xref: /openbmc/qemu/hw/i386/pc.c (revision 0bc12c4f)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "monitor/monitor.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/i386/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/cpu/icc_bus.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "trace.h"
68 #include "qapi/visitor.h"
69 #include "qapi-visit.h"
70 
71 /* debug PC/ISA interrupts */
72 //#define DEBUG_IRQ
73 
74 #ifdef DEBUG_IRQ
75 #define DPRINTF(fmt, ...)                                       \
76     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...)
79 #endif
80 
81 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
82  * (128K) and other BIOS datastructures (less than 4K reported to be used at
83  * the moment, 32K should be enough for a while).  */
84 static unsigned acpi_data_size = 0x20000 + 0x8000;
85 void pc_set_legacy_acpi_data_size(void)
86 {
87     acpi_data_size = 0x10000;
88 }
89 
90 #define BIOS_CFG_IOPORT 0x510
91 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
92 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
93 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
94 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
95 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
96 
97 #define E820_NR_ENTRIES		16
98 
99 struct e820_entry {
100     uint64_t address;
101     uint64_t length;
102     uint32_t type;
103 } QEMU_PACKED __attribute((__aligned__(4)));
104 
105 struct e820_table {
106     uint32_t count;
107     struct e820_entry entry[E820_NR_ENTRIES];
108 } QEMU_PACKED __attribute((__aligned__(4)));
109 
110 static struct e820_table e820_reserve;
111 static struct e820_entry *e820_table;
112 static unsigned e820_entries;
113 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
114 
115 void gsi_handler(void *opaque, int n, int level)
116 {
117     GSIState *s = opaque;
118 
119     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
120     if (n < ISA_NUM_IRQS) {
121         qemu_set_irq(s->i8259_irq[n], level);
122     }
123     qemu_set_irq(s->ioapic_irq[n], level);
124 }
125 
126 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
127                            unsigned size)
128 {
129 }
130 
131 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
132 {
133     return 0xffffffffffffffffULL;
134 }
135 
136 /* MSDOS compatibility mode FPU exception support */
137 static qemu_irq ferr_irq;
138 
139 void pc_register_ferr_irq(qemu_irq irq)
140 {
141     ferr_irq = irq;
142 }
143 
144 /* XXX: add IGNNE support */
145 void cpu_set_ferr(CPUX86State *s)
146 {
147     qemu_irq_raise(ferr_irq);
148 }
149 
150 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
151                            unsigned size)
152 {
153     qemu_irq_lower(ferr_irq);
154 }
155 
156 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
157 {
158     return 0xffffffffffffffffULL;
159 }
160 
161 /* TSC handling */
162 uint64_t cpu_get_tsc(CPUX86State *env)
163 {
164     return cpu_get_ticks();
165 }
166 
167 /* IRQ handling */
168 int cpu_get_pic_interrupt(CPUX86State *env)
169 {
170     X86CPU *cpu = x86_env_get_cpu(env);
171     int intno;
172 
173     intno = apic_get_interrupt(cpu->apic_state);
174     if (intno >= 0) {
175         return intno;
176     }
177     /* read the irq from the PIC */
178     if (!apic_accept_pic_intr(cpu->apic_state)) {
179         return -1;
180     }
181 
182     intno = pic_read_irq(isa_pic);
183     return intno;
184 }
185 
186 static void pic_irq_request(void *opaque, int irq, int level)
187 {
188     CPUState *cs = first_cpu;
189     X86CPU *cpu = X86_CPU(cs);
190 
191     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
192     if (cpu->apic_state) {
193         CPU_FOREACH(cs) {
194             cpu = X86_CPU(cs);
195             if (apic_accept_pic_intr(cpu->apic_state)) {
196                 apic_deliver_pic_intr(cpu->apic_state, level);
197             }
198         }
199     } else {
200         if (level) {
201             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
202         } else {
203             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
204         }
205     }
206 }
207 
208 /* PC cmos mappings */
209 
210 #define REG_EQUIPMENT_BYTE          0x14
211 
212 static int cmos_get_fd_drive_type(FDriveType fd0)
213 {
214     int val;
215 
216     switch (fd0) {
217     case FDRIVE_DRV_144:
218         /* 1.44 Mb 3"5 drive */
219         val = 4;
220         break;
221     case FDRIVE_DRV_288:
222         /* 2.88 Mb 3"5 drive */
223         val = 5;
224         break;
225     case FDRIVE_DRV_120:
226         /* 1.2 Mb 5"5 drive */
227         val = 2;
228         break;
229     case FDRIVE_DRV_NONE:
230     default:
231         val = 0;
232         break;
233     }
234     return val;
235 }
236 
237 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
238                          int16_t cylinders, int8_t heads, int8_t sectors)
239 {
240     rtc_set_memory(s, type_ofs, 47);
241     rtc_set_memory(s, info_ofs, cylinders);
242     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
243     rtc_set_memory(s, info_ofs + 2, heads);
244     rtc_set_memory(s, info_ofs + 3, 0xff);
245     rtc_set_memory(s, info_ofs + 4, 0xff);
246     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
247     rtc_set_memory(s, info_ofs + 6, cylinders);
248     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
249     rtc_set_memory(s, info_ofs + 8, sectors);
250 }
251 
252 /* convert boot_device letter to something recognizable by the bios */
253 static int boot_device2nibble(char boot_device)
254 {
255     switch(boot_device) {
256     case 'a':
257     case 'b':
258         return 0x01; /* floppy boot */
259     case 'c':
260         return 0x02; /* hard drive boot */
261     case 'd':
262         return 0x03; /* CD-ROM boot */
263     case 'n':
264         return 0x04; /* Network boot */
265     }
266     return 0;
267 }
268 
269 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
270 {
271 #define PC_MAX_BOOT_DEVICES 3
272     int nbds, bds[3] = { 0, };
273     int i;
274 
275     nbds = strlen(boot_device);
276     if (nbds > PC_MAX_BOOT_DEVICES) {
277         error_setg(errp, "Too many boot devices for PC");
278         return;
279     }
280     for (i = 0; i < nbds; i++) {
281         bds[i] = boot_device2nibble(boot_device[i]);
282         if (bds[i] == 0) {
283             error_setg(errp, "Invalid boot device for PC: '%c'",
284                        boot_device[i]);
285             return;
286         }
287     }
288     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
289     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
290 }
291 
292 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
293 {
294     set_boot_dev(opaque, boot_device, errp);
295 }
296 
297 typedef struct pc_cmos_init_late_arg {
298     ISADevice *rtc_state;
299     BusState *idebus[2];
300 } pc_cmos_init_late_arg;
301 
302 static void pc_cmos_init_late(void *opaque)
303 {
304     pc_cmos_init_late_arg *arg = opaque;
305     ISADevice *s = arg->rtc_state;
306     int16_t cylinders;
307     int8_t heads, sectors;
308     int val;
309     int i, trans;
310 
311     val = 0;
312     if (ide_get_geometry(arg->idebus[0], 0,
