188         }
1189     }
1190 }
1191 
1192 static void pc_build_feature_control_file(PCMachineState *pcms)
1193 {
1194     X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
1195     CPUX86State *env = &cpu->env;
1196     uint32_t unused, ecx, edx;
1197     uint64_t feature_control_bits = 0;
1198     uint64_t *val;
1199 
1200     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1201     if (ecx & CPUID_EXT_VMX) {
1202         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1203     }
1204 
1205     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1206         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1207         (env->mcg_cap & MCG_LMCE_P)) {
1208         feature_control_bits |= FEATURE_CONTROL_LMCE;
1209     }
1210 
1211     if (!feature_control_bits) {
1212         return;
1213     }
1214 
1215     val = g_malloc(sizeof(*val));
1216     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1217     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1218 }
1219 
1220 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1221 {
1222     if (cpus_count > 0xff) {
1223         /* If the number of CPUs can't be represented in 8 bits, the
1224          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1225          * to make old BIOSes fail more predictably.
1226          */
1227         rtc_set_memory(rtc, 0x5f, 0);
1228     } else {
1229         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1230     }
1231 }
1232 
1233 static
1234 void pc_machine_done(Notifier *notifier, void *data)
1235 {
1236     PCMachineState *pcms = container_of(notifier,
1237                                         PCMachineState, machine_done);
1238     PCIBus *bus = pcms->bus;
1239 
1240     /* set the number of CPUs */
1241     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1242 
1243     if (bus) {
1244         int extra_hosts = 0;
1245 
1246         QLIST_FOREACH(bus, &bus->child, sibling) {
1247             /* look for expander root buses */
1248             if (pci_bus_is_root(bus)) {
1249                 extra_hosts++;
1250             }
1251         }
1252         if (extra_hosts && pcms->fw_cfg) {
1253             uint64_t *val = g_malloc(sizeof(*val));
1254             *val = cpu_to_le64(extra_hosts);
1255             fw_cfg_add_file(pcms->fw_cfg,
1256                     "etc/extra-pci-roots", val, sizeof(*val));
1257         }
1258     }
1259 
1260     acpi_setup();
1261     if (pcms->fw_cfg) {
1262         pc_build_smbios(pcms);
1263         pc_build_feature_control_file(pcms);
1264         /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1265         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1266     }
1267 
1268     if (pcms->apic_id_limit > 255) {
1269         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1270 
1271         if (!iommu || !iommu->x86_iommu.intr_supported ||
1272             iommu->intr_eim != ON_OFF_AUTO_ON) {
1273             error_report("current -smp configuration requires "
1274                          "Extended Interrupt Mode enabled. "
1275                          "You can add an IOMMU using: "
1276                          "-device intel-iommu,intremap=on,eim=on");
1277             exit(EXIT_FAILURE);
1278         }
1279     }
1280 }
1281 
1282 void pc_guest_info_init(PCMachineState *pcms)
1283 {
1284     int i;
1285 
1286     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1287     pcms->numa_nodes = nb_numa_nodes;
1288     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1289                                     sizeof *pcms->node_mem);
1290     for (i = 0; i < nb_numa_nodes; i++) {
1291         pcms->node_mem[i] = numa_info[i].node_mem;
1292     }
1293 
1294     pcms->machine_done.notify = pc_machine_done;
1295     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1296 }
1297 
1298 /* setup pci memory address space mapping into system address space */
1299 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1300                             MemoryRegion *pci_address_space)
1301 {
1302     /* Set to lower priority than RAM */
1303     memory_region_add_subregion_overlap(system_memory, 0x0,
1304                                         pci_address_space, -1);
1305 }
1306 
1307 void pc_acpi_init(const char *default_dsdt)
1308 {
1309     char *filename;
1310 
1311     if (acpi_tables != NULL) {
1312         /* manually set via -acpitable, leave it alone */
1313         return;
1314     }
1315 
1316     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1317     if (filename == NULL) {
1318         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1319     } else {
1320         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1321                                           &error_abort);
1322         Error *err = NULL;
1323 
1324         qemu_opt_set(opts, "file", filename, &error_abort);
1325 
1326         acpi_table_add_builtin(opts, &err);
1327         if (err) {
1328             error_reportf_err(err, "WARNING: failed to load %s: ",
1329                               filename);
1330         }
1331         g_free(filename);
1332     }
1333 }
1334 
1335 void xen_load_linux(PCMachineState *pcms)
1336 {
1337     int i;
1338     FWCfgState *fw_cfg;
1339 
1340     assert(MACHINE(pcms)->kernel_filename != NULL);
1341 
1342     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1343     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1344     rom_set_fw(fw_cfg);
