xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision fcf5ef2a)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 
39 /*#define DEBUG_INTEL_IOMMU*/
40 #ifdef DEBUG_INTEL_IOMMU
41 enum {
42     DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
43     DEBUG_CACHE, DEBUG_IR,
44 };
45 #define VTD_DBGBIT(x)   (1 << DEBUG_##x)
46 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
47 
48 #define VTD_DPRINTF(what, fmt, ...) do { \
49     if (vtd_dbgflags & VTD_DBGBIT(what)) { \
50         fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
51                 ## __VA_ARGS__); } \
52     } while (0)
53 #else
54 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
55 #endif
56 
57 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
58                             uint64_t wmask, uint64_t w1cmask)
59 {
60     stq_le_p(&s->csr[addr], val);
61     stq_le_p(&s->wmask[addr], wmask);
62     stq_le_p(&s->w1cmask[addr], w1cmask);
63 }
64 
65 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
66 {
67     stq_le_p(&s->womask[addr], mask);
68 }
69 
70 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
71                             uint32_t wmask, uint32_t w1cmask)
72 {
73     stl_le_p(&s->csr[addr], val);
74     stl_le_p(&s->wmask[addr], wmask);
75     stl_le_p(&s->w1cmask[addr], w1cmask);
76 }
77 
78 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
79 {
80     stl_le_p(&s->womask[addr], mask);
81 }
82 
83 /* "External" get/set operations */
84 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
85 {
86     uint64_t oldval = ldq_le_p(&s->csr[addr]);
87     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
88     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
89     stq_le_p(&s->csr[addr],
90              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
91 }
92 
93 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
94 {
95     uint32_t oldval = ldl_le_p(&s->csr[addr]);
96     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
97     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
98     stl_le_p(&s->csr[addr],
99              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
100 }
101 
102 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
103 {
104     uint64_t val = ldq_le_p(&s->csr[addr]);
105     uint64_t womask = ldq_le_p(&s->womask[addr]);
106     return val & ~womask;
107 }
108 
109 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
110 {
111     uint32_t val = ldl_le_p(&s->csr[addr]);
112     uint32_t womask = ldl_le_p(&s->womask[addr]);
113     return val & ~womask;
114 }
115 
116 /* "Internal" get/set operations */
117 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
118 {
119     return ldq_le_p(&s->csr[addr]);
120 }
121 
122 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
123 {
124     return ldl_le_p(&s->csr[addr]);
125 }
126 
127 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
128 {
129     stq_le_p(&s->csr[addr], val);
130 }
131 
132 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
133                                         uint32_t clear, uint32_t mask)
134 {
135     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
136     stl_le_p(&s->csr[addr], new_val);
137     return new_val;
138 }
139 
140 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
141                                         uint64_t clear, uint64_t mask)
142 {
143     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
144     stq_le_p(&s->csr[addr], new_val);
145     return new_val;
146 }
147 
148 /* GHashTable functions */
149 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
150 {
151     return *((const uint64_t *)v1) == *((const uint64_t *)v2);
152 }
153 
154 static guint vtd_uint64_hash(gconstpointer v)
155 {
156     return (guint)*(const uint64_t *)v;
157 }
158 
159 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
160                                           gpointer user_data)
161 {
162     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
163     uint16_t domain_id = *(uint16_t *)user_data;
164     return entry->domain_id == domain_id;
165 }
166 
167 /* The shift of an addr for a certain level of paging structure */
168 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
169 {
170     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
171 }
172 
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
174 {
175     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
176 }
177 
178 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
179                                         gpointer user_data)
180 {
181     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
182     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
183     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
184     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
185     return (entry->domain_id == info->domain_id) &&
186             (((entry->gfn & info->mask) == gfn) ||
187              (entry->gfn == gfn_tlb));
188 }
189 
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191  * IntelIOMMUState to 1.
192  */
193 static void vtd_reset_context_cache(IntelIOMMUState *s)
194 {
195     VTDAddressSpace *vtd_as;
196     VTDBus *vtd_bus;
197     GHashTableIter bus_it;
198     uint32_t devfn_it;
199 
200     g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
201 
202     VTD_DPRINTF(CACHE, "global context_cache_gen=1");
203     while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
204         for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
205             vtd_as = vtd_bus->dev_as[devfn_it];
206             if (!vtd_as) {
207                 continue;
208             }
209             vtd_as->context_cache_entry.context_cache_gen = 0;
210         }
211     }
212     s->context_cache_gen = 1;
213 }
214 
215 static void vtd_reset_iotlb(IntelIOMMUState *s)
216 {
217     assert(s->iotlb);
218     g_hash_table_remove_all(s->iotlb);
219 }
220 
221 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
222                                   uint32_t level)
223 {
224     return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
225            ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
226 }
227 
228 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
229 {
230     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
231 }
232 
233 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
234                                        hwaddr addr)
235 {
236     VTDIOTLBEntry *entry;
237     uint64_t key;
238     int level;
239 
240     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
241         key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
242                                 source_id, level);
243         entry = g_hash_table_lookup(s->iotlb, &key);
244         if (entry) {
245             goto out;
246         }
247     }
248 
249 out:
250     return entry;
251 }
252 
253 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
254                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
255                              bool read_flags, bool write_flags,
256                              uint32_t level)
257 {
258     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
259     uint64_t *key = g_malloc(sizeof(*key));
260     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
261 
262     VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
263                 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
264                 domain_id);
265     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
266         VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
267         vtd_reset_iotlb(s);
268     }
269 
270     entry->gfn = gfn;
271     entry->domain_id = domain_id;
272     entry->slpte = slpte;
273     entry->read_flags = read_flags;
274     entry->write_flags = write_flags;
275     entry->mask = vtd_slpt_level_page_mask(level);
276     *key = vtd_get_iotlb_key(gfn, source_id, level);
277     g_hash_table_replace(s->iotlb, key, entry);
278 }
279 
280 /* Given the reg addr of both the message data and address, generate an
281  * interrupt via MSI.
282  */
283 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
284                                    hwaddr mesg_data_reg)
285 {
286     MSIMessage msi;
287 
288     assert(mesg_data_reg < DMAR_REG_SIZE);
289     assert(mesg_addr_reg < DMAR_REG_SIZE);
290 
291     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
292     msi.data = vtd_get_long_raw(s, mesg_data_reg);
293 
294     VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32,
295                 msi.address, msi.data);
296     apic_get_class()->send_msi(&msi);
297 }
298 
299 /* Generate a fault event to software via MSI if conditions are met.
300  * Notice that the value of FSTS_REG being passed to it should be the one
301  * before any update.
302  */
303 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
304 {
305     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
306         pre_fsts & VTD_FSTS_IQE) {
307         VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
308                     "to be serviced by software, fault event is not generated "
309                     "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
310         return;
311     }
312     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
313     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
314         VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
315     } else {
316         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
317         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
318     }
319 }
320 
321 /* Check if the Fault (F) field of the Fault Recording Register referenced by
322  * @index is Set.
323  */
324 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
325 {
326     /* Each reg is 128-bit */
327     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
328     addr += 8; /* Access the high 64-bit half */
329 
330     assert(index < DMAR_FRCD_REG_NR);
331 
332     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
333 }
334 
335 /* Update the PPF field of Fault Status Register.
336  * Should be called whenever change the F field of any fault recording
337  * registers.
338  */
339 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
340 {
341     uint32_t i;
342     uint32_t ppf_mask = 0;
343 
344     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
345         if (vtd_is_frcd_set(s, i)) {
346             ppf_mask = VTD_FSTS_PPF;
347             break;
348         }
349     }
350     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
351     VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
352 }
353 
354 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
355 {
356     /* Each reg is 128-bit */
357     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
358     addr += 8; /* Access the high 64-bit half */
359 
360     assert(index < DMAR_FRCD_REG_NR);
361 
362     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
363     vtd_update_fsts_ppf(s);
364 }
365 
366 /* Must not update F field now, should be done later */
367 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
368                             uint16_t source_id, hwaddr addr,
369                             VTDFaultReason fault, bool is_write)
370 {
371     uint64_t hi = 0, lo;
372     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
373 
374     assert(index < DMAR_FRCD_REG_NR);
375 
376     lo = VTD_FRCD_FI(addr);
377     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
378     if (!is_write) {
379         hi |= VTD_FRCD_T;
380     }
381     vtd_set_quad_raw(s, frcd_reg_addr, lo);
382     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
383     VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
384                 ", lo 0x%"PRIx64, index, hi, lo);
385 }
386 
387 /* Try to collapse multiple pending faults from the same requester */
388 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
389 {
390     uint32_t i;
391     uint64_t frcd_reg;
392     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
393 
394     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
395         frcd_reg = vtd_get_quad_raw(s, addr);
396         VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
397         if ((frcd_reg & VTD_FRCD_F) &&
398             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
399             return true;
400         }
401         addr += 16; /* 128-bit for each */
402     }
403     return false;
404 }
405 
406 /* Log and report an DMAR (address translation) fault to software */
407 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
408                                   hwaddr addr, VTDFaultReason fault,
409                                   bool is_write)
410 {
411     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
412 
413     assert(fault < VTD_FR_MAX);
414 
415     if (fault == VTD_FR_RESERVED_ERR) {
416         /* This is not a normal fault reason case. Drop it. */
417         return;
418     }
419     VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
420                 ", is_write %d", source_id, fault, addr, is_write);
421     if (fsts_reg & VTD_FSTS_PFO) {
422         VTD_DPRINTF(FLOG, "new fault is not recorded due to "
423                     "Primary Fault Overflow");
424         return;
425     }
426     if (vtd_try_collapse_fault(s, source_id)) {
427         VTD_DPRINTF(FLOG, "new fault is not recorded due to "
428                     "compression of faults");
429         return;
430     }
431     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
432         VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
433                     "new fault is not recorded, set PFO field");
434         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
435         return;
436     }
437 
438     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
439 
440     if (fsts_reg & VTD_FSTS_PPF) {
441         VTD_DPRINTF(FLOG, "there are pending faults already, "
442                     "fault event is not generated");
443         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
444         s->next_frcd_reg++;
445         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
446             s->next_frcd_reg = 0;
447         }
448     } else {
449         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
450                                 VTD_FSTS_FRI(s->next_frcd_reg));
451         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
452         s->next_frcd_reg++;
453         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
454             s->next_frcd_reg = 0;
455         }
456         /* This case actually cause the PPF to be Set.