313                          &cylinders, &heads, &sectors) >= 0) {
314         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
315         val |= 0xf0;
316     }
317     if (ide_get_geometry(arg->idebus[0], 1,
318                          &cylinders, &heads, &sectors) >= 0) {
319         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
320         val |= 0x0f;
321     }
322     rtc_set_memory(s, 0x12, val);
323 
324     val = 0;
325     for (i = 0; i < 4; i++) {
326         /* NOTE: ide_get_geometry() returns the physical
327            geometry.  It is always such that: 1 <= sects <= 63, 1
328            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
329            geometry can be different if a translation is done. */
330         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
331                              &cylinders, &heads, &sectors) >= 0) {
332             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
333             assert((trans & ~3) == 0);
334             val |= trans << (i * 2);
335         }
336     }
337     rtc_set_memory(s, 0x39, val);
338 
339     qemu_unregister_reset(pc_cmos_init_late, opaque);
340 }
341 
342 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
343                   const char *boot_device, MachineState *machine,
344                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
345                   ISADevice *s)
346 {
347     int val, nb, i;
348     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
349     static pc_cmos_init_late_arg arg;
350     PCMachineState *pc_machine = PC_MACHINE(machine);
351     Error *local_err = NULL;
352 
353     /* various important CMOS locations needed by PC/Bochs bios */
354 
355     /* memory size */
356     /* base memory (first MiB) */
357     val = MIN(ram_size / 1024, 640);
358     rtc_set_memory(s, 0x15, val);
359     rtc_set_memory(s, 0x16, val >> 8);
360     /* extended memory (next 64MiB) */
361     if (ram_size > 1024 * 1024) {
362         val = (ram_size - 1024 * 1024) / 1024;
363     } else {
364         val = 0;
365     }
366     if (val > 65535)
367         val = 65535;
368     rtc_set_memory(s, 0x17, val);
369     rtc_set_memory(s, 0x18, val >> 8);
370     rtc_set_memory(s, 0x30, val);
371     rtc_set_memory(s, 0x31, val >> 8);
372     /* memory between 16MiB and 4GiB */
373     if (ram_size > 16 * 1024 * 1024) {
374         val = (ram_size - 16 * 1024 * 1024) / 65536;
375     } else {
376         val = 0;
377     }
378     if (val > 65535)
379         val = 65535;
380     rtc_set_memory(s, 0x34, val);
381     rtc_set_memory(s, 0x35, val >> 8);
382     /* memory above 4GiB */
383     val = above_4g_mem_size / 65536;
384     rtc_set_memory(s, 0x5b, val);
385     rtc_set_memory(s, 0x5c, val >> 8);
386     rtc_set_memory(s, 0x5d, val >> 16);
387 
388     /* set the number of CPU */
389     rtc_set_memory(s, 0x5f, smp_cpus - 1);
390 
391     object_property_add_link(OBJECT(machine), "rtc_state",
392                              TYPE_ISA_DEVICE,
393                              (Object **)&pc_machine->rtc,
394                              object_property_allow_set_link,
395                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
396     object_property_set_link(OBJECT(machine), OBJECT(s),
397                              "rtc_state", &error_abort);
398 
399     set_boot_dev(s, boot_device, &local_err);
400     if (local_err) {
401         error_report_err(local_err);
402         exit(1);
403     }
404 
405     /* floppy type */
406     if (floppy) {
407         for (i = 0; i < 2; i++) {
408             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
409         }
410     }
411     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
412         cmos_get_fd_drive_type(fd_type[1]);
413     rtc_set_memory(s, 0x10, val);
414 
415     val = 0;
416     nb = 0;
417     if (fd_type[0] < FDRIVE_DRV_NONE) {
418         nb++;
419     }
420     if (fd_type[1] < FDRIVE_DRV_NONE) {
421         nb++;
422     }
423     switch (nb) {
424     case 0:
425         break;
426     case 1:
427         val |= 0x01; /* 1 drive, ready for boot */
428         break;
429     case 2:
430         val |= 0x41; /* 2 drives, ready for boot */
431         break;
432     }
433     val |= 0x02; /* FPU is there */
434     val |= 0x04; /* PS/2 mouse installed */
435     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
436 
437     /* hard drives */
438     arg.rtc_state = s;
439     arg.idebus[0] = idebus0;
440     arg.idebus[1] = idebus1;
441     qemu_register_reset(pc_cmos_init_late, &arg);
442 }
443 
444 #define TYPE_PORT92 "port92"
445 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
446 
447 /* port 92 stuff: could be split off */
448 typedef struct Port92State {
449     ISADevice parent_obj;
450 
451     MemoryRegion io;
452     uint8_t outport;
453     qemu_irq *a20_out;
454 } Port92State;
455 
456 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
457                          unsigned size)
458 {
459     Port92State *s = opaque;
460     int oldval = s->outport;
461 
462     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
463     s->outport = val;
464     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
465     if ((val & 1) && !(oldval & 1)) {
466         qemu_system_reset_request();
467     }
468 }
469 
470 static uint64_t port92_read(void *opaque, hwaddr addr,
471                             unsigned size)
472 {
473     Port92State *s = opaque;
474     uint32_t ret;
475 
476     ret = s->outport;
477     DPRINTF("port92: read 0x%02x\n", ret);
478     return ret;
479 }
480 
481 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
482 {
483     Port92State *s = PORT92(dev);
484 
485     s->a20_out = a20_out;
486 }
487 
488 static const VMStateDescription vmstate_port92_isa = {
489     .name = "port92",
490     .version_id = 1,
491     .minimum_version_id = 1,
492     .fields = (VMStateField[]) {
493         VMSTATE_UINT8(outport, Port92State),
494         VMSTATE_END_OF_LIST()
495     }
496 };
497 
498 static void port92_reset(DeviceState *d)
499 {
500     Port92State *s = PORT92(d);
501 
502     s->outport &= ~1;
503 }
504 
505 static const MemoryRegionOps port92_ops = {
506     .read = port92_read,
507     .write = port92_write,
508     .impl = {
509         .min_access_size = 1,
510         .max_access_size = 1,
511     },
512     .endianness = DEVICE_LITTLE_ENDIAN,
513 };
514 
515 static void port92_initfn(Object *obj)
516 {
517     Port92State *s = PORT92(obj);
518 
519     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
520 
521     s->outport = 0;
522 }
523 
524 static void port92_realizefn(DeviceState *dev, Error **errp)
525 {
526     ISADevice *isadev = ISA_DEVICE(dev);
527     Port92State *s = PORT92(dev);
528 
529     isa_register_ioport(isadev, &s->io, 0x92);
530 }
531 
532 static void port92_class_initfn(ObjectClass *klass, void *data)
533 {
534     DeviceClass *dc = DEVICE_CLASS(klass);
535 
536     dc->realize = port92_realizefn;
537     dc->reset = port92_reset;
538     dc->vmsd = &vmstate_port92_isa;
539     /*
540      * Reason: unlike ordinary ISA devices, this one needs additional
541      * wiring: its A20 output line needs to be wired up by
542      * port92_init().