1345 
1346     load_linux(pcms, fw_cfg);
1347     for (i = 0; i < nb_option_roms; i++) {
1348         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1349                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1350                !strcmp(option_rom[i].name, "multiboot.bin"));
1351         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1352     }
1353     pcms->fw_cfg = fw_cfg;
1354 }
1355 
1356 void pc_memory_init(PCMachineState *pcms,
1357                     MemoryRegion *system_memory,
1358                     MemoryRegion *rom_memory,
1359                     MemoryRegion **ram_memory)
1360 {
1361     int linux_boot, i;
1362     MemoryRegion *ram, *option_rom_mr;
1363     MemoryRegion *ram_below_4g, *ram_above_4g;
1364     FWCfgState *fw_cfg;
1365     MachineState *machine = MACHINE(pcms);
1366     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1367 
1368     assert(machine->ram_size == pcms->below_4g_mem_size +
1369                                 pcms->above_4g_mem_size);
1370 
1371     linux_boot = (machine->kernel_filename != NULL);
1372 
1373     /* Allocate RAM.  We allocate it as a single memory region and use
1374      * aliases to address portions of it, mostly for backwards compatibility
1375      * with older qemus that used qemu_ram_alloc().
1376      */
1377     ram = g_malloc(sizeof(*ram));
1378     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1379                                          machine->ram_size);
1380     *ram_memory = ram;
1381     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1382     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1383                              0, pcms->below_4g_mem_size);
1384     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1385     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1386     if (pcms->above_4g_mem_size > 0) {
1387         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1388         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1389                                  pcms->below_4g_mem_size,
1390                                  pcms->above_4g_mem_size);
1391         memory_region_add_subregion(system_memory, 0x100000000ULL,
1392                                     ram_above_4g);
1393         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1394     }
1395 
1396     if (!pcmc->has_reserved_memory &&
1397         (machine->ram_slots ||
1398          (machine->maxram_size > machine->ram_size))) {
1399         MachineClass *mc = MACHINE_GET_CLASS(machine);
1400 
1401         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1402                      mc->name);
1403         exit(EXIT_FAILURE);
1404     }
1405 
1406     /* initialize hotplug memory address space */
1407     if (pcmc->has_reserved_memory &&
1408         (machine->ram_size < machine->maxram_size)) {
1409         ram_addr_t hotplug_mem_size =
1410             machine->maxram_size - machine->ram_size;
1411 
1412         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1413             error_report("unsupported amount of memory slots: %"PRIu64,
1414                          machine->ram_slots);
1415             exit(EXIT_FAILURE);
1416         }
1417 
1418         if (QEMU_ALIGN_UP(machine->maxram_size,
1419                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1420             error_report("maximum memory size must by aligned to multiple of "
1421                          "%d bytes", TARGET_PAGE_SIZE);
1422             exit(EXIT_FAILURE);
1423         }
1424 
1425         pcms->hotplug_memory.base =
1426             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1427 
1428         if (pcmc->enforce_aligned_dimm) {
1429             /* size hotplug region assuming 1G page max alignment per slot */
1430             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1431         }
1432 
1433         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1434             hotplug_mem_size) {
1435             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1436                          machine->maxram_size);
1437             exit(EXIT_FAILURE);
1438         }
1439 
1440         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1441                            "hotplug-memory", hotplug_mem_size);
1442         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1443                                     &pcms->hotplug_memory.mr);
1444     }
1445 
1446     /* Initialize PC system firmware */
1447     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1448 
1449     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1450     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1451                            &error_fatal);
1452     vmstate_register_ram_global(option_rom_mr);
1453     memory_region_add_subregion_overlap(rom_memory,
1454                                         PC_ROM_MIN_VGA,
1455                                         option_rom_mr,
1456                                         1);
1457 
1458     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1459 
1460     rom_set_fw(fw_cfg);
1461 
1462     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1463         uint64_t *val = g_malloc(sizeof(*val));
1464         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1465         uint64_t res_mem_end = pcms->hotplug_memory.base;
