1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "hw/char/serial.h" 30 #include "hw/char/parallel.h" 31 #include "hw/i386/apic.h" 32 #include "hw/i386/topology.h" 33 #include "sysemu/cpus.h" 34 #include "hw/block/fdc.h" 35 #include "hw/ide.h" 36 #include "hw/pci/pci.h" 37 #include "hw/pci/pci_bus.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/timer/hpet.h" 40 #include "hw/firmware/smbios.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "multiboot.h" 44 #include "hw/timer/mc146818rtc.h" 45 #include "hw/dma/i8257.h" 46 #include "hw/timer/i8254.h" 47 #include "hw/input/i8042.h" 48 #include "hw/audio/pcspk.h" 49 #include "hw/pci/msi.h" 50 #include "hw/sysbus.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/numa.h" 53 #include "sysemu/kvm.h" 54 #include "sysemu/qtest.h" 55 #include "kvm_i386.h" 56 #include "hw/xen/xen.h" 57 #include "ui/qemu-spice.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "sysemu/arch_init.h" 61 #include "qemu/bitmap.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "qemu/option.h" 65 #include "hw/acpi/acpi.h" 66 #include "hw/acpi/cpu_hotplug.h" 67 #include "hw/boards.h" 68 #include "acpi-build.h" 69 #include "hw/mem/pc-dimm.h" 70 #include "qapi/error.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/visitor.h" 73 #include "qom/cpu.h" 74 #include "hw/nmi.h" 75 #include "hw/i386/intel_iommu.h" 76 #include "hw/net/ne2000-isa.h" 77 78 /* debug PC/ISA interrupts */ 79 //#define DEBUG_IRQ 80 81 #ifdef DEBUG_IRQ 82 #define DPRINTF(fmt, ...) \ 83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 84 #else 85 #define DPRINTF(fmt, ...) 86 #endif 87 88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 93 94 #define E820_NR_ENTRIES 16 95 96 struct e820_entry { 97 uint64_t address; 98 uint64_t length; 99 uint32_t type; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 struct e820_table { 103 uint32_t count; 104 struct e820_entry entry[E820_NR_ENTRIES]; 105 } QEMU_PACKED __attribute((__aligned__(4))); 106 107 static struct e820_table e820_reserve; 108 static struct e820_entry *e820_table; 109 static unsigned e820_entries; 110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 111 112 GlobalProperty pc_compat_3_1[] = { 113 { 114 .driver = "intel-iommu", 115 .property = "dma-drain", 116 .value = "off", 117 }, 118 }; 119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); 120 121 GlobalProperty pc_compat_3_0[] = { 122 { 123 .driver = TYPE_X86_CPU, 124 .property = "x-hv-synic-kvm-only", 125 .value = "on", 126 },{ 127 .driver = "Skylake-Server" "-" TYPE_X86_CPU, 128 .property = "pku", 129 .value = "off", 130 },{ 131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU, 132 .property = "pku", 133 .value = "off", 134 }, 135 }; 136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0); 137 138 GlobalProperty pc_compat_2_12[] = { 139 { 140 .driver = TYPE_X86_CPU, 141 .property = "legacy-cache", 142 .value = "on", 143 },{ 144 .driver = TYPE_X86_CPU, 145 .property = "topoext", 146 .value = "off", 147 },{ 148 .driver = "EPYC-" TYPE_X86_CPU, 149 .property = "xlevel", 150 .value = stringify(0x8000000a), 151 },{ 152 .driver = "EPYC-IBPB-" TYPE_X86_CPU, 153 .property = "xlevel", 154 .value = stringify(0x8000000a), 155 }, 156 }; 157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12); 158 159 void gsi_handler(void *opaque, int n, int level) 160 { 161 GSIState *s = opaque; 162 163 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 164 if (n < ISA_NUM_IRQS) { 165 qemu_set_irq(s->i8259_irq[n], level); 166 } 167 qemu_set_irq(s->ioapic_irq[n], level); 168 } 169 170 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 171 unsigned size) 172 { 173 } 174 175 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 176 { 177 return 0xffffffffffffffffULL; 178 } 179 180 /* MSDOS compatibility mode FPU exception support */ 181 static qemu_irq ferr_irq; 182 183 void pc_register_ferr_irq(qemu_irq irq) 184 { 185 ferr_irq = irq; 186 } 187 188 /* XXX: add IGNNE support */ 189 void cpu_set_ferr(CPUX86State *s) 190 { 191 qemu_irq_raise(ferr_irq); 192 } 193 194 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 195 unsigned size) 196 { 197 qemu_irq_lower(ferr_irq); 198 } 199 200 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 201 { 202 return 0xffffffffffffffffULL; 203 } 204 205 /* TSC handling */ 206 uint64_t cpu_get_tsc(CPUX86State *env) 207 { 208 return cpu_get_ticks(); 209 } 210 211 /* IRQ handling */ 212 int cpu_get_pic_interrupt(CPUX86State *env) 213 { 214 X86CPU *cpu = x86_env_get_cpu(env); 215 int intno; 216 217 if (!kvm_irqchip_in_kernel()) { 218 intno = apic_get_interrupt(cpu->apic_state); 219 if (intno >= 0) { 220 return intno; 221 } 222 /* read the irq from the PIC */ 223 if (!apic_accept_pic_intr(cpu->apic_state)) { 224 return -1; 225 } 226 } 227 228 intno = pic_read_irq(isa_pic); 229 return intno; 230 } 231 232 static void pic_irq_request(void *opaque, int irq, int level) 233 { 234 CPUState *cs = first_cpu; 235 X86CPU *cpu = X86_CPU(cs); 236 237 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 238 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 239 CPU_FOREACH(cs) { 240 cpu = X86_CPU(cs); 241 if (apic_accept_pic_intr(cpu->apic_state)) { 242 apic_deliver_pic_intr(cpu->apic_state, level); 243 } 244 } 245 } else { 246 if (level) { 247 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 248 } else { 249 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 250 } 251 } 252 } 253 254 /* PC cmos mappings */ 255 256 #define REG_EQUIPMENT_BYTE 0x14 257 258 int cmos_get_fd_drive_type(FloppyDriveType fd0) 259 { 260 int val; 261 262 switch (fd0) { 263 case FLOPPY_DRIVE_TYPE_144: 264 /* 1.44 Mb 3"5 drive */ 265 val = 4; 266 break; 267 case FLOPPY_DRIVE_TYPE_288: 268 /* 2.88 Mb 3"5 drive */ 269 val = 5; 270 break; 271 case FLOPPY_DRIVE_TYPE_120: 272 /* 1.2 Mb 5"5 drive */ 273 val = 2; 274 break; 275 case FLOPPY_DRIVE_TYPE_NONE: 276 default: 277 val = 0; 278 break; 279 } 280 return val; 281 } 282 283 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 284 int16_t cylinders, int8_t heads, int8_t sectors) 285 { 286 rtc_set_memory(s, type_ofs, 47); 287 rtc_set_memory(s, info_ofs, cylinders); 288 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 289 rtc_set_memory(s, info_ofs + 2, heads); 290 rtc_set_memory(s, info_ofs + 3, 0xff); 291 rtc_set_memory(s, info_ofs + 4, 0xff); 292 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 293 rtc_set_memory(s, info_ofs + 6, cylinders); 294 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 295 rtc_set_memory(s, info_ofs + 8, sectors); 296 } 297 298 /* convert boot_device letter to something recognizable by the bios */ 299 static int boot_device2nibble(char boot_device) 300 { 301 switch(boot_device) { 302 case 'a': 303 case 'b': 304 return 0x01; /* floppy boot */ 305 case 'c': 306 return 0x02; /* hard drive boot */ 307 case 'd': 308 return 0x03; /* CD-ROM boot */ 309 case 'n': 310 return 0x04; /* Network boot */ 311 } 312 return 0; 313 } 314 315 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 316 { 317 #define PC_MAX_BOOT_DEVICES 3 318 int nbds, bds[3] = { 0, }; 319 int i; 320 321 nbds = strlen(boot_device); 322 if (nbds > PC_MAX_BOOT_DEVICES) { 323 error_setg(errp, "Too many boot devices for PC"); 324 return; 325 } 326 for (i = 0; i < nbds; i++) { 327 bds[i] = boot_device2nibble(boot_device[i]); 328 if (bds[i] == 0) { 329 error_setg(errp, "Invalid boot device for PC: '%c'", 330 boot_device[i]); 331 return; 332 } 333 } 334 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 335 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 336 } 337 338 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 339 { 340 set_boot_dev(opaque, boot_device, errp); 341 } 342 343 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 344 { 345 int val, nb, i; 346 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 347 FLOPPY_DRIVE_TYPE_NONE }; 348 349 /* floppy type */ 350 if (floppy) { 351 for (i = 0; i < 2; i++) { 352 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 353 } 354 } 355 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 356 cmos_get_fd_drive_type(fd_type[1]); 357 rtc_set_memory(rtc_state, 0x10, val); 358 359 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 360 nb = 0; 361 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 362 nb++; 363 } 364 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 365 nb++; 366 } 367 switch (nb) { 368 case 0: 369 break; 370 case 1: 371 val |= 0x01; /* 1 drive, ready for boot */ 372 break; 373 case 2: 374 val |= 0x41; /* 2 drives, ready for boot */ 375 break; 376 } 377 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 378 } 379 380 typedef struct pc_cmos_init_late_arg { 381 ISADevice *rtc_state; 382 BusState *idebus[2]; 383 } pc_cmos_init_late_arg; 384 385 typedef struct check_fdc_state { 386 ISADevice *floppy; 387 bool multiple; 388 } CheckFdcState; 389 390 static int check_fdc(Object *obj, void *opaque) 391 { 392 CheckFdcState *state = opaque; 393 Object *fdc; 394 uint32_t iobase; 395 Error *local_err = NULL; 396 397 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 398 if (!fdc) { 399 return 0; 400 } 401 402 iobase = object_property_get_uint(obj, "iobase", &local_err); 403 if (local_err || iobase != 0x3f0) { 404 error_free(local_err); 405 return 0; 406 } 407 408 if (state->floppy) { 409 state->multiple = true; 410 } else { 411 state->floppy = ISA_DEVICE(obj); 412 } 413 return 0; 414 } 415 416 static const char * const fdc_container_path[] = { 417 "/unattached", "/peripheral", "/peripheral-anon" 418 }; 419 420 /* 421 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 422 * and ACPI objects. 