xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision fb6051e7)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
42 
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45     ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47     ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
48 
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52 
53 /*
54  * PCI bus number (or SID) is not reliable since the device is usaully
55  * initialized before guest can configure the PCI bridge
56  * (SECONDARY_BUS_NUMBER).
57  */
58 struct vtd_as_key {
59     PCIBus *bus;
60     uint8_t devfn;
61     uint32_t pasid;
62 };
63 
64 /* bus/devfn is PCI device's real BDF not the aliased one */
65 struct vtd_hiod_key {
66     PCIBus *bus;
67     uint8_t devfn;
68 };
69 
70 struct vtd_iotlb_key {
71     uint64_t gfn;
72     uint32_t pasid;
73     uint16_t sid;
74     uint8_t level;
75 };
76 
77 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
78 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
79 
80 static void vtd_panic_require_caching_mode(void)
81 {
82     error_report("We need to set caching-mode=on for intel-iommu to enable "
83                  "device assignment with IOMMU protection.");
84     exit(1);
85 }
86 
87 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
88                             uint64_t wmask, uint64_t w1cmask)
89 {
90     stq_le_p(&s->csr[addr], val);
91     stq_le_p(&s->wmask[addr], wmask);
92     stq_le_p(&s->w1cmask[addr], w1cmask);
93 }
94 
95 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
96 {
97     stq_le_p(&s->womask[addr], mask);
98 }
99 
100 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
101                             uint32_t wmask, uint32_t w1cmask)
102 {
103     stl_le_p(&s->csr[addr], val);
104     stl_le_p(&s->wmask[addr], wmask);
105     stl_le_p(&s->w1cmask[addr], w1cmask);
106 }
107 
108 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
109 {
110     stl_le_p(&s->womask[addr], mask);
111 }
112 
113 /* "External" get/set operations */
114 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
115 {
116     uint64_t oldval = ldq_le_p(&s->csr[addr]);
117     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
118     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
119     stq_le_p(&s->csr[addr],
120              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
121 }
122 
123 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
124 {
125     uint32_t oldval = ldl_le_p(&s->csr[addr]);
126     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
127     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
128     stl_le_p(&s->csr[addr],
129              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
130 }
131 
132 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
133 {
134     uint64_t val = ldq_le_p(&s->csr[addr]);
135     uint64_t womask = ldq_le_p(&s->womask[addr]);
136     return val & ~womask;
137 }
138 
139 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
140 {
141     uint32_t val = ldl_le_p(&s->csr[addr]);
142     uint32_t womask = ldl_le_p(&s->womask[addr]);
143     return val & ~womask;
144 }
145 
146 /* "Internal" get/set operations */
147 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
148 {
149     return ldq_le_p(&s->csr[addr]);
150 }
151 
152 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
153 {
154     return ldl_le_p(&s->csr[addr]);
155 }
156 
157 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
158 {
159     stq_le_p(&s->csr[addr], val);
160 }
161 
162 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
163                                         uint32_t clear, uint32_t mask)
164 {
165     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
166     stl_le_p(&s->csr[addr], new_val);
167     return new_val;
168 }
169 
170 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
171                                         uint64_t clear, uint64_t mask)
172 {
173     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
174     stq_le_p(&s->csr[addr], new_val);
175     return new_val;
176 }
177 
178 static inline void vtd_iommu_lock(IntelIOMMUState *s)
179 {
180     qemu_mutex_lock(&s->iommu_lock);
181 }
182 
183 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
184 {
185     qemu_mutex_unlock(&s->iommu_lock);
186 }
187 
188 static void vtd_update_scalable_state(IntelIOMMUState *s)
189 {
190     uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
191 
192     if (s->scalable_mode) {
193         s->root_scalable = val & VTD_RTADDR_SMT;
194     }
195 }
196 
197 static void vtd_update_iq_dw(IntelIOMMUState *s)
198 {
199     uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
200 
201     if (s->ecap & VTD_ECAP_SMTS &&
202         val & VTD_IQA_DW_MASK) {
203         s->iq_dw = true;
204     } else {
205         s->iq_dw = false;
206     }
207 }
208 
209 /* Whether the address space needs to notify new mappings */
210 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
211 {
212     return as->notifier_flags & IOMMU_NOTIFIER_MAP;
213 }
214 
215 /* GHashTable functions */
216 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
217 {
218     const struct vtd_iotlb_key *key1 = v1;
219     const struct vtd_iotlb_key *key2 = v2;
220 
221     return key1->sid == key2->sid &&
222            key1->pasid == key2->pasid &&
223            key1->level == key2->level &&
224            key1->gfn == key2->gfn;
225 }
226 
227 static guint vtd_iotlb_hash(gconstpointer v)
228 {
229     const struct vtd_iotlb_key *key = v;
230     uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
231         (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
232         (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
233 
234     return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
235 }
236 
237 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
238 {
239     const struct vtd_as_key *key1 = v1;
240     const struct vtd_as_key *key2 = v2;
241 
242     return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
243            (key1->pasid == key2->pasid);
244 }
245 
246 /*
247  * Note that we use pointer to PCIBus as the key, so hashing/shifting
248  * based on the pointer value is intended. Note that we deal with
249  * collisions through vtd_as_equal().
250  */
251 static guint vtd_as_hash(gconstpointer v)
252 {
253     const struct vtd_as_key *key = v;
254     guint value = (guint)(uintptr_t)key->bus;
255 
256     return (guint)(value << 8 | key->devfn);
257 }
258 
259 /* Same implementation as vtd_as_hash() */
260 static guint vtd_hiod_hash(gconstpointer v)
261 {
262     return vtd_as_hash(v);
263 }
264 
265 static gboolean vtd_hiod_equal(gconstpointer v1, gconstpointer v2)
266 {
267     const struct vtd_hiod_key *key1 = v1;
268     const struct vtd_hiod_key *key2 = v2;
269 
270     return (key1->bus == key2->bus) && (key1->devfn == key2->devfn);
271 }
272 
273 static void vtd_hiod_destroy(gpointer v)
274 {
275     object_unref(v);
276 }
277 
278 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
279                                           gpointer user_data)
280 {
281     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
282     uint16_t domain_id = *(uint16_t *)user_data;
283     return entry->domain_id == domain_id;
284 }
285 
286 /* The shift of an addr for a certain level of paging structure */
287 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
288 {
289     assert(level != 0);
290     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
291 }
292 
293 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
294 {
295     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
296 }
297 
298 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
299                                         gpointer user_data)
300 {
301     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
302     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
303     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
304     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
305     return (entry->domain_id == info->domain_id) &&
306             (((entry->gfn & info->mask) == gfn) ||
307              (entry->gfn == gfn_tlb));
308 }
309 
310 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
311  * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
312  */
313 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
314 {
315     VTDAddressSpace *vtd_as;
316     GHashTableIter as_it;
317 
318     trace_vtd_context_cache_reset();
319 
320     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
321 
322     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
323         vtd_as->context_cache_entry.context_cache_gen = 0;
324     }
325     s->context_cache_gen = 1;
326 }
327 
328 /* Must be called with IOMMU lock held. */
329 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
330 {
331     assert(s->iotlb);
332     g_hash_table_remove_all(s->iotlb);
333 }
334 
335 static void vtd_reset_iotlb(IntelIOMMUState *s)
336 {
337     vtd_iommu_lock(s);
338     vtd_reset_iotlb_locked(s);
339     vtd_iommu_unlock(s);
340 }
341 
342 static void vtd_reset_caches(IntelIOMMUState *s)
343 {
344     vtd_iommu_lock(s);
345     vtd_reset_iotlb_locked(s);
346     vtd_reset_context_cache_locked(s);
347     vtd_iommu_unlock(s);
348 }
349 
350 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
351 {
352     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
353 }
354 
355 /* Must be called with IOMMU lock held */
356 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
357                                        uint32_t pasid, hwaddr addr)
358 {
359     struct vtd_iotlb_key key;
360     VTDIOTLBEntry *entry;
361     unsigned level;
362 
363     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
364         key.gfn = vtd_get_iotlb_gfn(addr, level);
365         key.level = level;
366         key.sid = source_id;
367         key.pasid = pasid;
368         entry = g_hash_table_lookup(s->iotlb, &key);
369         if (entry) {
370             goto out;
371         }
372     }
373 
374 out:
375     return entry;
376 }
377 
378 /* Must be with IOMMU lock held */
379 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
380                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
381                              uint8_t access_flags, uint32_t level,
382                              uint32_t pasid)
383 {
384     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
385     struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
386     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
387 
388     trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
389     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
390         trace_vtd_iotlb_reset("iotlb exceeds size limit");
391         vtd_reset_iotlb_locked(s);
392     }
393 
394     entry->gfn = gfn;
395     entry->domain_id = domain_id;
396     entry->slpte = slpte;
397     entry->access_flags = access_flags;
398     entry->mask = vtd_slpt_level_page_mask(level);
399     entry->pasid = pasid;
400 
401     key->gfn = gfn;
402     key->sid = source_id;
403     key->level = level;
404     key->pasid = pasid;
405 
406     g_hash_table_replace(s->iotlb, key, entry);
407 }
408 
409 /* Given the reg addr of both the message data and address, generate an
410  * interrupt via MSI.
411  */
412 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
413                                    hwaddr mesg_data_reg)
414 {
415     MSIMessage msi;
416 
417     assert(mesg_data_reg < DMAR_REG_SIZE);
418     assert(mesg_addr_reg < DMAR_REG_SIZE);
419 
420     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
421     msi.data = vtd_get_long_raw(s, mesg_data_reg);
422 
423     trace_vtd_irq_generate(msi.address, msi.data);
424 
425     apic_get_class(NULL)->send_msi(&msi);
426 }
427 
428 /* Generate a fault event to software via MSI if conditions are met.
429  * Notice that the value of FSTS_REG being passed to it should be the one
430  * before any update.
431  */
432 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
433 {
434     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
435         pre_fsts & VTD_FSTS_IQE) {
436         error_report_once("There are previous interrupt conditions "
437                           "to be serviced by software, fault event "
438                           "is not generated");
439         return;
440     }
441     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
442     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
443         error_report_once("Interrupt Mask set, irq is not generated");
444     } else {
445         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
446         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
447     }
448 }
449 
450 /* Check if the Fault (F) field of the Fault Recording Register referenced by
451  * @index is Set.
452  */
453 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
454 {
455     /* Each reg is 128-bit */
456     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
457     addr += 8; /* Access the high 64-bit half */
458 
459     assert(index < DMAR_FRCD_REG_NR);
460 
461     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
462 }
463 
464 /* Update the PPF field of Fault Status Register.
465  * Should be called whenever change the F field of any fault recording
466  * registers.
467  */
468 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
469 {
470     uint32_t i;
471     uint32_t ppf_mask = 0;
472 
473     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
474         if (vtd_is_frcd_set(s, i)) {
475             ppf_mask = VTD_FSTS_PPF;
476             break;
477         }
478     }
479     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
480     trace_vtd_fsts_ppf(!!ppf_mask);
481 }
482 
483 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
484 {
485     /* Each reg is 128-bit */
486     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
487     addr += 8; /* Access the high 64-bit half */
488 
489     assert(index < DMAR_FRCD_REG_NR);
490 
491     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
492     vtd_update_fsts_ppf(s);
493 }
494 
495 /* Must not update F field now, should be done later */
496 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
497                             uint64_t hi, uint64_t lo)
498 {
499     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
500 
501     assert(index < DMAR_FRCD_REG_NR);
502 
503     vtd_set_quad_raw(s, frcd_reg_addr, lo);
504     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
505 
506     trace_vtd_frr_new(index, hi, lo);
507 }
508 
509 /* Try to collapse multiple pending faults from the same requester */
510 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
511 {
512     uint32_t i;
513     uint64_t frcd_reg;
514     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
515 
516     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
517         frcd_reg = vtd_get_quad_raw(s, addr);
518         if ((frcd_reg & VTD_FRCD_F) &&
519             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
520             return true;
521         }
522         addr += 16; /* 128-bit for each */
523     }
524     return false;
525 }
526 
527 /* Log and report an DMAR (address translation) fault to software */
528 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id,
529                                   uint64_t hi, uint64_t lo)
530 {
531     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
532 
533     if (fsts_reg & VTD_FSTS_PFO) {
534         error_report_once("New fault is not recorded due to "
535                           "Primary Fault Overflow");
536         return;
537     }
538 
539     if (vtd_try_collapse_fault(s, source_id)) {
540         error_report_once("New fault is not recorded due to "
541                           "compression of faults");
542         return;
543     }
544 
545     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
546         error_report_once("Next Fault Recording Reg is used, "
547                           "new fault is not recorded, set PFO field");
548         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
549         return;
550     }
551 
552     vtd_record_frcd(s, s->next_frcd_reg, hi, lo);
553 
554     if (fsts_reg & VTD_FSTS_PPF) {
555         error_report_once("There are pending faults already, "
556                           "fault event is not generated");
557         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
558         s->next_frcd_reg++;
559         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
560             s->next_frcd_reg = 0;
561         }
562     } else {
563         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
564                                 VTD_FSTS_FRI(s->next_frcd_reg));
565         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
566         s->next_frcd_reg++;
567         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
568             s->next_frcd_reg = 0;
569         }
570         /* This case actually cause the PPF to be Set.
571          * So generate fault event (interrupt).
572          */
573          vtd_generate_fault_event(s, fsts_reg);
574     }
575 }
576 
577 /* Log and report an DMAR (address translation) fault to software */
578 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
579                                   hwaddr addr, VTDFaultReason fault,
580                                   bool is_write, bool is_pasid,
581                                   uint32_t pasid)
582 {
583     uint64_t hi, lo;
584 
585     assert(fault < VTD_FR_MAX);
586 
587     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
588 
589     lo = VTD_FRCD_FI(addr);
590     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
591          VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
592     if (!is_write) {
593         hi |= VTD_FRCD_T;
594     }
595 
596     vtd_report_frcd_fault(s, source_id, hi, lo);
597 }
598 
599 
600 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id,
601                                 VTDFaultReason fault, uint16_t index)
602 {
603     uint64_t hi, lo;
604 
605     lo = VTD_FRCD_IR_IDX(index);
606     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
607 
608     vtd_report_frcd_fault(s, source_id, hi, lo);
609 }
610 
611 /* Handle Invalidation Queue Errors of queued invalidation interface error
612  * conditions.