457          * So generate fault event (interrupt).
458          */
459          vtd_generate_fault_event(s, fsts_reg);
460     }
461 }
462 
463 /* Handle Invalidation Queue Errors of queued invalidation interface error
464  * conditions.
465  */
466 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
467 {
468     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
469 
470     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
471     vtd_generate_fault_event(s, fsts_reg);
472 }
473 
474 /* Set the IWC field and try to generate an invalidation completion interrupt */
475 static void vtd_generate_completion_event(IntelIOMMUState *s)
476 {
477     VTD_DPRINTF(INV, "completes an invalidation wait command with "
478                 "Interrupt Flag");
479     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
480         VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
481                     "serviced by software, "
482                     "new invalidation event is not generated");
483         return;
484     }
485     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
486     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
487     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
488         VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
489                     "event is not generated");
490         return;
491     } else {
492         /* Generate the interrupt event */
493         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
494         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
495     }
496 }
497 
498 static inline bool vtd_root_entry_present(VTDRootEntry *root)
499 {
500     return root->val & VTD_ROOT_ENTRY_P;
501 }
502 
503 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
504                               VTDRootEntry *re)
505 {
506     dma_addr_t addr;
507 
508     addr = s->root + index * sizeof(*re);
509     if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
510         VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
511                     " + %"PRIu8, s->root, index);
512         re->val = 0;
513         return -VTD_FR_ROOT_TABLE_INV;
514     }
515     re->val = le64_to_cpu(re->val);
516     return 0;
517 }
518 
519 static inline bool vtd_context_entry_present(VTDContextEntry *context)
520 {
521     return context->lo & VTD_CONTEXT_ENTRY_P;
522 }
523 
524 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
525                                            VTDContextEntry *ce)
526 {
527     dma_addr_t addr;
528 
529     if (!vtd_root_entry_present(root)) {
530         VTD_DPRINTF(GENERAL, "error: root-entry is not present");
531         return -VTD_FR_ROOT_ENTRY_P;
532     }
533     addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
534     if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
535         VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
536                     " + %"PRIu8,
537                     (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
538         return -VTD_FR_CONTEXT_TABLE_INV;
539     }
540     ce->lo = le64_to_cpu(ce->lo);
541     ce->hi = le64_to_cpu(ce->hi);
542     return 0;
543 }
544 
545 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
546 {
547     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
548 }
549 
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
551 {
552     return slpte & VTD_SL_PT_BASE_ADDR_MASK;
553 }
554 
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
557 {
558     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
559 }
560 
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
563 {
564     uint64_t slpte;
565 
566     assert(index < VTD_SL_PT_ENTRY_NR);
567 
568     if (dma_memory_read(&address_space_memory,
569                         base_addr + index * sizeof(slpte), &slpte,
570                         sizeof(slpte))) {
571         slpte = (uint64_t)-1;
572         return slpte;
573     }
574     slpte = le64_to_cpu(slpte);
575     return slpte;
576 }
577 
578 /* Given a gpa and the level of paging structure, return the offset of current
579  * level.
580  */
581 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
582 {
583     return (gpa >> vtd_slpt_level_shift(level)) &
584             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
585 }
586 
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
589 {
590     return VTD_CAP_SAGAW_MASK & s->cap &
591            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
592 }
593 
594 /* Get the page-table level that hardware should use for the second-level
595  * page-table walk from the Address Width field of context-entry.
596  */
597 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
598 {
599     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
600 }
601 
602 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
603 {
604     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
605 }
606 
607 static const uint64_t vtd_paging_entry_rsvd_field[] = {
608     [0] = ~0ULL,
609     /* For not large page */
610     [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
611     [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
612     [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
613     [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
614     /* For large page */
615     [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
616     [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
617     [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
618     [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
619 };
620 
621 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
622 {
623     if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
624         /* Maybe large page */
625         return slpte & vtd_paging_entry_rsvd_field[level + 4];
626     } else {
627         return slpte & vtd_paging_entry_rsvd_field[level];
628     }
629 }
630 
631 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
632  * of the translation, can be used for deciding the size of large page.
633  */
634 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
635                             uint64_t *slptep, uint32_t *slpte_level,
636                             bool *reads, bool *writes)
637 {
638     dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
639     uint32_t level = vtd_get_level_from_context_entry(ce);
640     uint32_t offset;
641     uint64_t slpte;
642     uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
643     uint64_t access_right_check;
644 
645     /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
646      * and AW in context-entry.
647      */
648     if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
649         VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
650         return -VTD_FR_ADDR_BEYOND_MGAW;
651     }
652 
653     /* FIXME: what is the Atomics request here? */
654     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
655 
656     while (true) {
657         offset = vtd_gpa_level_offset(gpa, level);
658         slpte = vtd_get_slpte(addr, offset);
659 
660         if (slpte == (uint64_t)-1) {
661             VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
662                         "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
663                         level, gpa);
664             if (level == vtd_get_level_from_context_entry(ce)) {
665                 /* Invalid programming of context-entry */
666                 return -VTD_FR_CONTEXT_ENTRY_INV;
667             } else {
668                 return -VTD_FR_PAGING_ENTRY_INV;
669             }
670         }
671         *reads = (*reads) && (slpte & VTD_SL_R);
672         *writes = (*writes) && (slpte & VTD_SL_W);
673         if (!(slpte & access_right_check)) {
674             VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
675                         "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
676                         (is_write ? "write" : "read"), gpa, slpte);
677             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
678         }
679         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
680             VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
681                         "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
682                         level, slpte);
683             return -VTD_FR_PAGING_ENTRY_RSVD;
684         }
685 
686         if (vtd_is_last_slpte(slpte, level)) {
687             *slptep = slpte;
688             *slpte_level = level;
689             return 0;
690         }
691         addr = vtd_get_slpte_addr(slpte);
692         level--;
693     }
694 }
695 
696 /* Map a device to its corresponding domain (context-entry) */
697 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
698                                     uint8_t devfn, VTDContextEntry *ce)
699 {
700     VTDRootEntry re;
701     int ret_fr;
702 
703     ret_fr = vtd_get_root_entry(s, bus_num, &re);
704     if (ret_fr) {
705         return ret_fr;
706     }
707 
708     if (!vtd_root_entry_present(&re)) {
709         VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
710                     bus_num);
711         return -VTD_FR_ROOT_ENTRY_P;
712     } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
713         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
714                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
715         return -VTD_FR_ROOT_ENTRY_RSVD;
716     }
717 
718     ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
719     if (ret_fr) {
720         return ret_fr;
721     }
722 
723     if (!vtd_context_entry_present(ce)) {
724         VTD_DPRINTF(GENERAL,
725                     "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
726                     "is not present", devfn, bus_num);
727         return -VTD_FR_CONTEXT_ENTRY_P;
728     } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
729                (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
730         VTD_DPRINTF(GENERAL,
731                     "error: non-zero reserved field in context-entry "
732                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
733         return -VTD_FR_CONTEXT_ENTRY_RSVD;
734     }
735     /* Check if the programming of context-entry is valid */
736     if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
737         VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
738                     "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
739                     ce->hi, ce->lo);
740         return -VTD_FR_CONTEXT_ENTRY_INV;
741     } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
742         VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
743                     "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
744                     ce->hi, ce->lo);
745         return -VTD_FR_CONTEXT_ENTRY_INV;
746     }
747     return 0;
748 }
749 
750 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
751 {
752     return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
753 }
754 
755 static const bool vtd_qualified_faults[] = {
756     [VTD_FR_RESERVED] = false,
757     [VTD_FR_ROOT_ENTRY_P] = false,
758     [VTD_FR_CONTEXT_ENTRY_P] = true,
759     [VTD_FR_CONTEXT_ENTRY_INV] = true,
760     [VTD_FR_ADDR_BEYOND_MGAW] = true,
761     [VTD_FR_WRITE] = true,
762     [VTD_FR_READ] = true,
763     [VTD_FR_PAGING_ENTRY_INV] = true,
764     [VTD_FR_ROOT_TABLE_INV] = false,
765     [VTD_FR_CONTEXT_TABLE_INV] = false,
766     [VTD_FR_ROOT_ENTRY_RSVD] = false,
767     [VTD_FR_PAGING_ENTRY_RSVD] = true,
768     [VTD_FR_CONTEXT_ENTRY_TT] = true,
769     [VTD_FR_RESERVED_ERR] = false,
770     [VTD_FR_MAX] = false,
771 };
772 
773 /* To see if a fault condition is "qualified", which is reported to software
774  * only if the FPD field in the context-entry used to process the faulting
775  * request is 0.