1466 
1467         if (!pcmc->broken_reserved_end) {
1468             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1469         }
1470         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1471         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1472     }
1473 
1474     if (linux_boot) {
1475         load_linux(pcms, fw_cfg);
1476     }
1477 
1478     for (i = 0; i < nb_option_roms; i++) {
1479         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1480     }
1481     pcms->fw_cfg = fw_cfg;
1482 
1483     /* Init default IOAPIC address space */
1484     pcms->ioapic_as = &address_space_memory;
1485 }
1486 
1487 qemu_irq pc_allocate_cpu_irq(void)
1488 {
1489     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1490 }
1491 
1492 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1493 {
1494     DeviceState *dev = NULL;
1495 
1496     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1497     if (pci_bus) {
1498         PCIDevice *pcidev = pci_vga_init(pci_bus);
1499         dev = pcidev ? &pcidev->qdev : NULL;
1500     } else if (isa_bus) {
1501         ISADevice *isadev = isa_vga_init(isa_bus);
1502         dev = isadev ? DEVICE(isadev) : NULL;
1503     }
1504     rom_reset_order_override();
1505     return dev;
1506 }
1507 
1508 static const MemoryRegionOps ioport80_io_ops = {
1509     .write = ioport80_write,
1510     .read = ioport80_read,
1511     .endianness = DEVICE_NATIVE_ENDIAN,
1512     .impl = {
1513         .min_access_size = 1,
1514         .max_access_size = 1,
1515     },
1516 };
1517 
1518 static const MemoryRegionOps ioportF0_io_ops = {
1519     .write = ioportF0_write,
1520     .read = ioportF0_read,
1521     .endianness = DEVICE_NATIVE_ENDIAN,
1522     .impl = {
1523         .min_access_size = 1,
1524         .max_access_size = 1,
1525     },
1526 };
1527 
1528 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1529                           ISADevice **rtc_state,
1530                           bool create_fdctrl,
1531                           bool no_vmport,
1532                           bool has_pit,
1533                           uint32_t hpet_irqs)
1534 {
1535     int i;
1536     DriveInfo *fd[MAX_FD];
1537     DeviceState *hpet = NULL;
1538     int pit_isa_irq = 0;
1539     qemu_irq pit_alt_irq = NULL;
1540     qemu_irq rtc_irq = NULL;
1541     qemu_irq *a20_line;
1542     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1543     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1544     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1545 
1546     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1547     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1548 
1549     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1550     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1551 
1552     /*
1553      * Check if an HPET shall be created.
1554      *
1555      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1556      * when the HPET wants to take over. Thus we have to disable the latter.
1557      */
1558     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1559         /* In order to set property, here not using sysbus_try_create_simple */
1560         hpet = qdev_try_create(NULL, TYPE_HPET);
1561         if (hpet) {
1562             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1563              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1564              * IRQ8 and IRQ2.
1565              */
1566             uint8_t compat = object_property_get_int(OBJECT(hpet),
1567                     HPET_INTCAP, NULL);
1568             if (!compat) {
1569                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1570             }
1571             qdev_init_nofail(hpet);
1572             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1573 
1574             for (i = 0; i < GSI_NUM_PINS; i++) {
1575                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1576             }
1577             pit_isa_irq = -1;
1578             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1579             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1580         }
1581     }
1582     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1583 
1584     qemu_register_boot_set(pc_boot_set, *rtc_state);
1585 
1586     if (!xen_enabled() && has_pit) {
1587         if (kvm_pit_in_kernel()) {
1588             pit = kvm_pit_init(isa_bus, 0x40);
1589         } else {
1590             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1591         }
1592         if (hpet) {
1593             /* connect PIT to output control line of the HPET */
1594             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1595         }
1596         pcspk_init(isa_bus, pit);
1597     }
1598 
1599     serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1600     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1601 
1602     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1603     i8042 = isa_create_simple(isa_bus, "i8042");
1604     i8042_setup_a20_line(i8042, a20_line[0]);
1605     if (!no_vmport) {
1606         vmport_init(isa_bus);
1607         vmmouse = isa_try_create(isa_bus, "vmmouse");
1608     } else {
1609         vmmouse = NULL;
1610     }
1611     if (vmmouse) {
1612         DeviceState *dev = DEVICE(vmmouse);
1613         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1614         qdev_init_nofail(dev);