613  */
614 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
615 {
616     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
617 
618     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
619     vtd_generate_fault_event(s, fsts_reg);
620 }
621 
622 /* Set the IWC field and try to generate an invalidation completion interrupt */
623 static void vtd_generate_completion_event(IntelIOMMUState *s)
624 {
625     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
626         trace_vtd_inv_desc_wait_irq("One pending, skip current");
627         return;
628     }
629     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
630     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
631     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
632         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
633                                     "new event not generated");
634         return;
635     } else {
636         /* Generate the interrupt event */
637         trace_vtd_inv_desc_wait_irq("Generating complete event");
638         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
639         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
640     }
641 }
642 
643 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
644                                           VTDRootEntry *re,
645                                           uint8_t devfn)
646 {
647     if (s->root_scalable && devfn > UINT8_MAX / 2) {
648         return re->hi & VTD_ROOT_ENTRY_P;
649     }
650 
651     return re->lo & VTD_ROOT_ENTRY_P;
652 }
653 
654 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
655                               VTDRootEntry *re)
656 {
657     dma_addr_t addr;
658 
659     addr = s->root + index * sizeof(*re);
660     if (dma_memory_read(&address_space_memory, addr,
661                         re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
662         re->lo = 0;
663         return -VTD_FR_ROOT_TABLE_INV;
664     }
665     re->lo = le64_to_cpu(re->lo);
666     re->hi = le64_to_cpu(re->hi);
667     return 0;
668 }
669 
670 static inline bool vtd_ce_present(VTDContextEntry *context)
671 {
672     return context->lo & VTD_CONTEXT_ENTRY_P;
673 }
674 
675 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
676                                            VTDRootEntry *re,
677                                            uint8_t index,
678                                            VTDContextEntry *ce)
679 {
680     dma_addr_t addr, ce_size;
681 
682     /* we have checked that root entry is present */
683     ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
684               VTD_CTX_ENTRY_LEGACY_SIZE;
685 
686     if (s->root_scalable && index > UINT8_MAX / 2) {
687         index = index & (~VTD_DEVFN_CHECK_MASK);
688         addr = re->hi & VTD_ROOT_ENTRY_CTP;
689     } else {
690         addr = re->lo & VTD_ROOT_ENTRY_CTP;
691     }
692 
693     addr = addr + index * ce_size;
694     if (dma_memory_read(&address_space_memory, addr,
695                         ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
696         return -VTD_FR_CONTEXT_TABLE_INV;
697     }
698 
699     ce->lo = le64_to_cpu(ce->lo);
700     ce->hi = le64_to_cpu(ce->hi);
701     if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
702         ce->val[2] = le64_to_cpu(ce->val[2]);
703         ce->val[3] = le64_to_cpu(ce->val[3]);
704     }
705     return 0;
706 }
707 
708 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
709 {
710     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
711 }
712 
713 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
714 {
715     return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
716 }
717 
718 /* Whether the pte indicates the address of the page frame */
719 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
720 {
721     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
722 }
723 
724 /* Get the content of a spte located in @base_addr[@index] */
725 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
726 {
727     uint64_t slpte;
728 
729     assert(index < VTD_SL_PT_ENTRY_NR);
730 
731     if (dma_memory_read(&address_space_memory,
732                         base_addr + index * sizeof(slpte),
733                         &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
734         slpte = (uint64_t)-1;
735         return slpte;
736     }
737     slpte = le64_to_cpu(slpte);
738     return slpte;
739 }
740 
741 /* Given an iova and the level of paging structure, return the offset
742  * of current level.
743  */
744 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
745 {
746     return (iova >> vtd_slpt_level_shift(level)) &
747             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
748 }
749 
750 /* Check Capability Register to see if the @level of page-table is supported */
751 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
752 {
753     return VTD_CAP_SAGAW_MASK & s->cap &
754            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
755 }
756 
757 /* Return true if check passed, otherwise false */
758 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
759                                      VTDPASIDEntry *pe)
760 {
761     switch (VTD_PE_GET_TYPE(pe)) {
762     case VTD_SM_PASID_ENTRY_FLT:
763     case VTD_SM_PASID_ENTRY_SLT:
764     case VTD_SM_PASID_ENTRY_NESTED:
765         break;
766     case VTD_SM_PASID_ENTRY_PT:
767         if (!x86_iommu->pt_supported) {
768             return false;
769         }
770         break;
771     default:
772         /* Unknown type */
773         return false;
774     }
775     return true;
776 }
777 
778 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
779 {
780     return pdire->val & 1;
781 }
782 
783 /**
784  * Caller of this function should check present bit if wants
785  * to use pdir entry for further usage except for fpd bit check.
786  */
787 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
788                                          uint32_t pasid,
789                                          VTDPASIDDirEntry *pdire)
790 {
791     uint32_t index;
792     dma_addr_t addr, entry_size;
793 
794     index = VTD_PASID_DIR_INDEX(pasid);
795     entry_size = VTD_PASID_DIR_ENTRY_SIZE;
796     addr = pasid_dir_base + index * entry_size;
797     if (dma_memory_read(&address_space_memory, addr,
798                         pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
799         return -VTD_FR_PASID_TABLE_INV;
800     }
801 
802     pdire->val = le64_to_cpu(pdire->val);
803 
804     return 0;
805 }
806 
807 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
808 {
809     return pe->val[0] & VTD_PASID_ENTRY_P;
810 }
811 
812 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
813                                           uint32_t pasid,
814                                           dma_addr_t addr,
815                                           VTDPASIDEntry *pe)
816 {
817     uint32_t index;
818     dma_addr_t entry_size;
819     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
820 
821     index = VTD_PASID_TABLE_INDEX(pasid);
822     entry_size = VTD_PASID_ENTRY_SIZE;
823     addr = addr + index * entry_size;
824     if (dma_memory_read(&address_space_memory, addr,
825                         pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
826         return -VTD_FR_PASID_TABLE_INV;
827     }
828     for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
829         pe->val[i] = le64_to_cpu(pe->val[i]);
830     }
831 
832     /* Do translation type check */
833     if (!vtd_pe_type_check(x86_iommu, pe)) {
834         return -VTD_FR_PASID_TABLE_INV;
835     }
836 
837     if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
838         return -VTD_FR_PASID_TABLE_INV;
839     }
840 
841     return 0;
842 }
843 
844 /**
845  * Caller of this function should check present bit if wants
846  * to use pasid entry for further usage except for fpd bit check.
847  */
848 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
849                                  uint32_t pasid,
850                                  VTDPASIDDirEntry *pdire,
851                                  VTDPASIDEntry *pe)
852 {
853     dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
854 
855     return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
856 }
857 
858 /**
859  * This function gets a pasid entry from a specified pasid
860  * table (includes dir and leaf table) with a specified pasid.
861  * Sanity check should be done to ensure return a present
862  * pasid entry to caller.
863  */
864 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
865                                        dma_addr_t pasid_dir_base,
866                                        uint32_t pasid,
867                                        VTDPASIDEntry *pe)
868 {
869     int ret;
870     VTDPASIDDirEntry pdire;
871 
872     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
873                                         pasid, &pdire);
874     if (ret) {
875         return ret;
876     }
877 
878     if (!vtd_pdire_present(&pdire)) {
879         return -VTD_FR_PASID_TABLE_INV;
880     }
881 
882     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
883     if (ret) {
884         return ret;
885     }
886 
887     if (!vtd_pe_present(pe)) {
888         return -VTD_FR_PASID_TABLE_INV;
889     }
890 
891     return 0;
892 }
893 
894 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
895                                       VTDContextEntry *ce,
896                                       VTDPASIDEntry *pe,
897                                       uint32_t pasid)
898 {
899     dma_addr_t pasid_dir_base;
900     int ret = 0;
901 
902     if (pasid == PCI_NO_PASID) {
903         pasid = VTD_CE_GET_RID2PASID(ce);
904     }
905     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
906     ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
907 
908     return ret;
909 }
910 
911 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
912                                 VTDContextEntry *ce,
913                                 bool *pe_fpd_set,
914                                 uint32_t pasid)
915 {
916     int ret;
917     dma_addr_t pasid_dir_base;
918     VTDPASIDDirEntry pdire;
919     VTDPASIDEntry pe;
920 
921     if (pasid == PCI_NO_PASID) {
922         pasid = VTD_CE_GET_RID2PASID(ce);
923     }
924     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
925 
926     /*
927      * No present bit check since fpd is meaningful even
928      * if the present bit is clear.
929      */
930     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
931     if (ret) {
932         return ret;
933     }
934 
935     if (pdire.val & VTD_PASID_DIR_FPD) {
936         *pe_fpd_set = true;
937         return 0;
938     }
939 
940     if (!vtd_pdire_present(&pdire)) {
941         return -VTD_FR_PASID_TABLE_INV;
942     }
943 
944     /*
945      * No present bit check since fpd is meaningful even
946      * if the present bit is clear.
947      */
948     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
949     if (ret) {
950         return ret;
951     }
952 
953     if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
954         *pe_fpd_set = true;
955     }
956 
957     return 0;
958 }
959 
960 /* Get the page-table level that hardware should use for the second-level
961  * page-table walk from the Address Width field of context-entry.
962  */
963 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
964 {
965     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
966 }
967 
968 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
969                                    VTDContextEntry *ce,
970                                    uint32_t pasid)
971 {
972     VTDPASIDEntry pe;
973 
974     if (s->root_scalable) {
975         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
976         return VTD_PE_GET_LEVEL(&pe);
977     }
978 
979     return vtd_ce_get_level(ce);
980 }
981 
982 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
983 {
984     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
985 }
986 
987 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
988                                   VTDContextEntry *ce,
989                                   uint32_t pasid)
990 {
991     VTDPASIDEntry pe;
992 
993     if (s->root_scalable) {
994         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
995         return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
996     }
997 
998     return vtd_ce_get_agaw(ce);
999 }
1000 
1001 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
1002 {
1003     return ce->lo & VTD_CONTEXT_ENTRY_TT;
1004 }
1005 
1006 /* Only for Legacy Mode. Return true if check passed, otherwise false */
1007 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
1008                                      VTDContextEntry *ce)
1009 {
1010     switch (vtd_ce_get_type(ce)) {
1011     case VTD_CONTEXT_TT_MULTI_LEVEL:
1012         /* Always supported */
1013         break;
1014     case VTD_CONTEXT_TT_DEV_IOTLB:
1015         if (!x86_iommu->dt_supported) {
1016             error_report_once("%s: DT specified but not supported", __func__);
1017             return false;
1018         }
1019         break;
1020     case VTD_CONTEXT_TT_PASS_THROUGH:
1021         if (!x86_iommu->pt_supported) {
1022             error_report_once("%s: PT specified but not supported", __func__);
1023             return false;
1024         }
1025         break;
1026     default:
1027         /* Unknown type */
1028         error_report_once("%s: unknown ce type: %"PRIu32, __func__,
1029                           vtd_ce_get_type(ce));
1030         return false;
1031     }
1032     return true;
1033 }
1034 
1035 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
1036                                       VTDContextEntry *ce, uint8_t aw,
1037                                       uint32_t pasid)
1038 {
1039     uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
1040     return 1ULL << MIN(ce_agaw, aw);
1041 }
1042 
1043 /* Return true if IOVA passes range check, otherwise false. */
1044 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
1045                                         uint64_t iova, VTDContextEntry *ce,
1046                                         uint8_t aw, uint32_t pasid)
1047 {
1048     /*
1049      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1050      * in CAP_REG and AW in context-entry.
1051      */
1052     return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1053 }
1054 
1055 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1056                                           VTDContextEntry *ce,
1057                                           uint32_t pasid)
1058 {
1059     VTDPASIDEntry pe;
1060 
1061     if (s->root_scalable) {
1062         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1063         return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1064     }
1065 
1066     return vtd_ce_get_slpt_base(ce);
1067 }
1068 
1069 /*
1070  * Rsvd field masks for spte:
1071  *     vtd_spte_rsvd 4k pages
1072  *     vtd_spte_rsvd_large large pages
1073  *
1074  * We support only 3-level and 4-level page tables (see vtd_init() which
1075  * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap).
1076  */
1077 #define VTD_SPTE_RSVD_LEN 5
1078 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN];
1079 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN];
1080 
1081 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1082 {
1083     uint64_t rsvd_mask;
1084 
1085     /*
1086      * We should have caught a guest-mis-programmed level earlier,
1087      * via vtd_is_level_supported.
1088      */
1089     assert(level < VTD_SPTE_RSVD_LEN);
1090     /*
1091      * Zero level doesn't exist. The smallest level is VTD_SL_PT_LEVEL=1 and
1092      * checked by vtd_is_last_slpte().
1093      */
1094     assert(level);
1095 
1096     if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1097         (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1098         /* large page */
1099         rsvd_mask = vtd_spte_rsvd_large[level];
1100     } else {
1101         rsvd_mask = vtd_spte_rsvd[level];
1102     }
1103 
1104     return slpte & rsvd_mask;
1105 }
1106 
1107 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1108  * of the translation, can be used for deciding the size of large page.
1109  */
1110 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1111                              uint64_t iova, bool is_write,
1112                              uint64_t *slptep, uint32_t *slpte_level,
1113                              bool *reads, bool *writes, uint8_t aw_bits,
1114                              uint32_t pasid)
1115 {
1116     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1117     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1118     uint32_t offset;
1119     uint64_t slpte;
1120     uint64_t access_right_check;
1121     uint64_t xlat, size;
1122 
1123     if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1124         error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1125                           "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1126         return -VTD_FR_ADDR_BEYOND_MGAW;
1127     }
1128 
1129     /* FIXME: what is the Atomics request here? */
1130     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1131 
1132     while (true) {
1133         offset = vtd_iova_level_offset(iova, level);
1134         slpte = vtd_get_slpte(addr, offset);
1135 
1136         if (slpte == (uint64_t)-1) {
1137             error_report_once("%s: detected read error on DMAR slpte "
1138                               "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1139                               __func__, iova, pasid);
1140             if (level == vtd_get_iova_level(s, ce, pasid)) {
1141                 /* Invalid programming of context-entry */
1142                 return -VTD_FR_CONTEXT_ENTRY_INV;
1143             } else {
1144                 return -VTD_FR_PAGING_ENTRY_INV;
1145             }
1146         }
1147         *reads = (*reads) && (slpte & VTD_SL_R);
1148         *writes = (*writes) && (slpte & VTD_SL_W);
1149         if (!(slpte & access_right_check)) {
1150             error_report_once("%s: detected slpte permission error "
1151                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1152                               "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1153                               PRIx32 ")", __func__, iova, level,
1154                               slpte, is_write, pasid);
1155             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1156         }
1157         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1158             error_report_once("%s: detected splte reserve non-zero "
1159                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
1160                               "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1161                               __func__, iova, level, slpte, pasid);
1162             return -VTD_FR_PAGING_ENTRY_RSVD;
1163         }
1164 
1165         if (vtd_is_last_slpte(slpte, level)) {
1166             *slptep = slpte;
1167             *slpte_level = level;
1168             break;
1169         }
1170         addr = vtd_get_slpte_addr(slpte, aw_bits);
1171         level--;
1172     }
1173 
1174     xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1175     size = ~vtd_slpt_level_page_mask(level) + 1;
1176 
1177     /*
1178      * From VT-d spec 3.14: Untranslated requests and translation
1179      * requests that result in an address in the interrupt range will be
1180      * blocked with condition code LGN.4 or SGN.8.
1181      */
1182     if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1183          xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1184         return 0;
1185     } else {
1186         error_report_once("%s: xlat address is in interrupt range "
1187                           "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1188                           "slpte=0x%" PRIx64 ", write=%d, "
1189                           "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1190                           "pasid=0x%" PRIx32 ")",
1191                           __func__, iova, level, slpte, is_write,
1192                           xlat, size, pasid);
1193         return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1194                                   -VTD_FR_INTERRUPT_ADDR;
1195     }
1196 }
1197 
1198 typedef int (*vtd_page_walk_hook)(const IOMMUTLBEvent *event, void *private);
1199 
1200 /**
1201  * Constant information used during page walking
1202  *
1203  * @hook_fn: hook func to be called when detected page
1204  * @private: private data to be passed into hook func
1205  * @notify_unmap: whether we should notify invalid entries
1206  * @as: VT-d address space of the device
1207  * @aw: maximum address width
1208  * @domain: domain ID of the page walk
1209  */
1210 typedef struct {
1211     VTDAddressSpace *as;
1212     vtd_page_walk_hook hook_fn;
1213     void *private;
1214     bool notify_unmap;
1215     uint8_t aw;
1216     uint16_t domain_id;
1217 } vtd_page_walk_info;
1218 
1219 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1220 {
1221     VTDAddressSpace *as = info->as;
1222     vtd_page_walk_hook hook_fn = info->hook_fn;
1223     void *private = info->private;
1224     IOMMUTLBEntry *entry = &event->entry;
1225     DMAMap target = {
1226         .iova = entry->iova,
1227         .size = entry->addr_mask,
1228         .translated_addr = entry->translated_addr,
1229         .perm = entry->perm,
1230     };
1231     const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1232 
1233     if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1234         trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1235         return 0;
1236     }
1237 
1238     assert(hook_fn);
1239 
1240     /* Update local IOVA mapped ranges */
1241     if (event->type == IOMMU_NOTIFIER_MAP) {
1242         if (mapped) {
1243             /* If it's exactly the same translation, skip */
1244             if (!memcmp(mapped, &target, sizeof(target))) {
1245                 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1246                                                  entry->translated_addr);
1247                 return 0;
1248             } else {
1249                 /*
1250                  * Translation changed.  Normally this should not
1251                  * happen, but it can happen when with buggy guest
1252                  * OSes.  Note that there will be a small window that
1253                  * we don't have map at all.  But that's the best
1254                  * effort we can do.  The ideal way to emulate this is
1255                  * atomically modify the PTE to follow what has
1256                  * changed, but we can't.  One example is that vfio
1257                  * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1258                  * interface to modify a mapping (meanwhile it seems
1259                  * meaningless to even provide one).  Anyway, let's
1260                  * mark this as a TODO in case one day we'll have
1261                  * a better solution.