423 */ 424 ISADevice *pc_find_fdc0(void) 425 { 426 int i; 427 Object *container; 428 CheckFdcState state = { 0 }; 429 430 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 431 container = container_get(qdev_get_machine(), fdc_container_path[i]); 432 object_child_foreach(container, check_fdc, &state); 433 } 434 435 if (state.multiple) { 436 warn_report("multiple floppy disk controllers with " 437 "iobase=0x3f0 have been found"); 438 error_printf("the one being picked for CMOS setup might not reflect " 439 "your intent"); 440 } 441 442 return state.floppy; 443 } 444 445 static void pc_cmos_init_late(void *opaque) 446 { 447 pc_cmos_init_late_arg *arg = opaque; 448 ISADevice *s = arg->rtc_state; 449 int16_t cylinders; 450 int8_t heads, sectors; 451 int val; 452 int i, trans; 453 454 val = 0; 455 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, 456 &cylinders, &heads, §ors) >= 0) { 457 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 458 val |= 0xf0; 459 } 460 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, 461 &cylinders, &heads, §ors) >= 0) { 462 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 463 val |= 0x0f; 464 } 465 rtc_set_memory(s, 0x12, val); 466 467 val = 0; 468 for (i = 0; i < 4; i++) { 469 /* NOTE: ide_get_geometry() returns the physical 470 geometry. It is always such that: 1 <= sects <= 63, 1 471 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 472 geometry can be different if a translation is done. */ 473 if (arg->idebus[i / 2] && 474 ide_get_geometry(arg->idebus[i / 2], i % 2, 475 &cylinders, &heads, §ors) >= 0) { 476 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 477 assert((trans & ~3) == 0); 478 val |= trans << (i * 2); 479 } 480 } 481 rtc_set_memory(s, 0x39, val); 482 483 pc_cmos_init_floppy(s, pc_find_fdc0()); 484 485 qemu_unregister_reset(pc_cmos_init_late, opaque); 486 } 487 488 void pc_cmos_init(PCMachineState *pcms, 489 BusState *idebus0, BusState *idebus1, 490 ISADevice *s) 491 { 492 int val; 493 static pc_cmos_init_late_arg arg; 494 495 /* various important CMOS locations needed by PC/Bochs bios */ 496 497 /* memory size */ 498 /* base memory (first MiB) */ 499 val = MIN(pcms->below_4g_mem_size / KiB, 640); 500 rtc_set_memory(s, 0x15, val); 501 rtc_set_memory(s, 0x16, val >> 8); 502 /* extended memory (next 64MiB) */ 503 if (pcms->below_4g_mem_size > 1 * MiB) { 504 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; 505 } else { 506 val = 0; 507 } 508 if (val > 65535) 509 val = 65535; 510 rtc_set_memory(s, 0x17, val); 511 rtc_set_memory(s, 0x18, val >> 8); 512 rtc_set_memory(s, 0x30, val); 513 rtc_set_memory(s, 0x31, val >> 8); 514 /* memory between 16MiB and 4GiB */ 515 if (pcms->below_4g_mem_size > 16 * MiB) { 516 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); 517 } else { 518 val = 0; 519 } 520 if (val > 65535) 521 val = 65535; 522 rtc_set_memory(s, 0x34, val); 523 rtc_set_memory(s, 0x35, val >> 8); 524 /* memory above 4GiB */ 525 val = pcms->above_4g_mem_size / 65536; 526 rtc_set_memory(s, 0x5b, val); 527 rtc_set_memory(s, 0x5c, val >> 8); 528 rtc_set_memory(s, 0x5d, val >> 16); 529 530 object_property_add_link(OBJECT(pcms), "rtc_state", 531 TYPE_ISA_DEVICE, 532 (Object **)&pcms->rtc, 533 object_property_allow_set_link, 534 OBJ_PROP_LINK_STRONG, &error_abort); 535 object_property_set_link(OBJECT(pcms), OBJECT(s), 536 "rtc_state", &error_abort); 537 538 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 539 540 val = 0; 541 val |= 0x02; /* FPU is there */ 542 val |= 0x04; /* PS/2 mouse installed */ 543 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 544 545 /* hard drives and FDC */ 546 arg.rtc_state = s; 547 arg.idebus[0] = idebus0; 548 arg.idebus[1] = idebus1; 549 qemu_register_reset(pc_cmos_init_late, &arg); 550 } 551 552 #define TYPE_PORT92 "port92" 553 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 554 555 /* port 92 stuff: could be split off */ 556 typedef struct Port92State { 557 ISADevice parent_obj; 558 559 MemoryRegion io; 560 uint8_t outport; 561 qemu_irq a20_out; 562 } Port92State; 563 564 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 565 unsigned size) 566 { 567 Port92State *s = opaque; 568 int oldval = s->outport; 569 570 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 571 s->outport = val; 572 qemu_set_irq(s->a20_out, (val >> 1) & 1); 573 if ((val & 1) && !(oldval & 1)) { 574 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 575 } 576 } 577 578 static uint64_t port92_read(void *opaque, hwaddr addr, 579 unsigned size) 580 { 581 Port92State *s = opaque; 582 uint32_t ret; 583 584 ret = s->outport; 585 DPRINTF("port92: read 0x%02x\n", ret); 586 return ret; 587 } 588 589 static void port92_init(ISADevice *dev, qemu_irq a20_out) 590 { 591 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 592 } 593 594 static const VMStateDescription vmstate_port92_isa = { 595 .name = "port92", 596 .version_id = 1, 597 .minimum_version_id = 1, 598 .fields = (VMStateField[]) { 599 VMSTATE_UINT8(outport, Port92State), 600 VMSTATE_END_OF_LIST() 601 } 602 }; 603 604 static void port92_reset(DeviceState *d) 605 { 606 Port92State *s = PORT92(d); 607 608 s->outport &= ~1; 609 } 610 611 static const MemoryRegionOps port92_ops = { 612 .read = port92_read, 613 .write = port92_write, 614 .impl = { 615 .min_access_size = 1, 616 .max_access_size = 1, 617 }, 618 .endianness = DEVICE_LITTLE_ENDIAN, 619 }; 620 621 static void port92_initfn(Object *obj) 622 { 623 Port92State *s = PORT92(obj); 624 625 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 626 627 s->outport = 0; 628 629 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 630 } 631 632 static void port92_realizefn(DeviceState *dev, Error **errp) 633 { 634 ISADevice *isadev = ISA_DEVICE(dev); 635 Port92State *s = PORT92(dev); 636 637 isa_register_ioport(isadev, &s->io, 0x92); 638 } 639 640 static void port92_class_initfn(ObjectClass *klass, void *data) 641 { 642 DeviceClass *dc = DEVICE_CLASS(klass); 643 644 dc->realize = port92_realizefn; 645 dc->reset = port92_reset; 646 dc->vmsd = &vmstate_port92_isa; 647 /* 648 * Reason: unlike ordinary ISA devices, this one needs additional 649 * wiring: its A20 output line needs to be wired up by 650 * port92_init(). 651 */ 652 dc->user_creatable = false; 653 } 654 655 static const TypeInfo port92_info = { 656 .name = TYPE_PORT92, 657 .parent = TYPE_ISA_DEVICE, 658 .instance_size = sizeof(Port92State), 659 .instance_init = port92_initfn, 660 .class_init = port92_class_initfn, 661 }; 662 663 static void port92_register_types(void) 664 { 665 type_register_static(&port92_info); 666 } 667 668 type_init(port92_register_types) 669 670 static void handle_a20_line_change(void *opaque, int irq, int level) 671 { 672 X86CPU *cpu = opaque; 673 674 /* XXX: send to all CPUs ? */ 675 /* XXX: add logic to handle multiple A20 line sources */ 676 x86_cpu_set_a20(cpu, level); 677 } 678 679 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 680 { 681 int index = le32_to_cpu(e820_reserve.count); 682 struct e820_entry *entry; 683 684 if (type != E820_RAM) { 685 /* old FW_CFG_E820_TABLE entry -- reservations only */ 686 if (index >= E820_NR_ENTRIES) { 687 return -EBUSY; 688 } 689 entry = &e820_reserve.entry[index++]; 690 691 entry->address = cpu_to_le64(address); 692 entry->length = cpu_to_le64(length); 693 entry->type = cpu_to_le32(type); 694 695 e820_reserve.count = cpu_to_le32(index); 696 } 697 698 /* new "etc/e820" file -- include ram too */ 699 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 700 e820_table[e820_entries].address = cpu_to_le64(address); 701 e820_table[e820_entries].length = cpu_to_le64(length); 702 e820_table[e820_entries].type = cpu_to_le32(type); 703 e820_entries++; 704 705 return e820_entries; 706 } 707 708 int e820_get_num_entries(void) 709 { 710 return e820_entries; 711 } 712 713 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 714 { 715 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 716 *address = le64_to_cpu(e820_table[idx].address); 717 *length = le64_to_cpu(e820_table[idx].length); 718 return true; 719 } 720 return false; 721 } 722 723 /* Enables contiguous-apic-ID mode, for compatibility */ 724 static bool compat_apic_id_mode; 725 726 void enable_compat_apic_id_mode(void) 727 { 728 compat_apic_id_mode = true; 729 } 730 731 /* Calculates initial APIC ID for a specific CPU index 732 * 733 * Currently we need to be able to calculate the APIC ID from the CPU index 734 