1615     }
1616     port92 = isa_create_simple(isa_bus, "port92");
1617     port92_init(port92, a20_line[1]);
1618     g_free(a20_line);
1619 
1620     DMA_init(isa_bus, 0);
1621 
1622     for(i = 0; i < MAX_FD; i++) {
1623         fd[i] = drive_get(IF_FLOPPY, 0, i);
1624         create_fdctrl |= !!fd[i];
1625     }
1626     if (create_fdctrl) {
1627         fdctrl_init_isa(isa_bus, fd);
1628     }
1629 }
1630 
1631 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1632 {
1633     int i;
1634 
1635     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1636     for (i = 0; i < nb_nics; i++) {
1637         NICInfo *nd = &nd_table[i];
1638 
1639         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1640             pc_init_ne2k_isa(isa_bus, nd);
1641         } else {
1642             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1643         }
1644     }
1645     rom_reset_order_override();
1646 }
1647 
1648 void pc_pci_device_init(PCIBus *pci_bus)
1649 {
1650     int max_bus;
1651     int bus;
1652 
1653     max_bus = drive_get_max_bus(IF_SCSI);
1654     for (bus = 0; bus <= max_bus; bus++) {
1655         pci_create_simple(pci_bus, -1, "lsi53c895a");
1656     }
1657 }
1658 
1659 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1660 {
1661     DeviceState *dev;
1662     SysBusDevice *d;
1663     unsigned int i;
1664 
1665     if (kvm_ioapic_in_kernel()) {
1666         dev = qdev_create(NULL, "kvm-ioapic");
1667     } else {
1668         dev = qdev_create(NULL, "ioapic");
1669     }
1670     if (parent_name) {
1671         object_property_add_child(object_resolve_path(parent_name, NULL),
1672                                   "ioapic", OBJECT(dev), NULL);
1673     }
1674     qdev_init_nofail(dev);
1675     d = SYS_BUS_DEVICE(dev);
1676     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1677 
1678     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1679         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1680     }
1681 }
1682 
1683 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1684                          DeviceState *dev, Error **errp)
1685 {
1686     HotplugHandlerClass *hhc;
1687     Error *local_err = NULL;
1688     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1689     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1690     PCDIMMDevice *dimm = PC_DIMM(dev);
1691     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1692     MemoryRegion *mr = ddc->get_memory_region(dimm);
1693     uint64_t align = TARGET_PAGE_SIZE;
1694 
1695     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1696         align = memory_region_get_alignment(mr);
1697     }
1698 
1699     if (!pcms->acpi_dev) {
1700         error_setg(&local_err,
1701                    "memory hotplug is not enabled: missing acpi device");
1702         goto out;
1703     }
1704 
1705     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1706     if (local_err) {
1707         goto out;
1708     }
1709 
1710     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1711         nvdimm_plug(&pcms->acpi_nvdimm_state);
1712     }
1713 
1714     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1715     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1716 out:
1717     error_propagate(errp, local_err);
1718 }
1719 
1720 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1721                                    DeviceState *dev, Error **errp)
1722 {
1723     HotplugHandlerClass *hhc;
1724     Error *local_err = NULL;
1725     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1726 
1727     if (!pcms->acpi_dev) {
1728         error_setg(&local_err,
1729                    "memory hotplug is not enabled: missing acpi device");
1730         goto out;
1731     }
1732 
1733     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1734         error_setg(&local_err,
1735                    "nvdimm device hot unplug is not supported yet.");
1736         goto out;
1737     }
1738 
1739     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1740     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1741 
1742 out:
1743     error_propagate(errp, local_err);
1744 }
1745 
1746 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1747                            DeviceState *dev, Error **errp)
1748 {
1749     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1750     PCDIMMDevice *dimm = PC_DIMM(dev);
1751     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1752     MemoryRegion *mr = ddc->get_memory_region(dimm);
1753     HotplugHandlerClass *hhc;
1754     Error *local_err = NULL;
1755 
1756     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1757     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1758 
1759     if (local_err) {
1760         goto out;
1761     }
1762 
1763     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1764     object_unparent(OBJECT(dev));
1765 
1766  out:
1767     error_propagate(errp, local_err);
1768 }
1769 
1770 static int pc_apic_cmp(const void *a, const void *b)
1771 {
1772    CPUArchId *apic_a = (CPUArchId *)a;
1773    CPUArchId *apic_b = (CPUArchId *)b;
1774 
1775    return apic_a->arch_id - apic_b->arch_id;
1776 }
1777 
1778 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1779  * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no
1780  * entry corresponding to CPU's apic_id returns NULL.