1262                  */
1263                 IOMMUAccessFlags cache_perm = entry->perm;
1264                 int ret;
1265 
1266                 /* Emulate an UNMAP */
1267                 event->type = IOMMU_NOTIFIER_UNMAP;
1268                 entry->perm = IOMMU_NONE;
1269                 trace_vtd_page_walk_one(info->domain_id,
1270                                         entry->iova,
1271                                         entry->translated_addr,
1272                                         entry->addr_mask,
1273                                         entry->perm);
1274                 ret = hook_fn(event, private);
1275                 if (ret) {
1276                     return ret;
1277                 }
1278                 /* Drop any existing mapping */
1279                 iova_tree_remove(as->iova_tree, target);
1280                 /* Recover the correct type */
1281                 event->type = IOMMU_NOTIFIER_MAP;
1282                 entry->perm = cache_perm;
1283             }
1284         }
1285         iova_tree_insert(as->iova_tree, &target);
1286     } else {
1287         if (!mapped) {
1288             /* Skip since we didn't map this range at all */
1289             trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1290             return 0;
1291         }
1292         iova_tree_remove(as->iova_tree, target);
1293     }
1294 
1295     trace_vtd_page_walk_one(info->domain_id, entry->iova,
1296                             entry->translated_addr, entry->addr_mask,
1297                             entry->perm);
1298     return hook_fn(event, private);
1299 }
1300 
1301 /**
1302  * vtd_page_walk_level - walk over specific level for IOVA range
1303  *
1304  * @addr: base GPA addr to start the walk
1305  * @start: IOVA range start address
1306  * @end: IOVA range end address (start <= addr < end)
1307  * @read: whether parent level has read permission
1308  * @write: whether parent level has write permission
1309  * @info: constant information for the page walk
1310  */
1311 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1312                                uint64_t end, uint32_t level, bool read,
1313                                bool write, vtd_page_walk_info *info)
1314 {
1315     bool read_cur, write_cur, entry_valid;
1316     uint32_t offset;
1317     uint64_t slpte;
1318     uint64_t subpage_size, subpage_mask;
1319     IOMMUTLBEvent event;
1320     uint64_t iova = start;
1321     uint64_t iova_next;
1322     int ret = 0;
1323 
1324     trace_vtd_page_walk_level(addr, level, start, end);
1325 
1326     subpage_size = 1ULL << vtd_slpt_level_shift(level);
1327     subpage_mask = vtd_slpt_level_page_mask(level);
1328 
1329     while (iova < end) {
1330         iova_next = (iova & subpage_mask) + subpage_size;
1331 
1332         offset = vtd_iova_level_offset(iova, level);
1333         slpte = vtd_get_slpte(addr, offset);
1334 
1335         if (slpte == (uint64_t)-1) {
1336             trace_vtd_page_walk_skip_read(iova, iova_next);
1337             goto next;
1338         }
1339 
1340         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1341             trace_vtd_page_walk_skip_reserve(iova, iova_next);
1342             goto next;
1343         }
1344 
1345         /* Permissions are stacked with parents' */
1346         read_cur = read && (slpte & VTD_SL_R);
1347         write_cur = write && (slpte & VTD_SL_W);
1348 
1349         /*
1350          * As long as we have either read/write permission, this is a
1351          * valid entry. The rule works for both page entries and page
1352          * table entries.
1353          */
1354         entry_valid = read_cur | write_cur;
1355 
1356         if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1357             /*
1358              * This is a valid PDE (or even bigger than PDE).  We need
1359              * to walk one further level.
1360              */
1361             ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1362                                       iova, MIN(iova_next, end), level - 1,
1363                                       read_cur, write_cur, info);
1364         } else {
1365             /*
1366              * This means we are either:
1367              *
1368              * (1) the real page entry (either 4K page, or huge page)
1369              * (2) the whole range is invalid
1370              *
1371              * In either case, we send an IOTLB notification down.
1372              */
1373             event.entry.target_as = &address_space_memory;
1374             event.entry.iova = iova & subpage_mask;
1375             event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1376             event.entry.addr_mask = ~subpage_mask;
1377             /* NOTE: this is only meaningful if entry_valid == true */
1378             event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1379             event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1380                                             IOMMU_NOTIFIER_UNMAP;
1381             ret = vtd_page_walk_one(&event, info);
1382         }
1383 
1384         if (ret < 0) {
1385             return ret;
1386         }
1387 
1388 next:
1389         iova = iova_next;
1390     }
1391 
1392     return 0;
1393 }
1394 
1395 /**
1396  * vtd_page_walk - walk specific IOVA range, and call the hook
1397  *
1398  * @s: intel iommu state
1399  * @ce: context entry to walk upon
1400  * @start: IOVA address to start the walk
1401  * @end: IOVA range end address (start <= addr < end)
1402  * @info: page walking information struct
1403  */
1404 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1405                          uint64_t start, uint64_t end,
1406                          vtd_page_walk_info *info,
1407                          uint32_t pasid)
1408 {
1409     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1410     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1411 
1412     if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1413         return -VTD_FR_ADDR_BEYOND_MGAW;
1414     }
1415 
1416     if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1417         /* Fix end so that it reaches the maximum */
1418         end = vtd_iova_limit(s, ce, info->aw, pasid);
1419     }
1420 
1421     return vtd_page_walk_level(addr, start, end, level, true, true, info);
1422 }
1423 
1424 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1425                                           VTDRootEntry *re)
1426 {
1427     /* Legacy Mode reserved bits check */
1428     if (!s->root_scalable &&
1429         (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1430         goto rsvd_err;
1431 
1432     /* Scalable Mode reserved bits check */
1433     if (s->root_scalable &&
1434         ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1435          (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1436         goto rsvd_err;
1437 
1438     return 0;
1439 
1440 rsvd_err:
1441     error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1442                       ", lo=0x%"PRIx64,
1443                       __func__, re->hi, re->lo);
1444     return -VTD_FR_ROOT_ENTRY_RSVD;
1445 }
1446 
1447 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1448                                                     VTDContextEntry *ce)
1449 {
1450     if (!s->root_scalable &&
1451         (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1452          ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1453         error_report_once("%s: invalid context entry: hi=%"PRIx64
1454                           ", lo=%"PRIx64" (reserved nonzero)",
1455                           __func__, ce->hi, ce->lo);
1456         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1457     }
1458 
1459     if (s->root_scalable &&
1460         (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1461          ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1462          ce->val[2] ||
1463          ce->val[3])) {
1464         error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1465                           ", val[2]=%"PRIx64
1466                           ", val[1]=%"PRIx64
1467                           ", val[0]=%"PRIx64" (reserved nonzero)",
1468                           __func__, ce->val[3], ce->val[2],
1469                           ce->val[1], ce->val[0]);
1470         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1471     }
1472 
1473     return 0;
1474 }
1475 
1476 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1477                                   VTDContextEntry *ce)
1478 {
1479     VTDPASIDEntry pe;
1480 
1481     /*
1482      * Make sure in Scalable Mode, a present context entry
1483      * has valid rid2pasid setting, which includes valid
1484      * rid2pasid field and corresponding pasid entry setting
1485      */
1486     return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1487 }
1488 
1489 /* Map a device to its corresponding domain (context-entry) */
1490 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1491                                     uint8_t devfn, VTDContextEntry *ce)
1492 {
1493     VTDRootEntry re;
1494     int ret_fr;
1495     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1496 
1497     ret_fr = vtd_get_root_entry(s, bus_num, &re);
1498     if (ret_fr) {
1499         return ret_fr;
1500     }
1501 
1502     if (!vtd_root_entry_present(s, &re, devfn)) {
1503         /* Not error - it's okay we don't have root entry. */
1504         trace_vtd_re_not_present(bus_num);
1505         return -VTD_FR_ROOT_ENTRY_P;
1506     }
1507 
1508     ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1509     if (ret_fr) {
1510         return ret_fr;
1511     }
1512 
1513     ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1514     if (ret_fr) {
1515         return ret_fr;
1516     }
1517 
1518     if (!vtd_ce_present(ce)) {
1519         /* Not error - it's okay we don't have context entry. */
1520         trace_vtd_ce_not_present(bus_num, devfn);
1521         return -VTD_FR_CONTEXT_ENTRY_P;
1522     }
1523 
1524     ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1525     if (ret_fr) {
1526         return ret_fr;
1527     }
1528 
1529     /* Check if the programming of context-entry is valid */
1530     if (!s->root_scalable &&
1531         !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1532         error_report_once("%s: invalid context entry: hi=%"PRIx64
1533                           ", lo=%"PRIx64" (level %d not supported)",
1534                           __func__, ce->hi, ce->lo,
1535                           vtd_ce_get_level(ce));
1536         return -VTD_FR_CONTEXT_ENTRY_INV;
1537     }
1538 
1539     if (!s->root_scalable) {
1540         /* Do translation type check */
1541         if (!vtd_ce_type_check(x86_iommu, ce)) {
1542             /* Errors dumped in vtd_ce_type_check() */
1543             return -VTD_FR_CONTEXT_ENTRY_INV;
1544         }
1545     } else {
1546         /*
1547          * Check if the programming of context-entry.rid2pasid
1548          * and corresponding pasid setting is valid, and thus
1549          * avoids to check pasid entry fetching result in future
1550          * helper function calling.
1551          */
1552         ret_fr = vtd_ce_rid2pasid_check(s, ce);
1553         if (ret_fr) {
1554             return ret_fr;
1555         }
1556     }
1557 
1558     return 0;
1559 }
1560 
1561 static int vtd_sync_shadow_page_hook(const IOMMUTLBEvent *event,
1562                                      void *private)
1563 {
1564     memory_region_notify_iommu(private, 0, *event);
1565     return 0;
1566 }
1567 
1568 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1569                                   VTDContextEntry *ce,
1570                                   uint32_t pasid)
1571 {
1572     VTDPASIDEntry pe;
1573 
1574     if (s->root_scalable) {
1575         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1576         return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1577     }
1578 
1579     return VTD_CONTEXT_ENTRY_DID(ce->hi);
1580 }
1581 
1582 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1583                                             VTDContextEntry *ce,
1584                                             hwaddr addr, hwaddr size)
1585 {
1586     IntelIOMMUState *s = vtd_as->iommu_state;
1587     vtd_page_walk_info info = {
1588         .hook_fn = vtd_sync_shadow_page_hook,
1589         .private = (void *)&vtd_as->iommu,
1590         .notify_unmap = true,
1591         .aw = s->aw_bits,
1592         .as = vtd_as,
1593         .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1594     };
1595 
1596     return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1597 }
1598 
1599 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1600 {
1601     int ret;
1602     VTDContextEntry ce;
1603     IOMMUNotifier *n;
1604 
1605     /* If no MAP notifier registered, we simply invalidate all the cache */
1606     if (!vtd_as_has_map_notifier(vtd_as)) {
1607         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1608             memory_region_unmap_iommu_notifier_range(n);
1609         }
1610         return 0;
1611     }
1612 
1613     ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1614                                    pci_bus_num(vtd_as->bus),
1615                                    vtd_as->devfn, &ce);
1616     if (ret) {
1617         if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1618             /*
1619              * It's a valid scenario to have a context entry that is
1620              * not present.  For example, when a device is removed
1621              * from an existing domain then the context entry will be
1622              * zeroed by the guest before it was put into another
1623              * domain.  When this happens, instead of synchronizing
1624              * the shadow pages we should invalidate all existing
1625              * mappings and notify the backends.
1626              */
1627             IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1628                 vtd_address_space_unmap(vtd_as, n);
1629             }
1630             ret = 0;
1631         }
1632         return ret;
1633     }
1634 
1635     return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1636 }
1637 
1638 /*
1639  * Check if specific device is configured to bypass address
1640  * translation for DMA requests. In Scalable Mode, bypass
1641  * 1st-level translation or 2nd-level translation, it depends
1642  * on PGTT setting.
1643  */
1644 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1645                                uint32_t pasid)
1646 {
1647     VTDPASIDEntry pe;
1648     int ret;
1649 
1650     if (s->root_scalable) {
1651         ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1652         if (ret) {
1653             /*
1654              * This error is guest triggerable. We should assumt PT
1655              * not enabled for safety.
1656              */
1657             return false;
1658         }
1659         return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1660     }
1661 
1662     return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1663 
1664 }
1665 
1666 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1667 {
1668     IntelIOMMUState *s;
1669     VTDContextEntry ce;
1670 
1671     assert(as);
1672 
1673     s = as->iommu_state;
1674     if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1675                                  &ce)) {
1676         /*
1677          * Possibly failed to parse the context entry for some reason
1678          * (e.g., during init, or any guest configuration errors on
1679          * context entries). We should assume PT not enabled for
1680          * safety.
1681          */
1682         return false;
1683     }
1684 
1685     return vtd_dev_pt_enabled(s, &ce, as->pasid);
1686 }
1687 
1688 /* Return whether the device is using IOMMU translation. */
1689 static bool vtd_switch_address_space(VTDAddressSpace *as)
1690 {
1691     bool use_iommu, pt;
1692     /* Whether we need to take the BQL on our own */
1693     bool take_bql = !bql_locked();
1694 
1695     assert(as);
1696 
1697     use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1698     pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1699 
1700     trace_vtd_switch_address_space(pci_bus_num(as->bus),
1701                                    VTD_PCI_SLOT(as->devfn),
1702                                    VTD_PCI_FUNC(as->devfn),
1703                                    use_iommu);
1704 
1705     /*
1706      * It's possible that we reach here without BQL, e.g., when called
1707      * from vtd_pt_enable_fast_path(). However the memory APIs need
1708      * it. We'd better make sure we have had it already, or, take it.
1709      */
1710     if (take_bql) {
1711         bql_lock();
1712     }
1713 
1714     /* Turn off first then on the other */
1715     if (use_iommu) {
1716         memory_region_set_enabled(&as->nodmar, false);
1717         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1718         /*
1719          * vt-d spec v3.4 3.14:
1720          *
1721          * """
1722          * Requests-with-PASID with input address in range 0xFEEx_xxxx
1723          * are translated normally like any other request-with-PASID
1724          * through DMA-remapping hardware.
1725          * """
1726          *
1727          * Need to disable ir for as with PASID.
1728          */
1729         if (as->pasid != PCI_NO_PASID) {
1730             memory_region_set_enabled(&as->iommu_ir, false);
1731         } else {
1732             memory_region_set_enabled(&as->iommu_ir, true);
1733         }
1734     } else {
1735         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1736         memory_region_set_enabled(&as->nodmar, true);
1737     }
1738 
1739     /*
1740      * vtd-spec v3.4 3.14:
1741      *
1742      * """
1743      * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1744      * translated normally like any other request-with-PASID through
1745      * DMA-remapping hardware. However, if such a request is processed
1746      * using pass-through translation, it will be blocked as described
1747      * in the paragraph below.