543      */
544     dc->cannot_instantiate_with_device_add_yet = true;
545 }
546 
547 static const TypeInfo port92_info = {
548     .name          = TYPE_PORT92,
549     .parent        = TYPE_ISA_DEVICE,
550     .instance_size = sizeof(Port92State),
551     .instance_init = port92_initfn,
552     .class_init    = port92_class_initfn,
553 };
554 
555 static void port92_register_types(void)
556 {
557     type_register_static(&port92_info);
558 }
559 
560 type_init(port92_register_types)
561 
562 static void handle_a20_line_change(void *opaque, int irq, int level)
563 {
564     X86CPU *cpu = opaque;
565 
566     /* XXX: send to all CPUs ? */
567     /* XXX: add logic to handle multiple A20 line sources */
568     x86_cpu_set_a20(cpu, level);
569 }
570 
571 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
572 {
573     int index = le32_to_cpu(e820_reserve.count);
574     struct e820_entry *entry;
575 
576     if (type != E820_RAM) {
577         /* old FW_CFG_E820_TABLE entry -- reservations only */
578         if (index >= E820_NR_ENTRIES) {
579             return -EBUSY;
580         }
581         entry = &e820_reserve.entry[index++];
582 
583         entry->address = cpu_to_le64(address);
584         entry->length = cpu_to_le64(length);
585         entry->type = cpu_to_le32(type);
586 
587         e820_reserve.count = cpu_to_le32(index);
588     }
589 
590     /* new "etc/e820" file -- include ram too */
591     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
592     e820_table[e820_entries].address = cpu_to_le64(address);
593     e820_table[e820_entries].length = cpu_to_le64(length);
594     e820_table[e820_entries].type = cpu_to_le32(type);
595     e820_entries++;
596 
597     return e820_entries;
598 }
599 
600 int e820_get_num_entries(void)
601 {
602     return e820_entries;
603 }
604 
605 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
606 {
607     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
608         *address = le64_to_cpu(e820_table[idx].address);
609         *length = le64_to_cpu(e820_table[idx].length);
610         return true;
611     }
612     return false;
613 }
614 
615 /* Enables contiguous-apic-ID mode, for compatibility */
616 static bool compat_apic_id_mode;
617 
618 void enable_compat_apic_id_mode(void)
619 {
620     compat_apic_id_mode = true;
621 }
622 
623 /* Calculates initial APIC ID for a specific CPU index
624  *
625  * Currently we need to be able to calculate the APIC ID from the CPU index
626  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
627  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
628  * all CPUs up to max_cpus.
629  */
630 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
631 {
632     uint32_t correct_id;
633     static bool warned;
634 
635     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
636     if (compat_apic_id_mode) {
637         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
638             error_report("APIC IDs set in compatibility mode, "
639                          "CPU topology won't match the configuration");
640             warned = true;
641         }
642         return cpu_index;
643     } else {
644         return correct_id;
645     }
646 }
647 
648 /* Calculates the limit to CPU APIC ID values
649  *
650  * This function returns the limit for the APIC ID value, so that all
651  * CPU APIC IDs are < pc_apic_id_limit().
652  *
653  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
654  */
655 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
656 {
657     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
658 }
659 
660 static FWCfgState *bochs_bios_init(void)
661 {
662     FWCfgState *fw_cfg;
663     uint8_t *smbios_tables, *smbios_anchor;
664     size_t smbios_tables_len, smbios_anchor_len;
665     uint64_t *numa_fw_cfg;
666     int i, j;
667     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
668 
669     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
670     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
671      *
672      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
673      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
674      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
675      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
676      * may see".
677      *
678      * So, this means we must not use max_cpus, here, but the maximum possible
679      * APIC ID value, plus one.
680      *
681      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
682      *     the APIC ID, not the "CPU index"
683      */
684     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
685     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
686     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
687                      acpi_tables, acpi_tables_len);
688     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
689 
690     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
691     if (smbios_tables) {
692         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
693                          smbios_tables, smbios_tables_len);
694     }
695 
696     smbios_get_tables(&smbios_tables, &smbios_tables_len,
697                       &smbios_anchor, &smbios_anchor_len);
698     if (smbios_anchor) {
699         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
700                         smbios_tables, smbios_tables_len);
701         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
702                         smbios_anchor, smbios_anchor_len);
703     }
704 
705     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
706                      &e820_reserve, sizeof(e820_reserve));
707     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
708                     sizeof(struct e820_entry) * e820_entries);
709 
710     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
711     /* allocate memory for the NUMA channel: one (64bit) word for the number
712      * of nodes, one word for each VCPU->node and one word for each node to
713      * hold the amount of memory.
