xref: /openbmc/qemu/hw/i386/kvmvapic.c (revision 99d46107)
1 /*
2  * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3  *
4  * Copyright (C) 2007-2008 Qumranet Technologies
5  * Copyright (C) 2012      Jan Kiszka, Siemens AG
6  *
7  * This work is licensed under the terms of the GNU GPL version 2, or
8  * (at your option) any later version. See the COPYING file in the
9  * top-level directory.
10  */
11 #include "qemu/osdep.h"
12 #include "qemu-common.h"
13 #include "cpu.h"
14 #include "sysemu/sysemu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/hw_accel.h"
17 #include "sysemu/kvm.h"
18 #include "hw/i386/apic_internal.h"
19 #include "hw/sysbus.h"
20 #include "tcg/tcg.h"
21 
22 #define VAPIC_IO_PORT           0x7e
23 
24 #define VAPIC_CPU_SHIFT         7
25 
26 #define ROM_BLOCK_SIZE          512
27 #define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
28 
29 typedef enum VAPICMode {
30     VAPIC_INACTIVE = 0,
31     VAPIC_ACTIVE   = 1,
32     VAPIC_STANDBY  = 2,
33 } VAPICMode;
34 
35 typedef struct VAPICHandlers {
36     uint32_t set_tpr;
37     uint32_t set_tpr_eax;
38     uint32_t get_tpr[8];
39     uint32_t get_tpr_stack;
40 } QEMU_PACKED VAPICHandlers;
41 
42 typedef struct GuestROMState {
43     char signature[8];
44     uint32_t vaddr;
45     uint32_t fixup_start;
46     uint32_t fixup_end;
47     uint32_t vapic_vaddr;
48     uint32_t vapic_size;
49     uint32_t vcpu_shift;
50     uint32_t real_tpr_addr;
51     VAPICHandlers up;
52     VAPICHandlers mp;
53 } QEMU_PACKED GuestROMState;
54 
55 typedef struct VAPICROMState {
56     SysBusDevice busdev;
57     MemoryRegion io;
58     MemoryRegion rom;
59     uint32_t state;
60     uint32_t rom_state_paddr;
61     uint32_t rom_state_vaddr;
62     uint32_t vapic_paddr;
63     uint32_t real_tpr_addr;
64     GuestROMState rom_state;
65     size_t rom_size;
66     bool rom_mapped_writable;
67     VMChangeStateEntry *vmsentry;
68 } VAPICROMState;
69 
70 #define TYPE_VAPIC "kvmvapic"
71 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
72 
73 #define TPR_INSTR_ABS_MODRM             0x1
74 #define TPR_INSTR_MATCH_MODRM_REG       0x2
75 
76 typedef struct TPRInstruction {
77     uint8_t opcode;
78     uint8_t modrm_reg;
79     unsigned int flags;
80     TPRAccess access;
81     size_t length;
82     off_t addr_offset;
83 } TPRInstruction;
84 
85 /* must be sorted by length, shortest first */
86 static const TPRInstruction tpr_instr[] = {
87     { /* mov abs to eax */
88         .opcode = 0xa1,
89         .access = TPR_ACCESS_READ,
90         .length = 5,
91         .addr_offset = 1,
92     },
93     { /* mov eax to abs */
94         .opcode = 0xa3,
95         .access = TPR_ACCESS_WRITE,
96         .length = 5,
97         .addr_offset = 1,
98     },
99     { /* mov r32 to r/m32 */
100         .opcode = 0x89,
101         .flags = TPR_INSTR_ABS_MODRM,
102         .access = TPR_ACCESS_WRITE,
103         .length = 6,
104         .addr_offset = 2,
105     },
106     { /* mov r/m32 to r32 */
107         .opcode = 0x8b,
108         .flags = TPR_INSTR_ABS_MODRM,
109         .access = TPR_ACCESS_READ,
110         .length = 6,
111         .addr_offset = 2,
112     },
113     { /* push r/m32 */
114         .opcode = 0xff,
115         .modrm_reg = 6,
116         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
117         .access = TPR_ACCESS_READ,
118         .length = 6,
119         .addr_offset = 2,
120     },
121     { /* mov imm32, r/m32 (c7/0) */
122         .opcode = 0xc7,
123         .modrm_reg = 0,
124         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
125         .access = TPR_ACCESS_WRITE,
126         .length = 10,
127         .addr_offset = 2,
128     },
129 };
130 
131 static void read_guest_rom_state(VAPICROMState *s)
132 {
133     cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
134                              sizeof(GuestROMState));
135 }
136 
137 static void write_guest_rom_state(VAPICROMState *s)
138 {
139     cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
140                               sizeof(GuestROMState));
141 }
142 
143 static void update_guest_rom_state(VAPICROMState *s)
144 {
145     read_guest_rom_state(s);
146 
147     s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
148     s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
149 
150     write_guest_rom_state(s);
151 }
152 
153 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
154 {
155     CPUState *cs = CPU(x86_env_get_cpu(env));
156     hwaddr paddr;
157     target_ulong addr;
158 
159     if (s->state == VAPIC_ACTIVE) {
160         return 0;
161     }
162     /*
163      * If there is no prior TPR access instruction we could analyze (which is
164      * the case after resume from hibernation), we need to scan the possible
165      * virtual address space for the APIC mapping.