1748      *
1749      * Software must not program paging-structure entries to remap any
1750      * address to the interrupt address range. Untranslated requests
1751      * and translation requests that result in an address in the
1752      * interrupt range will be blocked with condition code LGN.4 or
1753      * SGN.8.
1754      * """
1755      *
1756      * We enable per as memory region (iommu_ir_fault) for catching
1757      * the translation for interrupt range through PASID + PT.
1758      */
1759     if (pt && as->pasid != PCI_NO_PASID) {
1760         memory_region_set_enabled(&as->iommu_ir_fault, true);
1761     } else {
1762         memory_region_set_enabled(&as->iommu_ir_fault, false);
1763     }
1764 
1765     if (take_bql) {
1766         bql_unlock();
1767     }
1768 
1769     return use_iommu;
1770 }
1771 
1772 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1773 {
1774     VTDAddressSpace *vtd_as;
1775     GHashTableIter iter;
1776 
1777     g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1778     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1779         vtd_switch_address_space(vtd_as);
1780     }
1781 }
1782 
1783 static const bool vtd_qualified_faults[] = {
1784     [VTD_FR_RESERVED] = false,
1785     [VTD_FR_ROOT_ENTRY_P] = false,
1786     [VTD_FR_CONTEXT_ENTRY_P] = true,
1787     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1788     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1789     [VTD_FR_WRITE] = true,
1790     [VTD_FR_READ] = true,
1791     [VTD_FR_PAGING_ENTRY_INV] = true,
1792     [VTD_FR_ROOT_TABLE_INV] = false,
1793     [VTD_FR_CONTEXT_TABLE_INV] = false,
1794     [VTD_FR_INTERRUPT_ADDR] = true,
1795     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1796     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1797     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1798     [VTD_FR_PASID_TABLE_INV] = false,
1799     [VTD_FR_SM_INTERRUPT_ADDR] = true,
1800     [VTD_FR_MAX] = false,
1801 };
1802 
1803 /* To see if a fault condition is "qualified", which is reported to software
1804  * only if the FPD field in the context-entry used to process the faulting
1805  * request is 0.
1806  */
1807 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1808 {
1809     return vtd_qualified_faults[fault];
1810 }
1811 
1812 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1813 {
1814     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1815 }
1816 
1817 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1818                                    gpointer user_data)
1819 {
1820     struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1821     uint16_t target_sid = *(uint16_t *)user_data;
1822     uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1823     return sid == target_sid;
1824 }
1825 
1826 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1827 {
1828     uint8_t bus_num = PCI_BUS_NUM(sid);
1829     VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1830 
1831     if (vtd_as &&
1832         (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1833         return vtd_as;
1834     }
1835 
1836     vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1837     s->vtd_as_cache[bus_num] = vtd_as;
1838 
1839     return vtd_as;
1840 }
1841 
1842 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1843 {
1844     VTDAddressSpace *vtd_as;
1845     bool success = false;
1846 
1847     vtd_as = vtd_get_as_by_sid(s, source_id);
1848     if (!vtd_as) {
1849         goto out;
1850     }
1851 
1852     if (vtd_switch_address_space(vtd_as) == false) {
1853         /* We switched off IOMMU region successfully. */
1854         success = true;
1855     }
1856 
1857 out:
1858     trace_vtd_pt_enable_fast_path(source_id, success);
1859 }
1860 
1861 static void vtd_report_fault(IntelIOMMUState *s,
1862                              int err, bool is_fpd_set,
1863                              uint16_t source_id,
1864                              hwaddr addr,
1865                              bool is_write,
1866                              bool is_pasid,
1867                              uint32_t pasid)
1868 {
1869     if (is_fpd_set && vtd_is_qualified_fault(err)) {
1870         trace_vtd_fault_disabled();
1871     } else {
1872         vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1873                               is_pasid, pasid);
1874     }
1875 }
1876 
1877 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1878  * translation.
1879  *
1880  * Called from RCU critical section.
1881  *
1882  * @bus_num: The bus number
1883  * @devfn: The devfn, which is the  combined of device and function number
1884  * @is_write: The access is a write operation
1885  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1886  *
1887  * Returns true if translation is successful, otherwise false.
1888  */
1889 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1890                                    uint8_t devfn, hwaddr addr, bool is_write,
1891                                    IOMMUTLBEntry *entry)
1892 {
1893     IntelIOMMUState *s = vtd_as->iommu_state;
1894     VTDContextEntry ce;
1895     uint8_t bus_num = pci_bus_num(bus);
1896     VTDContextCacheEntry *cc_entry;
1897     uint64_t slpte, page_mask;
1898     uint32_t level, pasid = vtd_as->pasid;
1899     uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1900     int ret_fr;
1901     bool is_fpd_set = false;
1902     bool reads = true;
1903     bool writes = true;
1904     uint8_t access_flags;
1905     bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1906     VTDIOTLBEntry *iotlb_entry;
1907 
1908     /*
1909      * We have standalone memory region for interrupt addresses, we
1910      * should never receive translation requests in this region.
1911      */
1912     assert(!vtd_is_interrupt_addr(addr));
1913 
1914     vtd_iommu_lock(s);
1915 
1916     cc_entry = &vtd_as->context_cache_entry;
1917 
1918     /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1919     if (!rid2pasid) {
1920         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1921         if (iotlb_entry) {
1922             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1923                                      iotlb_entry->domain_id);
1924             slpte = iotlb_entry->slpte;
1925             access_flags = iotlb_entry->access_flags;
1926             page_mask = iotlb_entry->mask;
1927             goto out;
1928         }
1929     }
1930 
1931     /* Try to fetch context-entry from cache first */
1932     if (cc_entry->context_cache_gen == s->context_cache_gen) {
1933         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1934                                cc_entry->context_entry.lo,
1935                                cc_entry->context_cache_gen);
1936         ce = cc_entry->context_entry;
1937         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1938         if (!is_fpd_set && s->root_scalable) {
1939             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1940             if (ret_fr) {
1941                 vtd_report_fault(s, -ret_fr, is_fpd_set,
1942                                  source_id, addr, is_write,
1943                                  false, 0);
1944                 goto error;
1945             }
1946         }
1947     } else {
1948         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1949         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1950         if (!ret_fr && !is_fpd_set && s->root_scalable) {
1951             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1952         }
1953         if (ret_fr) {
1954             vtd_report_fault(s, -ret_fr, is_fpd_set,
1955                              source_id, addr, is_write,
1956                              false, 0);
1957             goto error;
1958         }
1959         /* Update context-cache */
1960         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1961                                   cc_entry->context_cache_gen,
1962                                   s->context_cache_gen);
1963         cc_entry->context_entry = ce;
1964         cc_entry->context_cache_gen = s->context_cache_gen;
1965     }
1966 
1967     if (rid2pasid) {
1968         pasid = VTD_CE_GET_RID2PASID(&ce);
1969     }
1970 
1971     /*
1972      * We don't need to translate for pass-through context entries.
1973      * Also, let's ignore IOTLB caching as well for PT devices.
1974      */
1975     if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1976         entry->iova = addr & VTD_PAGE_MASK_4K;
1977         entry->translated_addr = entry->iova;
1978         entry->addr_mask = ~VTD_PAGE_MASK_4K;
1979         entry->perm = IOMMU_RW;
1980         trace_vtd_translate_pt(source_id, entry->iova);
1981 
1982         /*
1983          * When this happens, it means firstly caching-mode is not
1984          * enabled, and this is the first passthrough translation for
1985          * the device. Let's enable the fast path for passthrough.
1986          *
1987          * When passthrough is disabled again for the device, we can
1988          * capture it via the context entry invalidation, then the
1989          * IOMMU region can be swapped back.
1990          */
1991         vtd_pt_enable_fast_path(s, source_id);
1992         vtd_iommu_unlock(s);
1993         return true;
1994     }
1995 
1996     /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1997     if (rid2pasid) {
1998         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1999         if (iotlb_entry) {
2000             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
2001                                      iotlb_entry->domain_id);
2002             slpte = iotlb_entry->slpte;
2003             access_flags = iotlb_entry->access_flags;
2004             page_mask = iotlb_entry->mask;
2005             goto out;
2006         }
2007     }
2008 
2009     ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
2010                                &reads, &writes, s->aw_bits, pasid);
2011     if (ret_fr) {
2012         vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
2013                          addr, is_write, pasid != PCI_NO_PASID, pasid);
2014         goto error;
2015     }
2016 
2017     page_mask = vtd_slpt_level_page_mask(level);
2018     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
2019     vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
2020                      addr, slpte, access_flags, level, pasid);
2021 out:
2022     vtd_iommu_unlock(s);
2023     entry->iova = addr & page_mask;
2024     entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
2025     entry->addr_mask = ~page_mask;
2026     entry->perm = access_flags;
2027     return true;
2028 
2029 error:
2030     vtd_iommu_unlock(s);
2031     entry->iova = 0;
2032     entry->translated_addr = 0;
2033     entry->addr_mask = 0;
2034     entry->perm = IOMMU_NONE;
2035     return false;
2036 }
2037 
2038 static void vtd_root_table_setup(IntelIOMMUState *s)
2039 {
2040     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2041     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
2042 
2043     vtd_update_scalable_state(s);
2044 
2045     trace_vtd_reg_dmar_root(s->root, s->root_scalable);
2046 }
2047 
2048 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
2049                                uint32_t index, uint32_t mask)
2050 {
2051     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
2052 }
2053 
2054 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
2055 {
2056     uint64_t value = 0;
2057     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
2058     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
2059     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2060     s->intr_eime = value & VTD_IRTA_EIME;
2061 
2062     /* Notify global invalidation */
2063     vtd_iec_notify_all(s, true, 0, 0);
2064 
2065     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2066 }
2067 
2068 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2069 {
2070     VTDAddressSpace *vtd_as;
2071 
2072     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2073         vtd_address_space_sync(vtd_as);
2074     }
2075 }
2076 
2077 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2078 {
2079     trace_vtd_inv_desc_cc_global();
2080     /* Protects context cache */
2081     vtd_iommu_lock(s);
2082     s->context_cache_gen++;
2083     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2084         vtd_reset_context_cache_locked(s);
2085     }
2086     vtd_iommu_unlock(s);
2087     vtd_address_space_refresh_all(s);
2088     /*
2089      * From VT-d spec 6.5.2.1, a global context entry invalidation
2090      * should be followed by a IOTLB global invalidation, so we should
2091      * be safe even without this. Hoewever, let's replay the region as
2092      * well to be safer, and go back here when we need finer tunes for
2093      * VT-d emulation codes.
2094      */
2095     vtd_iommu_replay_all(s);
2096 }
2097 
2098 /* Do a context-cache device-selective invalidation.
2099  * @func_mask: FM field after shifting
2100  */
2101 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2102                                           uint16_t source_id,
2103                                           uint16_t func_mask)
2104 {
2105     GHashTableIter as_it;
2106     uint16_t mask;
2107     VTDAddressSpace *vtd_as;
2108     uint8_t bus_n, devfn;
2109 
2110     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2111 
2112     switch (func_mask & 3) {
2113     case 0:
2114         mask = 0;   /* No bits in the SID field masked */
2115         break;
2116     case 1:
2117         mask = 4;   /* Mask bit 2 in the SID field */
2118         break;
2119     case 2:
2120         mask = 6;   /* Mask bit 2:1 in the SID field */
2121         break;
2122     case 3:
2123         mask = 7;   /* Mask bit 2:0 in the SID field */
2124         break;
2125     default:
2126         g_assert_not_reached();
2127     }
2128     mask = ~mask;
2129 
2130     bus_n = VTD_SID_TO_BUS(source_id);
2131     devfn = VTD_SID_TO_DEVFN(source_id);
2132 
2133     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2134     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2135         if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2136             (vtd_as->devfn & mask) == (devfn & mask)) {
2137             trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2138                                          VTD_PCI_FUNC(vtd_as->devfn));
2139             vtd_iommu_lock(s);
2140             vtd_as->context_cache_entry.context_cache_gen = 0;
2141             vtd_iommu_unlock(s);
2142             /*
2143              * Do switch address space when needed, in case if the
2144              * device passthrough bit is switched.
2145              */
2146             vtd_switch_address_space(vtd_as);
2147             /*
2148              * So a device is moving out of (or moving into) a
2149              * domain, resync the shadow page table.
2150              * This won't bring bad even if we have no such
2151              * notifier registered - the IOMMU notification
2152              * framework will skip MAP notifications if that
2153              * happened.
2154              */
2155             vtd_address_space_sync(vtd_as);
2156         }
2157     }
2158 }
2159 
2160 /* Context-cache invalidation
2161  * Returns the Context Actual Invalidation Granularity.
2162  * @val: the content of the CCMD_REG
2163  */
2164 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2165 {
2166     uint64_t caig;
2167     uint64_t type = val & VTD_CCMD_CIRG_MASK;
2168 
2169     switch (type) {
2170     case VTD_CCMD_DOMAIN_INVL:
2171         /* Fall through */
2172     case VTD_CCMD_GLOBAL_INVL:
2173         caig = VTD_CCMD_GLOBAL_INVL_A;
2174         vtd_context_global_invalidate(s);
2175         break;
2176 
2177     case VTD_CCMD_DEVICE_INVL:
2178         caig = VTD_CCMD_DEVICE_INVL_A;
2179         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2180         break;
2181 
2182     default:
2183         error_report_once("%s: invalid context: 0x%" PRIx64,
2184                           __func__, val);
2185         caig = 0;
2186     }
2187     return caig;
2188 }
2189 
2190 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2191 {
2192     trace_vtd_inv_desc_iotlb_global();
2193     vtd_reset_iotlb(s);
2194     vtd_iommu_replay_all(s);
2195 }
2196 
2197 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2198 {
2199     VTDContextEntry ce;
2200     VTDAddressSpace *vtd_as;
2201 
2202     trace_vtd_inv_desc_iotlb_domain(domain_id);
2203 
2204     vtd_iommu_lock(s);
2205     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2206                                 &domain_id);
2207     vtd_iommu_unlock(s);
2208 
2209     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2210         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2211                                       vtd_as->devfn, &ce) &&
2212             domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2213             vtd_address_space_sync(vtd_as);
2214         }
2215     }
2216 }
2217 
2218 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2219                                            uint16_t domain_id, hwaddr addr,
2220                                              uint8_t am, uint32_t pasid)
2221 {
2222     VTDAddressSpace *vtd_as;
2223     VTDContextEntry ce;
2224     int ret;
2225     hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2226 
2227     QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2228         if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2229             continue;
2230         }
2231         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2232                                        vtd_as->devfn, &ce);
2233         if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2234             if (vtd_as_has_map_notifier(vtd_as)) {
2235                 /*
2236                  * As long as we have MAP notifications registered in
2237                  * any of our IOMMU notifiers, we need to sync the
2238                  * shadow page table.
2239                  */
2240                 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2241             } else {
2242                 /*
2243                  * For UNMAP-only notifiers, we don't need to walk the
2244                  * page tables.  We just deliver the PSI down to
2245                  * invalidate caches.
2246                  */
2247                 const IOMMUTLBEvent event = {
2248                     .type = IOMMU_NOTIFIER_UNMAP,
2249                     .entry = {
2250                         .target_as = &address_space_memory,
2251                         .iova = addr,
2252                         .translated_addr = 0,
2253                         .addr_mask = size - 1,
2254                         .perm = IOMMU_NONE,
2255                     },
2256                 };
2257                 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2258             }
2259         }
2260     }
2261 }
2262 
2263 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2264                                       hwaddr addr, uint8_t am)
2265 {
2266     VTDIOTLBPageInvInfo info;
2267 
2268     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2269 
2270     assert(am <= VTD_MAMV);
2271     info.domain_id = domain_id;
2272     info.addr = addr;
2273     info.mask = ~((1 << am) - 1);
2274     vtd_iommu_lock(s);
2275     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2276     vtd_iommu_unlock(s);
2277     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2278 }
2279 
2280 /* Flush IOTLB
2281  * Returns the IOTLB Actual Invalidation Granularity.