1781  */
1782 static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu,
1783                                    int *idx)
1784 {
1785     CPUClass *cc = CPU_GET_CLASS(cpu);
1786     CPUArchId apic_id, *found_cpu;
1787 
1788     apic_id.arch_id = cc->get_arch_id(CPU(cpu));
1789     found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1790         pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1791         pc_apic_cmp);
1792     if (found_cpu && idx) {
1793         *idx = found_cpu - pcms->possible_cpus->cpus;
1794     }
1795     return found_cpu;
1796 }
1797 
1798 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1799                         DeviceState *dev, Error **errp)
1800 {
1801     CPUArchId *found_cpu;
1802     HotplugHandlerClass *hhc;
1803     Error *local_err = NULL;
1804     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1805 
1806     if (pcms->acpi_dev) {
1807         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1808         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1809         if (local_err) {
1810             goto out;
1811         }
1812     }
1813 
1814     /* increment the number of CPUs */
1815     pcms->boot_cpus++;
1816     if (pcms->rtc) {
1817         rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1818     }
1819     if (pcms->fw_cfg) {
1820         fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1821     }
1822 
1823     found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1824     found_cpu->cpu = CPU(dev);
1825 out:
1826     error_propagate(errp, local_err);
1827 }
1828 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1829                                      DeviceState *dev, Error **errp)
1830 {
1831     int idx = -1;
1832     HotplugHandlerClass *hhc;
1833     Error *local_err = NULL;
1834     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1835 
1836     pc_find_cpu_slot(pcms, CPU(dev), &idx);
1837     assert(idx != -1);
1838     if (idx == 0) {
1839         error_setg(&local_err, "Boot CPU is unpluggable");
1840         goto out;
1841     }
1842 
1843     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1844     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1845 
1846     if (local_err) {
1847         goto out;
1848     }
1849 
1850  out:
1851     error_propagate(errp, local_err);
1852 
1853 }
1854 
1855 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1856                              DeviceState *dev, Error **errp)
1857 {
1858     CPUArchId *found_cpu;
1859     HotplugHandlerClass *hhc;
1860     Error *local_err = NULL;
1861     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1862 
1863     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1864     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1865 
1866     if (local_err) {
1867         goto out;
1868     }
1869 
1870     found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1871     found_cpu->cpu = NULL;
1872     object_unparent(OBJECT(dev));
1873 
1874     /* decrement the number of CPUs */
1875     pcms->boot_cpus--;
1876     /* Update the number of CPUs in CMOS */
1877     rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1878     fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1879  out:
1880     error_propagate(errp, local_err);
1881 }
1882 
1883 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1884                             DeviceState *dev, Error **errp)
1885 {
1886     int idx;
1887     CPUState *cs;
1888     CPUArchId *cpu_slot;
1889     X86CPUTopoInfo topo;
1890     X86CPU *cpu = X86_CPU(dev);
1891     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1892 
1893     /* if APIC ID is not set, set it based on socket/core/thread properties */
1894     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1895         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1896 
1897         if (cpu->socket_id < 0) {
1898             error_setg(errp, "CPU socket-id is not set");
1899             return;
1900         } else if (cpu->socket_id > max_socket) {
1901             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1902                        cpu->socket_id, max_socket);
1903             return;
1904         }
1905         if (cpu->core_id < 0) {
1906             error_setg(errp, "CPU core-id is not set");
1907             return;
1908         } else if (cpu->core_id > (smp_cores - 1)) {
1909             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1910                        cpu->core_id, smp_cores - 1);
1911             return;
1912         }
1913         if (cpu->thread_id < 0) {
1914             error_setg(errp, "CPU thread-id is not set");
1915             return;
1916         } else if (cpu->thread_id > (smp_threads - 1)) {
1917             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1918                        cpu->thread_id, smp_threads - 1);
1919             return;
1920         }
1921 
1922         topo.pkg_id = cpu->socket_id;
1923         topo.core_id = cpu->core_id;
1924         topo.smt_id = cpu->thread_id;
1925         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1926     }
1927 
1928     cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx);
1929     if (!cpu_slot) {
1930         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1931         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1932                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1933                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1934                    pcms->possible_cpus->len - 1);