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 735 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 736 * all CPUs up to max_cpus. 737 */ 738 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 739 { 740 uint32_t correct_id; 741 static bool warned; 742 743 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 744 if (compat_apic_id_mode) { 745 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 746 error_report("APIC IDs set in compatibility mode, " 747 "CPU topology won't match the configuration"); 748 warned = true; 749 } 750 return cpu_index; 751 } else { 752 return correct_id; 753 } 754 } 755 756 static void pc_build_smbios(PCMachineState *pcms) 757 { 758 uint8_t *smbios_tables, *smbios_anchor; 759 size_t smbios_tables_len, smbios_anchor_len; 760 struct smbios_phys_mem_area *mem_array; 761 unsigned i, array_count; 762 MachineState *ms = MACHINE(pcms); 763 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 764 765 /* tell smbios about cpuid version and features */ 766 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 767 768 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 769 if (smbios_tables) { 770 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, 771 smbios_tables, smbios_tables_len); 772 } 773 774 /* build the array of physical mem area from e820 table */ 775 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 776 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 777 uint64_t addr, len; 778 779 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 780 mem_array[array_count].address = addr; 781 mem_array[array_count].length = len; 782 array_count++; 783 } 784 } 785 smbios_get_tables(mem_array, array_count, 786 &smbios_tables, &smbios_tables_len, 787 &smbios_anchor, &smbios_anchor_len); 788 g_free(mem_array); 789 790 if (smbios_anchor) { 791 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", 792 smbios_tables, smbios_tables_len); 793 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", 794 smbios_anchor, smbios_anchor_len); 795 } 796 } 797 798 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 799 { 800 FWCfgState *fw_cfg; 801 uint64_t *numa_fw_cfg; 802 int i; 803 const CPUArchIdList *cpus; 804 MachineClass *mc = MACHINE_GET_CLASS(pcms); 805 806 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 807 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 808 809 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 810 * 811 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 812 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 813 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 814 * for CPU hotplug also uses APIC ID and not "CPU index". 815 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 816 * but the "limit to the APIC ID values SeaBIOS may see". 817 * 818 * So for compatibility reasons with old BIOSes we are stuck with 819 * "etc/max-cpus" actually being apic_id_limit 820 */ 821 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 822 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 823 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 824 acpi_tables, acpi_tables_len); 825 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 826 827 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 828 &e820_reserve, sizeof(e820_reserve)); 829 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 830 sizeof(struct e820_entry) * e820_entries); 831 832 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 833 /* allocate memory for the NUMA channel: one (64bit) word for the number 834 * of nodes, one word for each VCPU->node and one word for each node to 835 * hold the amount of memory. 836 */ 837 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 838 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 839 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); 840 for (i = 0; i < cpus->len; i++) { 841 unsigned int apic_id = cpus->cpus[i].arch_id; 842 assert(apic_id < pcms->apic_id_limit); 843 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 844 } 845 for (i = 0; i < nb_numa_nodes; i++) { 846 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 847 cpu_to_le64(numa_info[i].node_mem); 848 } 849 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 850 (1 + pcms->apic_id_limit + nb_numa_nodes) * 851 sizeof(*numa_fw_cfg)); 852 853 return fw_cfg; 854 } 855 856 static long get_file_size(FILE *f) 857 { 858 long where, size; 859 860 /* XXX: on Unix systems, using fstat() probably makes more sense */ 861 862 where = ftell(f); 863 fseek(f, 0, SEEK_END); 864 size = ftell(f); 865 fseek(f, where, SEEK_SET); 866 867 return size; 868 } 869 870 /* setup_data types */ 871 #define SETUP_NONE 0 872 #define SETUP_E820_EXT 1 873 #define SETUP_DTB 2 874 #define SETUP_PCI 3 875 #define SETUP_EFI 4 876 877 struct setup_data { 878 uint64_t next; 879 uint32_t type; 880 uint32_t len; 881 uint8_t data[0]; 882 } __attribute__((packed)); 883 884 static void load_linux(PCMachineState *pcms, 885 FWCfgState *fw_cfg) 886 { 887 uint16_t protocol; 888 int setup_size, kernel_size, cmdline_size; 889 int dtb_size, setup_data_offset; 890 uint32_t initrd_max; 891 uint8_t header[8192], *setup, *kernel; 892 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 893 FILE *f; 894 char *vmode; 895 MachineState *machine = MACHINE(pcms); 896 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 897 struct setup_data *setup_data; 898 const char *kernel_filename = machine->kernel_filename; 899 const char *initrd_filename = machine->initrd_filename; 900 const char *dtb_filename = machine->dtb; 901 const char *kernel_cmdline = machine->kernel_cmdline; 902 903 /* Align to 16 bytes as a paranoia measure */ 904 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 905 906 /* load the kernel header */ 907 f = fopen(kernel_filename, "rb"); 908 if (!f || !(kernel_size = get_file_size(f)) || 909 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 910 MIN(ARRAY_SIZE(header), kernel_size)) { 911 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 912 kernel_filename, strerror(errno)); 913 exit(1); 914 } 915 916 /* kernel protocol version */ 917 #if 0 918 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 919 #endif 920 if (ldl_p(header+0x202) == 0x53726448) { 921 protocol = lduw_p(header+0x206); 922 } else { 923 /* This looks like a multiboot kernel. If it is, let's stop 924 treating it like a Linux kernel. */ 925 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 926 kernel_cmdline, kernel_size, header)) { 927 return; 928 } 929 protocol = 0; 930 } 931 932 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 933 /* Low kernel */ 934 real_addr = 0x90000; 935 cmdline_addr = 0x9a000 - cmdline_size; 936 prot_addr = 0x10000; 937 } else if (protocol < 0x202) { 938 /* High but ancient kernel */ 939 real_addr = 0x90000; 940 cmdline_addr = 0x9a000 - cmdline_size; 941 prot_addr = 0x100000; 942 } else { 943 /* High and recent kernel */ 944 real_addr = 0x10000; 945 cmdline_addr = 0x20000; 946 prot_addr = 0x100000; 947 } 948 949 #if 0 950 fprintf(stderr, 951 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 952 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 953 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 954 real_addr, 955 cmdline_addr, 956 prot_addr); 957 #endif 958 959 /* highest address for loading the initrd */ 960 if (protocol >= 0x203) { 961 initrd_max = ldl_p(header+0x22c); 962 } else { 963 initrd_max = 0x37ffffff; 964 } 965 966 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 967 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 968 } 969 970 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 971 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 972 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 973 974 if (protocol >= 0x202) { 975 stl_p(header+0x228, cmdline_addr); 976 } else { 977 stw_p(header+0x20, 0xA33F); 978 stw_p(header+0x22, cmdline_addr-real_addr); 979 } 980 981 /* handle vga= parameter */ 982 vmode = strstr(kernel_cmdline, "vga="); 983 if (vmode) { 984 unsigned int video_mode; 985 /* skip "vga=" */ 986 vmode += 4; 987 if (!strncmp(vmode, "normal", 6)) { 988 video_mode = 0xffff; 989 } else if (!strncmp(vmode, "ext", 3)) { 990 video_mode = 0xfffe; 991 } else if (!strncmp(vmode, "ask", 3)) { 992 video_mode = 0xfffd; 993 } else { 994 video_mode = strtol(vmode, NULL, 0); 995 } 996 stw_p(header+0x1fa, video_mode); 997 } 998 999 /* loader type */ 1000 /* High nybble = B reserved for QEMU; low nybble is revision number. 1001 If this code is substantially changed, you may want to consider 1002 incrementing the revision. */ 1003 if (protocol >= 0x200) { 1004 header[0x210] = 0xB0; 1005 } 1006 /* heap */ 1007 if (protocol >= 0x201) { 1008 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 1009 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 1010 } 1011 1012 /* load initrd */ 1013 if (initrd_filename) { 1014 gsize initrd_size; 1015 gchar *initrd_data; 1016 GError *gerr = NULL; 1017 1018 if (protocol < 0x200) { 1019 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 1020 exit(1); 1021 } 1022 1023 if (!g_file_get_contents(initrd_filename, &initrd_data, 1024 &initrd_size, &gerr)) { 1025 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 1026 initrd_filename, gerr->message); 1027 exit(1); 1028 } 1029 if (initrd_size >= initrd_max) { 1030 fprintf(stderr, "qemu: initrd is too large, cannot support." 