2282  * @val: the content of the IOTLB_REG
2283  */
2284 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2285 {
2286     uint64_t iaig;
2287     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2288     uint16_t domain_id;
2289     hwaddr addr;
2290     uint8_t am;
2291 
2292     switch (type) {
2293     case VTD_TLB_GLOBAL_FLUSH:
2294         iaig = VTD_TLB_GLOBAL_FLUSH_A;
2295         vtd_iotlb_global_invalidate(s);
2296         break;
2297 
2298     case VTD_TLB_DSI_FLUSH:
2299         domain_id = VTD_TLB_DID(val);
2300         iaig = VTD_TLB_DSI_FLUSH_A;
2301         vtd_iotlb_domain_invalidate(s, domain_id);
2302         break;
2303 
2304     case VTD_TLB_PSI_FLUSH:
2305         domain_id = VTD_TLB_DID(val);
2306         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2307         am = VTD_IVA_AM(addr);
2308         addr = VTD_IVA_ADDR(addr);
2309         if (am > VTD_MAMV) {
2310             error_report_once("%s: address mask overflow: 0x%" PRIx64,
2311                               __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2312             iaig = 0;
2313             break;
2314         }
2315         iaig = VTD_TLB_PSI_FLUSH_A;
2316         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2317         break;
2318 
2319     default:
2320         error_report_once("%s: invalid granularity: 0x%" PRIx64,
2321                           __func__, val);
2322         iaig = 0;
2323     }
2324     return iaig;
2325 }
2326 
2327 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2328 
2329 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2330 {
2331     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2332            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2333 }
2334 
2335 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2336 {
2337     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2338 
2339     trace_vtd_inv_qi_enable(en);
2340 
2341     if (en) {
2342         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2343         /* 2^(x+8) entries */
2344         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2345         s->qi_enabled = true;
2346         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2347         /* Ok - report back to driver */
2348         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2349 
2350         if (s->iq_tail != 0) {
2351             /*
2352              * This is a spec violation but Windows guests are known to set up
2353              * Queued Invalidation this way so we allow the write and process
2354              * Invalidation Descriptors right away.
2355              */
2356             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2357             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2358                 vtd_fetch_inv_desc(s);
2359             }
2360         }
2361     } else {
2362         if (vtd_queued_inv_disable_check(s)) {
2363             /* disable Queued Invalidation */
2364             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2365             s->iq_head = 0;
2366             s->qi_enabled = false;
2367             /* Ok - report back to driver */
2368             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2369         } else {
2370             error_report_once("%s: detected improper state when disable QI "
2371                               "(head=0x%x, tail=0x%x, last_type=%d)",
2372                               __func__,
2373                               s->iq_head, s->iq_tail, s->iq_last_desc_type);
2374         }
2375     }
2376 }
2377 
2378 /* Set Root Table Pointer */
2379 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2380 {
2381     vtd_root_table_setup(s);
2382     /* Ok - report back to driver */
2383     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2384     vtd_reset_caches(s);
2385     vtd_address_space_refresh_all(s);
2386 }
2387 
2388 /* Set Interrupt Remap Table Pointer */
2389 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2390 {
2391     vtd_interrupt_remap_table_setup(s);
2392     /* Ok - report back to driver */
2393     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2394 }
2395 
2396 /* Handle Translation Enable/Disable */
2397 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2398 {
2399     if (s->dmar_enabled == en) {
2400         return;
2401     }
2402 
2403     trace_vtd_dmar_enable(en);
2404 
2405     if (en) {
2406         s->dmar_enabled = true;
2407         /* Ok - report back to driver */
2408         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2409     } else {
2410         s->dmar_enabled = false;
2411 
2412         /* Clear the index of Fault Recording Register */
2413         s->next_frcd_reg = 0;
2414         /* Ok - report back to driver */
2415         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2416     }
2417 
2418     vtd_reset_caches(s);
2419     vtd_address_space_refresh_all(s);
2420 }
2421 
2422 /* Handle Interrupt Remap Enable/Disable */
2423 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2424 {
2425     trace_vtd_ir_enable(en);
2426 
2427     if (en) {
2428         s->intr_enabled = true;
2429         /* Ok - report back to driver */
2430         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2431     } else {
2432         s->intr_enabled = false;
2433         /* Ok - report back to driver */
2434         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2435     }
2436 }
2437 
2438 /* Handle write to Global Command Register */
2439 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2440 {
2441     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2442     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2443     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2444     uint32_t changed = status ^ val;
2445 
2446     trace_vtd_reg_write_gcmd(status, val);
2447     if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2448         /* Translation enable/disable */
2449         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2450     }
2451     if (val & VTD_GCMD_SRTP) {
2452         /* Set/update the root-table pointer */
2453         vtd_handle_gcmd_srtp(s);
2454     }
2455     if (changed & VTD_GCMD_QIE) {
2456         /* Queued Invalidation Enable */
2457         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2458     }
2459     if (val & VTD_GCMD_SIRTP) {
2460         /* Set/update the interrupt remapping root-table pointer */
2461         vtd_handle_gcmd_sirtp(s);
2462     }
2463     if ((changed & VTD_GCMD_IRE) &&
2464         x86_iommu_ir_supported(x86_iommu)) {
2465         /* Interrupt remap enable/disable */
2466         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2467     }
2468 }
2469 
2470 /* Handle write to Context Command Register */
2471 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2472 {
2473     uint64_t ret;
2474     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2475 
2476     /* Context-cache invalidation request */
2477     if (val & VTD_CCMD_ICC) {
2478         if (s->qi_enabled) {
2479             error_report_once("Queued Invalidation enabled, "
2480                               "should not use register-based invalidation");
2481             return;
2482         }
2483         ret = vtd_context_cache_invalidate(s, val);
2484         /* Invalidation completed. Change something to show */
2485         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2486         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2487                                       ret);
2488     }
2489 }
2490 
2491 /* Handle write to IOTLB Invalidation Register */
2492 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2493 {
2494     uint64_t ret;
2495     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2496 
2497     /* IOTLB invalidation request */
2498     if (val & VTD_TLB_IVT) {
2499         if (s->qi_enabled) {
2500             error_report_once("Queued Invalidation enabled, "
2501                               "should not use register-based invalidation");
2502             return;
2503         }
2504         ret = vtd_iotlb_flush(s, val);
2505         /* Invalidation completed. Change something to show */
2506         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2507         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2508                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2509     }
2510 }
2511 
2512 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2513 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2514                              VTDInvDesc *inv_desc)
2515 {
2516     dma_addr_t base_addr = s->iq;
2517     uint32_t offset = s->iq_head;
2518     uint32_t dw = s->iq_dw ? 32 : 16;
2519     dma_addr_t addr = base_addr + offset * dw;
2520 
2521     if (dma_memory_read(&address_space_memory, addr,
2522                         inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2523         error_report_once("Read INV DESC failed.");
2524         return false;
2525     }
2526     inv_desc->lo = le64_to_cpu(inv_desc->lo);
2527     inv_desc->hi = le64_to_cpu(inv_desc->hi);
2528     if (dw == 32) {
2529         inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2530         inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2531     }
2532     return true;
2533 }
2534 
2535 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2536 {
2537     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2538         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2539         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2540                           " (reserved nonzero)", __func__, inv_desc->hi,
2541                           inv_desc->lo);
2542         return false;
2543     }
2544     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2545         /* Status Write */
2546         uint32_t status_data = (uint32_t)(inv_desc->lo >>
2547                                VTD_INV_DESC_WAIT_DATA_SHIFT);
2548 
2549         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2550 
2551         /* FIXME: need to be masked with HAW? */
2552         dma_addr_t status_addr = inv_desc->hi;
2553         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2554         status_data = cpu_to_le32(status_data);
2555         if (dma_memory_write(&address_space_memory, status_addr,
2556                              &status_data, sizeof(status_data),
2557                              MEMTXATTRS_UNSPECIFIED)) {
2558             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2559             return false;
2560         }
2561     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2562         /* Interrupt flag */
2563         vtd_generate_completion_event(s);
2564     } else {
2565         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2566                           " (unknown type)", __func__, inv_desc->hi,
2567                           inv_desc->lo);
2568         return false;
2569     }
2570     return true;
2571 }
2572 
2573 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2574                                            VTDInvDesc *inv_desc)
2575 {
2576     uint16_t sid, fmask;
2577 
2578     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2579         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2580                           " (reserved nonzero)", __func__, inv_desc->hi,
2581                           inv_desc->lo);
2582         return false;
2583     }
2584     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2585     case VTD_INV_DESC_CC_DOMAIN:
2586         trace_vtd_inv_desc_cc_domain(
2587             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2588         /* Fall through */
2589     case VTD_INV_DESC_CC_GLOBAL:
2590         vtd_context_global_invalidate(s);
2591         break;
2592 
2593     case VTD_INV_DESC_CC_DEVICE:
2594         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2595         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2596         vtd_context_device_invalidate(s, sid, fmask);
2597         break;
2598 
2599     default:
2600         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2601                           " (invalid type)", __func__, inv_desc->hi,
2602                           inv_desc->lo);
2603         return false;
2604     }
2605     return true;
2606 }
2607 
2608 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2609 {
2610     uint16_t domain_id;
2611     uint8_t am;
2612     hwaddr addr;
2613 
2614     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2615         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2616         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2617                           ", lo=0x%"PRIx64" (reserved bits unzero)",
2618                           __func__, inv_desc->hi, inv_desc->lo);
2619         return false;
2620     }
2621 
2622     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2623     case VTD_INV_DESC_IOTLB_GLOBAL:
2624         vtd_iotlb_global_invalidate(s);
2625         break;
2626 
2627     case VTD_INV_DESC_IOTLB_DOMAIN:
2628         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2629         vtd_iotlb_domain_invalidate(s, domain_id);
2630         break;
2631 
2632     case VTD_INV_DESC_IOTLB_PAGE:
2633         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2634         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2635         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2636         if (am > VTD_MAMV) {
2637             error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2638                               ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2639                               __func__, inv_desc->hi, inv_desc->lo,
2640                               am, (unsigned)VTD_MAMV);
2641             return false;
2642         }
2643         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2644         break;
2645 
2646     default:
2647         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2648                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2649                           __func__, inv_desc->hi, inv_desc->lo,
2650                           inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2651         return false;
2652     }
2653     return true;
2654 }
2655 
2656 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2657                                      VTDInvDesc *inv_desc)
2658 {
2659     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2660                            inv_desc->iec.index,
2661                            inv_desc->iec.index_mask);
2662 
2663     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2664                        inv_desc->iec.index,
2665                        inv_desc->iec.index_mask);
2666     return true;
2667 }
2668 
2669 static void do_invalidate_device_tlb(VTDAddressSpace *vtd_dev_as,
2670                                      bool size, hwaddr addr)
2671 {
2672     /*
2673      * According to ATS spec table 2.4:
2674      * S = 0, bits 15:12 = xxxx     range size: 4K
2675      * S = 1, bits 15:12 = xxx0     range size: 8K
2676      * S = 1, bits 15:12 = xx01     range size: 16K
2677      * S = 1, bits 15:12 = x011     range size: 32K
2678      * S = 1, bits 15:12 = 0111     range size: 64K
2679      * ...
2680      */
2681 
2682     IOMMUTLBEvent event;
2683     uint64_t sz;
2684 
2685     if (size) {
2686         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2687         addr &= ~(sz - 1);
2688     } else {
2689         sz = VTD_PAGE_SIZE;
2690     }
2691 
2692     event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2693     event.entry.target_as = &vtd_dev_as->as;
2694     event.entry.addr_mask = sz - 1;
2695     event.entry.iova = addr;
2696     event.entry.perm = IOMMU_NONE;
2697     event.entry.translated_addr = 0;
2698     memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2699 }
2700 
2701 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2702                                           VTDInvDesc *inv_desc)
2703 {
2704     VTDAddressSpace *vtd_dev_as;
2705     hwaddr addr;
2706     uint16_t sid;
2707     bool size;
2708 
2709     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2710     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2711     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2712 
2713     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2714         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2715         error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2716                           ", lo=%"PRIx64" (reserved nonzero)", __func__,
2717                           inv_desc->hi, inv_desc->lo);
2718         return false;
2719     }
2720 
2721     /*
2722      * Using sid is OK since the guest should have finished the
2723      * initialization of both the bus and device.
2724      */
2725     vtd_dev_as = vtd_get_as_by_sid(s, sid);
2726     if (!vtd_dev_as) {
2727         goto done;
2728     }
2729 
2730     do_invalidate_device_tlb(vtd_dev_as, size, addr);
2731 
2732 done:
2733     return true;
2734 }
2735 
2736 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2737 {
2738     VTDInvDesc inv_desc;
2739     uint8_t desc_type;
2740 
2741     trace_vtd_inv_qi_head(s->iq_head);
2742     if (!vtd_get_inv_desc(s, &inv_desc)) {
2743         s->iq_last_desc_type = VTD_INV_DESC_NONE;
2744         return false;
2745     }
2746 
2747     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2748     /* FIXME: should update at first or at last? */
2749     s->iq_last_desc_type = desc_type;
2750 
2751     switch (desc_type) {
2752     case VTD_INV_DESC_CC:
2753         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2754         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2755             return false;
2756         }
2757         break;
2758 
2759     case VTD_INV_DESC_IOTLB:
2760         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2761         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2762             return false;
2763         }
2764         break;
2765 
2766     /*
2767      * TODO: the entity of below two cases will be implemented in future series.
2768      * To make guest (which integrates scalable mode support patch set in
2769      * iommu driver) work, just return true is enough so far.
2770      */
2771     case VTD_INV_DESC_PC:
2772         break;
2773 
2774     case VTD_INV_DESC_PIOTLB:
2775         break;
2776 
2777     case VTD_INV_DESC_WAIT:
2778         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2779         if (!vtd_process_wait_desc(s, &inv_desc)) {
2780             return false;
2781         }
2782         break;
2783 
2784     case VTD_INV_DESC_IEC:
2785         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2786         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2787             return false;
2788         }
2789         break;
2790 
2791     case VTD_INV_DESC_DEVICE:
2792         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2793         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2794             return false;
2795         }
2796         break;
2797 
2798     default:
2799         error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2800                           " (unknown type)", __func__, inv_desc.hi,
2801                           inv_desc.lo);
2802         return false;
2803     }
2804     s->iq_head++;
2805     if (s->iq_head == s->iq_size) {
2806         s->iq_head = 0;
2807     }
2808     return true;
2809 }
2810 
2811 /* Try to fetch and process more Invalidation Descriptors */
2812 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2813 {
2814     int qi_shift;
2815 
2816     /* Refer to 10.4.23 of VT-d spec 3.0 */
2817     qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2818 
2819     trace_vtd_inv_qi_fetch();
2820 
2821     if (s->iq_tail >= s->iq_size) {
2822         /* Detects an invalid Tail pointer */
2823         error_report_once("%s: detected invalid QI tail "
2824                           "(tail=0x%x, size=0x%x)",
2825                           __func__, s->iq_tail, s->iq_size);
2826         vtd_handle_inv_queue_error(s);
2827         return;
2828     }
2829     while (s->iq_head != s->iq_tail) {
2830         if (!vtd_process_inv_desc(s)) {
2831             /* Invalidation Queue Errors */
2832             vtd_handle_inv_queue_error(s);
2833             break;
2834         }
2835         /* Must update the IQH_REG in time */
2836         vtd_set_quad_raw(s, DMAR_IQH_REG,
2837                          (((uint64_t)(s->iq_head)) << qi_shift) &
2838                          VTD_IQH_QH_MASK);
2839     }
2840 }
2841 
2842 /* Handle write to Invalidation Queue Tail Register */
2843 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2844 {
2845     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2846 
2847     if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2848         error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2849                           __func__, val);
2850         return;
2851     }
2852     s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2853     trace_vtd_inv_qi_tail(s->iq_tail);
2854 
2855     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2856         /* Process Invalidation Queue here */
2857         vtd_fetch_inv_desc(s);
2858     }
2859 }
2860 
2861 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2862 {
2863     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2864     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2865     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2866 
2867     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2868         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2869         trace_vtd_fsts_clear_ip();
2870     }
2871     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2872      * Descriptors if there are any when Queued Invalidation is enabled?