166      */
167     for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
168         paddr = cpu_get_phys_page_debug(cs, addr);
169         if (paddr != APIC_DEFAULT_ADDRESS) {
170             continue;
171         }
172         s->real_tpr_addr = addr + 0x80;
173         update_guest_rom_state(s);
174         return 0;
175     }
176     return -1;
177 }
178 
179 static uint8_t modrm_reg(uint8_t modrm)
180 {
181     return (modrm >> 3) & 7;
182 }
183 
184 static bool is_abs_modrm(uint8_t modrm)
185 {
186     return (modrm & 0xc7) == 0x05;
187 }
188 
189 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
190 {
191     return opcode[0] == instr->opcode &&
192         (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
193         (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
194          modrm_reg(opcode[1]) == instr->modrm_reg);
195 }
196 
197 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
198                                     target_ulong *pip, TPRAccess access)
199 {
200     CPUState *cs = CPU(cpu);
201     const TPRInstruction *instr;
202     target_ulong ip = *pip;
203     uint8_t opcode[2];
204     uint32_t real_tpr_addr;
205     int i;
206 
207     if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
208         (ip & 0xf0000000ULL) != 0xe0000000ULL) {
209         return -1;
210     }
211 
212     /*
213      * Early Windows 2003 SMP initialization contains a
214      *
215      *   mov imm32, r/m32
216      *
217      * instruction that is patched by TPR optimization. The problem is that
218      * RSP, used by the patched instruction, is zero, so the guest gets a
219      * double fault and dies.
220      */
221     if (cpu->env.regs[R_ESP] == 0) {
222         return -1;
223     }
224 
225     if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
226         /*
227          * KVM without kernel-based TPR access reporting will pass an IP that
228          * points after the accessing instruction. So we need to look backward
229          * to find the reason.
230          */
231         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
232             instr = &tpr_instr[i];
233             if (instr->access != access) {
234                 continue;
235             }
236             if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
237                                     sizeof(opcode), 0) < 0) {
238                 return -1;
239             }
240             if (opcode_matches(opcode, instr)) {
241                 ip -= instr->length;
242                 goto instruction_ok;
243             }
244         }
245         return -1;
246     } else {
247         if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
248             return -1;
249         }
250         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
251             instr = &tpr_instr[i];
252             if (opcode_matches(opcode, instr)) {
253                 goto instruction_ok;
254             }
255         }
256         return -1;
257     }
258 
259 instruction_ok:
260     /*
261      * Grab the virtual TPR address from the instruction
262      * and update the cached values.