1031 "(max: %"PRIu32", need %"PRId64")\n", 1032 initrd_max, (uint64_t)initrd_size); 1033 exit(1); 1034 } 1035 1036 initrd_addr = (initrd_max-initrd_size) & ~4095; 1037 1038 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1039 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1040 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1041 1042 stl_p(header+0x218, initrd_addr); 1043 stl_p(header+0x21c, initrd_size); 1044 } 1045 1046 /* load kernel and setup */ 1047 setup_size = header[0x1f1]; 1048 if (setup_size == 0) { 1049 setup_size = 4; 1050 } 1051 setup_size = (setup_size+1)*512; 1052 if (setup_size > kernel_size) { 1053 fprintf(stderr, "qemu: invalid kernel header\n"); 1054 exit(1); 1055 } 1056 kernel_size -= setup_size; 1057 1058 setup = g_malloc(setup_size); 1059 kernel = g_malloc(kernel_size); 1060 fseek(f, 0, SEEK_SET); 1061 if (fread(setup, 1, setup_size, f) != setup_size) { 1062 fprintf(stderr, "fread() failed\n"); 1063 exit(1); 1064 } 1065 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1066 fprintf(stderr, "fread() failed\n"); 1067 exit(1); 1068 } 1069 fclose(f); 1070 1071 /* append dtb to kernel */ 1072 if (dtb_filename) { 1073 if (protocol < 0x209) { 1074 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1075 exit(1); 1076 } 1077 1078 dtb_size = get_image_size(dtb_filename); 1079 if (dtb_size <= 0) { 1080 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1081 dtb_filename, strerror(errno)); 1082 exit(1); 1083 } 1084 1085 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1086 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1087 kernel = g_realloc(kernel, kernel_size); 1088 1089 stq_p(header+0x250, prot_addr + setup_data_offset); 1090 1091 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1092 setup_data->next = 0; 1093 setup_data->type = cpu_to_le32(SETUP_DTB); 1094 setup_data->len = cpu_to_le32(dtb_size); 1095 1096 load_image_size(dtb_filename, setup_data->data, dtb_size); 1097 } 1098 1099 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1100 1101 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1102 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1103 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1104 1105 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1106 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1107 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1108 1109 option_rom[nb_option_roms].bootindex = 0; 1110 option_rom[nb_option_roms].name = "linuxboot.bin"; 1111 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1112 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1113 } 1114 nb_option_roms++; 1115 } 1116 1117 #define NE2000_NB_MAX 6 1118 1119 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1120 0x280, 0x380 }; 1121 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1122 1123 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1124 { 1125 static int nb_ne2k = 0; 1126 1127 if (nb_ne2k == NE2000_NB_MAX) 1128 return; 1129 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1130 ne2000_irq[nb_ne2k], nd); 1131 nb_ne2k++; 1132 } 1133 1134 DeviceState *cpu_get_current_apic(void) 1135 { 1136 if (current_cpu) { 1137 X86CPU *cpu = X86_CPU(current_cpu); 1138 return cpu->apic_state; 1139 } else { 1140 return NULL; 1141 } 1142 } 1143 1144 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1145 { 1146 X86CPU *cpu = opaque; 1147 1148 if (level) { 1149 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1150 } 1151 } 1152 1153 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp) 1154 { 1155 Object *cpu = NULL; 1156 Error *local_err = NULL; 1157 1158 cpu = object_new(typename); 1159 1160 object_property_set_uint(cpu, apic_id, "apic-id", &local_err); 1161 object_property_set_bool(cpu, true, "realized", &local_err); 1162 1163 object_unref(cpu); 1164 error_propagate(errp, local_err); 1165 } 1166 1167 void pc_hot_add_cpu(const int64_t id, Error **errp) 1168 { 1169 MachineState *ms = MACHINE(qdev_get_machine()); 1170 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1171 Error *local_err = NULL; 1172 1173 if (id < 0) { 1174 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1175 return; 1176 } 1177 1178 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1179 error_setg(errp, "Unable to add CPU: %" PRIi64 1180 ", resulting APIC ID (%" PRIi64 ") is too large", 1181 id, apic_id); 1182 return; 1183 } 1184 1185 pc_new_cpu(ms->cpu_type, apic_id, &local_err); 1186 if (local_err) { 1187 error_propagate(errp, local_err); 1188 return; 1189 } 1190 } 1191 1192 void pc_cpus_init(PCMachineState *pcms) 1193 { 1194 int i; 1195 const CPUArchIdList *possible_cpus; 1196 MachineState *ms = MACHINE(pcms); 1197 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1198 1199 /* Calculates the limit to CPU APIC ID values 1200 * 1201 * Limit for the APIC ID value, so that all 1202 * CPU APIC IDs are < pcms->apic_id_limit. 1203 * 1204 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1205 */ 1206 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1207 possible_cpus = mc->possible_cpu_arch_ids(ms); 1208 for (i = 0; i < smp_cpus; i++) { 1209 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id, 1210 &error_fatal); 1211 } 1212 } 1213 1214 static void pc_build_feature_control_file(PCMachineState *pcms) 1215 { 1216 MachineState *ms = MACHINE(pcms); 1217 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 1218 CPUX86State *env = &cpu->env; 1219 uint32_t unused, ecx, edx; 1220 uint64_t feature_control_bits = 0; 1221 uint64_t *val; 1222 1223 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1224 if (ecx & CPUID_EXT_VMX) { 1225 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1226 } 1227 1228 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1229 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1230 (env->mcg_cap & MCG_LMCE_P)) { 1231 feature_control_bits |= FEATURE_CONTROL_LMCE; 1232 } 1233 1234 if (!feature_control_bits) { 1235 return; 1236 } 1237 1238 val = g_malloc(sizeof(*val)); 1239 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1240 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1241 } 1242 1243 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1244 { 1245 if (cpus_count > 0xff) { 1246 /* If the number of CPUs can't be represented in 8 bits, the 1247 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 1248 * to make old BIOSes fail more predictably. 1249 */ 1250 rtc_set_memory(rtc, 0x5f, 0); 1251 } else { 1252 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1253 } 1254 } 1255 1256 static 1257 void pc_machine_done(Notifier *notifier, void *data) 1258 { 1259 PCMachineState *pcms = container_of(notifier, 1260 PCMachineState, machine_done); 1261 PCIBus *bus = pcms->bus; 1262 1263 /* set the number of CPUs */ 1264 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1265 1266 if (bus) { 1267 int extra_hosts = 0; 1268 1269 QLIST_FOREACH(bus, &bus->child, sibling) { 1270 /* look for expander root buses */ 1271 if (pci_bus_is_root(bus)) { 1272 extra_hosts++; 1273 } 1274 } 1275 if (extra_hosts && pcms->fw_cfg) { 1276 uint64_t *val = g_malloc(sizeof(*val)); 1277 *val = cpu_to_le64(extra_hosts); 1278 fw_cfg_add_file(pcms->fw_cfg, 1279 "etc/extra-pci-roots", val, sizeof(*val)); 1280 } 1281 } 1282 1283 acpi_setup(); 1284 if (pcms->fw_cfg) { 1285 pc_build_smbios(pcms); 1286 pc_build_feature_control_file(pcms); 1287 /* update FW_CFG_NB_CPUS to account for -device added CPUs */ 1288 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1289 } 1290 1291 if (pcms->apic_id_limit > 255 && !xen_enabled()) { 1292 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1293 1294 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) || 1295 iommu->intr_eim != ON_OFF_AUTO_ON) { 1296 error_report("current -smp configuration requires " 1297 "Extended Interrupt Mode enabled. " 1298 "You can add an IOMMU using: " 1299 "-device intel-iommu,intremap=on,eim=on"); 1300 exit(EXIT_FAILURE); 1301 } 1302 } 1303 } 1304 1305 void pc_guest_info_init(PCMachineState *pcms) 1306 { 1307 int i; 1308 1309 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1310 pcms->numa_nodes = nb_numa_nodes; 1311 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1312 sizeof *pcms->node_mem); 1313 for (i = 0; i < nb_numa_nodes; i++) { 1314 pcms->node_mem[i] = numa_info[i].node_mem; 1315 } 1316 1317 pcms->machine_done.notify = pc_machine_done; 1318 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1319 } 1320 1321 /* setup pci memory address space mapping into system address space */ 1322 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1323 MemoryRegion *pci_address_space) 1324 { 1325 /* Set to lower priority than RAM */ 1326 memory_region_add_subregion_overlap(system_memory, 0x0, 1327 pci_address_space, -1); 1328 } 1329 1330 void