714      */
715     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
716     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
717     for (i = 0; i < max_cpus; i++) {
718         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
719         assert(apic_id < apic_id_limit);
720         for (j = 0; j < nb_numa_nodes; j++) {
721             if (test_bit(i, numa_info[j].node_cpu)) {
722                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
723                 break;
724             }
725         }
726     }
727     for (i = 0; i < nb_numa_nodes; i++) {
728         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
729     }
730     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
731                      (1 + apic_id_limit + nb_numa_nodes) *
732                      sizeof(*numa_fw_cfg));
733 
734     return fw_cfg;
735 }
736 
737 static long get_file_size(FILE *f)
738 {
739     long where, size;
740 
741     /* XXX: on Unix systems, using fstat() probably makes more sense */
742 
743     where = ftell(f);
744     fseek(f, 0, SEEK_END);
745     size = ftell(f);
746     fseek(f, where, SEEK_SET);
747 
748     return size;
749 }
750 
751 static void load_linux(FWCfgState *fw_cfg,
752                        const char *kernel_filename,
753                        const char *initrd_filename,
754                        const char *kernel_cmdline,
755                        hwaddr max_ram_size)
756 {
757     uint16_t protocol;
758     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
759     uint32_t initrd_max;
760     uint8_t header[8192], *setup, *kernel, *initrd_data;
761     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
762     FILE *f;
763     char *vmode;
764 
765     /* Align to 16 bytes as a paranoia measure */
766     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
767 
768     /* load the kernel header */
769     f = fopen(kernel_filename, "rb");
770     if (!f || !(kernel_size = get_file_size(f)) ||
771         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
772         MIN(ARRAY_SIZE(header), kernel_size)) {
773         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
774                 kernel_filename, strerror(errno));
775         exit(1);
776     }
777 
778     /* kernel protocol version */
779 #if 0
780     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
781 #endif
782     if (ldl_p(header+0x202) == 0x53726448) {
783         protocol = lduw_p(header+0x206);
784     } else {
785         /* This looks like a multiboot kernel. If it is, let's stop
786            treating it like a Linux kernel. */
787         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
788                            kernel_cmdline, kernel_size, header)) {
789             return;
790         }
791         protocol = 0;
792     }
793 
794     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
795         /* Low kernel */
796         real_addr    = 0x90000;
797         cmdline_addr = 0x9a000 - cmdline_size;
798         prot_addr    = 0x10000;
799     } else if (protocol < 0x202) {
800         /* High but ancient kernel */
801         real_addr    = 0x90000;
802         cmdline_addr = 0x9a000 - cmdline_size;
803         prot_addr    = 0x100000;
804     } else {
805         /* High and recent kernel */
806         real_addr    = 0x10000;
807         cmdline_addr = 0x20000;
808         prot_addr    = 0x100000;
809     }
810 
811 #if 0
812     fprintf(stderr,
813             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
814             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
815             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
816             real_addr,
817             cmdline_addr,
818             prot_addr);
819 #endif
820 
821     /* highest address for loading the initrd */
822     if (protocol >= 0x203) {
823         initrd_max = ldl_p(header+0x22c);
824     } else {
825         initrd_max = 0x37ffffff;
826     }
827 
828     if (initrd_max >= max_ram_size - acpi_data_size) {
829         initrd_max = max_ram_size - acpi_data_size - 1;
830     }
831 
832     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
833     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
834     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
835 
836     if (protocol >= 0x202) {
837         stl_p(header+0x228, cmdline_addr);
838     } else {
839         stw_p(header+0x20, 0xA33F);
840         stw_p(header+0x22, cmdline_addr-real_addr);
841     }
842 
843     /* handle vga= parameter */
844     vmode = strstr(kernel_cmdline, "vga=");
845     if (vmode) {
846         unsigned int video_mode;
847         /* skip "vga=" */
848         vmode += 4;
849         if (!strncmp(vmode, "normal", 6)) {
850             video_mode = 0xffff;
851         } else if (!strncmp(vmode, "ext", 3)) {
852             video_mode = 0xfffe;
853         } else if (!strncmp(vmode, "ask", 3)) {
854             video_mode = 0xfffd;
855         } else {
856             video_mode = strtol(vmode, NULL, 0);
857         }
858         stw_p(header+0x1fa, video_mode);
859     }
860 
861     /* loader type */
862     /* High nybble = B reserved for QEMU; low nybble is revision number.
863        If this code is substantially changed, you may want to consider
864        incrementing the revision. */
865     if (protocol >= 0x200) {
866         header[0x210] = 0xB0;
867     }
868     /* heap */
869     if (protocol >= 0x201) {
870         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
871         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
872     }
873 
874     /* load initrd */
875     if (initrd_filename) {
876         if (protocol < 0x200) {
877             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
878             exit(1);
879         }
880 
881         initrd_size = get_image_size(initrd_filename);
882         if (initrd_size < 0) {
883             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
884                     initrd_filename, strerror(errno));
885             exit(1);
886         }
887 
888         initrd_addr = (initrd_max-initrd_size) & ~4095;
889 
890         initrd_data = g_malloc(initrd_size);
891         load_image(initrd_filename, initrd_data);
892 
893         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
894         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
895         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
896 
897         stl_p(header+0x218, initrd_addr);
898         stl_p(header+0x21c, initrd_size);
899     }
900 
901     /* load kernel and setup */
902     setup_size = header[0x1f1];
903     if (setup_size == 0) {
904         setup_size = 4;
905     }
906     setup_size = (setup_size+1)*512;
907     kernel_size -= setup_size;
908 
909     setup  = g_malloc(setup_size);
910     kernel = g_malloc(kernel_size);
911     fseek(f, 0, SEEK_SET);
912     if (fread(setup, 1, setup_size, f) != setup_size) {
913         fprintf(stderr, "fread() failed\n");
914         exit(1);
915     }
916     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
917         fprintf(stderr, "fread() failed\n");
918         exit(1);
919     }
920     fclose(f);
921     memcpy(setup, header, MIN(sizeof(header), setup_size));
922 
923     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
924     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
925     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
926 
927     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
928     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
929     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
930 
931     option_rom[nb_option_roms].name = "linuxboot.bin";
932     option_rom[nb_option_roms].bootindex = 0;
933     nb_option_roms++;
934 }
935 
936 #define NE2000_NB_MAX 6
937 
938 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
939                                               0x280, 0x380 };
940 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
941 
942 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
943 {
944     static int nb_ne2k = 0;
945 
946     if (nb_ne2k == NE2000_NB_MAX)
947         return;
948     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
949                     ne2000_irq[nb_ne2k], nd);
950     nb_ne2k++;
951 }
952 
953 DeviceState *cpu_get_current_apic(void)
954 {
955     if (current_cpu) {
956         X86CPU *cpu = X86_CPU(current_cpu);
957         return cpu->apic_state;
958     } else {
959         return NULL;
960     }
961 }
962 
963 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
964 {
965     X86CPU *cpu = opaque;
966 
967     if (level) {
968         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
969     }
970 }
971 
972 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
973                           DeviceState *icc_bridge, Error **errp)
974 {
975     X86CPU *cpu = NULL;
976     Error *local_err = NULL;
977 
978     if (icc_bridge == NULL) {
979         error_setg(&local_err, "Invalid icc-bridge value");
980         goto out;
981     }
982 
983     cpu = cpu_x86_create(cpu_model, &local_err);
984     if (local_err != NULL) {
985         goto out;
986     }
987 
988     qdev_set_parent_bus(DEVICE(cpu), qdev_get_child_bus(icc_bridge, "icc"));
989 
990     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