776  */
777 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
778 {
779     return vtd_qualified_faults[fault];
780 }
781 
782 static inline bool vtd_is_interrupt_addr(hwaddr addr)
783 {
784     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
785 }
786 
787 /* Map dev to context-entry then do a paging-structures walk to do a iommu
788  * translation.
789  *
790  * Called from RCU critical section.
791  *
792  * @bus_num: The bus number
793  * @devfn: The devfn, which is the  combined of device and function number
794  * @is_write: The access is a write operation
795  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
796  */
797 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
798                                    uint8_t devfn, hwaddr addr, bool is_write,
799                                    IOMMUTLBEntry *entry)
800 {
801     IntelIOMMUState *s = vtd_as->iommu_state;
802     VTDContextEntry ce;
803     uint8_t bus_num = pci_bus_num(bus);
804     VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
805     uint64_t slpte, page_mask;
806     uint32_t level;
807     uint16_t source_id = vtd_make_source_id(bus_num, devfn);
808     int ret_fr;
809     bool is_fpd_set = false;
810     bool reads = true;
811     bool writes = true;
812     VTDIOTLBEntry *iotlb_entry;
813 
814     /* Check if the request is in interrupt address range */
815     if (vtd_is_interrupt_addr(addr)) {
816         if (is_write) {
817             /* FIXME: since we don't know the length of the access here, we
818              * treat Non-DWORD length write requests without PASID as
819              * interrupt requests, too. Withoud interrupt remapping support,
820              * we just use 1:1 mapping.
821              */
822             VTD_DPRINTF(MMU, "write request to interrupt address "
823                         "gpa 0x%"PRIx64, addr);
824             entry->iova = addr & VTD_PAGE_MASK_4K;
825             entry->translated_addr = addr & VTD_PAGE_MASK_4K;
826             entry->addr_mask = ~VTD_PAGE_MASK_4K;
827             entry->perm = IOMMU_WO;
828             return;
829         } else {
830             VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
831                         "gpa 0x%"PRIx64, addr);
832             vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
833             return;
834         }
835     }
836     /* Try to fetch slpte form IOTLB */
837     iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
838     if (iotlb_entry) {
839         VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
840                     " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
841                     iotlb_entry->slpte, iotlb_entry->domain_id);
842         slpte = iotlb_entry->slpte;
843         reads = iotlb_entry->read_flags;
844         writes = iotlb_entry->write_flags;
845         page_mask = iotlb_entry->mask;
846         goto out;
847     }
848     /* Try to fetch context-entry from cache first */
849     if (cc_entry->context_cache_gen == s->context_cache_gen) {
850         VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
851                     "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
852                     bus_num, devfn, cc_entry->context_entry.hi,
853                     cc_entry->context_entry.lo, cc_entry->context_cache_gen);
854         ce = cc_entry->context_entry;
855         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
856     } else {
857         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
858         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
859         if (ret_fr) {
860             ret_fr = -ret_fr;
861             if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
862                 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
863                             "requests through this context-entry "
864                             "(with FPD Set)");
865             } else {
866                 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
867             }
868             return;
869         }
870         /* Update context-cache */
871         VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
872                     "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
873                     bus_num, devfn, ce.hi, ce.lo,
874                     cc_entry->context_cache_gen, s->context_cache_gen);
875         cc_entry->context_entry = ce;
876         cc_entry->context_cache_gen = s->context_cache_gen;
877     }
878 
879     ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
880                               &reads, &writes);
881     if (ret_fr) {
882         ret_fr = -ret_fr;
883         if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
884             VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
885                         "through this context-entry (with FPD Set)");
886         } else {
887             vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
888         }
889         return;
890     }
891 
892     page_mask = vtd_slpt_level_page_mask(level);
893     vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
894                      reads, writes, level);
895 out:
896     entry->iova = addr & page_mask;
897     entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
898     entry->addr_mask = ~page_mask;
899     entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
900 }
901 
902 static void vtd_root_table_setup(IntelIOMMUState *s)
903 {
904     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
905     s->root_extended = s->root & VTD_RTADDR_RTT;
906     s->root &= VTD_RTADDR_ADDR_MASK;
907 
908     VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
909                 (s->root_extended ? "(extended)" : ""));
910 }
911 
912 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
913                                uint32_t index, uint32_t mask)
914 {
915     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
916 }
917 
918 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
919 {
920     uint64_t value = 0;
921     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
922     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
923     s->intr_root = value & VTD_IRTA_ADDR_MASK;
924     s->intr_eime = value & VTD_IRTA_EIME;
925 
926     /* Notify global invalidation */
927     vtd_iec_notify_all(s, true, 0, 0);
928 
929     VTD_DPRINTF(CSR, "int remap table addr 0x%"PRIx64 " size %"PRIu32,
930                 s->intr_root, s->intr_size);
931 }
932 
933 static void vtd_context_global_invalidate(IntelIOMMUState *s)
934 {
935     s->context_cache_gen++;
936     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
937         vtd_reset_context_cache(s);
938     }
939 }
940 
941 
942 /* Find the VTD address space currently associated with a given bus number,
943  */
944 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
945 {
946     VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
947     if (!vtd_bus) {
948         /* Iterate over the registered buses to find the one
949          * which currently hold this bus number, and update the bus_num lookup table:
950          */
951         GHashTableIter iter;
952 
953         g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
954         while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
955             if (pci_bus_num(vtd_bus->bus) == bus_num) {
956                 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
957                 return vtd_bus;
958             }
959         }
960     }
961     return vtd_bus;
962 }
963 
964 /* Do a context-cache device-selective invalidation.
965  * @func_mask: FM field after shifting
966  */
967 static void vtd_context_device_invalidate(IntelIOMMUState *s,
968                                           uint16_t source_id,
969                                           uint16_t func_mask)
970 {
971     uint16_t mask;
972     VTDBus *vtd_bus;
973     VTDAddressSpace *vtd_as;
974     uint16_t devfn;
975     uint16_t devfn_it;
976 
977     switch (func_mask & 3) {
978     case 0:
979         mask = 0;   /* No bits in the SID field masked */
980         break;
981     case 1:
982         mask = 4;   /* Mask bit 2 in the SID field */
983         break;
984     case 2:
985         mask = 6;   /* Mask bit 2:1 in the SID field */
986         break;
987     case 3:
988         mask = 7;   /* Mask bit 2:0 in the SID field */
989         break;
990     }
991     mask = ~mask;
992     VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
993                     " mask %"PRIu16, source_id, mask);
994     vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
995     if (vtd_bus) {
996         devfn = VTD_SID_TO_DEVFN(source_id);
997         for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
998             vtd_as = vtd_bus->dev_as[devfn_it];
999             if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1000                 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
1001                             devfn_it);
1002                 vtd_as->context_cache_entry.context_cache_gen = 0;
1003             }
1004         }
1005     }
1006 }
1007 
1008 /* Context-cache invalidation
1009  * Returns the Context Actual Invalidation Granularity.
1010  * @val: the content of the CCMD_REG
1011  */
1012 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1013 {
1014     uint64_t caig;
1015     uint64_t type = val & VTD_CCMD_CIRG_MASK;
1016 
1017     switch (type) {
1018     case VTD_CCMD_DOMAIN_INVL:
1019         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1020                     (uint16_t)VTD_CCMD_DID(val));
1021         /* Fall through */
1022     case VTD_CCMD_GLOBAL_INVL:
1023         VTD_DPRINTF(INV, "global invalidation");
1024         caig = VTD_CCMD_GLOBAL_INVL_A;
1025         vtd_context_global_invalidate(s);
1026         break;
1027 
1028     case VTD_CCMD_DEVICE_INVL:
1029         caig = VTD_CCMD_DEVICE_INVL_A;
1030         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1031         break;
1032 
1033     default:
1034         VTD_DPRINTF(GENERAL, "error: invalid granularity");
1035         caig = 0;
1036     }
1037     return caig;
1038 }
1039 
1040 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1041 {
1042     vtd_reset_iotlb(s);
1043 }
1044 
1045 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1046 {
1047     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1048                                 &domain_id);
1049 }
1050 
1051 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1052                                       hwaddr addr, uint8_t am)
1053 {
1054     VTDIOTLBPageInvInfo info;
1055 
1056     assert(am <= VTD_MAMV);
1057     info.domain_id = domain_id;
1058     info.addr = addr;
1059     info.mask = ~((1 << am) - 1);
1060     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1061 }
1062 
1063 /* Flush IOTLB
1064  * Returns the IOTLB Actual Invalidation Granularity.