pc_acpi_init(const char *default_dsdt) 1331 { 1332 char *filename; 1333 1334 if (acpi_tables != NULL) { 1335 /* manually set via -acpitable, leave it alone */ 1336 return; 1337 } 1338 1339 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1340 if (filename == NULL) { 1341 warn_report("failed to find %s", default_dsdt); 1342 } else { 1343 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1344 &error_abort); 1345 Error *err = NULL; 1346 1347 qemu_opt_set(opts, "file", filename, &error_abort); 1348 1349 acpi_table_add_builtin(opts, &err); 1350 if (err) { 1351 warn_reportf_err(err, "failed to load %s: ", filename); 1352 } 1353 g_free(filename); 1354 } 1355 } 1356 1357 void xen_load_linux(PCMachineState *pcms) 1358 { 1359 int i; 1360 FWCfgState *fw_cfg; 1361 1362 assert(MACHINE(pcms)->kernel_filename != NULL); 1363 1364 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1365 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1366 rom_set_fw(fw_cfg); 1367 1368 load_linux(pcms, fw_cfg); 1369 for (i = 0; i < nb_option_roms; i++) { 1370 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1371 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1372 !strcmp(option_rom[i].name, "multiboot.bin")); 1373 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1374 } 1375 pcms->fw_cfg = fw_cfg; 1376 } 1377 1378 void pc_memory_init(PCMachineState *pcms, 1379 MemoryRegion *system_memory, 1380 MemoryRegion *rom_memory, 1381 MemoryRegion **ram_memory) 1382 { 1383 int linux_boot, i; 1384 MemoryRegion *ram, *option_rom_mr; 1385 MemoryRegion *ram_below_4g, *ram_above_4g; 1386 FWCfgState *fw_cfg; 1387 MachineState *machine = MACHINE(pcms); 1388 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1389 1390 assert(machine->ram_size == pcms->below_4g_mem_size + 1391 pcms->above_4g_mem_size); 1392 1393 linux_boot = (machine->kernel_filename != NULL); 1394 1395 /* Allocate RAM. We allocate it as a single memory region and use 1396 * aliases to address portions of it, mostly for backwards compatibility 1397 * with older qemus that used qemu_ram_alloc(). 1398 */ 1399 ram = g_malloc(sizeof(*ram)); 1400 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1401 machine->ram_size); 1402 *ram_memory = ram; 1403 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1404 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1405 0, pcms->below_4g_mem_size); 1406 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1407 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1408 if (pcms->above_4g_mem_size > 0) { 1409 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1410 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1411 pcms->below_4g_mem_size, 1412 pcms->above_4g_mem_size); 1413 memory_region_add_subregion(system_memory, 0x100000000ULL, 1414 ram_above_4g); 1415 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1416 } 1417 1418 if (!pcmc->has_reserved_memory && 1419 (machine->ram_slots || 1420 (machine->maxram_size > machine->ram_size))) { 1421 MachineClass *mc = MACHINE_GET_CLASS(machine); 1422 1423 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1424 mc->name); 1425 exit(EXIT_FAILURE); 1426 } 1427 1428 /* always allocate the device memory information */ 1429 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 1430 1431 /* initialize device memory address space */ 1432 if (pcmc->has_reserved_memory && 1433 (machine->ram_size < machine->maxram_size)) { 1434 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 1435 1436 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1437 error_report("unsupported amount of memory slots: %"PRIu64, 1438 machine->ram_slots); 1439 exit(EXIT_FAILURE); 1440 } 1441 1442 if (QEMU_ALIGN_UP(machine->maxram_size, 1443 TARGET_PAGE_SIZE) != machine->maxram_size) { 1444 error_report("maximum memory size must by aligned to multiple of " 1445 "%d bytes", TARGET_PAGE_SIZE); 1446 exit(EXIT_FAILURE); 1447 } 1448 1449 machine->device_memory->base = 1450 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); 1451 1452 if (pcmc->enforce_aligned_dimm) { 1453 /* size device region assuming 1G page max alignment per slot */ 1454 device_mem_size += (1 * GiB) * machine->ram_slots; 1455 } 1456 1457 if ((machine->device_memory->base + device_mem_size) < 1458 device_mem_size) { 1459 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1460 machine->maxram_size); 1461 exit(EXIT_FAILURE); 1462 } 1463 1464 memory_region_init(&machine->device_memory->mr, OBJECT(pcms), 1465 "device-memory", device_mem_size); 1466 memory_region_add_subregion(system_memory, machine->device_memory->base, 1467 &machine->device_memory->mr); 1468 } 1469 1470 /* Initialize PC system firmware */ 1471 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1472 1473 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1474 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1475 &error_fatal); 1476 if (pcmc->pci_enabled) { 1477 memory_region_set_readonly(option_rom_mr, true); 1478 } 1479 memory_region_add_subregion_overlap(rom_memory, 1480 PC_ROM_MIN_VGA, 1481 option_rom_mr, 1482 1); 1483 1484 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1485 1486 rom_set_fw(fw_cfg); 1487 1488 if (pcmc->has_reserved_memory && machine->device_memory->base) { 1489 uint64_t *val = g_malloc(sizeof(*val)); 1490 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1491 uint64_t res_mem_end = machine->device_memory->base; 1492 1493 if (!pcmc->broken_reserved_end) { 1494 res_mem_end += memory_region_size(&machine->device_memory->mr); 1495 } 1496 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); 1497 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1498 } 1499 1500 if (linux_boot) { 1501 load_linux(pcms, fw_cfg); 1502 } 1503 1504 for (i = 0; i < nb_option_roms; i++) { 1505 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1506 } 1507 pcms->fw_cfg = fw_cfg; 1508 1509 /* Init default IOAPIC address space */ 1510 pcms->ioapic_as = &address_space_memory; 1511 } 1512 1513 /* 1514 * The 64bit pci hole starts after "above 4G RAM" and 1515 * potentially the space reserved for memory hotplug. 1516 */ 1517 uint64_t pc_pci_hole64_start(void) 1518 { 1519 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1520 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1521 MachineState *ms = MACHINE(pcms); 1522 uint64_t hole64_start = 0; 1523 1524 if (pcmc->has_reserved_memory && ms->device_memory->base) { 1525 hole64_start = ms->device_memory->base; 1526 if (!pcmc->broken_reserved_end) { 1527 hole64_start += memory_region_size(&ms->device_memory->mr); 1528 } 1529 } else { 1530 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; 1531 } 1532 1533 return ROUND_UP(hole64_start, 1 * GiB); 1534 } 1535 1536 qemu_irq pc_allocate_cpu_irq(void) 1537 { 1538 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1539 } 1540 1541 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1542 { 1543 DeviceState *dev = NULL; 1544 1545 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1546 if (pci_bus) { 1547 PCIDevice *pcidev = pci_vga_init(pci_bus); 1548 dev = pcidev ? &pcidev->qdev : NULL; 1549 } else if (isa_bus) { 1550 ISADevice *isadev = isa_vga_init(isa_bus); 1551 dev = isadev ? DEVICE(isadev) : NULL; 1552 } 1553 rom_reset_order_override(); 1554 return dev; 1555 } 1556 1557 static const MemoryRegionOps ioport80_io_ops = { 1558 .write = ioport80_write, 1559 .read = ioport80_read, 1560 .endianness = DEVICE_NATIVE_ENDIAN, 1561 .impl = { 1562 .min_access_size = 1, 1563 .max_access_size = 1, 1564 }, 1565 }; 1566 1567 static const MemoryRegionOps ioportF0_io_ops = { 1568 .write = ioportF0_write, 1569 .read = ioportF0_read, 1570 .endianness = DEVICE_NATIVE_ENDIAN, 1571 .impl = { 1572 .min_access_size = 1, 1573 .max_access_size = 1, 1574 }, 1575 }; 1576 1577 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) 1578 { 1579 int i; 1580 DriveInfo *fd[MAX_FD]; 1581 qemu_irq *a20_line; 1582 ISADevice *i8042, *port92, *vmmouse; 1583 1584 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1585 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1586 1587 for (i = 0; i < MAX_FD; i++) { 1588 fd[i] = drive_get(IF_FLOPPY, 0, i); 1589 create_fdctrl |= !!fd[i]; 1590 } 1591 if (create_fdctrl) { 1592 fdctrl_init_isa(isa_bus, fd); 1593 } 1594 1595 i8042 = isa_create_simple(isa_bus, "i8042"); 1596 if (!no_vmport) { 1597 vmport_init(isa_bus); 1598 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1599 } else { 1600 vmmouse = NULL; 1601 } 1602 if (vmmouse) { 1603 DeviceState *dev = DEVICE(vmmouse); 1604 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1605 qdev_init_nofail(dev); 1606 } 1607 port92 = isa_create_simple(isa_bus, "port92"); 1608 1609 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1610 i8042_setup_a20_line(i8042, a20_line[0]); 1611 port92_init(port92, a20_line[1]); 1612 g_free(a20_line); 1613 } 1614 1615 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1616 ISADevice **rtc_state, 1617 bool create_fdctrl, 1618 bool no_vmport, 1619 bool has_pit, 1620 uint32_t hpet_irqs) 1621 { 1622 int i; 1623 DeviceState *hpet = NULL; 1624 int pit_isa_irq = 0; 1625 qemu_irq pit_alt_irq = NULL; 1626 qemu_irq rtc_irq = NULL; 1627 ISADevice *pit = NULL; 1628 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1629 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1630 1631 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1632 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1633 1634 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1635 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1636 1637 /* 1638 * Check if an HPET shall be created. 