991     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
992 
993 out:
994     if (local_err) {
995         error_propagate(errp, local_err);
996         object_unref(OBJECT(cpu));
997         cpu = NULL;
998     }
999     return cpu;
1000 }
1001 
1002 static const char *current_cpu_model;
1003 
1004 void pc_hot_add_cpu(const int64_t id, Error **errp)
1005 {
1006     DeviceState *icc_bridge;
1007     X86CPU *cpu;
1008     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1009     Error *local_err = NULL;
1010 
1011     if (id < 0) {
1012         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1013         return;
1014     }
1015 
1016     if (cpu_exists(apic_id)) {
1017         error_setg(errp, "Unable to add CPU: %" PRIi64
1018                    ", it already exists", id);
1019         return;
1020     }
1021 
1022     if (id >= max_cpus) {
1023         error_setg(errp, "Unable to add CPU: %" PRIi64
1024                    ", max allowed: %d", id, max_cpus - 1);
1025         return;
1026     }
1027 
1028     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1029         error_setg(errp, "Unable to add CPU: %" PRIi64
1030                    ", resulting APIC ID (%" PRIi64 ") is too large",
1031                    id, apic_id);
1032         return;
1033     }
1034 
1035     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1036                                                  TYPE_ICC_BRIDGE, NULL));
1037     cpu = pc_new_cpu(current_cpu_model, apic_id, icc_bridge, &local_err);
1038     if (local_err) {
1039         error_propagate(errp, local_err);
1040         return;
1041     }
1042     object_unref(OBJECT(cpu));
1043 }
1044 
1045 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1046 {
1047     int i;
1048     X86CPU *cpu = NULL;
1049     Error *error = NULL;
1050     unsigned long apic_id_limit;
1051 
1052     /* init CPUs */
1053     if (cpu_model == NULL) {
1054 #ifdef TARGET_X86_64
1055         cpu_model = "qemu64";
1056 #else
1057         cpu_model = "qemu32";
1058 #endif
1059     }
1060     current_cpu_model = cpu_model;
1061 
1062     apic_id_limit = pc_apic_id_limit(max_cpus);
1063     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1064         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1065                      apic_id_limit - 1);
1066         exit(1);
1067     }
1068 
1069     for (i = 0; i < smp_cpus; i++) {
1070         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1071                          icc_bridge, &error);
1072         if (error) {
1073             error_report_err(error);
1074             exit(1);
1075         }
1076         object_unref(OBJECT(cpu));
1077     }
1078 
1079     /* map APIC MMIO area if CPU has APIC */
1080     if (cpu && cpu->apic_state) {
1081         /* XXX: what if the base changes? */
1082         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1083                                 APIC_DEFAULT_ADDRESS, 0x1000);
1084     }
1085 
1086     /* tell smbios about cpuid version and features */
1087     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1088 }
1089 
1090 /* pci-info ROM file. Little endian format */
1091 typedef struct PcRomPciInfo {
1092     uint64_t w32_min;
1093     uint64_t w32_max;
1094     uint64_t w64_min;
1095     uint64_t w64_max;
1096 } PcRomPciInfo;
1097 
1098 typedef struct PcGuestInfoState {
1099     PcGuestInfo info;
1100     Notifier machine_done;
1101 } PcGuestInfoState;
1102 
1103 static
1104 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1105 {
1106     PcGuestInfoState *guest_info_state = container_of(notifier,
1107                                                       PcGuestInfoState,
1108                                                       machine_done);
1109     PCIBus *bus = find_i440fx();
1110 
1111     if (bus) {
1112         int extra_hosts = 0;
1113 
1114         QLIST_FOREACH(bus, &bus->child, sibling) {
1115             /* look for expander root buses */
1116             if (pci_bus_is_root(bus)) {
1117                 extra_hosts++;
1118             }
1119         }
1120         if (extra_hosts && guest_info_state->info.fw_cfg) {
1121             uint64_t *val = g_malloc(sizeof(*val));
1122             *val = cpu_to_le64(extra_hosts);
1123             fw_cfg_add_file(guest_info_state->info.fw_cfg,
1124                     "etc/extra-pci-roots", val, sizeof(*val));
1125         }
1126     }
1127 
1128     acpi_setup(&guest_info_state->info);
1129 }
1130 
1131 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1132                                 ram_addr_t above_4g_mem_size)
1133 {
1134     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1135     PcGuestInfo *guest_info = &guest_info_state->info;
1136     int i, j;
1137 
1138     guest_info->ram_size_below_4g = below_4g_mem_size;
1139     guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1140     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1141     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1142     guest_info->numa_nodes = nb_numa_nodes;
1143     guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1144                                     sizeof *guest_info->node_mem);
1145     for (i = 0; i < nb_numa_nodes; i++) {
1146         guest_info->node_mem[i] = numa_info[i].node_mem;
1147     }
1148 
1149     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1150                                      sizeof *guest_info->node_cpu);
1151 
1152     for (i = 0; i < max_cpus; i++) {
1153         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1154         assert(apic_id < guest_info->apic_id_limit);
1155         for (j = 0; j < nb_numa_nodes; j++) {
1156             if (test_bit(i, numa_info[j].node_cpu)) {
1157                 guest_info->node_cpu[apic_id] = j;
1158                 break;
1159             }
1160         }
1161     }
1162 
1163     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1164     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1165     return guest_info;
1166 }
1167 
1168 /* setup pci memory address space mapping into system address space */
1169 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1170                             MemoryRegion *pci_address_space)
1171 {
1172     /* Set to lower priority than RAM */
1173     memory_region_add_subregion_overlap(system_memory, 0x0,
1174                                         pci_address_space, -1);
1175 }
1176 
1177 void pc_acpi_init(const char *default_dsdt)
1178 {
1179     char *filename;
1180 
1181     if (acpi_tables != NULL) {
1182         /* manually set via -acpitable, leave it alone */
1183         return;
1184     }
1185 
1186     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1187     if (filename == NULL) {
1188         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1189     } else {
1190         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1191                                           &error_abort);
1192         Error *err = NULL;
1193 
1194         qemu_opt_set(opts, "file", filename, &error_abort);
1195 
1196         acpi_table_add_builtin(opts, &err);
1197         if (err) {
1198             error_report("WARNING: failed to load %s: %s", filename,
1199                          error_get_pretty(err));
1200             error_free(err);
1201         }
1202         g_free(filename);
1203     }
1204 }
1205 
1206 FWCfgState *xen_load_linux(const char *kernel_filename,
1207                            const char *kernel_cmdline,
1208                            const char *initrd_filename,
1209                            ram_addr_t below_4g_mem_size,
1210                            PcGuestInfo *guest_info)
1211 {
1212     int i;
1213     FWCfgState *fw_cfg;
1214 
1215     assert(kernel_filename != NULL);
1216 
1217     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1218     rom_set_fw(fw_cfg);
1219 
1220     load_linux(fw_cfg, kernel_filename, initrd_filename,
1221                kernel_cmdline, below_4g_mem_size);
1222     for (i = 0; i < nb_option_roms; i++) {
1223         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1224                !strcmp(option_rom[i].name, "multiboot.bin"));
1225         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1226     }
1227     guest_info->fw_cfg = fw_cfg;
1228     return fw_cfg;
1229 }
1230 
1231 FWCfgState *pc_memory_init(MachineState *machine,
1232                            MemoryRegion *system_memory,
1233                            ram_addr_t below_4g_mem_size,
1234                            ram_addr_t above_4g_mem_size,
1235                            MemoryRegion *rom_memory,
1236                            MemoryRegion **ram_memory,
1237                            PcGuestInfo *guest_info)
1238 {
1239     int linux_boot, i;
1240     MemoryRegion *ram, *option_rom_mr;
1241     MemoryRegion *ram_below_4g, *ram_above_4g;
1242     FWCfgState *fw_cfg;
1243     PCMachineState *pcms = PC_MACHINE(machine);
1244 
1245     assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1246 
1247     linux_boot = (machine->kernel_filename != NULL);
1248 
1249     /* Allocate RAM.  We allocate it as a single memory region and use
1250      * aliases to address portions of it, mostly for backwards compatibility
1251      * with older qemus that used qemu_ram_alloc().