263      */
264     if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
265                             (void *)&real_tpr_addr,
266                             sizeof(real_tpr_addr), 0) < 0) {
267         return -1;
268     }
269     real_tpr_addr = le32_to_cpu(real_tpr_addr);
270     if ((real_tpr_addr & 0xfff) != 0x80) {
271         return -1;
272     }
273     s->real_tpr_addr = real_tpr_addr;
274     update_guest_rom_state(s);
275 
276     *pip = ip;
277     return 0;
278 }
279 
280 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
281 {
282     CPUState *cs = CPU(x86_env_get_cpu(env));
283     hwaddr paddr;
284     uint32_t rom_state_vaddr;
285     uint32_t pos, patch, offset;
286 
287     /* nothing to do if already activated */
288     if (s->state == VAPIC_ACTIVE) {
289         return 0;
290     }
291 
292     /* bail out if ROM init code was not executed (missing ROM?) */
293     if (s->state == VAPIC_INACTIVE) {
294         return -1;
295     }
296 
297     /* find out virtual address of the ROM */
298     rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
299     paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
300     if (paddr == -1) {
301         return -1;
302     }
303     paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
304     if (paddr != s->rom_state_paddr) {
305         return -1;
306     }
307     read_guest_rom_state(s);
308     if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
309         return -1;
310     }
311     s->rom_state_vaddr = rom_state_vaddr;
312 
313     /* fixup addresses in ROM if needed */
314     if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
315         return 0;
316     }
317     for (pos = le32_to_cpu(s->rom_state.fixup_start);
318          pos < le32_to_cpu(s->rom_state.fixup_end);
319          pos += 4) {
320         cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
321                                  &offset, sizeof(offset));
322         offset = le32_to_cpu(offset);
323         cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
324         patch = le32_to_cpu(patch);
325         patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
326         patch = cpu_to_le32(patch);
327         cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
328     }
329     read_guest_rom_state(s);
330     s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
331         le32_to_cpu(s->rom_state.vaddr);
332 
333     return 0;
334 }
335 
336 /*
337  * Tries to read the unique processor number from the Kernel Processor Control
338  * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
339  * cannot be accessed or is considered invalid. This also ensures that we are
340  * not patching the wrong guest.
341  */
342 static int get_kpcr_number(X86CPU *cpu)
343 {
344     CPUX86State *env = &cpu->env;
345     struct kpcr {
346         uint8_t  fill1[0x1c];
347         uint32_t self;
348         uint8_t  fill2[0x31];
349         uint8_t  number;
350     } QEMU_PACKED kpcr;
351 
352     if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
353                             (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
354         kpcr.self != env->segs[R_FS].base) {
355         return -1;
356     }
357     return kpcr.number;
358 }
359 
360 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
361 {
362     int cpu_number = get_kpcr_number(cpu);
363     hwaddr vapic_paddr;
364     static const uint8_t enabled = 1;
365 
366     if (cpu_number < 0) {
367         return -1;
368     }
369     vapic_paddr = s->vapic_paddr +
370         (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
371     cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
372                               &enabled, sizeof(enabled));
373     apic_enable_vapic(cpu->apic_state, vapic_paddr);
374 
375     s->state = VAPIC_ACTIVE;
376 
377     return 0;
378 }
379 
380 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
381 {
382     cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
383 }
384 
385 static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target)
386 {
387     uint32_t offset;
388 
389     offset = cpu_to_le32(target - ip - 5);
390     patch_byte(cpu, ip, 0xe8); /* call near */
391     cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
392 }
393 
394 typedef struct PatchInfo {
395     VAPICHandlers *handler;
396     target_ulong ip;
397 } PatchInfo;
398 
399 static void do_patch_instruction(CPUState *cs, run_on_cpu_data data)
400 {
401     X86CPU *x86_cpu = X86_CPU(cs);
402     PatchInfo *info = (PatchInfo *) data.host_ptr;
403     VAPICHandlers *handlers = info->handler;
404     target_ulong ip = info->ip;
405     uint8_t opcode[2];
406     uint32_t imm32 = 0;
407 
408     cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
409 
410     switch (opcode[0]) {
411     case 0x89: /* mov r32 to r/m32 */
412         patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
413         patch_call(x86_cpu, ip + 1, handlers->set_tpr);
414         break;
415     case 0x8b: /* mov r/m32 to r32 */
416         patch_byte(x86_cpu, ip, 0x90);