2873      */
2874 }
2875 
2876 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2877 {
2878     uint32_t fectl_reg;
2879     /* FIXME: when software clears the IM field, check the IP field. But do we
2880      * need to compare the old value and the new value to conclude that
2881      * software clears the IM field? Or just check if the IM field is zero?
2882      */
2883     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2884 
2885     trace_vtd_reg_write_fectl(fectl_reg);
2886 
2887     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2888         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2889         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2890     }
2891 }
2892 
2893 static void vtd_handle_ics_write(IntelIOMMUState *s)
2894 {
2895     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2896     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2897 
2898     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2899         trace_vtd_reg_ics_clear_ip();
2900         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2901     }
2902 }
2903 
2904 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2905 {
2906     uint32_t iectl_reg;
2907     /* FIXME: when software clears the IM field, check the IP field. But do we
2908      * need to compare the old value and the new value to conclude that
2909      * software clears the IM field? Or just check if the IM field is zero?
2910      */
2911     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2912 
2913     trace_vtd_reg_write_iectl(iectl_reg);
2914 
2915     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2916         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2917         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2918     }
2919 }
2920 
2921 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2922 {
2923     IntelIOMMUState *s = opaque;
2924     uint64_t val;
2925 
2926     trace_vtd_reg_read(addr, size);
2927 
2928     if (addr + size > DMAR_REG_SIZE) {
2929         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2930                           " size=0x%x", __func__, addr, size);
2931         return (uint64_t)-1;
2932     }
2933 
2934     switch (addr) {
2935     /* Root Table Address Register, 64-bit */
2936     case DMAR_RTADDR_REG:
2937         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2938         if (size == 4) {
2939             val = val & ((1ULL << 32) - 1);
2940         }
2941         break;
2942 
2943     case DMAR_RTADDR_REG_HI:
2944         assert(size == 4);
2945         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2946         break;
2947 
2948     /* Invalidation Queue Address Register, 64-bit */
2949     case DMAR_IQA_REG:
2950         val = s->iq |
2951               (vtd_get_quad(s, DMAR_IQA_REG) &
2952               (VTD_IQA_QS | VTD_IQA_DW_MASK));
2953         if (size == 4) {
2954             val = val & ((1ULL << 32) - 1);
2955         }
2956         break;
2957 
2958     case DMAR_IQA_REG_HI:
2959         assert(size == 4);
2960         val = s->iq >> 32;
2961         break;
2962 
2963     default:
2964         if (size == 4) {
2965             val = vtd_get_long(s, addr);
2966         } else {
2967             val = vtd_get_quad(s, addr);
2968         }
2969     }
2970 
2971     return val;
2972 }
2973 
2974 static void vtd_mem_write(void *opaque, hwaddr addr,
2975                           uint64_t val, unsigned size)
2976 {
2977     IntelIOMMUState *s = opaque;
2978 
2979     trace_vtd_reg_write(addr, size, val);
2980 
2981     if (addr + size > DMAR_REG_SIZE) {
2982         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2983                           " size=0x%x", __func__, addr, size);
2984         return;
2985     }
2986 
2987     switch (addr) {
2988     /* Global Command Register, 32-bit */
2989     case DMAR_GCMD_REG:
2990         vtd_set_long(s, addr, val);
2991         vtd_handle_gcmd_write(s);
2992         break;
2993 
2994     /* Context Command Register, 64-bit */
2995     case DMAR_CCMD_REG:
2996         if (size == 4) {
2997             vtd_set_long(s, addr, val);
2998         } else {
2999             vtd_set_quad(s, addr, val);
3000             vtd_handle_ccmd_write(s);
3001         }
3002         break;
3003 
3004     case DMAR_CCMD_REG_HI:
3005         assert(size == 4);
3006         vtd_set_long(s, addr, val);
3007         vtd_handle_ccmd_write(s);
3008         break;
3009 
3010     /* IOTLB Invalidation Register, 64-bit */
3011     case DMAR_IOTLB_REG:
3012         if (size == 4) {
3013             vtd_set_long(s, addr, val);
3014         } else {
3015             vtd_set_quad(s, addr, val);
3016             vtd_handle_iotlb_write(s);
3017         }
3018         break;
3019 
3020     case DMAR_IOTLB_REG_HI:
3021         assert(size == 4);
3022         vtd_set_long(s, addr, val);
3023         vtd_handle_iotlb_write(s);
3024         break;
3025 
3026     /* Invalidate Address Register, 64-bit */
3027     case DMAR_IVA_REG:
3028         if (size == 4) {
3029             vtd_set_long(s, addr, val);
3030         } else {
3031             vtd_set_quad(s, addr, val);
3032         }
3033         break;
3034 
3035     case DMAR_IVA_REG_HI:
3036         assert(size == 4);
3037         vtd_set_long(s, addr, val);
3038         break;
3039 
3040     /* Fault Status Register, 32-bit */
3041     case DMAR_FSTS_REG:
3042         assert(size == 4);
3043         vtd_set_long(s, addr, val);
3044         vtd_handle_fsts_write(s);
3045         break;
3046 
3047     /* Fault Event Control Register, 32-bit */
3048     case DMAR_FECTL_REG:
3049         assert(size == 4);
3050         vtd_set_long(s, addr, val);
3051         vtd_handle_fectl_write(s);
3052         break;
3053 
3054     /* Fault Event Data Register, 32-bit */
3055     case DMAR_FEDATA_REG:
3056         assert(size == 4);
3057         vtd_set_long(s, addr, val);
3058         break;
3059 
3060     /* Fault Event Address Register, 32-bit */
3061     case DMAR_FEADDR_REG:
3062         if (size == 4) {
3063             vtd_set_long(s, addr, val);
3064         } else {
3065             /*
3066              * While the register is 32-bit only, some guests (Xen...) write to
3067              * it with 64-bit.
3068              */
3069             vtd_set_quad(s, addr, val);
3070         }
3071         break;
3072 
3073     /* Fault Event Upper Address Register, 32-bit */
3074     case DMAR_FEUADDR_REG:
3075         assert(size == 4);
3076         vtd_set_long(s, addr, val);
3077         break;
3078 
3079     /* Protected Memory Enable Register, 32-bit */
3080     case DMAR_PMEN_REG:
3081         assert(size == 4);
3082         vtd_set_long(s, addr, val);
3083         break;
3084 
3085     /* Root Table Address Register, 64-bit */
3086     case DMAR_RTADDR_REG:
3087         if (size == 4) {
3088             vtd_set_long(s, addr, val);
3089         } else {
3090             vtd_set_quad(s, addr, val);
3091         }
3092         break;
3093 
3094     case DMAR_RTADDR_REG_HI:
3095         assert(size == 4);
3096         vtd_set_long(s, addr, val);
3097         break;
3098 
3099     /* Invalidation Queue Tail Register, 64-bit */
3100     case DMAR_IQT_REG:
3101         if (size == 4) {
3102             vtd_set_long(s, addr, val);
3103         } else {
3104             vtd_set_quad(s, addr, val);
3105         }
3106         vtd_handle_iqt_write(s);
3107         break;
3108 
3109     case DMAR_IQT_REG_HI:
3110         assert(size == 4);
3111         vtd_set_long(s, addr, val);
3112         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3113         break;
3114 
3115     /* Invalidation Queue Address Register, 64-bit */
3116     case DMAR_IQA_REG:
3117         if (size == 4) {
3118             vtd_set_long(s, addr, val);
3119         } else {
3120             vtd_set_quad(s, addr, val);
3121         }
3122         vtd_update_iq_dw(s);
3123         break;
3124 
3125     case DMAR_IQA_REG_HI:
3126         assert(size == 4);
3127         vtd_set_long(s, addr, val);
3128         break;
3129 
3130     /* Invalidation Completion Status Register, 32-bit */
3131     case DMAR_ICS_REG:
3132         assert(size == 4);
3133         vtd_set_long(s, addr, val);
3134         vtd_handle_ics_write(s);
3135         break;
3136 
3137     /* Invalidation Event Control Register, 32-bit */
3138     case DMAR_IECTL_REG:
3139         assert(size == 4);
3140         vtd_set_long(s, addr, val);
3141         vtd_handle_iectl_write(s);
3142         break;
3143 
3144     /* Invalidation Event Data Register, 32-bit */
3145     case DMAR_IEDATA_REG:
3146         assert(size == 4);
3147         vtd_set_long(s, addr, val);
3148         break;
3149 
3150     /* Invalidation Event Address Register, 32-bit */
3151     case DMAR_IEADDR_REG:
3152         assert(size == 4);
3153         vtd_set_long(s, addr, val);
3154         break;
3155 
3156     /* Invalidation Event Upper Address Register, 32-bit */
3157     case DMAR_IEUADDR_REG:
3158         assert(size == 4);
3159         vtd_set_long(s, addr, val);
3160         break;
3161 
3162     /* Fault Recording Registers, 128-bit */
3163     case DMAR_FRCD_REG_0_0:
3164         if (size == 4) {
3165             vtd_set_long(s, addr, val);
3166         } else {
3167             vtd_set_quad(s, addr, val);
3168         }
3169         break;
3170 
3171     case DMAR_FRCD_REG_0_1:
3172         assert(size == 4);
3173         vtd_set_long(s, addr, val);
3174         break;
3175 
3176     case DMAR_FRCD_REG_0_2:
3177         if (size == 4) {
3178             vtd_set_long(s, addr, val);
3179         } else {
3180             vtd_set_quad(s, addr, val);
3181             /* May clear bit 127 (Fault), update PPF */
3182             vtd_update_fsts_ppf(s);
3183         }
3184         break;
3185 
3186     case DMAR_FRCD_REG_0_3:
3187         assert(size == 4);
3188         vtd_set_long(s, addr, val);
3189         /* May clear bit 127 (Fault), update PPF */
3190         vtd_update_fsts_ppf(s);
3191         break;
3192 
3193     case DMAR_IRTA_REG:
3194         if (size == 4) {
3195             vtd_set_long(s, addr, val);
3196         } else {
3197             vtd_set_quad(s, addr, val);
3198         }
3199         break;
3200 
3201     case DMAR_IRTA_REG_HI:
3202         assert(size == 4);
3203         vtd_set_long(s, addr, val);
3204         break;
3205 
3206     default:
3207         if (size == 4) {
3208             vtd_set_long(s, addr, val);
3209         } else {
3210             vtd_set_quad(s, addr, val);
3211         }
3212     }
3213 }
3214 
3215 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3216                                          IOMMUAccessFlags flag, int iommu_idx)
3217 {
3218     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3219     IntelIOMMUState *s = vtd_as->iommu_state;
3220     IOMMUTLBEntry iotlb = {
3221         /* We'll fill in the rest later. */
3222         .target_as = &address_space_memory,
3223     };
3224     bool success;
3225 
3226     if (likely(s->dmar_enabled)) {
3227         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3228                                          addr, flag & IOMMU_WO, &iotlb);
3229     } else {
3230         /* DMAR disabled, passthrough, use 4k-page*/
3231         iotlb.iova = addr & VTD_PAGE_MASK_4K;
3232         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3233         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3234         iotlb.perm = IOMMU_RW;
3235         success = true;
3236     }
3237 
3238     if (likely(success)) {
3239         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3240                                  VTD_PCI_SLOT(vtd_as->devfn),
3241                                  VTD_PCI_FUNC(vtd_as->devfn),
3242                                  iotlb.iova, iotlb.translated_addr,
3243                                  iotlb.addr_mask);
3244     } else {
3245         error_report_once("%s: detected translation failure "
3246                           "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3247                           __func__, pci_bus_num(vtd_as->bus),
3248                           VTD_PCI_SLOT(vtd_as->devfn),
3249                           VTD_PCI_FUNC(vtd_as->devfn),
3250                           addr);
3251     }
3252 
3253     return iotlb;
3254 }
3255 
3256 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3257                                          IOMMUNotifierFlag old,
3258                                          IOMMUNotifierFlag new,
3259                                          Error **errp)
3260 {
3261     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3262     IntelIOMMUState *s = vtd_as->iommu_state;
3263     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3264 
3265     /* TODO: add support for VFIO and vhost users */
3266     if (s->snoop_control) {
3267         error_setg_errno(errp, ENOTSUP,
3268                          "Snoop Control with vhost or VFIO is not supported");
3269         return -ENOTSUP;
3270     }
3271     if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3272         error_setg_errno(errp, ENOTSUP,
3273                          "device %02x.%02x.%x requires caching mode",
3274                          pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3275                          PCI_FUNC(vtd_as->devfn));
3276         return -ENOTSUP;
3277     }
3278     if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3279         error_setg_errno(errp, ENOTSUP,
3280                          "device %02x.%02x.%x requires device IOTLB mode",
3281                          pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3282                          PCI_FUNC(vtd_as->devfn));
3283         return -ENOTSUP;
3284     }
3285 
3286     /* Update per-address-space notifier flags */
3287     vtd_as->notifier_flags = new;
3288 
3289     if (old == IOMMU_NOTIFIER_NONE) {
3290         QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3291     } else if (new == IOMMU_NOTIFIER_NONE) {
3292         QLIST_REMOVE(vtd_as, next);
3293     }
3294     return 0;
3295 }
3296 
3297 static int vtd_post_load(void *opaque, int version_id)
3298 {
3299     IntelIOMMUState *iommu = opaque;
3300 
3301     /*
3302      * We don't need to migrate the root_scalable because we can
3303      * simply do the calculation after the loading is complete.  We
3304      * can actually do similar things with root, dmar_enabled, etc.
3305      * however since we've had them already so we'd better keep them
3306      * for compatibility of migration.
3307      */
3308     vtd_update_scalable_state(iommu);
3309 
3310     vtd_update_iq_dw(iommu);
3311 
3312     /*
3313      * Memory regions are dynamically turned on/off depending on
3314      * context entry configurations from the guest. After migration,
3315      * we need to make sure the memory regions are still correct.