1639 * 1640 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1641 * when the HPET wants to take over. Thus we have to disable the latter. 1642 */ 1643 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1644 /* In order to set property, here not using sysbus_try_create_simple */ 1645 hpet = qdev_try_create(NULL, TYPE_HPET); 1646 if (hpet) { 1647 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1648 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1649 * IRQ8 and IRQ2. 1650 */ 1651 uint8_t compat = object_property_get_uint(OBJECT(hpet), 1652 HPET_INTCAP, NULL); 1653 if (!compat) { 1654 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1655 } 1656 qdev_init_nofail(hpet); 1657 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1658 1659 for (i = 0; i < GSI_NUM_PINS; i++) { 1660 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1661 } 1662 pit_isa_irq = -1; 1663 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1664 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1665 } 1666 } 1667 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); 1668 1669 qemu_register_boot_set(pc_boot_set, *rtc_state); 1670 1671 if (!xen_enabled() && has_pit) { 1672 if (kvm_pit_in_kernel()) { 1673 pit = kvm_pit_init(isa_bus, 0x40); 1674 } else { 1675 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1676 } 1677 if (hpet) { 1678 /* connect PIT to output control line of the HPET */ 1679 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1680 } 1681 pcspk_init(isa_bus, pit); 1682 } 1683 1684 i8257_dma_init(isa_bus, 0); 1685 1686 /* Super I/O */ 1687 pc_superio_init(isa_bus, create_fdctrl, no_vmport); 1688 } 1689 1690 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) 1691 { 1692 int i; 1693 1694 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1695 for (i = 0; i < nb_nics; i++) { 1696 NICInfo *nd = &nd_table[i]; 1697 const char *model = nd->model ? nd->model : pcmc->default_nic_model; 1698 1699 if (g_str_equal(model, "ne2k_isa")) { 1700 pc_init_ne2k_isa(isa_bus, nd); 1701 } else { 1702 pci_nic_init_nofail(nd, pci_bus, model, NULL); 1703 } 1704 } 1705 rom_reset_order_override(); 1706 } 1707 1708 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1709 { 1710 DeviceState *dev; 1711 SysBusDevice *d; 1712 unsigned int i; 1713 1714 if (kvm_ioapic_in_kernel()) { 1715 dev = qdev_create(NULL, "kvm-ioapic"); 1716 } else { 1717 dev = qdev_create(NULL, "ioapic"); 1718 } 1719 if (parent_name) { 1720 object_property_add_child(object_resolve_path(parent_name, NULL), 1721 "ioapic", OBJECT(dev), NULL); 1722 } 1723 qdev_init_nofail(dev); 1724 d = SYS_BUS_DEVICE(dev); 1725 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1726 1727 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1728 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1729 } 1730 } 1731 1732 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1733 Error **errp) 1734 { 1735 const PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1736 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1737 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1738 const uint64_t legacy_align = TARGET_PAGE_SIZE; 1739 1740 /* 1741 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1742 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1743 * addition to cover this case. 1744 */ 1745 if (!pcms->acpi_dev || !acpi_enabled) { 1746 error_setg(errp, 1747 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1748 return; 1749 } 1750 1751 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) { 1752 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); 1753 return; 1754 } 1755 1756 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), 1757 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); 1758 } 1759 1760 static void pc_memory_plug(HotplugHandler *hotplug_dev, 1761 DeviceState *dev, Error **errp) 1762 { 1763 HotplugHandlerClass *hhc; 1764 Error *local_err = NULL; 1765 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1766 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1767 1768 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); 1769 if (local_err) { 1770 goto out; 1771 } 1772 1773 if (is_nvdimm) { 1774 nvdimm_plug(&pcms->acpi_nvdimm_state); 1775 } 1776 1777 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1778 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1779 out: 1780 error_propagate(errp, local_err); 1781 } 1782 1783 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, 1784 DeviceState *dev, Error **errp) 1785 { 1786 HotplugHandlerClass *hhc; 1787 Error *local_err = NULL; 1788 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1789 1790 /* 1791 * When -no-acpi is used with Q35 machine type, no ACPI is built, 1792 * but pcms->acpi_dev is still created. Check !acpi_enabled in 1793 * addition to cover this case. 1794 */ 1795 if (!pcms->acpi_dev || !acpi_enabled) { 1796 error_setg(&local_err, 1797 "memory hotplug is not enabled: missing acpi device or acpi disabled"); 1798 goto out; 1799 } 1800 1801 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1802 error_setg(&local_err, 1803 "nvdimm device hot unplug is not supported yet."); 1804 goto out; 1805 } 1806 1807 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1808 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1809 1810 out: 1811 error_propagate(errp, local_err); 1812 } 1813 1814 static void pc_memory_unplug(HotplugHandler *hotplug_dev, 1815 DeviceState *dev, Error **errp) 1816 { 1817 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1818 HotplugHandlerClass *hhc; 1819 Error *local_err = NULL; 1820 1821 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1822 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1823 1824 if (local_err) { 1825 goto out; 1826 } 1827 1828 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); 1829 object_unparent(OBJECT(dev)); 1830 1831 out: 1832 error_propagate(errp, local_err); 1833 } 1834 1835 static int pc_apic_cmp(const void *a, const void *b) 1836 { 1837 CPUArchId *apic_a = (CPUArchId *)a; 1838 CPUArchId *apic_b = (CPUArchId *)b; 1839 1840 return apic_a->arch_id - apic_b->arch_id; 1841 } 1842 1843 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1844 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 1845 * entry corresponding to CPU's apic_id returns NULL. 1846 */ 1847 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1848 { 1849 CPUArchId apic_id, *found_cpu; 1850 1851 apic_id.arch_id = id; 1852 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 1853 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 1854 pc_apic_cmp); 1855 if (found_cpu && idx) { 1856 *idx = found_cpu - ms->possible_cpus->cpus; 1857 } 1858 return found_cpu; 1859 } 1860 1861 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1862 DeviceState *dev, Error **errp) 1863 { 1864 CPUArchId *found_cpu; 1865 HotplugHandlerClass *hhc; 1866 Error *local_err = NULL; 1867 X86CPU *cpu = X86_CPU(dev); 1868 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1869 1870 if (pcms->acpi_dev) { 1871 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1872 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1873 if (local_err) { 1874 goto out; 1875 } 1876 } 1877 1878 /* increment the number of CPUs */ 1879 pcms->boot_cpus++; 1880 if (pcms->rtc) { 1881 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1882 } 1883 if (pcms->fw_cfg) { 1884 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1885 } 1886 1887 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1888 found_cpu->cpu = OBJECT(dev); 1889 out: 1890 error_propagate(errp, local_err); 1891 } 1892 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1893 DeviceState *dev, Error **errp) 1894 { 1895 int idx = -1; 1896 HotplugHandlerClass *hhc; 1897 Error *local_err = NULL; 1898 X86CPU *cpu = X86_CPU(dev); 1899 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1900 1901 if (!pcms->acpi_dev) { 1902 error_setg(&local_err, "CPU hot unplug not supported without ACPI"); 1903 goto out; 1904 } 1905 1906 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 1907 assert(idx != -1); 1908 if (idx == 0) { 1909 error_setg(&local_err, "Boot CPU is unpluggable"); 1910 goto out; 1911 } 1912 1913 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1914 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1915 1916 if (local_err) { 1917 goto out; 1918 } 1919 1920 out: 1921 error_propagate(errp, local_err); 1922 1923 } 1924 1925 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1926 DeviceState *dev, Error **errp) 1927 { 1928 CPUArchId *found_cpu; 1929 HotplugHandlerClass *hhc; 1930 Error *local_err = NULL; 1931 X86CPU *cpu = X86_CPU(dev); 1932 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1933 1934 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1935 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1936 1937 if (local_err) { 1938 goto out; 1939 } 1940 1941 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); 1942 found_cpu->cpu = NULL; 1943 object_unparent(OBJECT(dev)); 1944 1945 /* decrement the number of CPUs */ 1946 pcms->boot_cpus--; 1947 /* Update the number of CPUs in CMOS */ 1948 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); 1949 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); 1950 out: 1951 error_propagate(errp, local_err); 1952 } 1953 1954 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1955 DeviceState *dev, Error **errp) 1956 { 1957 int idx; 1958 CPUState *cs; 1959 CPUArchId *cpu_slot; 1960 X86CPUTopoInfo topo; 1961 X86CPU *cpu = X86_CPU(dev); 1962 MachineState *ms = MACHINE(hotplug_dev); 1963 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1964 1965 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 1966 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 1967 ms->cpu_type); 1968 return; 1969 } 1970 1971 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1972 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1973 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1974 1975 if (cpu->socket_id < 0) { 1976 error_setg(errp, "CPU socket-id is not set"); 1977 return; 1978 } else if (cpu->socket_id > max_socket) { 1979 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1980 cpu->socket_id, max_socket); 1981 return; 1982 } 1983 if (cpu->core_id < 0) { 1984 error_setg(errp, "CPU core-id is not set"); 1985 return; 1986 } else if (cpu->core_id > (smp_cores - 1)) { 1987 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1988 cpu->core_id, smp_cores - 1); 1989 return; 1990 } 1991 if (cpu->thread_id < 0) { 1992 error_setg(errp, "CPU thread-id is not set"); 1993 return; 1994 } else if (cpu->thread_id > (smp_threads - 1)) { 1995 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1996 cpu->thread_id, smp_threads - 1); 1997 return; 1998 } 1999 2000 topo.pkg_id = cpu->socket_id; 2001 topo.core_id = cpu->core_id; 2002 topo.smt_id = cpu->thread_id; 2003 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 2004 } 2005 2006 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); 2007 if (!cpu_slot) { 2008 MachineState *ms = MACHINE(pcms); 2009 2010 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2011 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 2012 " APIC ID %" PRIu32 ", valid index range 0:%d", 2013 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 2014 ms->possible_cpus->len - 1); 2015 return; 2016 } 2017 2018 if (cpu_slot->cpu) { 2019 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 2020 idx, cpu->apic_id); 2021 return; 2022 } 2023 2024 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 2025 * so that machine_query_hotpluggable_cpus would show correct values 2026 */ 2027 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 2028 * once -smp refactoring is complete and there will be CPU private 2029 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 2030 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 2031 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 2032 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 2033 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 2034 return; 2035 } 2036 cpu->socket_id = topo.pkg_id; 2037 2038 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 2039 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 2040 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 2041 return; 2042 } 2043 cpu->core_id = topo.core_id; 2044 2045 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 2046 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 2047 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 2048 return; 2049 } 2050 cpu->thread_id = topo.smt_id; 2051 2052 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) { 2053 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 2054 return; 2055 } 2056 2057 cs = CPU(cpu); 2058 cs->cpu_index = idx; 2059 2060 numa_cpu_pre_plug(cpu_slot, dev, errp); 2061 } 2062 2063 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2064 DeviceState *dev, Error **errp) 2065 { 2066 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2067 pc_memory_pre_plug(hotplug_dev, dev, errp); 2068 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2069 pc_cpu_pre_plug(hotplug_dev, dev, errp); 2070 } 2071 } 2072 2073 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2074 DeviceState *dev, Error **errp) 2075 { 2076 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2077 pc_memory_plug(hotplug_dev, dev, errp); 2078 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2079 pc_cpu_plug(hotplug_dev, dev, errp); 2080 } 2081 } 2082 2083 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2084 DeviceState *dev, Error **errp) 2085 { 2086 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2087 pc_memory_unplug_request(hotplug_dev, dev, errp); 2088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2089 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2090 } else { 2091 error_setg(errp, "acpi: device unplug request for not supported device" 2092 " type: %s", object_get_typename(OBJECT(dev))); 2093 } 2094 } 2095 2096 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2097 DeviceState *dev, Error **errp) 2098 { 2099 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2100 pc_memory_unplug(hotplug_dev, dev, errp); 2101 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2102 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2103 } else { 2104 error_setg(errp, "acpi: device unplug for not supported device" 2105 " type: %s", object_get_typename(OBJECT(dev))); 2106 } 2107 } 2108 2109 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2110 DeviceState *dev) 2111 { 2112 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2113 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2114 return HOTPLUG_HANDLER(machine); 2115 } 2116 2117 return NULL; 2118 } 2119 2120 static void 2121 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, 2122 const char *name, void *opaque, 2123 Error **errp) 2124 { 2125 MachineState *ms = MACHINE(obj); 2126 int64_t value = memory_region_size(&ms->device_memory->mr); 2127 2128 visit_type_int(v, name, &value, errp); 2129 } 2130 2131 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2132 const char *name, void *opaque, 2133 Error **errp) 2134 { 2135 PCMachineState *pcms = PC_MACHINE(obj); 2136 uint64_t value = pcms->max_ram_below_4g; 2137 2138 visit_type_size(v, name, &value, errp); 2139 } 2140 2141 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2142 const char *name, void *opaque, 2143 Error **errp) 2144 { 2145 PCMachineState *pcms = PC_MACHINE(obj); 2146 Error *error = NULL; 2147 uint64_t value; 2148 2149 visit_type_size(v, name, &value, &error); 2150 if (error) { 2151 error_propagate(errp, error); 2152 return; 2153 } 2154 if (value > 4 * GiB) { 2155 error_setg(&error, 2156 "Machine option 'max-ram-below-4g=%"PRIu64 2157 "' expects size less than or equal to 4G", value); 2158 error_propagate(errp, error); 2159 return; 2160 } 2161 2162 if (value < 1 * MiB) { 2163 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," 2164 "BIOS may not work with less than 1MiB", value); 2165 } 2166 2167 pcms->max_ram_below_4g = value; 2168 } 2169 2170 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2171 void *opaque, Error **errp) 2172 { 2173 PCMachineState *pcms = PC_MACHINE(obj); 2174 OnOffAuto vmport = pcms->vmport; 2175 2176 visit_type_OnOffAuto(v, name, &vmport, errp); 2177 } 2178 2179 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2180 void *opaque, Error **errp) 2181 { 2182 PCMachineState *pcms = PC_MACHINE(obj); 2183 2184 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2185 } 2186 2187 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2188 { 2189 bool smm_available = false; 2190 2191 if (pcms->smm == ON_OFF_AUTO_OFF) { 2192 return false; 2193 } 2194 2195 if (tcg_enabled() || qtest_enabled()) { 2196 smm_available = true; 2197 } else if (kvm_enabled()) { 2198 smm_available = kvm_has_smm(); 2199 } 2200 2201 if (smm_available) { 2202 return true; 2203 } 2204 2205 if (pcms->smm == ON_OFF_AUTO_ON) { 2206 error_report("System Management Mode not supported by this hypervisor."); 2207 exit(1); 2208 } 2209 return false; 2210 } 2211 2212 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2213 void *opaque, Error **errp) 2214 { 2215 PCMachineState *pcms = PC_MACHINE(obj); 2216 OnOffAuto smm = pcms->smm; 2217 2218 visit_type_OnOffAuto(v, name, &smm, errp); 2219 } 2220 2221 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2222 void *opaque, Error **errp) 2223 { 2224 PCMachineState *pcms = PC_MACHINE(obj); 2225 2226 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2227 } 2228 2229 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2230 { 