1065  * @val: the content of the IOTLB_REG
1066  */
1067 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1068 {
1069     uint64_t iaig;
1070     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1071     uint16_t domain_id;
1072     hwaddr addr;
1073     uint8_t am;
1074 
1075     switch (type) {
1076     case VTD_TLB_GLOBAL_FLUSH:
1077         VTD_DPRINTF(INV, "global invalidation");
1078         iaig = VTD_TLB_GLOBAL_FLUSH_A;
1079         vtd_iotlb_global_invalidate(s);
1080         break;
1081 
1082     case VTD_TLB_DSI_FLUSH:
1083         domain_id = VTD_TLB_DID(val);
1084         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1085                     domain_id);
1086         iaig = VTD_TLB_DSI_FLUSH_A;
1087         vtd_iotlb_domain_invalidate(s, domain_id);
1088         break;
1089 
1090     case VTD_TLB_PSI_FLUSH:
1091         domain_id = VTD_TLB_DID(val);
1092         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1093         am = VTD_IVA_AM(addr);
1094         addr = VTD_IVA_ADDR(addr);
1095         VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1096                     " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1097         if (am > VTD_MAMV) {
1098             VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1099                         "%"PRIu8, (uint8_t)VTD_MAMV);
1100             iaig = 0;
1101             break;
1102         }
1103         iaig = VTD_TLB_PSI_FLUSH_A;
1104         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1105         break;
1106 
1107     default:
1108         VTD_DPRINTF(GENERAL, "error: invalid granularity");
1109         iaig = 0;
1110     }
1111     return iaig;
1112 }
1113 
1114 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1115 {
1116     return s->iq_tail == 0;
1117 }
1118 
1119 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1120 {
1121     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1122            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1123 }
1124 
1125 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1126 {
1127     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1128 
1129     VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1130     if (en) {
1131         if (vtd_queued_inv_enable_check(s)) {
1132             s->iq = iqa_val & VTD_IQA_IQA_MASK;
1133             /* 2^(x+8) entries */
1134             s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1135             s->qi_enabled = true;
1136             VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1137             VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1138                         s->iq, s->iq_size);
1139             /* Ok - report back to driver */
1140             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1141         } else {
1142             VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1143                         "tail %"PRIu16, s->iq_tail);
1144         }
1145     } else {
1146         if (vtd_queued_inv_disable_check(s)) {
1147             /* disable Queued Invalidation */
1148             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1149             s->iq_head = 0;
1150             s->qi_enabled = false;
1151             /* Ok - report back to driver */
1152             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1153         } else {
1154             VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1155                         "head %"PRIu16 ", tail %"PRIu16
1156                         ", last_descriptor %"PRIu8,
1157                         s->iq_head, s->iq_tail, s->iq_last_desc_type);
1158         }
1159     }
1160 }
1161 
1162 /* Set Root Table Pointer */
1163 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1164 {
1165     VTD_DPRINTF(CSR, "set Root Table Pointer");
1166 
1167     vtd_root_table_setup(s);
1168     /* Ok - report back to driver */
1169     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1170 }
1171 
1172 /* Set Interrupt Remap Table Pointer */
1173 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1174 {
1175     VTD_DPRINTF(CSR, "set Interrupt Remap Table Pointer");
1176 
1177     vtd_interrupt_remap_table_setup(s);
1178     /* Ok - report back to driver */
1179     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1180 }
1181 
1182 /* Handle Translation Enable/Disable */
1183 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1184 {
1185     VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1186 
1187     if (en) {
1188         s->dmar_enabled = true;
1189         /* Ok - report back to driver */
1190         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1191     } else {
1192         s->dmar_enabled = false;
1193 
1194         /* Clear the index of Fault Recording Register */
1195         s->next_frcd_reg = 0;
1196         /* Ok - report back to driver */
1197         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1198     }
1199 }
1200 
1201 /* Handle Interrupt Remap Enable/Disable */
1202 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1203 {
1204     VTD_DPRINTF(CSR, "Interrupt Remap Enable %s", (en ? "on" : "off"));
1205 
1206     if (en) {
1207         s->intr_enabled = true;
1208         /* Ok - report back to driver */
1209         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1210     } else {
1211         s->intr_enabled = false;
1212         /* Ok - report back to driver */
1213         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1214     }
1215 }
1216 
1217 /* Handle write to Global Command Register */
1218 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1219 {
1220     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1221     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1222     uint32_t changed = status ^ val;
1223 
1224     VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1225     if (changed & VTD_GCMD_TE) {
1226         /* Translation enable/disable */
1227         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1228     }
1229     if (val & VTD_GCMD_SRTP) {
1230         /* Set/update the root-table pointer */
1231         vtd_handle_gcmd_srtp(s);
1232     }
1233     if (changed & VTD_GCMD_QIE) {
1234         /* Queued Invalidation Enable */
1235         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1236     }
1237     if (val & VTD_GCMD_SIRTP) {
1238         /* Set/update the interrupt remapping root-table pointer */
1239         vtd_handle_gcmd_sirtp(s);
1240     }
1241     if (changed & VTD_GCMD_IRE) {
1242         /* Interrupt remap enable/disable */
1243         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1244     }
1245 }
1246 
1247 /* Handle write to Context Command Register */
1248 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1249 {
1250     uint64_t ret;
1251     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1252 
1253     /* Context-cache invalidation request */
1254     if (val & VTD_CCMD_ICC) {
1255         if (s->qi_enabled) {
1256             VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1257                         "should not use register-based invalidation");
1258             return;
1259         }
1260         ret = vtd_context_cache_invalidate(s, val);
1261         /* Invalidation completed. Change something to show */
1262         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1263         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1264                                       ret);
1265         VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1266     }
1267 }
1268 
1269 /* Handle write to IOTLB Invalidation Register */
1270 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1271 {
1272     uint64_t ret;
1273     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1274 
1275     /* IOTLB invalidation request */
1276     if (val & VTD_TLB_IVT) {
1277         if (s->qi_enabled) {
1278             VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1279                         "should not use register-based invalidation");
1280             return;
1281         }
1282         ret = vtd_iotlb_flush(s, val);
1283         /* Invalidation completed. Change something to show */
1284         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1285         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1286                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1287         VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1288     }
1289 }
1290 
1291 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1292 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1293                              VTDInvDesc *inv_desc)
1294 {
1295     dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1296     if (dma_memory_read(&address_space_memory, addr, inv_desc,
1297         sizeof(*inv_desc))) {
1298         VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1299                     "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1300         inv_desc->lo = 0;
1301         inv_desc->hi = 0;
1302 
1303         return false;
1304     }
1305     inv_desc->lo = le64_to_cpu(inv_desc->lo);
1306     inv_desc->hi = le64_to_cpu(inv_desc->hi);
1307     return true;
1308 }
1309 
1310 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1311 {
1312     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1313         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1314         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1315                     "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1316                     inv_desc->hi, inv_desc->lo);
1317         return false;
1318     }
1319     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1320         /* Status Write */
1321         uint32_t status_data = (uint32_t)(inv_desc->lo >>
1322                                VTD_INV_DESC_WAIT_DATA_SHIFT);
1323 
1324         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1325 
1326         /* FIXME: need to be masked with HAW? */
1327         dma_addr_t status_addr = inv_desc->hi;
1328         VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1329                     status_data, status_addr);
1330         status_data = cpu_to_le32(status_data);
1331         if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1332                              sizeof(status_data))) {
1333             VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1334             return false;
1335         }
1336     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1337         /* Interrupt flag */
1338         VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1339         vtd_generate_completion_event(s);
1340     } else {
1341         VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1342                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1343         return false;
1344     }
1345     return true;
1346 }
1347 
1348 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1349                                            VTDInvDesc *inv_desc)
1350 {
1351     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1352         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1353                     "Invalidate Descriptor");
1354         return false;
1355     }
1356     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1357     case VTD_INV_DESC_CC_DOMAIN:
1358         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1359                     (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1360         /* Fall through */
1361     case VTD_INV_DESC_CC_GLOBAL:
1362         VTD_DPRINTF(INV, "global invalidation");
1363         vtd_context_global_invalidate(s);
1364         break;
1365 
1366     case VTD_INV_DESC_CC_DEVICE:
1367         vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1368                                       VTD_INV_DESC_CC_FM(inv_desc->lo));
1369         break;
1370 
1371     default:
1372         VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1373                     "Invalidate Descriptor hi 0x%"PRIx64  " lo 0x%"PRIx64,
1374                     inv_desc->hi, inv_desc->lo);
1375         return false;
1376     }
1377     return true;
1378 }
1379 
1380 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1381 {
1382     uint16_t domain_id;
1383     uint8_t am;
1384     hwaddr addr;
1385 
1386     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1387         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1388         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1389                     "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1390                     inv_desc->hi, inv_desc->lo);
1391         return false;
1392     }
1393 
1394     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1395     case VTD_INV_DESC_IOTLB_GLOBAL:
1396         VTD_DPRINTF(INV, "global invalidation");
1397         vtd_iotlb_global_invalidate(s);
1398         break;
1399 
1400     case VTD_INV_DESC_IOTLB_DOMAIN:
1401         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1402         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1403                     domain_id);
1404         vtd_iotlb_domain_invalidate(s, domain_id);
1405         break;
1406 
1407     case VTD_INV_DESC_IOTLB_PAGE:
1408         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1409         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1410         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1411         VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1412                     " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1413         if (am > VTD_MAMV) {
1414             VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1415                         "%"PRIu8, (uint8_t)VTD_MAMV);
1416             return false;
1417         }
1418         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1419         break;
1420 
1421     default:
1422         VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1423                     "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1424                     inv_desc->hi, inv_desc->lo);
1425         return false;
1426     }
1427     return true;
1428 }
1429 
1430 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1431                                      VTDInvDesc *inv_desc)
1432 {
1433     VTD_DPRINTF(INV, "inv ir glob %d index %d mask %d",
1434                 inv_desc->iec.granularity,
1435                 inv_desc->iec.index,
1436                 inv_desc->iec.index_mask);
1437 
1438     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1439                        inv_desc->iec.index,
1440                        inv_desc->iec.index_mask);
1441 
1442     return true;
1443 }
1444 
1445 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1446 {
1447     VTDInvDesc inv_desc;
1448     uint8_t desc_type;
1449 
1450     VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1451     if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1452         s->iq_last_desc_type = VTD_INV_DESC_NONE;
1453         return false;
1454     }
1455     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1456     /* FIXME: should update at first or at last? */
1457     s->iq_last_desc_type = desc_type;
1458 
1459     switch (desc_type) {
1460     case VTD_INV_DESC_CC:
1461         VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1462                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1463         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1464             return false;
1465         }
1466         break;
1467 
1468     case VTD_INV_DESC_IOTLB:
1469         VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1470                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1471         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1472             return false;
1473         }
1474         break;
1475 
1476     case VTD_INV_DESC_WAIT:
1477         VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1478                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1479         if (!vtd_process_wait_desc(s, &inv_desc)) {
1480             return false;
1481         }
1482         break;
1483 
1484     case VTD_INV_DESC_IEC:
1485         VTD_DPRINTF(INV, "Invalidation Interrupt Entry Cache "
1486                     "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1487                     inv_desc.hi, inv_desc.lo);
1488         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1489             return false;
1490         }
1491         break;
1492 
1493     default:
1494         VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1495                     "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1496                     inv_desc.hi, inv_desc.lo, desc_type);
1497         return false;
1498     }
1499     s->iq_head++;
1500     if (s->iq_head == s->iq_size) {
1501         s->iq_head = 0;
1502     }
1503     return true;
1504 }
1505 
1506 /* Try to fetch and process more Invalidation Descriptors */
1507 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1508 {
1509     VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1510     if (s->iq_tail >= s->iq_size) {
1511         /* Detects an invalid Tail pointer */
1512         VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1513                     " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1514         vtd_handle_inv_queue_error(s);
1515         return;
1516     }
1517     while (s->iq_head != s->iq_tail) {
1518         if (!vtd_process_inv_desc(s)) {
1519             /* Invalidation Queue Errors */
1520             vtd_handle_inv_queue_error(s);
1521             break;
1522         }
1523         /* Must update the IQH_REG in time */
1524         vtd_set_quad_raw(s, DMAR_IQH_REG,
1525                          (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1526                          VTD_IQH_QH_MASK);
1527     }
1528 }
1529 
1530 /* Handle write to Invalidation Queue Tail Register */
1531 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1532 {
1533     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1534 
1535     s->iq_tail = VTD_IQT_QT(val);
1536     VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1537     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1538         /* Process Invalidation Queue here */
1539         vtd_fetch_inv_desc(s);
1540     }
1541 }
1542 
1543 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1544 {
1545     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1546     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1547     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1548 
1549     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1550         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1551         VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1552                     "IP field of FECTL_REG");
1553     }
1554     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1555      * Descriptors if there are any when Queued Invalidation is enabled?
1556      */
1557 }
1558 
1559 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1560 {
1561     uint32_t fectl_reg;
1562     /* FIXME: when software clears the IM field, check the IP field. But do we
1563      * need to compare the old value and the new value to conclude that
1564      * software clears the IM field? Or just check if the IM field is zero?
1565      */
1566     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1567     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1568         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1569         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1570         VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1571                     "fault event interrupt");
1572     }
1573 }
1574 
1575 static void vtd_handle_ics_write(IntelIOMMUState *s)
1576 {
1577     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1578     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1579 
1580     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1581         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1582         VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1583                     "clear IP field of IECTL_REG");
1584     }
1585 }
1586 
1587 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1588 {
1589     uint32_t iectl_reg;
1590     /* FIXME: when software clears the IM field, check the IP field. But do we
1591      * need to compare the old value and the new value to conclude that
1592      * software clears the IM field? Or just check if the IM field is zero?
1593      */
1594     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1595     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1596         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1597         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1598         VTD_DPRINTF(INV, "IM field is cleared, generate "
1599                     "invalidation event interrupt");
1600     }
1601 }
1602 
1603 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1604 {
1605     IntelIOMMUState *s = opaque;
1606     uint64_t val;
1607 
1608     if (addr + size > DMAR_REG_SIZE) {
1609         VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1610                     ", got 0x%"PRIx64 " %d",
1611                     (uint64_t)DMAR_REG_SIZE, addr, size);
1612         return (uint64_t)-1;
1613     }
1614 
1615     switch (addr) {
1616     /* Root Table Address Register, 64-bit */
1617     case DMAR_RTADDR_REG:
1618         if (size == 4) {
1619             val = s->root & ((1ULL << 32) - 1);
1620         } else {
1621             val = s->root;
1622         }
1623         break;
1624 
1625     case DMAR_RTADDR_REG_HI:
1626         assert(size == 4);
1627         val = s->root >> 32;
1628         break;
1629 
1630     /* Invalidation Queue Address Register, 64-bit */
1631     case DMAR_IQA_REG:
1632         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1633         if (size == 4) {
1634             val = val & ((1ULL << 32) - 1);
1635         }
1636         break;
1637 
1638     case DMAR_IQA_REG_HI:
1639         assert(size == 4);
1640         val = s->iq >> 32;
1641         break;
1642 
1643     default:
1644         if (size == 4) {
1645             val = vtd_get_long(s, addr);
1646         } else {
1647             val = vtd_get_quad(s, addr);
1648         }
1649     }
1650     VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1651                 addr, size, val);
1652     return val;
1653 }
1654 