3316      */
3317     vtd_switch_address_space_all(iommu);
3318 
3319     return 0;
3320 }
3321 
3322 static const VMStateDescription vtd_vmstate = {
3323     .name = "iommu-intel",
3324     .version_id = 1,
3325     .minimum_version_id = 1,
3326     .priority = MIG_PRI_IOMMU,
3327     .post_load = vtd_post_load,
3328     .fields = (const VMStateField[]) {
3329         VMSTATE_UINT64(root, IntelIOMMUState),
3330         VMSTATE_UINT64(intr_root, IntelIOMMUState),
3331         VMSTATE_UINT64(iq, IntelIOMMUState),
3332         VMSTATE_UINT32(intr_size, IntelIOMMUState),
3333         VMSTATE_UINT16(iq_head, IntelIOMMUState),
3334         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3335         VMSTATE_UINT16(iq_size, IntelIOMMUState),
3336         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3337         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3338         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3339         VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3340         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3341         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3342         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3343         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3344         VMSTATE_END_OF_LIST()
3345     }
3346 };
3347 
3348 static const MemoryRegionOps vtd_mem_ops = {
3349     .read = vtd_mem_read,
3350     .write = vtd_mem_write,
3351     .endianness = DEVICE_LITTLE_ENDIAN,
3352     .impl = {
3353         .min_access_size = 4,
3354         .max_access_size = 8,
3355     },
3356     .valid = {
3357         .min_access_size = 4,
3358         .max_access_size = 8,
3359     },
3360 };
3361 
3362 static Property vtd_properties[] = {
3363     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3364     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3365                             ON_OFF_AUTO_AUTO),
3366     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3367     DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3368                       VTD_HOST_ADDRESS_WIDTH),
3369     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3370     DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3371     DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3372     DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3373     DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3374     DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3375     DEFINE_PROP_END_OF_LIST(),
3376 };
3377 
3378 /* Read IRTE entry with specific index */
3379 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3380                          VTD_IR_TableEntry *entry, uint16_t sid,
3381                          bool do_fault)
3382 {
3383     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3384         {0xffff, 0xfffb, 0xfff9, 0xfff8};
3385     dma_addr_t addr = 0x00;
3386     uint16_t mask, source_id;
3387     uint8_t bus, bus_max, bus_min;
3388 
3389     if (index >= iommu->intr_size) {
3390         error_report_once("%s: index too large: ind=0x%x",
3391                           __func__, index);
3392         if (do_fault) {
3393             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index);
3394         }
3395         return false;
3396     }
3397 
3398     addr = iommu->intr_root + index * sizeof(*entry);
3399     if (dma_memory_read(&address_space_memory, addr,
3400                         entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3401         error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3402                           __func__, index, addr);
3403         if (do_fault) {
3404             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index);
3405         }
3406         return false;
3407     }
3408 
3409     entry->data[0] = le64_to_cpu(entry->data[0]);
3410     entry->data[1] = le64_to_cpu(entry->data[1]);
3411 
3412     trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
3413 
3414     /*
3415      * The remaining potential fault conditions are "qualified" by the
3416      * Fault Processing Disable bit in the IRTE. Even "not present".
3417      * So just clear the do_fault flag if PFD is set, which will
3418      * prevent faults being raised.
3419      */
3420     if (entry->irte.fault_disable) {
3421         do_fault = false;
3422     }
3423 
3424     if (!entry->irte.present) {
3425         error_report_once("%s: detected non-present IRTE "
3426                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3427                           __func__, index, entry->data[1], entry->data[0]);
3428         if (do_fault) {
3429             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index);
3430         }
3431         return false;
3432     }
3433 
3434     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3435         entry->irte.__reserved_2) {
3436         error_report_once("%s: detected non-zero reserved IRTE "
3437                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3438                           __func__, index, entry->data[1], entry->data[0]);
3439         if (do_fault) {
3440             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index);
3441         }
3442         return false;
3443     }
3444 
3445     if (sid != X86_IOMMU_SID_INVALID) {
3446         /* Validate IRTE SID */
3447         source_id = entry->irte.source_id;
3448         switch (entry->irte.sid_vtype) {
3449         case VTD_SVT_NONE:
3450             break;
3451 
3452         case VTD_SVT_ALL:
3453             mask = vtd_svt_mask[entry->irte.sid_q];
3454             if ((source_id & mask) != (sid & mask)) {
3455                 error_report_once("%s: invalid IRTE SID "
3456                                   "(index=%u, sid=%u, source_id=%u)",
3457                                   __func__, index, sid, source_id);
3458                 if (do_fault) {
3459                     vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3460                 }
3461                 return false;
3462             }
3463             break;
3464 
3465         case VTD_SVT_BUS:
3466             bus_max = source_id >> 8;
3467             bus_min = source_id & 0xff;
3468             bus = sid >> 8;
3469             if (bus > bus_max || bus < bus_min) {
3470                 error_report_once("%s: invalid SVT_BUS "
3471                                   "(index=%u, bus=%u, min=%u, max=%u)",
3472                                   __func__, index, bus, bus_min, bus_max);
3473                 if (do_fault) {
3474                     vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3475                 }
3476                 return false;
3477             }
3478             break;
3479 
3480         default:
3481             error_report_once("%s: detected invalid IRTE SVT "
3482                               "(index=%u, type=%d)", __func__,
3483                               index, entry->irte.sid_vtype);
3484             /* Take this as verification failure. */
3485             if (do_fault) {
3486                 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3487             }
3488             return false;
3489         }
3490     }
3491 
3492     return true;
3493 }
3494 
3495 /* Fetch IRQ information of specific IR index */
3496 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3497                               X86IOMMUIrq *irq, uint16_t sid, bool do_fault)
3498 {
3499     VTD_IR_TableEntry irte = {};
3500 
3501     if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) {
3502         return false;
3503     }
3504 
3505     irq->trigger_mode = irte.irte.trigger_mode;
3506     irq->vector = irte.irte.vector;
3507     irq->delivery_mode = irte.irte.delivery_mode;
3508     irq->dest = irte.irte.dest_id;
3509     if (!iommu->intr_eime) {
3510 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3511 #define  VTD_IR_APIC_DEST_SHIFT        (8)
3512         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3513             VTD_IR_APIC_DEST_SHIFT;
3514     }
3515     irq->dest_mode = irte.irte.dest_mode;
3516     irq->redir_hint = irte.irte.redir_hint;
3517 
3518     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3519                        irq->delivery_mode, irq->dest, irq->dest_mode);
3520 
3521     return true;
3522 }
3523 
3524 /* Interrupt remapping for MSI/MSI-X entry */
3525 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3526                                    MSIMessage *origin,
3527                                    MSIMessage *translated,
3528                                    uint16_t sid, bool do_fault)
3529 {
3530     VTD_IR_MSIAddress addr;
3531     uint16_t index;
3532     X86IOMMUIrq irq = {};
3533 
3534     assert(origin && translated);
3535 
3536     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3537 
3538     if (!iommu || !iommu->intr_enabled) {
3539         memcpy(translated, origin, sizeof(*origin));
3540         goto out;
3541     }
3542 
3543     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3544         error_report_once("%s: MSI address high 32 bits non-zero detected: "
3545                           "address=0x%" PRIx64, __func__, origin->address);
3546         if (do_fault) {
3547             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3548         }
3549         return -EINVAL;
3550     }
3551 
3552     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3553     if (addr.addr.__head != 0xfee) {
3554         error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3555                           __func__, addr.data);
3556         if (do_fault) {
3557             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3558         }
3559         return -EINVAL;
3560     }
3561 
3562     /* This is compatible mode. */
3563     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3564         memcpy(translated, origin, sizeof(*origin));
3565         goto out;
3566     }
3567 
3568     index = addr.addr.index_h << 15 | addr.addr.index_l;
3569 
3570 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3571 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3572 
3573     if (addr.addr.sub_valid) {
3574         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3575         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3576     }
3577 
3578     if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) {
3579         return -EINVAL;
3580     }
3581 
3582     if (addr.addr.sub_valid) {
3583         trace_vtd_ir_remap_type("MSI");
3584         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3585             error_report_once("%s: invalid IR MSI "
3586                               "(sid=%u, address=0x%" PRIx64
3587                               ", data=0x%" PRIx32 ")",
3588                               __func__, sid, origin->address, origin->data);
3589             if (do_fault) {
3590                 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3591             }
3592             return -EINVAL;
3593         }
3594     } else {
3595         uint8_t vector = origin->data & 0xff;
3596         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3597 
3598         trace_vtd_ir_remap_type("IOAPIC");
3599         /* IOAPIC entry vector should be aligned with IRTE vector
3600          * (see vt-d spec 5.1.5.1). */
3601         if (vector != irq.vector) {
3602             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3603         }
3604 
3605         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3606          * (see vt-d spec 5.1.5.1). */
3607         if (trigger_mode != irq.trigger_mode) {
3608             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3609                                       irq.trigger_mode);
3610         }
3611     }
3612 
3613     /*
3614      * We'd better keep the last two bits, assuming that guest OS
3615      * might modify it. Keep it does not hurt after all.
3616      */
3617     irq.msi_addr_last_bits = addr.addr.__not_care;
3618 
3619     /* Translate X86IOMMUIrq to MSI message */
3620     x86_iommu_irq_to_msi_message(&irq, translated);
3621 
3622 out:
3623     trace_vtd_ir_remap_msi(origin->address, origin->data,
3624                            translated->address, translated->data);
3625     return 0;
3626 }
3627 
3628 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3629                          MSIMessage *dst, uint16_t sid)
3630 {
3631     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3632                                    src, dst, sid, false);
3633 }
3634 
3635 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3636                                    uint64_t *data, unsigned size,
3637                                    MemTxAttrs attrs)
3638 {
3639     return MEMTX_OK;
3640 }
3641 
3642 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3643                                     uint64_t value, unsigned size,
3644                                     MemTxAttrs attrs)
3645 {
3646     int ret = 0;
3647     MSIMessage from = {}, to = {};
3648     uint16_t sid = X86_IOMMU_SID_INVALID;
3649 
3650     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3651     from.data = (uint32_t) value;
3652 
3653     if (!attrs.unspecified) {
3654         /* We have explicit Source ID */
3655         sid = attrs.requester_id;
3656     }
3657 
3658     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true);
3659     if (ret) {
3660         /* Drop this interrupt */
3661         return MEMTX_ERROR;
3662     }
3663 
3664     apic_get_class(NULL)->send_msi(&to);
3665 
3666     return MEMTX_OK;
3667 }
3668 
3669 static const MemoryRegionOps vtd_mem_ir_ops = {
3670     .read_with_attrs = vtd_mem_ir_read,
3671     .write_with_attrs = vtd_mem_ir_write,
3672     .endianness = DEVICE_LITTLE_ENDIAN,
3673     .impl = {
3674         .min_access_size = 4,
3675         .max_access_size = 4,
3676     },
3677     .valid = {
3678         .min_access_size = 4,
3679         .max_access_size = 4,
3680     },
3681 };
3682 
3683 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3684                                          hwaddr addr, bool is_write)
3685 {
3686     IntelIOMMUState *s = vtd_as->iommu_state;
3687     uint8_t bus_n = pci_bus_num(vtd_as->bus);
3688     uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3689     bool is_fpd_set = false;
3690     VTDContextEntry ce;
3691 
3692     assert(vtd_as->pasid != PCI_NO_PASID);
3693 
3694     /* Try out best to fetch FPD, we can't do anything more */
3695     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3696         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3697         if (!is_fpd_set && s->root_scalable) {
3698             vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3699         }
3700     }
3701 
3702     vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3703                      is_fpd_set, sid, addr, is_write,
3704                      true, vtd_as->pasid);
3705 }
3706 
3707 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3708                                          uint64_t *data, unsigned size,
3709                                          MemTxAttrs attrs)
3710 {
3711     vtd_report_ir_illegal_access(opaque, addr, false);
3712 
3713     return MEMTX_ERROR;
3714 }
3715 
3716 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3717                                           uint64_t value, unsigned size,
3718                                           MemTxAttrs attrs)
3719 {
3720     vtd_report_ir_illegal_access(opaque, addr, true);
3721 
3722     return MEMTX_ERROR;
3723 }
3724 
3725 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3726     .read_with_attrs = vtd_mem_ir_fault_read,
3727     .write_with_attrs = vtd_mem_ir_fault_write,
3728     .endianness = DEVICE_LITTLE_ENDIAN,
3729     .impl = {
3730         .min_access_size = 1,
3731         .max_access_size = 8,
3732     },
3733     .valid = {
3734         .min_access_size = 1,
3735         .max_access_size = 8,
3736     },
3737 };
3738 
3739 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3740                                  int devfn, unsigned int pasid)
3741 {
3742     /*
3743      * We can't simply use sid here since the bus number might not be
3744      * initialized by the guest.
3745      */
3746     struct vtd_as_key key = {
3747         .bus = bus,
3748         .devfn = devfn,
3749         .pasid = pasid,
3750     };
3751     VTDAddressSpace *vtd_dev_as;
3752     char name[128];
3753 
3754     vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3755     if (!vtd_dev_as) {
3756         struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3757 
3758         new_key->bus = bus;
3759         new_key->devfn = devfn;
3760         new_key->pasid = pasid;
3761 
3762         if (pasid == PCI_NO_PASID) {
3763             snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3764                      PCI_FUNC(devfn));
3765         } else {
3766             snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3767                      PCI_FUNC(devfn), pasid);
3768         }
3769 
3770         vtd_dev_as = g_new0(VTDAddressSpace, 1);
3771 
3772         vtd_dev_as->bus = bus;
3773         vtd_dev_as->devfn = (uint8_t)devfn;
3774         vtd_dev_as->pasid = pasid;
3775         vtd_dev_as->iommu_state = s;
3776         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3777         vtd_dev_as->iova_tree = iova_tree_new();
3778 
3779         memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3780         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3781 
3782         /*
3783          * Build the DMAR-disabled container with aliases to the
3784          * shared MRs.  Note that aliasing to a shared memory region
3785          * could help the memory API to detect same FlatViews so we
3786          * can have devices to share the same FlatView when DMAR is
3787          * disabled (either by not providing "intel_iommu=on" or with
3788          * "iommu=pt").  It will greatly reduce the total number of
3789          * FlatViews of the system hence VM runs faster.
3790          */
3791         memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3792                                  "vtd-nodmar", &s->mr_nodmar, 0,
3793                                  memory_region_size(&s->mr_nodmar));
3794 
3795         /*
3796          * Build the per-device DMAR-enabled container.
3797          *
3798          * TODO: currently we have per-device IOMMU memory region only
3799          * because we have per-device IOMMU notifiers for devices.  If
3800          * one day we can abstract the IOMMU notifiers out of the
3801          * memory regions then we can also share the same memory
3802          * region here just like what we've done above with the nodmar
3803          * region.
3804          */
3805         strcat(name, "-dmar");
3806         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3807                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3808                                  name, UINT64_MAX);
3809         memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3810                                  &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3811         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3812                                             VTD_INTERRUPT_ADDR_FIRST,
3813                                             &vtd_dev_as->iommu_ir, 1);
3814 
3815         /*
3816          * This region is used for catching fault to access interrupt
3817          * range via passthrough + PASID. See also
3818          * vtd_switch_address_space(). We can't use alias since we
3819          * need to know the sid which is valid for MSI who uses
3820          * bus_master_as (see msi_send_message()).
3821          */
3822         memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3823                               &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3824                               VTD_INTERRUPT_ADDR_SIZE);
3825         /*
3826          * Hook to root since when PT is enabled vtd_dev_as->iommu
3827          * will be disabled.