1935         return;
1936     }
1937 
1938     if (cpu_slot->cpu) {
1939         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1940                    idx, cpu->apic_id);
1941         return;
1942     }
1943 
1944     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1945      * so that query_hotpluggable_cpus would show correct values
1946      */
1947     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1948      * once -smp refactoring is complete and there will be CPU private
1949      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1950     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1951     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1952         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1953             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1954         return;
1955     }
1956     cpu->socket_id = topo.pkg_id;
1957 
1958     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1959         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1960             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1961         return;
1962     }
1963     cpu->core_id = topo.core_id;
1964 
1965     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1966         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1967             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1968         return;
1969     }
1970     cpu->thread_id = topo.smt_id;
1971 
1972     cs = CPU(cpu);
1973     cs->cpu_index = idx;
1974 }
1975 
1976 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1977                                           DeviceState *dev, Error **errp)
1978 {
1979     if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1980         pc_cpu_pre_plug(hotplug_dev, dev, errp);
1981     }
1982 }
1983 
1984 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1985                                       DeviceState *dev, Error **errp)
1986 {
1987     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1988         pc_dimm_plug(hotplug_dev, dev, errp);
1989     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1990         pc_cpu_plug(hotplug_dev, dev, errp);
1991     }
1992 }
1993 
1994 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1995                                                 DeviceState *dev, Error **errp)
1996 {
1997     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1998         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1999     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2000         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2001     } else {
2002         error_setg(errp, "acpi: device unplug request for not supported device"
2003                    " type: %s", object_get_typename(OBJECT(dev)));
2004     }
2005 }
2006 
2007 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2008                                         DeviceState *dev, Error **errp)
2009 {
2010     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2011         pc_dimm_unplug(hotplug_dev, dev, errp);
2012     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2013         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2014     } else {
2015         error_setg(errp, "acpi: device unplug for not supported device"
2016                    " type: %s", object_get_typename(OBJECT(dev)));
2017     }
2018 }
2019 
2020 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2021                                              DeviceState *dev)
2022 {
2023     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2024 
2025     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2026         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2027         return HOTPLUG_HANDLER(machine);
2028     }
2029 
2030     return pcmc->get_hotplug_handler ?
2031         pcmc->get_hotplug_handler(machine, dev) : NULL;
2032 }
2033 
2034 static void
2035 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2036                                           const char *name, void *opaque,
2037                                           Error **errp)
2038 {
2039     PCMachineState *pcms = PC_MACHINE(obj);
2040     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2041 
2042     visit_type_int(v, name, &value, errp);
2043 }
2044 
2045 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2046                                             const char *name, void *opaque,
2047                                             Error **errp)
2048 {
2049     PCMachineState *pcms = PC_MACHINE(obj);
2050     uint64_t value = pcms->max_ram_below_4g;
2051 
2052     visit_type_size(v, name, &value, errp);
2053 }
2054 
2055 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2056                                             const char *name, void *opaque,
2057                                             Error **errp)
2058 {
2059     PCMachineState *pcms = PC_MACHINE(obj);
2060     Error *error = NULL;
2061     uint64_t value;
2062 
2063     visit_type_size(v, name, &value, &error);
2064     if (error) {
2065         error_propagate(errp, error);
2066         return;
2067     }
2068     if (value > (1ULL << 32)) {
2069         error_setg(&error,
2070                    "Machine option 'max-ram-below-4g=%"PRIu64
2071                    "' expects size less than or equal to 4G", value);