1655 static void vtd_mem_write(void *opaque, hwaddr addr,
1656                           uint64_t val, unsigned size)
1657 {
1658     IntelIOMMUState *s = opaque;
1659 
1660     if (addr + size > DMAR_REG_SIZE) {
1661         VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1662                     ", got 0x%"PRIx64 " %d",
1663                     (uint64_t)DMAR_REG_SIZE, addr, size);
1664         return;
1665     }
1666 
1667     switch (addr) {
1668     /* Global Command Register, 32-bit */
1669     case DMAR_GCMD_REG:
1670         VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1671                     ", size %d, val 0x%"PRIx64, addr, size, val);
1672         vtd_set_long(s, addr, val);
1673         vtd_handle_gcmd_write(s);
1674         break;
1675 
1676     /* Context Command Register, 64-bit */
1677     case DMAR_CCMD_REG:
1678         VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1679                     ", size %d, val 0x%"PRIx64, addr, size, val);
1680         if (size == 4) {
1681             vtd_set_long(s, addr, val);
1682         } else {
1683             vtd_set_quad(s, addr, val);
1684             vtd_handle_ccmd_write(s);
1685         }
1686         break;
1687 
1688     case DMAR_CCMD_REG_HI:
1689         VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1690                     ", size %d, val 0x%"PRIx64, addr, size, val);
1691         assert(size == 4);
1692         vtd_set_long(s, addr, val);
1693         vtd_handle_ccmd_write(s);
1694         break;
1695 
1696     /* IOTLB Invalidation Register, 64-bit */
1697     case DMAR_IOTLB_REG:
1698         VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1699                     ", size %d, val 0x%"PRIx64, addr, size, val);
1700         if (size == 4) {
1701             vtd_set_long(s, addr, val);
1702         } else {
1703             vtd_set_quad(s, addr, val);
1704             vtd_handle_iotlb_write(s);
1705         }
1706         break;
1707 
1708     case DMAR_IOTLB_REG_HI:
1709         VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1710                     ", size %d, val 0x%"PRIx64, addr, size, val);
1711         assert(size == 4);
1712         vtd_set_long(s, addr, val);
1713         vtd_handle_iotlb_write(s);
1714         break;
1715 
1716     /* Invalidate Address Register, 64-bit */
1717     case DMAR_IVA_REG:
1718         VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1719                     ", size %d, val 0x%"PRIx64, addr, size, val);
1720         if (size == 4) {
1721             vtd_set_long(s, addr, val);
1722         } else {
1723             vtd_set_quad(s, addr, val);
1724         }
1725         break;
1726 
1727     case DMAR_IVA_REG_HI:
1728         VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1729                     ", size %d, val 0x%"PRIx64, addr, size, val);
1730         assert(size == 4);
1731         vtd_set_long(s, addr, val);
1732         break;
1733 
1734     /* Fault Status Register, 32-bit */
1735     case DMAR_FSTS_REG:
1736         VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1737                     ", size %d, val 0x%"PRIx64, addr, size, val);
1738         assert(size == 4);
1739         vtd_set_long(s, addr, val);
1740         vtd_handle_fsts_write(s);
1741         break;
1742 
1743     /* Fault Event Control Register, 32-bit */
1744     case DMAR_FECTL_REG:
1745         VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1746                     ", size %d, val 0x%"PRIx64, addr, size, val);
1747         assert(size == 4);
1748         vtd_set_long(s, addr, val);
1749         vtd_handle_fectl_write(s);
1750         break;
1751 
1752     /* Fault Event Data Register, 32-bit */
1753     case DMAR_FEDATA_REG:
1754         VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1755                     ", size %d, val 0x%"PRIx64, addr, size, val);
1756         assert(size == 4);
1757         vtd_set_long(s, addr, val);
1758         break;
1759 
1760     /* Fault Event Address Register, 32-bit */
1761     case DMAR_FEADDR_REG:
1762         VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1763                     ", size %d, val 0x%"PRIx64, addr, size, val);
1764         assert(size == 4);
1765         vtd_set_long(s, addr, val);
1766         break;
1767 
1768     /* Fault Event Upper Address Register, 32-bit */
1769     case DMAR_FEUADDR_REG:
1770         VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1771                     ", size %d, val 0x%"PRIx64, addr, size, val);
1772         assert(size == 4);
1773         vtd_set_long(s, addr, val);
1774         break;
1775 
1776     /* Protected Memory Enable Register, 32-bit */
1777     case DMAR_PMEN_REG:
1778         VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1779                     ", size %d, val 0x%"PRIx64, addr, size, val);
1780         assert(size == 4);
1781         vtd_set_long(s, addr, val);
1782         break;
1783 
1784     /* Root Table Address Register, 64-bit */
1785     case DMAR_RTADDR_REG:
1786         VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1787                     ", size %d, val 0x%"PRIx64, addr, size, val);
1788         if (size == 4) {
1789             vtd_set_long(s, addr, val);
1790         } else {
1791             vtd_set_quad(s, addr, val);
1792         }
1793         break;
1794 
1795     case DMAR_RTADDR_REG_HI:
1796         VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1797                     ", size %d, val 0x%"PRIx64, addr, size, val);
1798         assert(size == 4);
1799         vtd_set_long(s, addr, val);
1800         break;
1801 
1802     /* Invalidation Queue Tail Register, 64-bit */
1803     case DMAR_IQT_REG:
1804         VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1805                     ", size %d, val 0x%"PRIx64, addr, size, val);
1806         if (size == 4) {
1807             vtd_set_long(s, addr, val);
1808         } else {
1809             vtd_set_quad(s, addr, val);
1810         }
1811         vtd_handle_iqt_write(s);
1812         break;
1813 
1814     case DMAR_IQT_REG_HI:
1815         VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1816                     ", size %d, val 0x%"PRIx64, addr, size, val);
1817         assert(size == 4);
1818         vtd_set_long(s, addr, val);
1819         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1820         break;
1821 
1822     /* Invalidation Queue Address Register, 64-bit */
1823     case DMAR_IQA_REG:
1824         VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1825                     ", size %d, val 0x%"PRIx64, addr, size, val);
1826         if (size == 4) {
1827             vtd_set_long(s, addr, val);
1828         } else {
1829             vtd_set_quad(s, addr, val);
1830         }
1831         break;
1832 
1833     case DMAR_IQA_REG_HI:
1834         VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1835                     ", size %d, val 0x%"PRIx64, addr, size, val);
1836         assert(size == 4);
1837         vtd_set_long(s, addr, val);
1838         break;
1839 
1840     /* Invalidation Completion Status Register, 32-bit */
1841     case DMAR_ICS_REG:
1842         VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1843                     ", size %d, val 0x%"PRIx64, addr, size, val);
1844         assert(size == 4);
1845         vtd_set_long(s, addr, val);
1846         vtd_handle_ics_write(s);
1847         break;
1848 
1849     /* Invalidation Event Control Register, 32-bit */
1850     case DMAR_IECTL_REG:
1851         VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1852                     ", size %d, val 0x%"PRIx64, addr, size, val);
1853         assert(size == 4);
1854         vtd_set_long(s, addr, val);
1855         vtd_handle_iectl_write(s);
1856         break;
1857 
1858     /* Invalidation Event Data Register, 32-bit */
1859     case DMAR_IEDATA_REG:
1860         VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1861                     ", size %d, val 0x%"PRIx64, addr, size, val);
1862         assert(size == 4);
1863         vtd_set_long(s, addr, val);
1864         break;
1865 
1866     /* Invalidation Event Address Register, 32-bit */
1867     case DMAR_IEADDR_REG:
1868         VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1869                     ", size %d, val 0x%"PRIx64, addr, size, val);
1870         assert(size == 4);
1871         vtd_set_long(s, addr, val);
1872         break;
1873 
1874     /* Invalidation Event Upper Address Register, 32-bit */
1875     case DMAR_IEUADDR_REG:
1876         VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1877                     ", size %d, val 0x%"PRIx64, addr, size, val);
1878         assert(size == 4);
1879         vtd_set_long(s, addr, val);
1880         break;
1881 
1882     /* Fault Recording Registers, 128-bit */
1883     case DMAR_FRCD_REG_0_0:
1884         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1885                     ", size %d, val 0x%"PRIx64, addr, size, val);
1886         if (size == 4) {
1887             vtd_set_long(s, addr, val);
1888         } else {
1889             vtd_set_quad(s, addr, val);
1890         }
1891         break;
1892 
1893     case DMAR_FRCD_REG_0_1:
1894         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1895                     ", size %d, val 0x%"PRIx64, addr, size, val);
1896         assert(size == 4);
1897         vtd_set_long(s, addr, val);
1898         break;
1899 
1900     case DMAR_FRCD_REG_0_2:
1901         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1902                     ", size %d, val 0x%"PRIx64, addr, size, val);
1903         if (size == 4) {
1904             vtd_set_long(s, addr, val);
1905         } else {
1906             vtd_set_quad(s, addr, val);
1907             /* May clear bit 127 (Fault), update PPF */
1908             vtd_update_fsts_ppf(s);
1909         }
1910         break;
1911 
1912     case DMAR_FRCD_REG_0_3:
1913         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1914                     ", size %d, val 0x%"PRIx64, addr, size, val);
1915         assert(size == 4);
1916         vtd_set_long(s, addr, val);
1917         /* May clear bit 127 (Fault), update PPF */
1918         vtd_update_fsts_ppf(s);
1919         break;
1920 
1921     case DMAR_IRTA_REG:
1922         VTD_DPRINTF(IR, "DMAR_IRTA_REG write addr 0x%"PRIx64
1923                     ", size %d, val 0x%"PRIx64, addr, size, val);
1924         if (size == 4) {
1925             vtd_set_long(s, addr, val);
1926         } else {
1927             vtd_set_quad(s, addr, val);
1928         }
1929         break;
1930 
1931     case DMAR_IRTA_REG_HI:
1932         VTD_DPRINTF(IR, "DMAR_IRTA_REG_HI write addr 0x%"PRIx64
1933                     ", size %d, val 0x%"PRIx64, addr, size, val);
1934         assert(size == 4);
1935         vtd_set_long(s, addr, val);
1936         break;
1937 
1938     default:
1939         VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1940                     ", size %d, val 0x%"PRIx64, addr, size, val);
1941         if (size == 4) {
1942             vtd_set_long(s, addr, val);
1943         } else {
1944             vtd_set_quad(s, addr, val);
1945         }
1946     }
1947 }
1948 
1949 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1950                                          bool is_write)