1252      */
1253     ram = g_malloc(sizeof(*ram));
1254     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1255                                          machine->ram_size);
1256     *ram_memory = ram;
1257     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1258     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1259                              0, below_4g_mem_size);
1260     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1261     e820_add_entry(0, below_4g_mem_size, E820_RAM);
1262     if (above_4g_mem_size > 0) {
1263         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1264         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1265                                  below_4g_mem_size, above_4g_mem_size);
1266         memory_region_add_subregion(system_memory, 0x100000000ULL,
1267                                     ram_above_4g);
1268         e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1269     }
1270 
1271     if (!guest_info->has_reserved_memory &&
1272         (machine->ram_slots ||
1273          (machine->maxram_size > machine->ram_size))) {
1274         MachineClass *mc = MACHINE_GET_CLASS(machine);
1275 
1276         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1277                      mc->name);
1278         exit(EXIT_FAILURE);
1279     }
1280 
1281     /* initialize hotplug memory address space */
1282     if (guest_info->has_reserved_memory &&
1283         (machine->ram_size < machine->maxram_size)) {
1284         ram_addr_t hotplug_mem_size =
1285             machine->maxram_size - machine->ram_size;
1286 
1287         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1288             error_report("unsupported amount of memory slots: %"PRIu64,
1289                          machine->ram_slots);
1290             exit(EXIT_FAILURE);
1291         }
1292 
1293         if (QEMU_ALIGN_UP(machine->maxram_size,
1294                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1295             error_report("maximum memory size must by aligned to multiple of "
1296                          "%d bytes", TARGET_PAGE_SIZE);
1297             exit(EXIT_FAILURE);
1298         }
1299 
1300         pcms->hotplug_memory_base =
1301             ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1302 
1303         if (pcms->enforce_aligned_dimm) {
1304             /* size hotplug region assuming 1G page max alignment per slot */
1305             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1306         }
1307 
1308         if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1309             hotplug_mem_size) {
1310             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1311                          machine->maxram_size);
1312             exit(EXIT_FAILURE);
1313         }
1314 
1315         memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1316                            "hotplug-memory", hotplug_mem_size);
1317         memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1318                                     &pcms->hotplug_memory);
1319     }
1320 
1321     /* Initialize PC system firmware */
1322     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1323 
1324     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1325     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1326                            &error_abort);
1327     vmstate_register_ram_global(option_rom_mr);
1328     memory_region_add_subregion_overlap(rom_memory,
1329                                         PC_ROM_MIN_VGA,
1330                                         option_rom_mr,
1331                                         1);
1332 
1333     fw_cfg = bochs_bios_init();
1334     rom_set_fw(fw_cfg);
1335 
1336     if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1337         uint64_t *val = g_malloc(sizeof(*val));
1338         *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1339         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1340     }
1341 
1342     if (linux_boot) {
1343         load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1344                    machine->kernel_cmdline, below_4g_mem_size);
1345     }
1346 
1347     for (i = 0; i < nb_option_roms; i++) {
1348         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1349     }
1350     guest_info->fw_cfg = fw_cfg;
1351     return fw_cfg;
1352 }
1353 
1354 qemu_irq pc_allocate_cpu_irq(void)
1355 {
1356     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1357 }
1358 
1359 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1360 {
1361     DeviceState *dev = NULL;
1362 
1363     if (pci_bus) {
1364         PCIDevice *pcidev = pci_vga_init(pci_bus);
1365         dev = pcidev ? &pcidev->qdev : NULL;
1366     } else if (isa_bus) {
1367         ISADevice *isadev = isa_vga_init(isa_bus);
1368         dev = isadev ? DEVICE(isadev) : NULL;
1369     }
1370     return dev;
1371 }
1372 
1373 static void cpu_request_exit(void *opaque, int irq, int level)
1374 {
1375     CPUState *cpu = current_cpu;
1376 
1377     if (cpu && level) {
1378         cpu_exit(cpu);
1379     }
1380 }
1381 
1382 static const MemoryRegionOps ioport80_io_ops = {
1383     .write = ioport80_write,
1384     .read = ioport80_read,
1385     .endianness = DEVICE_NATIVE_ENDIAN,
1386     .impl = {
1387         .min_access_size = 1,
1388         .max_access_size = 1,
1389     },
1390 };
1391 
1392 static const MemoryRegionOps ioportF0_io_ops = {
1393     .write = ioportF0_write,
1394     .read = ioportF0_read,
1395     .endianness = DEVICE_NATIVE_ENDIAN,
1396     .impl = {
1397         .min_access_size = 1,
1398         .max_access_size = 1,
1399     },
1400 };
1401 
1402 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1403                           ISADevice **rtc_state,
1404                           bool create_fdctrl,
1405                           ISADevice **floppy,
1406                           bool no_vmport,
1407                           uint32 hpet_irqs)
1408 {
1409     int i;
1410     DriveInfo *fd[MAX_FD];
1411     DeviceState *hpet = NULL;
1412     int pit_isa_irq = 0;
1413     qemu_irq pit_alt_irq = NULL;
1414     qemu_irq rtc_irq = NULL;
1415     qemu_irq *a20_line;
1416     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1417     qemu_irq *cpu_exit_irq;
1418     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1419     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1420 
1421     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1422     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1423 
1424     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1425     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1426 
1427     /*
1428      * Check if an HPET shall be created.
1429      *
1430      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1431      * when the HPET wants to take over. Thus we have to disable the latter.
1432      */
1433     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1434         /* In order to set property, here not using sysbus_try_create_simple */
1435         hpet = qdev_try_create(NULL, TYPE_HPET);
1436         if (hpet) {
1437             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1438              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1439              * IRQ8 and IRQ2.