2072         error_propagate(errp, error);
2073         return;
2074     }
2075 
2076     if (value < (1ULL << 20)) {
2077         error_report("Warning: small max_ram_below_4g(%"PRIu64
2078                      ") less than 1M.  BIOS may not work..",
2079                      value);
2080     }
2081 
2082     pcms->max_ram_below_4g = value;
2083 }
2084 
2085 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2086                                   void *opaque, Error **errp)
2087 {
2088     PCMachineState *pcms = PC_MACHINE(obj);
2089     OnOffAuto vmport = pcms->vmport;
2090 
2091     visit_type_OnOffAuto(v, name, &vmport, errp);
2092 }
2093 
2094 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2095                                   void *opaque, Error **errp)
2096 {
2097     PCMachineState *pcms = PC_MACHINE(obj);
2098 
2099     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2100 }
2101 
2102 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2103 {
2104     bool smm_available = false;
2105 
2106     if (pcms->smm == ON_OFF_AUTO_OFF) {
2107         return false;
2108     }
2109 
2110     if (tcg_enabled() || qtest_enabled()) {
2111         smm_available = true;
2112     } else if (kvm_enabled()) {
2113         smm_available = kvm_has_smm();
2114     }
2115 
2116     if (smm_available) {
2117         return true;
2118     }
2119 
2120     if (pcms->smm == ON_OFF_AUTO_ON) {
2121         error_report("System Management Mode not supported by this hypervisor.");
2122         exit(1);
2123     }
2124     return false;
2125 }
2126 
2127 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2128                                void *opaque, Error **errp)
2129 {
2130     PCMachineState *pcms = PC_MACHINE(obj);
2131     OnOffAuto smm = pcms->smm;
2132 
2133     visit_type_OnOffAuto(v, name, &smm, errp);
2134 }
2135 
2136 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2137                                void *opaque, Error **errp)
2138 {
2139     PCMachineState *pcms = PC_MACHINE(obj);
2140 
2141     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2142 }
2143 
2144 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2145 {
2146     PCMachineState *pcms = PC_MACHINE(obj);
2147 
2148     return pcms->acpi_nvdimm_state.is_enabled;
2149 }
2150 
2151 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2152 {
2153     PCMachineState *pcms = PC_MACHINE(obj);
2154 
2155     pcms->acpi_nvdimm_state.is_enabled = value;
2156 }
2157 
2158 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2159 {
2160     PCMachineState *pcms = PC_MACHINE(obj);
2161 
2162     return pcms->smbus;
2163 }
2164 
2165 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2166 {
2167     PCMachineState *pcms = PC_MACHINE(obj);
2168 
2169     pcms->smbus = value;
2170 }
2171 
2172 static bool pc_machine_get_sata(Object *obj, Error **errp)
2173 {
2174     PCMachineState *pcms = PC_MACHINE(obj);
2175 
2176     return pcms->sata;
2177 }
2178 
2179 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2180 {
2181     PCMachineState *pcms = PC_MACHINE(obj);
2182 
2183     pcms->sata = value;
2184 }
2185 
2186 static bool pc_machine_get_pit(Object *obj, Error **errp)
2187 {
2188     PCMachineState *pcms = PC_MACHINE(obj);
2189 
2190     return pcms->pit;
2191 }
2192 
2193 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2194 {
2195     PCMachineState *pcms = PC_MACHINE(obj);
2196 
2197     pcms->pit = value;
2198 }
2199 
2200 static void pc_machine_initfn(Object *obj)
2201 {
2202     PCMachineState *pcms = PC_MACHINE(obj);
2203 
2204     pcms->max_ram_below_4g = 0; /* use default */
2205     pcms->smm = ON_OFF_AUTO_AUTO;
2206     pcms->vmport = ON_OFF_AUTO_AUTO;
2207     /* nvdimm is disabled on default. */
2208     pcms->acpi_nvdimm_state.is_enabled = false;
2209     /* acpi build is enabled by default if machine supports it */
2210     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2211     pcms->smbus = true;
2212     pcms->sata = true;
2213     pcms->pit = true;
2214 }
2215 
2216 static void pc_machine_reset(void)
2217 {
2218     CPUState *cs;
2219     X86CPU *cpu;
2220 
2221     qemu_devices_reset();
2222 
2223     /* Reset APIC after devices have been reset to cancel
2224      * any changes that qemu_devices_reset() might have done.
2225      */
2226     CPU_FOREACH(cs) {
2227         cpu = X86_CPU(cs);
2228 
2229         if (cpu->apic_state) {
2230             device_reset(cpu->apic_state);
2231         }
2232     }
2233 }
2234 
2235 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2236 {
2237     X86CPUTopoInfo topo;
2238     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2239                           &topo);
2240     return topo.pkg_id;
2241 }
2242 
2243 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
2244 {
2245     PCMachineState *pcms = PC_MACHINE(machine);
2246     assert(pcms->possible_cpus);
2247     return pcms->possible_cpus;
2248 }
2249 
2250 static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine)
2251 {
2252     int i;
2253     CPUState *cpu;
2254     HotpluggableCPUList *head = NULL;
2255     PCMachineState *pcms = PC_MACHINE(machine);
2256     const char *cpu_type;
2257 
2258     cpu = pcms->possible_cpus->cpus[0].cpu;
2259     assert(cpu); /* BSP is always present */
2260     cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu)));
2261 
2262     for (i = 0; i < pcms->possible_cpus->len; i++) {