1951 {
1952     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1953     IntelIOMMUState *s = vtd_as->iommu_state;
1954     IOMMUTLBEntry ret = {
1955         .target_as = &address_space_memory,
1956         .iova = addr,
1957         .translated_addr = 0,
1958         .addr_mask = ~(hwaddr)0,
1959         .perm = IOMMU_NONE,
1960     };
1961 
1962     if (!s->dmar_enabled) {
1963         /* DMAR disabled, passthrough, use 4k-page*/
1964         ret.iova = addr & VTD_PAGE_MASK_4K;
1965         ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1966         ret.addr_mask = ~VTD_PAGE_MASK_4K;
1967         ret.perm = IOMMU_RW;
1968         return ret;
1969     }
1970 
1971     vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1972                            is_write, &ret);
1973     VTD_DPRINTF(MMU,
1974                 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1975                 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1976                 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1977                 vtd_as->devfn, addr, ret.translated_addr);
1978     return ret;
1979 }
1980 
1981 static void vtd_iommu_notify_flag_changed(MemoryRegion *iommu,
1982                                           IOMMUNotifierFlag old,
1983                                           IOMMUNotifierFlag new)
1984 {
1985     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1986 
1987     if (new & IOMMU_NOTIFIER_MAP) {
1988         error_report("Device at bus %s addr %02x.%d requires iommu "
1989                      "notifier which is currently not supported by "
1990                      "intel-iommu emulation",
1991                      vtd_as->bus->qbus.name, PCI_SLOT(vtd_as->devfn),
1992                      PCI_FUNC(vtd_as->devfn));
1993         exit(1);
1994     }
1995 }
1996 
1997 static const VMStateDescription vtd_vmstate = {
1998     .name = "iommu-intel",
1999     .unmigratable = 1,
2000 };
2001 
2002 static const MemoryRegionOps vtd_mem_ops = {
2003     .read = vtd_mem_read,
2004     .write = vtd_mem_write,
2005     .endianness = DEVICE_LITTLE_ENDIAN,
2006     .impl = {
2007         .min_access_size = 4,
2008         .max_access_size = 8,
2009     },
2010     .valid = {
2011         .min_access_size = 4,
2012         .max_access_size = 8,
2013     },
2014 };
2015 
2016 static Property vtd_properties[] = {
2017     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2018     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2019                             ON_OFF_AUTO_AUTO),
2020     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2021     DEFINE_PROP_END_OF_LIST(),
2022 };
2023 
2024 /* Read IRTE entry with specific index */
2025 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2026                         VTD_IR_TableEntry *entry, uint16_t sid)
2027 {
2028     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2029         {0xffff, 0xfffb, 0xfff9, 0xfff8};
2030     dma_addr_t addr = 0x00;
2031     uint16_t mask, source_id;
2032     uint8_t bus, bus_max, bus_min;
2033 
2034     addr = iommu->intr_root + index * sizeof(*entry);
2035     if (dma_memory_read(&address_space_memory, addr, entry,
2036                         sizeof(*entry))) {
2037         VTD_DPRINTF(GENERAL, "error: fail to access IR root at 0x%"PRIx64
2038                     " + %"PRIu16, iommu->intr_root, index);
2039         return -VTD_FR_IR_ROOT_INVAL;
2040     }
2041 
2042     if (!entry->irte.present) {
2043         VTD_DPRINTF(GENERAL, "error: present flag not set in IRTE"
2044                     " entry index %u value 0x%"PRIx64 " 0x%"PRIx64,
2045                     index, le64_to_cpu(entry->data[1]),
2046                     le64_to_cpu(entry->data[0]));
2047         return -VTD_FR_IR_ENTRY_P;
2048     }
2049 
2050     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2051         entry->irte.__reserved_2) {
2052         VTD_DPRINTF(GENERAL, "error: IRTE entry index %"PRIu16
2053                     " reserved fields non-zero: 0x%"PRIx64 " 0x%"PRIx64,
2054                     index, le64_to_cpu(entry->data[1]),
2055                     le64_to_cpu(entry->data[0]));
2056         return -VTD_FR_IR_IRTE_RSVD;
2057     }
2058 
2059     if (sid != X86_IOMMU_SID_INVALID) {
2060         /* Validate IRTE SID */
2061         source_id = le32_to_cpu(entry->irte.source_id);
2062         switch (entry->irte.sid_vtype) {
2063         case VTD_SVT_NONE:
2064             VTD_DPRINTF(IR, "No SID validation for IRTE index %d", index);
2065             break;
2066 
2067         case VTD_SVT_ALL:
2068             mask = vtd_svt_mask[entry->irte.sid_q];
2069             if ((source_id & mask) != (sid & mask)) {
2070                 VTD_DPRINTF(GENERAL, "SID validation for IRTE index "
2071                             "%d failed (reqid 0x%04x sid 0x%04x)", index,
2072                             sid, source_id);
2073                 return -VTD_FR_IR_SID_ERR;
2074             }
2075             break;
2076 
2077         case VTD_SVT_BUS:
2078             bus_max = source_id >> 8;
2079             bus_min = source_id & 0xff;
2080             bus = sid >> 8;
2081             if (bus > bus_max || bus < bus_min) {
2082                 VTD_DPRINTF(GENERAL, "SID validation for IRTE index %d "
2083                             "failed (bus %d outside %d-%d)", index, bus,
2084                             bus_min, bus_max);
2085                 return -VTD_FR_IR_SID_ERR;
2086             }
2087             break;
2088 
2089         default:
2090             VTD_DPRINTF(GENERAL, "Invalid SVT bits (0x%x) in IRTE index "
2091                         "%d", entry->irte.sid_vtype, index);
2092             /* Take this as verification failure. */
2093             return -VTD_FR_IR_SID_ERR;
2094             break;
2095         }
2096     }
2097 
2098     return 0;
2099 }
2100 
2101 /* Fetch IRQ information of specific IR index */
2102 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2103                              VTDIrq *irq, uint16_t sid)
2104 {
2105     VTD_IR_TableEntry irte = {};
2106     int ret = 0;
2107 
2108     ret = vtd_irte_get(iommu, index, &irte, sid);
2109     if (ret) {
2110         return ret;
2111     }
2112 
2113     irq->trigger_mode = irte.irte.trigger_mode;
2114     irq->vector = irte.irte.vector;
2115     irq->delivery_mode = irte.irte.delivery_mode;
2116     irq->dest = le32_to_cpu(irte.irte.dest_id);
2117     if (!iommu->intr_eime) {
2118 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
2119 #define  VTD_IR_APIC_DEST_SHIFT        (8)
2120         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2121             VTD_IR_APIC_DEST_SHIFT;
2122     }
2123     irq->dest_mode = irte.irte.dest_mode;
2124     irq->redir_hint = irte.irte.redir_hint;
2125 
2126     VTD_DPRINTF(IR, "remapping interrupt index %d: trig:%u,vec:%u,"
2127                 "deliver:%u,dest:%u,dest_mode:%u", index,
2128                 irq->trigger_mode, irq->vector, irq->delivery_mode,
2129                 irq->dest, irq->dest_mode);
2130 
2131     return 0;
2132 }
2133 
2134 /* Generate one MSI message from VTDIrq info */
2135 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2136 {
2137     VTD_MSIMessage msg = {};
2138 
2139     /* Generate address bits */
2140     msg.dest_mode = irq->dest_mode;
2141     msg.redir_hint = irq->redir_hint;
2142     msg.dest = irq->dest;
2143     msg.__addr_hi = irq->dest & 0xffffff00;
2144     msg.__addr_head = cpu_to_le32(0xfee);
2145     /* Keep this from original MSI address bits */
2146     msg.__not_used = irq->msi_addr_last_bits;
2147 
2148     /* Generate data bits */
2149     msg.vector = irq->vector;
2150     msg.delivery_mode = irq->delivery_mode;
2151     msg.level = 1;
2152     msg.trigger_mode = irq->trigger_mode;
2153 
2154     msg_out->address = msg.msi_addr;
2155     msg_out->data = msg.msi_data;
2156 }
2157 
2158 /* Interrupt remapping for MSI/MSI-X entry */
2159 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2160                                    MSIMessage *origin,
2161                                    MSIMessage *translated,
2162                                    uint16_t sid)
2163 {
2164     int ret = 0;
2165     VTD_IR_MSIAddress addr;
2166     uint16_t index;
2167     VTDIrq irq = {};
2168 
2169     assert(origin && translated);
2170 
2171     if (!iommu || !iommu->intr_enabled) {
2172         goto do_not_translate;
2173     }
2174 
2175     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2176         VTD_DPRINTF(GENERAL, "error: MSI addr high 32 bits nonzero"
2177                     " during interrupt remapping: 0x%"PRIx32,
2178                     (uint32_t)((origin->address & VTD_MSI_ADDR_HI_MASK) >> \
2179                     VTD_MSI_ADDR_HI_SHIFT));
2180         return -VTD_FR_IR_REQ_RSVD;
2181     }
2182 
2183     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2184     if (addr.addr.__head != 0xfee) {
2185         VTD_DPRINTF(GENERAL, "error: MSI addr low 32 bits invalid: "
2186                     "0x%"PRIx32, addr.data);
2187         return -VTD_FR_IR_REQ_RSVD;
2188     }
2189 
2190     /* This is compatible mode. */
2191     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2192         goto do_not_translate;
2193     }
2194 
2195     index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2196 
2197 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
2198 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
2199 
2200     if (addr.addr.sub_valid) {
2201         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2202         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2203     }
2204 
2205     ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2206     if (ret) {
2207         return ret;
2208     }
2209 
2210     if (addr.addr.sub_valid) {
2211         VTD_DPRINTF(IR, "received MSI interrupt");
2212         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2213             VTD_DPRINTF(GENERAL, "error: MSI data bits non-zero for "
2214                         "interrupt remappable entry: 0x%"PRIx32,
2215                         origin->data);
2216             return -VTD_FR_IR_REQ_RSVD;
2217         }
2218     } else {
2219         uint8_t vector = origin->data & 0xff;
2220         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2221 
2222         VTD_DPRINTF(IR, "received IOAPIC interrupt");
2223         /* IOAPIC entry vector should be aligned with IRTE vector
2224          * (see vt-d spec 5.1.5.1). */
2225         if (vector != irq.vector) {
2226             VTD_DPRINTF(GENERAL, "IOAPIC vector inconsistent: "
2227                         "entry: %d, IRTE: %d, index: %d",
2228                         vector, irq.vector, index);
2229         }
2230 
2231         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2232          * (see vt-d spec 5.1.5.1). */
2233         if (trigger_mode != irq.trigger_mode) {
2234             VTD_DPRINTF(GENERAL, "IOAPIC trigger mode inconsistent: "
2235                         "entry: %u, IRTE: %u, index: %d",
2236                         trigger_mode, irq.trigger_mode, index);
2237         }
2238 
2239     }
2240 
2241     /*
2242      * We'd better keep the last two bits, assuming that guest OS
2243      * might modify it. Keep it does not hurt after all.