1440              */
1441             uint8_t compat = object_property_get_int(OBJECT(hpet),
1442                     HPET_INTCAP, NULL);
1443             if (!compat) {
1444                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1445             }
1446             qdev_init_nofail(hpet);
1447             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1448 
1449             for (i = 0; i < GSI_NUM_PINS; i++) {
1450                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1451             }
1452             pit_isa_irq = -1;
1453             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1454             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1455         }
1456     }
1457     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1458 
1459     qemu_register_boot_set(pc_boot_set, *rtc_state);
1460 
1461     if (!xen_enabled()) {
1462         if (kvm_irqchip_in_kernel()) {
1463             pit = kvm_pit_init(isa_bus, 0x40);
1464         } else {
1465             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1466         }
1467         if (hpet) {
1468             /* connect PIT to output control line of the HPET */
1469             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1470         }
1471         pcspk_init(isa_bus, pit);
1472     }
1473 
1474     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1475     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1476 
1477     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1478     i8042 = isa_create_simple(isa_bus, "i8042");
1479     i8042_setup_a20_line(i8042, &a20_line[0]);
1480     if (!no_vmport) {
1481         vmport_init(isa_bus);
1482         vmmouse = isa_try_create(isa_bus, "vmmouse");
1483     } else {
1484         vmmouse = NULL;
1485     }
1486     if (vmmouse) {
1487         DeviceState *dev = DEVICE(vmmouse);
1488         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1489         qdev_init_nofail(dev);
1490     }
1491     port92 = isa_create_simple(isa_bus, "port92");
1492     port92_init(port92, &a20_line[1]);
1493 
1494     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1495     DMA_init(0, cpu_exit_irq);
1496 
1497     for(i = 0; i < MAX_FD; i++) {
1498         fd[i] = drive_get(IF_FLOPPY, 0, i);
1499         create_fdctrl |= !!fd[i];
1500     }
1501     *floppy = create_fdctrl ? fdctrl_init_isa(isa_bus, fd) : NULL;
1502 }
1503 
1504 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1505 {
1506     int i;
1507 
1508     for (i = 0; i < nb_nics; i++) {
1509         NICInfo *nd = &nd_table[i];
1510 
1511         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1512             pc_init_ne2k_isa(isa_bus, nd);
1513         } else {
1514             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1515         }
1516     }
1517 }
1518 
1519 void pc_pci_device_init(PCIBus *pci_bus)
1520 {
1521     int max_bus;
1522     int bus;
1523 
1524     max_bus = drive_get_max_bus(IF_SCSI);
1525     for (bus = 0; bus <= max_bus; bus++) {
1526         pci_create_simple(pci_bus, -1, "lsi53c895a");
1527     }
1528 }
1529 
1530 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1531 {
1532     DeviceState *dev;
1533     SysBusDevice *d;
1534     unsigned int i;
1535 
1536     if (kvm_irqchip_in_kernel()) {
1537         dev = qdev_create(NULL, "kvm-ioapic");
1538     } else {
1539         dev = qdev_create(NULL, "ioapic");
1540     }
1541     if (parent_name) {
1542         object_property_add_child(object_resolve_path(parent_name, NULL),
1543                                   "ioapic", OBJECT(dev), NULL);
1544     }
1545     qdev_init_nofail(dev);
1546     d = SYS_BUS_DEVICE(dev);
1547     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1548 
1549     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1550         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1551     }
1552 }
1553 
1554 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1555                          DeviceState *dev, Error **errp)
1556 {
1557     int slot;
1558     HotplugHandlerClass *hhc;
1559     Error *local_err = NULL;
1560     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1561     MachineState *machine = MACHINE(hotplug_dev);
1562     PCDIMMDevice *dimm = PC_DIMM(dev);
1563     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1564     MemoryRegion *mr = ddc->get_memory_region(dimm);
1565     uint64_t existing_dimms_capacity = 0;
1566     uint64_t align = TARGET_PAGE_SIZE;
1567     uint64_t addr;
1568 
1569     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
1570     if (local_err) {
1571         goto out;
1572     }
1573 
1574     if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1575         align = memory_region_get_alignment(mr);
1576     }
1577 
1578     addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1579                                  memory_region_size(&pcms->hotplug_memory),
1580                                  !addr ? NULL : &addr, align,
1581                                  memory_region_size(mr), &local_err);
1582     if (local_err) {
1583         goto out;
1584     }
1585 
1586     existing_dimms_capacity = pc_existing_dimms_capacity(&local_err);
1587     if (local_err) {
1588         goto out;
1589     }
1590 
1591     if (existing_dimms_capacity + memory_region_size(mr) >
1592         machine->maxram_size - machine->ram_size) {
1593         error_setg(&local_err, "not enough space, currently 0x%" PRIx64
1594                    " in use of total hot pluggable 0x" RAM_ADDR_FMT,
1595                    existing_dimms_capacity,
1596                    machine->maxram_size - machine->ram_size);
1597         goto out;
1598     }
1599 
1600     object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1601     if (local_err) {
1602         goto out;
1603     }
1604     trace_mhp_pc_dimm_assigned_address(addr);
1605 
1606     slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1607     if (local_err) {
1608         goto out;
1609     }
1610 
1611     slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1612                                  machine->ram_slots, &local_err);
1613     if (local_err) {
1614         goto out;
1615     }
1616     object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1617     if (local_err) {
1618         goto out;
1619     }
1620     trace_mhp_pc_dimm_assigned_slot(slot);
1621 
1622     if (!pcms->acpi_dev) {
1623         error_setg(&local_err,
1624                    "memory hotplug is not enabled: missing acpi device");
1625         goto out;
1626     }
1627 
1628     if (kvm_enabled() && !kvm_has_free_slot(machine)) {
1629         error_setg(&local_err, "hypervisor has no free memory slots left");
1630         goto out;
1631     }
1632 
1633     memory_region_add_subregion(&pcms->hotplug_memory,
1634                                 addr - pcms->hotplug_memory_base, mr);
1635     vmstate_register_ram(mr, dev);
1636 
1637     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1638     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1639 out:
1640     error_propagate(errp, local_err);
1641 }
1642 
1643 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1644                                    DeviceState *dev, Error **errp)
1645 {
1646     HotplugHandlerClass *hhc;
1647     Error *local_err = NULL;
1648     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1649 
1650     if (!pcms->acpi_dev) {
1651         error_setg(&local_err,
1652                    "memory hotplug is not enabled: missing acpi device");
1653         goto out;
1654     }
1655 
1656     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1657     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1658 
1659 out:
1660     error_propagate(errp, local_err);
1661 }
1662 
1663 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1664                            DeviceState *dev, Error **errp)
1665 {
1666     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1667     PCDIMMDevice *dimm = PC_DIMM(dev);
1668     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1669     MemoryRegion *mr = ddc->get_memory_region(dimm);
1670     HotplugHandlerClass *hhc;
1671     Error *local_err = NULL;
1672 
1673     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1674     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1675 
1676     if (local_err) {
1677         goto out;
1678     }
1679 
1680     memory_region_del_subregion(&pcms->hotplug_memory, mr);
1681     vmstate_unregister_ram(mr, dev);
1682 
1683     object_unparent(OBJECT(dev));
1684 
1685  out:
1686     error_propagate(errp, local_err);
1687 }
1688 
1689 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1690                         DeviceState *dev, Error **errp)
1691 {
1692     HotplugHandlerClass *hhc;
1693     Error *local_err = NULL;
1694     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1695 
1696     if (!dev->hotplugged) {
1697         goto out;
1698     }
1699 
1700     if (!pcms->acpi_dev) {
1701         error_setg(&local_err,
1702                    "cpu hotplug is not enabled: missing acpi device");
1703         goto out;
1704     }
1705 
1706     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1707     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1708     if (local_err) {
1709         goto out;
1710     }
1711 
1712     /* increment the number of CPUs */
1713     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1714 out:
1715     error_propagate(errp, local_err);
1716 }
1717 
1718 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1719                                       DeviceState *dev, Error **errp)
1720 {
1721     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1722         pc_dimm_plug(hotplug_dev, dev, errp);
1723     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1724         pc_cpu_plug(hotplug_dev, dev, errp);
1725     }
1726 }
1727 
1728 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1729                                                 DeviceState *dev, Error **errp)
1730 {
1731     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1732         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1733     } else {
1734         error_setg(errp, "acpi: device unplug request for not supported device"
1735                    " type: %s", object_get_typename(OBJECT(dev)));
1736     }
1737 }
1738 
1739 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1740                                         DeviceState *dev, Error **errp)
1741 {
1742     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1743         pc_dimm_unplug(hotplug_dev, dev, errp);
1744     } else {
1745         error_setg(errp, "acpi: device unplug for not supported device"
1746                    " type: %s", object_get_typename(OBJECT(dev)));
1747     }
1748 }
1749 
1750 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1751                                              DeviceState *dev)
1752 {
1753     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1754 
1755     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1756         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1757         return HOTPLUG_HANDLER(machine);
1758     }
1759 
1760     return pcmc->get_hotplug_handler ?