417         patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
418         break;
419     case 0xa1: /* mov abs to eax */
420         patch_call(x86_cpu, ip, handlers->get_tpr[0]);
421         break;
422     case 0xa3: /* mov eax to abs */
423         patch_call(x86_cpu, ip, handlers->set_tpr_eax);
424         break;
425     case 0xc7: /* mov imm32, r/m32 (c7/0) */
426         patch_byte(x86_cpu, ip, 0x68);  /* push imm32 */
427         cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
428         cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
429         patch_call(x86_cpu, ip + 5, handlers->set_tpr);
430         break;
431     case 0xff: /* push r/m32 */
432         patch_byte(x86_cpu, ip, 0x50); /* push eax */
433         patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack);
434         break;
435     default:
436         abort();
437     }
438 
439     g_free(info);
440 }
441 
442 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
443 {
444     CPUState *cs = CPU(cpu);
445     VAPICHandlers *handlers;
446     PatchInfo *info;
447 
448     if (smp_cpus == 1) {
449         handlers = &s->rom_state.up;
450     } else {
451         handlers = &s->rom_state.mp;
452     }
453 
454     info  = g_new(PatchInfo, 1);
455     info->handler = handlers;
456     info->ip = ip;
457 
458     async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info));
459 }
460 
461 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
462                              TPRAccess access)
463 {
464     VAPICROMState *s = VAPIC(dev);
465     X86CPU *cpu = X86_CPU(cs);
466     CPUX86State *env = &cpu->env;
467 
468     cpu_synchronize_state(cs);
469 
470     if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
471         if (s->state == VAPIC_ACTIVE) {
472             vapic_enable(s, cpu);
473         }
474         return;
475     }
476     if (update_rom_mapping(s, env, ip) < 0) {
477         return;
478     }
479     if (vapic_enable(s, cpu) < 0) {
480         return;
481     }
482     patch_instruction(s, cpu, ip);
483 }
484 
485 typedef struct VAPICEnableTPRReporting {
486     DeviceState *apic;
487     bool enable;
488 } VAPICEnableTPRReporting;
489 
490 static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
491 {
492     VAPICEnableTPRReporting *info = data.host_ptr;
493     apic_enable_tpr_access_reporting(info->apic, info->enable);
494 }
495 
496 static void vapic_enable_tpr_reporting(bool enable)
497 {
498     VAPICEnableTPRReporting info = {
499         .enable = enable,
500     };
501     CPUState *cs;
502     X86CPU *cpu;
503 
504     CPU_FOREACH(cs) {
505         cpu = X86_CPU(cs);
506         info.apic = cpu->apic_state;
507         run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
508     }
509 }
510 
511 static void vapic_reset(DeviceState *dev)
512 {
513     VAPICROMState *s = VAPIC(dev);
514 
515     s->state = VAPIC_INACTIVE;
516     s->rom_state_paddr = 0;
517     vapic_enable_tpr_reporting(false);
518 }
519 
520 /*
521  * Set the IRQ polling hypercalls to the supported variant:
522  *  - vmcall if using KVM in-kernel irqchip
523  *  - 32-bit VAPIC port write otherwise
524  */
525 static int patch_hypercalls(VAPICROMState *s)
526 {
527     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
528     static const uint8_t vmcall_pattern[] = { /* vmcall */
529         0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
530     };
531     static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
532         0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
533     };
534     uint8_t alternates[2];
535     const uint8_t *pattern;
536     const uint8_t *patch;
537     off_t pos;
538     uint8_t *rom;
539 
540     rom = g_malloc(s->rom_size);
541     cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
542 
543     for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
544         if (kvm_irqchip_in_kernel()) {
545             pattern = outl_pattern;
546             alternates[0] = outl_pattern[7];
547             alternates[1] = outl_pattern[7];
548             patch = &vmcall_pattern[5];
549         } else {
550             pattern = vmcall_pattern;
551             alternates[0] = vmcall_pattern[7];
552             alternates[1] = 0xd9; /* AMD's VMMCALL */
553             patch = &outl_pattern[5];
554         }
555         if (memcmp(rom + pos, pattern, 7) == 0 &&
556             (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
557             cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
558             /*
559              * Don't flush the tb here. Under ordinary conditions, the patched
560              * calls are miles away from the current IP. Under malicious
561              * conditions, the guest could trick us to crash.
562              */
563         }
564     }
565 
566     g_free(rom);
567     return 0;
568 }
569 
570 /*
571  * For TCG mode or the time KVM honors read-only memory regions, we need to
572  * enable write access to the option ROM so that variables can be updated by
573  * the guest.