2263         X86CPUTopoInfo topo;
2264         HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2265         HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2266         CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2267         const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id;
2268 
2269         x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo);
2270 
2271         cpu_item->type = g_strdup(cpu_type);
2272         cpu_item->vcpus_count = 1;
2273         cpu_props->has_socket_id = true;
2274         cpu_props->socket_id = topo.pkg_id;
2275         cpu_props->has_core_id = true;
2276         cpu_props->core_id = topo.core_id;
2277         cpu_props->has_thread_id = true;
2278         cpu_props->thread_id = topo.smt_id;
2279         cpu_item->props = cpu_props;
2280 
2281         cpu = pcms->possible_cpus->cpus[i].cpu;
2282         if (cpu) {
2283             cpu_item->has_qom_path = true;
2284             cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu));
2285         }
2286 
2287         list_item->value = cpu_item;
2288         list_item->next = head;
2289         head = list_item;
2290     }
2291     return head;
2292 }
2293 
2294 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2295 {
2296     /* cpu index isn't used */
2297     CPUState *cs;
2298 
2299     CPU_FOREACH(cs) {
2300         X86CPU *cpu = X86_CPU(cs);
2301 
2302         if (!cpu->apic_state) {
2303             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2304         } else {
2305             apic_deliver_nmi(cpu->apic_state);
2306         }
2307     }
2308 }
2309 
2310 static void pc_machine_class_init(ObjectClass *oc, void *data)
2311 {
2312     MachineClass *mc = MACHINE_CLASS(oc);
2313     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2314     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2315     NMIClass *nc = NMI_CLASS(oc);
2316 
2317     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2318     pcmc->pci_enabled = true;
2319     pcmc->has_acpi_build = true;
2320     pcmc->rsdp_in_ram = true;
2321     pcmc->smbios_defaults = true;
2322     pcmc->smbios_uuid_encoded = true;
2323     pcmc->gigabyte_align = true;
2324     pcmc->has_reserved_memory = true;
2325     pcmc->kvmclock_enabled = true;
2326     pcmc->enforce_aligned_dimm = true;
2327     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2328      * to be used at the moment, 32K should be enough for a while.  */
2329     pcmc->acpi_data_size = 0x20000 + 0x8000;
2330     pcmc->save_tsc_khz = true;
2331     mc->get_hotplug_handler = pc_get_hotpug_handler;
2332     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2333     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2334     mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus;
2335     mc->default_boot_order = "cad";
2336     mc->hot_add_cpu = pc_hot_add_cpu;
2337     mc->max_cpus = 255;
2338     mc->reset = pc_machine_reset;
2339     hc->pre_plug = pc_machine_device_pre_plug_cb;
2340     hc->plug = pc_machine_device_plug_cb;
2341     hc->unplug_request = pc_machine_device_unplug_request_cb;
2342     hc->unplug = pc_machine_device_unplug_cb;
2343     nc->nmi_monitor_handler = x86_nmi;
2344 
2345     object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2346         pc_machine_get_hotplug_memory_region_size, NULL,
2347         NULL, NULL, &error_abort);
2348 
2349     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2350         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2351         NULL, NULL, &error_abort);
2352 
2353     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2354         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2355 
2356     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2357         pc_machine_get_smm, pc_machine_set_smm,
2358         NULL, NULL, &error_abort);
2359     object_class_property_set_description(oc, PC_MACHINE_SMM,
2360         "Enable SMM (pc & q35)", &error_abort);
2361 
2362     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2363         pc_machine_get_vmport, pc_machine_set_vmport,
2364         NULL, NULL, &error_abort);
2365     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2366         "Enable vmport (pc & q35)", &error_abort);
2367 
2368     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2369         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2370 
2371     object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2372         pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2373 
2374     object_class_property_add_bool(oc, PC_MACHINE_SATA,
2375         pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2376 
2377     object_class_property_add_bool(oc, PC_MACHINE_PIT,
2378         pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2379 }
2380 
2381 static const TypeInfo pc_machine_info = {
2382     .name = TYPE_PC_MACHINE,
2383     .parent = TYPE_MACHINE,
2384     .abstract = true,
2385     .instance_size = sizeof(PCMachineState),
2386     .instance_init = pc_machine_initfn,
2387     .class_size = sizeof(PCMachineClass),
2388     .class_init = pc_machine_class_init,
2389     .interfaces = (InterfaceInfo[]) {
2390          { TYPE_HOTPLUG_HANDLER },
2391          { TYPE_NMI },
2392          { }
2393     },
2394 };
2395 
2396 static void pc_machine_register_types(void)
2397 {
2398     type_register_static(&pc_machine_info);
2399 }
2400 
2401 type_init(pc_machine_register_types)
2402