2244      */
2245     irq.msi_addr_last_bits = addr.addr.__not_care;
2246 
2247     /* Translate VTDIrq to MSI message */
2248     vtd_generate_msi_message(&irq, translated);
2249 
2250     VTD_DPRINTF(IR, "mapping MSI 0x%"PRIx64":0x%"PRIx32 " -> "
2251                 "0x%"PRIx64":0x%"PRIx32, origin->address, origin->data,
2252                 translated->address, translated->data);
2253     return 0;
2254 
2255 do_not_translate:
2256     memcpy(translated, origin, sizeof(*origin));
2257     return 0;
2258 }
2259 
2260 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2261                          MSIMessage *dst, uint16_t sid)
2262 {
2263     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2264                                    src, dst, sid);
2265 }
2266 
2267 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2268                                    uint64_t *data, unsigned size,
2269                                    MemTxAttrs attrs)
2270 {
2271     return MEMTX_OK;
2272 }
2273 
2274 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2275                                     uint64_t value, unsigned size,
2276                                     MemTxAttrs attrs)
2277 {
2278     int ret = 0;
2279     MSIMessage from = {}, to = {};
2280     uint16_t sid = X86_IOMMU_SID_INVALID;
2281 
2282     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2283     from.data = (uint32_t) value;
2284 
2285     if (!attrs.unspecified) {
2286         /* We have explicit Source ID */
2287         sid = attrs.requester_id;
2288     }
2289 
2290     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2291     if (ret) {
2292         /* TODO: report error */
2293         VTD_DPRINTF(GENERAL, "int remap fail for addr 0x%"PRIx64
2294                     " data 0x%"PRIx32, from.address, from.data);
2295         /* Drop this interrupt */
2296         return MEMTX_ERROR;
2297     }
2298 
2299     VTD_DPRINTF(IR, "delivering MSI 0x%"PRIx64":0x%"PRIx32
2300                 " for device sid 0x%04x",
2301                 to.address, to.data, sid);
2302 
2303     apic_get_class()->send_msi(&to);
2304 
2305     return MEMTX_OK;
2306 }
2307 
2308 static const MemoryRegionOps vtd_mem_ir_ops = {
2309     .read_with_attrs = vtd_mem_ir_read,
2310     .write_with_attrs = vtd_mem_ir_write,
2311     .endianness = DEVICE_LITTLE_ENDIAN,
2312     .impl = {
2313         .min_access_size = 4,
2314         .max_access_size = 4,
2315     },
2316     .valid = {
2317         .min_access_size = 4,
2318         .max_access_size = 4,
2319     },
2320 };
2321 
2322 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2323 {
2324     uintptr_t key = (uintptr_t)bus;
2325     VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2326     VTDAddressSpace *vtd_dev_as;
2327 
2328     if (!vtd_bus) {
2329         /* No corresponding free() */
2330         vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2331                             X86_IOMMU_PCI_DEVFN_MAX);
2332         vtd_bus->bus = bus;
2333         key = (uintptr_t)bus;
2334         g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
2335     }
2336 
2337     vtd_dev_as = vtd_bus->dev_as[devfn];
2338 
2339     if (!vtd_dev_as) {
2340         vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2341 
2342         vtd_dev_as->bus = bus;
2343         vtd_dev_as->devfn = (uint8_t)devfn;
2344         vtd_dev_as->iommu_state = s;
2345         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2346         memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
2347                                  &s->iommu_ops, "intel_iommu", UINT64_MAX);
2348         memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2349                               &vtd_mem_ir_ops, s, "intel_iommu_ir",
2350                               VTD_INTERRUPT_ADDR_SIZE);
2351         memory_region_add_subregion(&vtd_dev_as->iommu, VTD_INTERRUPT_ADDR_FIRST,
2352                                     &vtd_dev_as->iommu_ir);
2353         address_space_init(&vtd_dev_as->as,
2354                            &vtd_dev_as->iommu, "intel_iommu");
2355     }
2356     return vtd_dev_as;
2357 }
2358 
2359 /* Do the initialization. It will also be called when reset, so pay
2360  * attention when adding new initialization stuff.
2361  */
2362 static void vtd_init(IntelIOMMUState *s)
2363 {
2364     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2365 
2366     memset(s->csr, 0, DMAR_REG_SIZE);
2367     memset(s->wmask, 0, DMAR_REG_SIZE);
2368     memset(s->w1cmask, 0, DMAR_REG_SIZE);
2369     memset(s->womask, 0, DMAR_REG_SIZE);
2370 
2371     s->iommu_ops.translate = vtd_iommu_translate;
2372     s->iommu_ops.notify_flag_changed = vtd_iommu_notify_flag_changed;
2373     s->root = 0;
2374     s->root_extended = false;
2375     s->dmar_enabled = false;
2376     s->iq_head = 0;
2377     s->iq_tail = 0;
2378     s->iq = 0;
2379     s->iq_size = 0;
2380     s->qi_enabled = false;
2381     s->iq_last_desc_type = VTD_INV_DESC_NONE;
2382     s->next_frcd_reg = 0;
2383     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2384              VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2385     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2386 
2387     if (x86_iommu->intr_supported) {
2388         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2389         if (s->intr_eim == ON_OFF_AUTO_ON) {
2390             s->ecap |= VTD_ECAP_EIM;
2391         }
2392         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2393     }
2394 
2395     vtd_reset_context_cache(s);
2396     vtd_reset_iotlb(s);
2397 
2398     /* Define registers with default values and bit semantics */
2399     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2400     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2401     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2402     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2403     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2404     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2405     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2406     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2407     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2408 
2409     /* Advanced Fault Logging not supported */
2410     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2411     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2412     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2413     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2414 
2415     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2416      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2417      */
2418     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2419 
2420     /* Treated as RO for implementations that PLMR and PHMR fields reported
2421      * as Clear in the CAP_REG.
2422      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2423      */
2424     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2425 
2426     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2427     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2428     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2429     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2430     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2431     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2432     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2433     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2434     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2435 
2436     /* IOTLB registers */
2437     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2438     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2439     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2440 
2441     /* Fault Recording Registers, 128-bit */
2442     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2443     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2444 
2445     /*
2446      * Interrupt remapping registers.
2447      */
2448     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2449 }
2450 
2451 /* Should not reset address_spaces when reset because devices will still use
2452  * the address space they got at first (won't ask the bus again).
2453  */
2454 static void vtd_reset(DeviceState *dev)
2455 {
2456     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2457 
2458     VTD_DPRINTF(GENERAL, "");
2459     vtd_init(s);
2460 }
2461 
2462 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2463 {
2464     IntelIOMMUState *s = opaque;
2465     VTDAddressSpace *vtd_as;
2466 
2467     assert(0 <= devfn && devfn < X86_IOMMU_PCI_DEVFN_MAX);
2468 
2469     vtd_as = vtd_find_add_as(s, bus, devfn);
2470     return &vtd_as->as;
2471 }
2472 
2473 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
2474 {
2475     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2476 
2477     /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2478     if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2479         !kvm_irqchip_is_split()) {
2480         error_setg(errp, "Intel Interrupt Remapping cannot work with "
2481                          "kernel-irqchip=on, please use 'split|off'.");
2482         return false;
2483     }
2484     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
2485         error_setg(errp, "eim=on cannot be selected without intremap=on");
2486         return false;
2487     }
2488 
2489     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
2490         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
2491                       && x86_iommu->intr_supported ?
2492                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2493     }
2494     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
2495         if (!kvm_irqchip_in_kernel()) {
2496             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
2497             return false;
2498         }
2499         if (!kvm_enable_x2apic()) {
2500             error_setg(errp, "eim=on requires support on the KVM side"
2501                              "(X2APIC_API, first shipped in v4.7)");
2502             return false;
2503         }
2504     }
2505 
2506     return true;
2507 }
2508 
2509 static void vtd_realize(DeviceState *dev, Error **errp)
2510 {
2511     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
2512     PCIBus *bus = pcms->bus;
2513     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2514     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
2515 
2516     VTD_DPRINTF(GENERAL, "");
2517     x86_iommu->type = TYPE_INTEL;
2518 
2519     if (!vtd_decide_config(s, errp)) {
2520         return;
2521     }
2522 
2523     memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2524     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2525                           "intel_iommu", DMAR_REG_SIZE);
2526     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2527     /* No corresponding destroy */
2528     s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2529                                      g_free, g_free);
2530     s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2531                                               g_free, g_free);
2532     vtd_init(s);
2533     sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
2534     pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
2535     /* Pseudo address space under root PCI bus. */
2536     pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
2537 }
2538 
2539 static void vtd_class_init(ObjectClass *klass, void *data)
2540 {
2541     DeviceClass *dc = DEVICE_CLASS(klass);
2542     X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
2543 
2544     dc->reset = vtd_reset;
2545     dc->vmsd = &vtd_vmstate;
2546     dc->props = vtd_properties;
2547     dc->hotpluggable = false;
2548     x86_class->realize = vtd_realize;
2549     x86_class->int_remap = vtd_int_remap;
2550 }
2551 
2552 static const TypeInfo vtd_info = {
2553     .name          = TYPE_INTEL_IOMMU_DEVICE,
2554     .parent        = TYPE_X86_IOMMU_DEVICE,
2555     .instance_size = sizeof(IntelIOMMUState),
2556     .class_init    = vtd_class_init,
2557 };
2558 
2559 static void vtd_register_types(void)
2560 {
2561     VTD_DPRINTF(GENERAL, "");
2562     type_register_static(&vtd_info);
2563 }
2564 
2565 type_init(vtd_register_types)
2566