3828          */
3829         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3830                                             VTD_INTERRUPT_ADDR_FIRST,
3831                                             &vtd_dev_as->iommu_ir_fault, 2);
3832 
3833         /*
3834          * Hook both the containers under the root container, we
3835          * switch between DMAR & noDMAR by enable/disable
3836          * corresponding sub-containers
3837          */
3838         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3839                                             MEMORY_REGION(&vtd_dev_as->iommu),
3840                                             0);
3841         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3842                                             &vtd_dev_as->nodmar, 0);
3843 
3844         vtd_switch_address_space(vtd_dev_as);
3845 
3846         g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3847     }
3848     return vtd_dev_as;
3849 }
3850 
3851 static bool vtd_check_hiod(IntelIOMMUState *s, HostIOMMUDevice *hiod,
3852                            Error **errp)
3853 {
3854     HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod);
3855     int ret;
3856 
3857     if (!hiodc->get_cap) {
3858         error_setg(errp, ".get_cap() not implemented");
3859         return false;
3860     }
3861 
3862     /* Common checks */
3863     ret = hiodc->get_cap(hiod, HOST_IOMMU_DEVICE_CAP_AW_BITS, errp);
3864     if (ret < 0) {
3865         return false;
3866     }
3867     if (s->aw_bits > ret) {
3868         error_setg(errp, "aw-bits %d > host aw-bits %d", s->aw_bits, ret);
3869         return false;
3870     }
3871 
3872     return true;
3873 }
3874 
3875 static bool vtd_dev_set_iommu_device(PCIBus *bus, void *opaque, int devfn,
3876                                      HostIOMMUDevice *hiod, Error **errp)
3877 {
3878     IntelIOMMUState *s = opaque;
3879     struct vtd_as_key key = {
3880         .bus = bus,
3881         .devfn = devfn,
3882     };
3883     struct vtd_as_key *new_key;
3884 
3885     assert(hiod);
3886 
3887     vtd_iommu_lock(s);
3888 
3889     if (g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
3890         error_setg(errp, "Host IOMMU device already exist");
3891         vtd_iommu_unlock(s);
3892         return false;
3893     }
3894 
3895     if (!vtd_check_hiod(s, hiod, errp)) {
3896         vtd_iommu_unlock(s);
3897         return false;
3898     }
3899 
3900     new_key = g_malloc(sizeof(*new_key));
3901     new_key->bus = bus;
3902     new_key->devfn = devfn;
3903 
3904     object_ref(hiod);
3905     g_hash_table_insert(s->vtd_host_iommu_dev, new_key, hiod);
3906 
3907     vtd_iommu_unlock(s);
3908 
3909     return true;
3910 }
3911 
3912 static void vtd_dev_unset_iommu_device(PCIBus *bus, void *opaque, int devfn)
3913 {
3914     IntelIOMMUState *s = opaque;
3915     struct vtd_as_key key = {
3916         .bus = bus,
3917         .devfn = devfn,
3918     };
3919 
3920     vtd_iommu_lock(s);
3921 
3922     if (!g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
3923         vtd_iommu_unlock(s);
3924         return;
3925     }
3926 
3927     g_hash_table_remove(s->vtd_host_iommu_dev, &key);
3928 
3929     vtd_iommu_unlock(s);
3930 }
3931 
3932 /* Unmap the whole range in the notifier's scope. */
3933 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3934 {
3935     hwaddr total, remain;
3936     hwaddr start = n->start;
3937     hwaddr end = n->end;
3938     IntelIOMMUState *s = as->iommu_state;
3939     DMAMap map;
3940 
3941     /*
3942      * Note: all the codes in this function has a assumption that IOVA
3943      * bits are no more than VTD_MGAW bits (which is restricted by
3944      * VT-d spec), otherwise we need to consider overflow of 64 bits.
3945      */
3946 
3947     if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3948         /*
3949          * Don't need to unmap regions that is bigger than the whole
3950          * VT-d supported address space size
3951          */
3952         end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3953     }
3954 
3955     assert(start <= end);
3956     total = remain = end - start + 1;
3957 
3958     while (remain >= VTD_PAGE_SIZE) {
3959         IOMMUTLBEvent event;
3960         uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3961         uint64_t size = mask + 1;
3962 
3963         assert(size);
3964 
3965         event.type = IOMMU_NOTIFIER_UNMAP;
3966         event.entry.iova = start;
3967         event.entry.addr_mask = mask;
3968         event.entry.target_as = &address_space_memory;
3969         event.entry.perm = IOMMU_NONE;
3970         /* This field is meaningless for unmap */
3971         event.entry.translated_addr = 0;
3972 
3973         memory_region_notify_iommu_one(n, &event);
3974 
3975         start += size;
3976         remain -= size;
3977     }
3978 
3979     assert(!remain);
3980 
3981     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3982                              VTD_PCI_SLOT(as->devfn),
3983                              VTD_PCI_FUNC(as->devfn),
3984                              n->start, total);
3985 
3986     map.iova = n->start;
3987     map.size = total - 1; /* Inclusive */
3988     iova_tree_remove(as->iova_tree, map);
3989 }
3990 
3991 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3992 {
3993     VTDAddressSpace *vtd_as;
3994     IOMMUNotifier *n;
3995 
3996     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3997         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3998             vtd_address_space_unmap(vtd_as, n);
3999         }
4000     }
4001 }
4002 
4003 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
4004 {
4005     vtd_address_space_unmap_all(s);
4006     vtd_switch_address_space_all(s);
4007 }
4008 
4009 static int vtd_replay_hook(const IOMMUTLBEvent *event, void *private)
4010 {
4011     memory_region_notify_iommu_one(private, event);
4012     return 0;
4013 }
4014 
4015 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
4016 {
4017     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
4018     IntelIOMMUState *s = vtd_as->iommu_state;
4019     uint8_t bus_n = pci_bus_num(vtd_as->bus);
4020     VTDContextEntry ce;
4021     DMAMap map = { .iova = 0, .size = HWADDR_MAX };
4022 
4023     /* replay is protected by BQL, page walk will re-setup it safely */
4024     iova_tree_remove(vtd_as->iova_tree, map);
4025 
4026     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4027         trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
4028                                   "legacy mode",
4029                                   bus_n, PCI_SLOT(vtd_as->devfn),
4030                                   PCI_FUNC(vtd_as->devfn),
4031                                   vtd_get_domain_id(s, &ce, vtd_as->pasid),
4032                                   ce.hi, ce.lo);
4033         if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
4034             /* This is required only for MAP typed notifiers */
4035             vtd_page_walk_info info = {
4036                 .hook_fn = vtd_replay_hook,
4037                 .private = (void *)n,
4038                 .notify_unmap = false,
4039                 .aw = s->aw_bits,
4040                 .as = vtd_as,
4041                 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
4042             };
4043 
4044             vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
4045         }
4046     } else {
4047         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
4048                                     PCI_FUNC(vtd_as->devfn));
4049     }
4050 
4051     return;
4052 }
4053 
4054 static void vtd_cap_init(IntelIOMMUState *s)
4055 {
4056     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4057 
4058     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
4059              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
4060              VTD_CAP_MGAW(s->aw_bits);
4061     if (s->dma_drain) {
4062         s->cap |= VTD_CAP_DRAIN;
4063     }
4064     if (s->dma_translation) {
4065             if (s->aw_bits >= VTD_HOST_AW_39BIT) {
4066                     s->cap |= VTD_CAP_SAGAW_39bit;
4067             }
4068             if (s->aw_bits >= VTD_HOST_AW_48BIT) {
4069                     s->cap |= VTD_CAP_SAGAW_48bit;
4070             }
4071     }
4072     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
4073 
4074     if (x86_iommu_ir_supported(x86_iommu)) {
4075         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
4076         if (s->intr_eim == ON_OFF_AUTO_ON) {
4077             s->ecap |= VTD_ECAP_EIM;
4078         }
4079         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
4080     }
4081 
4082     if (x86_iommu->dt_supported) {
4083         s->ecap |= VTD_ECAP_DT;
4084     }
4085 
4086     if (x86_iommu->pt_supported) {
4087         s->ecap |= VTD_ECAP_PT;
4088     }
4089 
4090     if (s->caching_mode) {
4091         s->cap |= VTD_CAP_CM;
4092     }
4093 
4094     /* TODO: read cap/ecap from host to decide which cap to be exposed. */
4095     if (s->scalable_mode) {
4096         s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
4097     }
4098 
4099     if (s->snoop_control) {
4100         s->ecap |= VTD_ECAP_SC;
4101     }
4102 
4103     if (s->pasid) {
4104         s->ecap |= VTD_ECAP_PASID;
4105     }
4106 }
4107 
4108 /*
4109  * Do the initialization. It will also be called when reset, so pay
4110  * attention when adding new initialization stuff.
4111  */
4112 static void vtd_init(IntelIOMMUState *s)
4113 {
4114     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4115 
4116     memset(s->csr, 0, DMAR_REG_SIZE);
4117     memset(s->wmask, 0, DMAR_REG_SIZE);
4118     memset(s->w1cmask, 0, DMAR_REG_SIZE);
4119     memset(s->womask, 0, DMAR_REG_SIZE);
4120 
4121     s->root = 0;
4122     s->root_scalable = false;
4123     s->dmar_enabled = false;
4124     s->intr_enabled = false;
4125     s->iq_head = 0;
4126     s->iq_tail = 0;
4127     s->iq = 0;
4128     s->iq_size = 0;
4129     s->qi_enabled = false;
4130     s->iq_last_desc_type = VTD_INV_DESC_NONE;
4131     s->iq_dw = false;
4132     s->next_frcd_reg = 0;
4133 
4134     vtd_cap_init(s);
4135 
4136     /*
4137      * Rsvd field masks for spte
4138      */
4139     vtd_spte_rsvd[0] = ~0ULL;
4140     vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
4141                                                   x86_iommu->dt_supported);
4142     vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4143     vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4144     vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4145 
4146     vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
4147                                                     x86_iommu->dt_supported);
4148     vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
4149                                                     x86_iommu->dt_supported);
4150 
4151     if (s->scalable_mode || s->snoop_control) {
4152         vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
4153         vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
4154         vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
4155     }
4156 
4157     vtd_reset_caches(s);
4158 
4159     /* Define registers with default values and bit semantics */
4160     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
4161     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
4162     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
4163     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
4164     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
4165     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
4166     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
4167     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
4168     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
4169 
4170     /* Advanced Fault Logging not supported */
4171     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
4172     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4173     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
4174     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
4175 
4176     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
4177      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
4178      */
4179     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
4180 
4181     /* Treated as RO for implementations that PLMR and PHMR fields reported
4182      * as Clear in the CAP_REG.
4183      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
4184      */
4185     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
4186 
4187     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
4188     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
4189     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
4190     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
4191     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4192     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
4193     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
4194     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
4195     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
4196 
4197     /* IOTLB registers */
4198     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4199     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4200     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4201 
4202     /* Fault Recording Registers, 128-bit */
4203     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4204     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4205 
4206     /*
4207      * Interrupt remapping registers.
4208      */
4209     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4210 }
4211 
4212 /* Should not reset address_spaces when reset because devices will still use
4213  * the address space they got at first (won't ask the bus again).
4214  */
4215 static void vtd_reset(DeviceState *dev)
4216 {
4217     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4218 
4219     vtd_init(s);
4220     vtd_address_space_refresh_all(s);
4221 }
4222 
4223 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4224 {
4225     IntelIOMMUState *s = opaque;
4226     VTDAddressSpace *vtd_as;
4227 
4228     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4229 
4230     vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4231     return &vtd_as->as;
4232 }
4233 
4234 static PCIIOMMUOps vtd_iommu_ops = {
4235     .get_address_space = vtd_host_dma_iommu,
4236     .set_iommu_device = vtd_dev_set_iommu_device,
4237     .unset_iommu_device = vtd_dev_unset_iommu_device,
4238 };
4239 
4240 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4241 {
4242     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4243 
4244     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4245         error_setg(errp, "eim=on cannot be selected without intremap=on");
4246         return false;
4247     }
4248 
4249     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4250         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4251                       && x86_iommu_ir_supported(x86_iommu) ?
4252                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4253     }
4254     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4255         if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) {
4256             error_setg(errp, "eim=on requires support on the KVM side"
4257                              "(X2APIC_API, first shipped in v4.7)");
4258             return false;
4259         }
4260     }
4261 
4262     /* Currently only address widths supported are 39 and 48 bits */
4263     if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4264         (s->aw_bits != VTD_HOST_AW_48BIT)) {
4265         error_setg(errp, "Supported values for aw-bits are: %d, %d",
4266                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4267         return false;
4268     }
4269 
4270     if (s->scalable_mode && !s->dma_drain) {
4271         error_setg(errp, "Need to set dma_drain for scalable mode");
4272         return false;
4273     }
4274 
4275     if (s->pasid && !s->scalable_mode) {
4276         error_setg(errp, "Need to set scalable mode for PASID");
4277         return false;
4278     }
4279 
4280     return true;
4281 }
4282 
4283 static int vtd_machine_done_notify_one(Object *child, void *unused)
4284 {
4285     IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4286 
4287     /*
4288      * We hard-coded here because vfio-pci is the only special case
4289      * here.  Let's be more elegant in the future when we can, but so
4290      * far there seems to be no better way.
4291      */
4292     if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4293         vtd_panic_require_caching_mode();
4294     }
4295 
4296     return 0;
4297 }
4298 
4299 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4300 {
4301     object_child_foreach_recursive(object_get_root(),
4302                                    vtd_machine_done_notify_one, NULL);
4303 }
4304 
4305 static Notifier vtd_machine_done_notify = {
4306     .notify = vtd_machine_done_hook,
4307 };
4308 
4309 static void vtd_realize(DeviceState *dev, Error **errp)
4310 {
4311     MachineState *ms = MACHINE(qdev_get_machine());
4312     PCMachineState *pcms = PC_MACHINE(ms);
4313     X86MachineState *x86ms = X86_MACHINE(ms);
4314     PCIBus *bus = pcms->pcibus;
4315     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4316     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4317 
4318     if (s->pasid && x86_iommu->dt_supported) {
4319         /*
4320          * PASID-based-Device-TLB Invalidate Descriptor is not
4321          * implemented and it requires support from vhost layer which
4322          * needs to be implemented in the future.
4323          */
4324         error_setg(errp, "PASID based device IOTLB is not supported");
4325         return;
4326     }
4327 
4328     if (!vtd_decide_config(s, errp)) {
4329         return;
4330     }
4331 
4332     QLIST_INIT(&s->vtd_as_with_notifiers);
4333     qemu_mutex_init(&s->iommu_lock);
4334     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4335                           "intel_iommu", DMAR_REG_SIZE);
4336     memory_region_add_subregion(get_system_memory(),
4337                                 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem);
4338 
4339     /* Create the shared memory regions by all devices */
4340     memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4341                        UINT64_MAX);
4342     memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4343                           s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4344     memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4345                              "vtd-sys-alias", get_system_memory(), 0,
4346                              memory_region_size(get_system_memory()));
4347     memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4348                                         &s->mr_sys_alias, 0);
4349     memory_region_add_subregion_overlap(&s->mr_nodmar,
4350                                         VTD_INTERRUPT_ADDR_FIRST,
4351                                         &s->mr_ir, 1);
4352     /* No corresponding destroy */
4353     s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4354                                      g_free, g_free);
4355     s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4356                                       g_free, g_free);
4357     s->vtd_host_iommu_dev = g_hash_table_new_full(vtd_hiod_hash, vtd_hiod_equal,
4358                                                   g_free, vtd_hiod_destroy);
4359     vtd_init(s);
4360     pci_setup_iommu(bus, &vtd_iommu_ops, dev);
4361     /* Pseudo address space under root PCI bus. */
4362     x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4363     qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4364 }
4365 
4366 static void vtd_class_init(ObjectClass *klass, void *data)
4367 {
4368     DeviceClass *dc = DEVICE_CLASS(klass);
4369     X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4370 
4371     dc->reset = vtd_reset;
4372     dc->vmsd = &vtd_vmstate;
4373     device_class_set_props(dc, vtd_properties);
4374     dc->hotpluggable = false;
4375     x86_class->realize = vtd_realize;
4376     x86_class->int_remap = vtd_int_remap;
4377     /* Supported by the pc-q35-* machine types */
4378     dc->user_creatable = true;
4379     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4380     dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4381 }
4382 
4383 static const TypeInfo vtd_info = {
4384     .name          = TYPE_INTEL_IOMMU_DEVICE,
4385     .parent        = TYPE_X86_IOMMU_DEVICE,
4386     .instance_size = sizeof(IntelIOMMUState),
4387     .class_init    = vtd_class_init,
4388 };
4389 
4390 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4391                                                      void *data)
4392 {
4393     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4394 
4395     imrc->translate = vtd_iommu_translate;
4396     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4397     imrc->replay = vtd_iommu_replay;
4398 }
4399 
4400 static const TypeInfo vtd_iommu_memory_region_info = {
4401     .parent = TYPE_IOMMU_MEMORY_REGION,
4402     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4403     .class_init = vtd_iommu_memory_region_class_init,
4404 };
4405 
4406 static void vtd_register_types(void)
4407 {
4408     type_register_static(&vtd_info);
4409     type_register_static(&vtd_iommu_memory_region_info);
4410 }
4411 
4412 type_init(vtd_register_types)
4413