574  */
575 static int vapic_map_rom_writable(VAPICROMState *s)
576 {
577     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
578     MemoryRegionSection section;
579     MemoryRegion *as;
580     size_t rom_size;
581     uint8_t *ram;
582 
583     as = sysbus_address_space(&s->busdev);
584 
585     if (s->rom_mapped_writable) {
586         memory_region_del_subregion(as, &s->rom);
587         object_unparent(OBJECT(&s->rom));
588     }
589 
590     /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
591     section = memory_region_find(as, 0, 1);
592 
593     /* read ROM size from RAM region */
594     if (rom_paddr + 2 >= memory_region_size(section.mr)) {
595         return -1;
596     }
597     ram = memory_region_get_ram_ptr(section.mr);
598     rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
599     if (rom_size == 0) {
600         return -1;
601     }
602     s->rom_size = rom_size;
603 
604     /* We need to round to avoid creating subpages
605      * from which we cannot run code. */
606     rom_size += rom_paddr & ~TARGET_PAGE_MASK;
607     rom_paddr &= TARGET_PAGE_MASK;
608     rom_size = TARGET_PAGE_ALIGN(rom_size);
609 
610     memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
611                              rom_paddr, rom_size);
612     memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
613     s->rom_mapped_writable = true;
614     memory_region_unref(section.mr);
615 
616     return 0;
617 }
618 
619 static int vapic_prepare(VAPICROMState *s)
620 {
621     if (vapic_map_rom_writable(s) < 0) {
622         return -1;
623     }
624 
625     if (patch_hypercalls(s) < 0) {
626         return -1;
627     }
628 
629     vapic_enable_tpr_reporting(true);
630 
631     return 0;
632 }
633 
634 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
635                         unsigned int size)
636 {
637     VAPICROMState *s = opaque;
638     X86CPU *cpu;
639     CPUX86State *env;
640     hwaddr rom_paddr;
641 
642     if (!current_cpu) {
643         return;
644     }
645 
646     cpu_synchronize_state(current_cpu);
647     cpu = X86_CPU(current_cpu);
648     env = &cpu->env;
649 
650     /*
651      * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
652      *  o 16-bit write access:
653      *    Reports the option ROM initialization to the hypervisor. Written
654      *    value is the offset of the state structure in the ROM.
655      *  o 8-bit write access:
656      *    Reactivates the VAPIC after a guest hibernation, i.e. after the
657      *    option ROM content has been re-initialized by a guest power cycle.
658      *  o 32-bit write access:
659      *    Poll for pending IRQs, considering the current VAPIC state.
660      */
661     switch (size) {
662     case 2:
663         if (s->state == VAPIC_INACTIVE) {
664             rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
665             s->rom_state_paddr = rom_paddr + data;
666 
667             s->state = VAPIC_STANDBY;
668         }
669         if (vapic_prepare(s) < 0) {
670             s->state = VAPIC_INACTIVE;
671             s->rom_state_paddr = 0;
672             break;
673         }
674         break;
675     case 1:
676         if (kvm_enabled()) {
677             /*
678              * Disable triggering instruction in ROM by writing a NOP.
679              *
680              * We cannot do this in TCG mode as the reported IP is not
681              * accurate.
682              */
683             pause_all_vcpus();
684             patch_byte(cpu, env->eip - 2, 0x66);
685             patch_byte(cpu, env->eip - 1, 0x90);
686             resume_all_vcpus();
687         }
688 
689         if (s->state == VAPIC_ACTIVE) {
690             break;
691         }
692         if (update_rom_mapping(s, env, env->eip) < 0) {
693             break;
694         }
695         if (find_real_tpr_addr(s, env) < 0) {
696             break;
697         }
698         vapic_enable(s, cpu);
699         break;
700     default:
701     case 4:
702         if (!kvm_irqchip_in_kernel()) {
703             apic_poll_irq(cpu->apic_state);
704         }
705         break;
706     }
707 }
708 
709 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
710 {
711     return 0xffffffff;
712 }
713 
714 static const MemoryRegionOps vapic_ops = {
715     .write = vapic_write,
716     .read = vapic_read,
717     .endianness = DEVICE_NATIVE_ENDIAN,
718 };
719 
720 static void vapic_realize(DeviceState *dev, Error **errp)
721 {
722     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
723     VAPICROMState *s = VAPIC(dev);
724 
725     memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
726     sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