2231 PCMachineState *pcms = PC_MACHINE(obj); 2232 2233 return pcms->acpi_nvdimm_state.is_enabled; 2234 } 2235 2236 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2237 { 2238 PCMachineState *pcms = PC_MACHINE(obj); 2239 2240 pcms->acpi_nvdimm_state.is_enabled = value; 2241 } 2242 2243 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp) 2244 { 2245 PCMachineState *pcms = PC_MACHINE(obj); 2246 2247 return g_strdup(pcms->acpi_nvdimm_state.persistence_string); 2248 } 2249 2250 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value, 2251 Error **errp) 2252 { 2253 PCMachineState *pcms = PC_MACHINE(obj); 2254 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state; 2255 2256 if (strcmp(value, "cpu") == 0) 2257 nvdimm_state->persistence = 3; 2258 else if (strcmp(value, "mem-ctrl") == 0) 2259 nvdimm_state->persistence = 2; 2260 else { 2261 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option", 2262 value); 2263 return; 2264 } 2265 2266 g_free(nvdimm_state->persistence_string); 2267 nvdimm_state->persistence_string = g_strdup(value); 2268 } 2269 2270 static bool pc_machine_get_smbus(Object *obj, Error **errp) 2271 { 2272 PCMachineState *pcms = PC_MACHINE(obj); 2273 2274 return pcms->smbus_enabled; 2275 } 2276 2277 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) 2278 { 2279 PCMachineState *pcms = PC_MACHINE(obj); 2280 2281 pcms->smbus_enabled = value; 2282 } 2283 2284 static bool pc_machine_get_sata(Object *obj, Error **errp) 2285 { 2286 PCMachineState *pcms = PC_MACHINE(obj); 2287 2288 return pcms->sata_enabled; 2289 } 2290 2291 static void pc_machine_set_sata(Object *obj, bool value, Error **errp) 2292 { 2293 PCMachineState *pcms = PC_MACHINE(obj); 2294 2295 pcms->sata_enabled = value; 2296 } 2297 2298 static bool pc_machine_get_pit(Object *obj, Error **errp) 2299 { 2300 PCMachineState *pcms = PC_MACHINE(obj); 2301 2302 return pcms->pit_enabled; 2303 } 2304 2305 static void pc_machine_set_pit(Object *obj, bool value, Error **errp) 2306 { 2307 PCMachineState *pcms = PC_MACHINE(obj); 2308 2309 pcms->pit_enabled = value; 2310 } 2311 2312 static void pc_machine_initfn(Object *obj) 2313 { 2314 PCMachineState *pcms = PC_MACHINE(obj); 2315 2316 pcms->max_ram_below_4g = 0; /* use default */ 2317 pcms->smm = ON_OFF_AUTO_AUTO; 2318 pcms->vmport = ON_OFF_AUTO_AUTO; 2319 /* nvdimm is disabled on default. */ 2320 pcms->acpi_nvdimm_state.is_enabled = false; 2321 /* acpi build is enabled by default if machine supports it */ 2322 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2323 pcms->smbus_enabled = true; 2324 pcms->sata_enabled = true; 2325 pcms->pit_enabled = true; 2326 } 2327 2328 static void pc_machine_reset(void) 2329 { 2330 CPUState *cs; 2331 X86CPU *cpu; 2332 2333 qemu_devices_reset(); 2334 2335 /* Reset APIC after devices have been reset to cancel 2336 * any changes that qemu_devices_reset() might have done. 2337 */ 2338 CPU_FOREACH(cs) { 2339 cpu = X86_CPU(cs); 2340 2341 if (cpu->apic_state) { 2342 device_reset(cpu->apic_state); 2343 } 2344 } 2345 } 2346 2347 static CpuInstanceProperties 2348 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2349 { 2350 MachineClass *mc = MACHINE_GET_CLASS(ms); 2351 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2352 2353 assert(cpu_index < possible_cpus->len); 2354 return possible_cpus->cpus[cpu_index].props; 2355 } 2356 2357 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) 2358 { 2359 X86CPUTopoInfo topo; 2360 2361 assert(idx < ms->possible_cpus->len); 2362 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 2363 smp_cores, smp_threads, &topo); 2364 return topo.pkg_id % nb_numa_nodes; 2365 } 2366 2367 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) 2368 { 2369 int i; 2370 2371 if (ms->possible_cpus) { 2372 /* 2373 * make sure that max_cpus hasn't changed since the first use, i.e. 2374 * -smp hasn't been parsed after it 2375 */ 2376 assert(ms->possible_cpus->len == max_cpus); 2377 return ms->possible_cpus; 2378 } 2379 2380 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2381 sizeof(CPUArchId) * max_cpus); 2382 ms->possible_cpus->len = max_cpus; 2383 for (i = 0; i < ms->possible_cpus->len; i++) { 2384 X86CPUTopoInfo topo; 2385 2386 ms->possible_cpus->cpus[i].type = ms->cpu_type; 2387 ms->possible_cpus->cpus[i].vcpus_count = 1; 2388 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 2389 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 2390 smp_cores, smp_threads, &topo); 2391 ms->possible_cpus->cpus[i].props.has_socket_id = true; 2392 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; 2393 ms->possible_cpus->cpus[i].props.has_core_id = true; 2394 ms->possible_cpus->cpus[i].props.core_id = topo.core_id; 2395 ms->possible_cpus->cpus[i].props.has_thread_id = true; 2396 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; 2397 } 2398 return ms->possible_cpus; 2399 } 2400 2401 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2402 { 2403 /* cpu index isn't used */ 2404 CPUState *cs; 2405 2406 CPU_FOREACH(cs) { 2407 X86CPU *cpu = X86_CPU(cs); 2408 2409 if (!cpu->apic_state) { 2410 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2411 } else { 2412 apic_deliver_nmi(cpu->apic_state); 2413 } 2414 } 2415 } 2416 2417 static void pc_machine_class_init(ObjectClass *oc, void *data) 2418 { 2419 MachineClass *mc = MACHINE_CLASS(oc); 2420 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2421 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2422 NMIClass *nc = NMI_CLASS(oc); 2423 2424 pcmc->pci_enabled = true; 2425 pcmc->has_acpi_build = true; 2426 pcmc->rsdp_in_ram = true; 2427 pcmc->smbios_defaults = true; 2428 pcmc->smbios_uuid_encoded = true; 2429 pcmc->gigabyte_align = true; 2430 pcmc->has_reserved_memory = true; 2431 pcmc->kvmclock_enabled = true; 2432 pcmc->enforce_aligned_dimm = true; 2433 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2434 * to be used at the moment, 32K should be enough for a while. */ 2435 pcmc->acpi_data_size = 0x20000 + 0x8000; 2436 pcmc->save_tsc_khz = true; 2437 pcmc->linuxboot_dma_enabled = true; 2438 assert(!mc->get_hotplug_handler); 2439 mc->get_hotplug_handler = pc_get_hotpug_handler; 2440 mc->cpu_index_to_instance_props = pc_cpu_index_to_props; 2441 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; 2442 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2443 mc->auto_enable_numa_with_memhp = true; 2444 mc->has_hotpluggable_cpus = true; 2445 mc->default_boot_order = "cad"; 2446 mc->hot_add_cpu = pc_hot_add_cpu; 2447 mc->block_default_type = IF_IDE; 2448 mc->max_cpus = 255; 2449 mc->reset = pc_machine_reset; 2450 hc->pre_plug = pc_machine_device_pre_plug_cb; 2451 hc->plug = pc_machine_device_plug_cb; 2452 hc->unplug_request = pc_machine_device_unplug_request_cb; 2453 hc->unplug = pc_machine_device_unplug_cb; 2454 nc->nmi_monitor_handler = x86_nmi; 2455 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; 2456 2457 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", 2458 pc_machine_get_device_memory_region_size, NULL, 2459 NULL, NULL, &error_abort); 2460 2461 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2462 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2463 NULL, NULL, &error_abort); 2464 2465 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2466 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2467 2468 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2469 pc_machine_get_smm, pc_machine_set_smm, 2470 NULL, NULL, &error_abort); 2471 object_class_property_set_description(oc, PC_MACHINE_SMM, 2472 "Enable SMM (pc & q35)", &error_abort); 2473 2474 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2475 pc_machine_get_vmport, pc_machine_set_vmport, 2476 NULL, NULL, &error_abort); 2477 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2478 "Enable vmport (pc & q35)", &error_abort); 2479 2480 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2481 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2482 2483 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST, 2484 pc_machine_get_nvdimm_persistence, 2485 pc_machine_set_nvdimm_persistence, &error_abort); 2486 2487 object_class_property_add_bool(oc, PC_MACHINE_SMBUS, 2488 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); 2489 2490 object_class_property_add_bool(oc, PC_MACHINE_SATA, 2491 pc_machine_get_sata, pc_machine_set_sata, &error_abort); 2492 2493 object_class_property_add_bool(oc, PC_MACHINE_PIT, 2494 pc_machine_get_pit, pc_machine_set_pit, &error_abort); 2495 } 2496 2497 static const TypeInfo pc_machine_info = { 2498 .name = TYPE_PC_MACHINE, 2499 .parent = TYPE_MACHINE, 2500 .abstract = true, 2501 .instance_size = sizeof(PCMachineState), 2502 .instance_init = pc_machine_initfn, 2503 .class_size = sizeof(PCMachineClass), 2504 .class_init = pc_machine_class_init, 2505 .interfaces = (InterfaceInfo[]) { 2506 { TYPE_HOTPLUG_HANDLER }, 2507 { TYPE_NMI }, 2508 { } 2509 }, 2510 }; 2511 2512 static void pc_machine_register_types(void) 2513 { 2514 type_register_static(&pc_machine_info); 2515 } 2516 2517 type_init(pc_machine_register_types) 2518