1761         pcmc->get_hotplug_handler(machine, dev) : NULL;
1762 }
1763 
1764 static void
1765 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1766                                           const char *name, Error **errp)
1767 {
1768     PCMachineState *pcms = PC_MACHINE(obj);
1769     int64_t value = memory_region_size(&pcms->hotplug_memory);
1770 
1771     visit_type_int(v, &value, name, errp);
1772 }
1773 
1774 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1775                                          void *opaque, const char *name,
1776                                          Error **errp)
1777 {
1778     PCMachineState *pcms = PC_MACHINE(obj);
1779     uint64_t value = pcms->max_ram_below_4g;
1780 
1781     visit_type_size(v, &value, name, errp);
1782 }
1783 
1784 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1785                                          void *opaque, const char *name,
1786                                          Error **errp)
1787 {
1788     PCMachineState *pcms = PC_MACHINE(obj);
1789     Error *error = NULL;
1790     uint64_t value;
1791 
1792     visit_type_size(v, &value, name, &error);
1793     if (error) {
1794         error_propagate(errp, error);
1795         return;
1796     }
1797     if (value > (1ULL << 32)) {
1798         error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1799                   "Machine option 'max-ram-below-4g=%"PRIu64
1800                   "' expects size less than or equal to 4G", value);
1801         error_propagate(errp, error);
1802         return;
1803     }
1804 
1805     if (value < (1ULL << 20)) {
1806         error_report("Warning: small max_ram_below_4g(%"PRIu64
1807                      ") less than 1M.  BIOS may not work..",
1808                      value);
1809     }
1810 
1811     pcms->max_ram_below_4g = value;
1812 }
1813 
1814 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1815                                   const char *name, Error **errp)
1816 {
1817     PCMachineState *pcms = PC_MACHINE(obj);
1818     OnOffAuto vmport = pcms->vmport;
1819 
1820     visit_type_OnOffAuto(v, &vmport, name, errp);
1821 }
1822 
1823 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1824                                   const char *name, Error **errp)
1825 {
1826     PCMachineState *pcms = PC_MACHINE(obj);
1827 
1828     visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1829 }
1830 
1831 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1832 {
1833     PCMachineState *pcms = PC_MACHINE(obj);
1834 
1835     return pcms->enforce_aligned_dimm;
1836 }
1837 
1838 static void pc_machine_initfn(Object *obj)
1839 {
1840     PCMachineState *pcms = PC_MACHINE(obj);
1841 
1842     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1843                         pc_machine_get_hotplug_memory_region_size,
1844                         NULL, NULL, NULL, NULL);
1845 
1846     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1847     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1848                         pc_machine_get_max_ram_below_4g,
1849                         pc_machine_set_max_ram_below_4g,
1850                         NULL, NULL, NULL);
1851     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1852                                     "Maximum ram below the 4G boundary (32bit boundary)",
1853                                     NULL);
1854 
1855     pcms->vmport = ON_OFF_AUTO_AUTO;
1856     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1857                         pc_machine_get_vmport,
1858                         pc_machine_set_vmport,
1859                         NULL, NULL, NULL);
1860     object_property_set_description(obj, PC_MACHINE_VMPORT,
1861                                     "Enable vmport (pc & q35)",
1862                                     NULL);
1863 
1864     pcms->enforce_aligned_dimm = true;
1865     object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1866                              pc_machine_get_aligned_dimm,
1867                              NULL, NULL);
1868 }
1869 
1870 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1871 {
1872     unsigned pkg_id, core_id, smt_id;
1873     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1874                           &pkg_id, &core_id, &smt_id);
1875     return pkg_id;
1876 }
1877 
1878 static void pc_machine_class_init(ObjectClass *oc, void *data)
1879 {
1880     MachineClass *mc = MACHINE_CLASS(oc);
1881     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1882     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1883 
1884     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1885     mc->get_hotplug_handler = pc_get_hotpug_handler;
1886     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1887     hc->plug = pc_machine_device_plug_cb;
1888     hc->unplug_request = pc_machine_device_unplug_request_cb;
1889     hc->unplug = pc_machine_device_unplug_cb;
1890 }
1891 
1892 static const TypeInfo pc_machine_info = {
1893     .name = TYPE_PC_MACHINE,
1894     .parent = TYPE_MACHINE,
1895     .abstract = true,
1896     .instance_size = sizeof(PCMachineState),
1897     .instance_init = pc_machine_initfn,
1898     .class_size = sizeof(PCMachineClass),
1899     .class_init = pc_machine_class_init,
1900     .interfaces = (InterfaceInfo[]) {
1901          { TYPE_HOTPLUG_HANDLER },
1902          { }
1903     },
1904 };
1905 
1906 static void pc_machine_register_types(void)
1907 {
1908     type_register_static(&pc_machine_info);
1909 }
1910 
1911 type_init(pc_machine_register_types)
1912