727     sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
728 
729     option_rom[nb_option_roms].name = "kvmvapic.bin";
730     option_rom[nb_option_roms].bootindex = -1;
731     nb_option_roms++;
732 }
733 
734 static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
735 {
736     VAPICROMState *s = data.host_ptr;
737     X86CPU *cpu = X86_CPU(cs);
738 
739     static const uint8_t enabled = 1;
740     cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
741                               &enabled, sizeof(enabled));
742     apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
743     s->state = VAPIC_ACTIVE;
744 }
745 
746 static void kvmvapic_vm_state_change(void *opaque, int running,
747                                      RunState state)
748 {
749     VAPICROMState *s = opaque;
750     uint8_t *zero;
751 
752     if (!running) {
753         return;
754     }
755 
756     if (s->state == VAPIC_ACTIVE) {
757         if (smp_cpus == 1) {
758             run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
759         } else {
760             zero = g_malloc0(s->rom_state.vapic_size);
761             cpu_physical_memory_write(s->vapic_paddr, zero,
762                                       s->rom_state.vapic_size);
763             g_free(zero);
764         }
765     }
766 
767     qemu_del_vm_change_state_handler(s->vmsentry);
768     s->vmsentry = NULL;
769 }
770 
771 static int vapic_post_load(void *opaque, int version_id)
772 {
773     VAPICROMState *s = opaque;
774 
775     /*
776      * The old implementation of qemu-kvm did not provide the state
777      * VAPIC_STANDBY. Reconstruct it.
778      */
779     if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
780         s->state = VAPIC_STANDBY;
781     }
782 
783     if (s->state != VAPIC_INACTIVE) {
784         if (vapic_prepare(s) < 0) {
785             return -1;
786         }
787     }
788 
789     if (!s->vmsentry) {
790         s->vmsentry =
791             qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
792     }
793     return 0;
794 }
795 
796 static const VMStateDescription vmstate_handlers = {
797     .name = "kvmvapic-handlers",
798     .version_id = 1,
799     .minimum_version_id = 1,
800     .fields = (VMStateField[]) {
801         VMSTATE_UINT32(set_tpr, VAPICHandlers),
802         VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
803         VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
804         VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
805         VMSTATE_END_OF_LIST()
806     }
807 };
808 
809 static const VMStateDescription vmstate_guest_rom = {
810     .name = "kvmvapic-guest-rom",
811     .version_id = 1,
812     .minimum_version_id = 1,
813     .fields = (VMStateField[]) {
814         VMSTATE_UNUSED(8),     /* signature */
815         VMSTATE_UINT32(vaddr, GuestROMState),
816         VMSTATE_UINT32(fixup_start, GuestROMState),
817         VMSTATE_UINT32(fixup_end, GuestROMState),
818         VMSTATE_UINT32(vapic_vaddr, GuestROMState),
819         VMSTATE_UINT32(vapic_size, GuestROMState),
820         VMSTATE_UINT32(vcpu_shift, GuestROMState),
821         VMSTATE_UINT32(real_tpr_addr, GuestROMState),
822         VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
823         VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
824         VMSTATE_END_OF_LIST()
825     }
826 };
827 
828 static const VMStateDescription vmstate_vapic = {
829     .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
830     .version_id = 1,
831     .minimum_version_id = 1,
832     .post_load = vapic_post_load,
833     .fields = (VMStateField[]) {
834         VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
835                        GuestROMState),
836         VMSTATE_UINT32(state, VAPICROMState),
837         VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
838         VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
839         VMSTATE_UINT32(vapic_paddr, VAPICROMState),
840         VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
841         VMSTATE_END_OF_LIST()
842     }
843 };
844 
845 static void vapic_class_init(ObjectClass *klass, void *data)
846 {
847     DeviceClass *dc = DEVICE_CLASS(klass);
848 
849     dc->reset   = vapic_reset;
850     dc->vmsd    = &vmstate_vapic;
851     dc->realize = vapic_realize;
852 }
853 
854 static const TypeInfo vapic_type = {
855     .name          = TYPE_VAPIC,
856     .parent        = TYPE_SYS_BUS_DEVICE,
857     .instance_size = sizeof(VAPICROMState),
858     .class_init    = vapic_class_init,
859 };
860 
861 static void vapic_register(void)
862 {
863     type_register_static(&vapic_type);
864 }
865 
866 type_init(vapic_register);
867