xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision e688df6b)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39 
40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41                             uint64_t wmask, uint64_t w1cmask)
42 {
43     stq_le_p(&s->csr[addr], val);
44     stq_le_p(&s->wmask[addr], wmask);
45     stq_le_p(&s->w1cmask[addr], w1cmask);
46 }
47 
48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
49 {
50     stq_le_p(&s->womask[addr], mask);
51 }
52 
53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54                             uint32_t wmask, uint32_t w1cmask)
55 {
56     stl_le_p(&s->csr[addr], val);
57     stl_le_p(&s->wmask[addr], wmask);
58     stl_le_p(&s->w1cmask[addr], w1cmask);
59 }
60 
61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
62 {
63     stl_le_p(&s->womask[addr], mask);
64 }
65 
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
68 {
69     uint64_t oldval = ldq_le_p(&s->csr[addr]);
70     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72     stq_le_p(&s->csr[addr],
73              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
74 }
75 
76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
77 {
78     uint32_t oldval = ldl_le_p(&s->csr[addr]);
79     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81     stl_le_p(&s->csr[addr],
82              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
83 }
84 
85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
86 {
87     uint64_t val = ldq_le_p(&s->csr[addr]);
88     uint64_t womask = ldq_le_p(&s->womask[addr]);
89     return val & ~womask;
90 }
91 
92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
93 {
94     uint32_t val = ldl_le_p(&s->csr[addr]);
95     uint32_t womask = ldl_le_p(&s->womask[addr]);
96     return val & ~womask;
97 }
98 
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
101 {
102     return ldq_le_p(&s->csr[addr]);
103 }
104 
105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
106 {
107     return ldl_le_p(&s->csr[addr]);
108 }
109 
110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
111 {
112     stq_le_p(&s->csr[addr], val);
113 }
114 
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116                                         uint32_t clear, uint32_t mask)
117 {
118     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119     stl_le_p(&s->csr[addr], new_val);
120     return new_val;
121 }
122 
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124                                         uint64_t clear, uint64_t mask)
125 {
126     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127     stq_le_p(&s->csr[addr], new_val);
128     return new_val;
129 }
130 
131 /* GHashTable functions */
132 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
133 {
134     return *((const uint64_t *)v1) == *((const uint64_t *)v2);
135 }
136 
137 static guint vtd_uint64_hash(gconstpointer v)
138 {
139     return (guint)*(const uint64_t *)v;
140 }
141 
142 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
143                                           gpointer user_data)
144 {
145     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
146     uint16_t domain_id = *(uint16_t *)user_data;
147     return entry->domain_id == domain_id;
148 }
149 
150 /* The shift of an addr for a certain level of paging structure */
151 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
152 {
153     assert(level != 0);
154     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
155 }
156 
157 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
158 {
159     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
160 }
161 
162 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
163                                         gpointer user_data)
164 {
165     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
166     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
167     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
168     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
169     return (entry->domain_id == info->domain_id) &&
170             (((entry->gfn & info->mask) == gfn) ||
171              (entry->gfn == gfn_tlb));
172 }
173 
174 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
175  * IntelIOMMUState to 1.
176  */
177 static void vtd_reset_context_cache(IntelIOMMUState *s)
178 {
179     VTDAddressSpace *vtd_as;
180     VTDBus *vtd_bus;
181     GHashTableIter bus_it;
182     uint32_t devfn_it;
183 
184     trace_vtd_context_cache_reset();
185 
186     g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
187 
188     while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
189         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
190             vtd_as = vtd_bus->dev_as[devfn_it];
191             if (!vtd_as) {
192                 continue;
193             }
194             vtd_as->context_cache_entry.context_cache_gen = 0;
195         }
196     }
197     s->context_cache_gen = 1;
198 }
199 
200 static void vtd_reset_iotlb(IntelIOMMUState *s)
201 {
202     assert(s->iotlb);
203     g_hash_table_remove_all(s->iotlb);
204 }
205 
206 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
207                                   uint32_t level)
208 {
209     return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
210            ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
211 }
212 
213 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
214 {
215     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
216 }
217 
218 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
219                                        hwaddr addr)
220 {
221     VTDIOTLBEntry *entry;
222     uint64_t key;
223     int level;
224 
225     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
226         key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
227                                 source_id, level);
228         entry = g_hash_table_lookup(s->iotlb, &key);
229         if (entry) {
230             goto out;
231         }
232     }
233 
234 out:
235     return entry;
236 }
237 
238 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
239                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
240                              uint8_t access_flags, uint32_t level)
241 {
242     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
243     uint64_t *key = g_malloc(sizeof(*key));
244     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
245 
246     trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
247     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
248         trace_vtd_iotlb_reset("iotlb exceeds size limit");
249         vtd_reset_iotlb(s);
250     }
251 
252     entry->gfn = gfn;
253     entry->domain_id = domain_id;
254     entry->slpte = slpte;
255     entry->access_flags = access_flags;
256     entry->mask = vtd_slpt_level_page_mask(level);
257     *key = vtd_get_iotlb_key(gfn, source_id, level);
258     g_hash_table_replace(s->iotlb, key, entry);
259 }
260 
261 /* Given the reg addr of both the message data and address, generate an
262  * interrupt via MSI.
263  */
264 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
265                                    hwaddr mesg_data_reg)
266 {
267     MSIMessage msi;
268 
269     assert(mesg_data_reg < DMAR_REG_SIZE);
270     assert(mesg_addr_reg < DMAR_REG_SIZE);
271 
272     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
273     msi.data = vtd_get_long_raw(s, mesg_data_reg);
274 
275     trace_vtd_irq_generate(msi.address, msi.data);
276 
277     apic_get_class()->send_msi(&msi);
278 }
279 
280 /* Generate a fault event to software via MSI if conditions are met.
281  * Notice that the value of FSTS_REG being passed to it should be the one
282  * before any update.
283  */
284 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
285 {
286     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
287         pre_fsts & VTD_FSTS_IQE) {
288         trace_vtd_err("There are previous interrupt conditions "
289                       "to be serviced by software, fault event "
290                       "is not generated.");
291         return;
292     }
293     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
294     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
295         trace_vtd_err("Interrupt Mask set, irq is not generated.");
296     } else {
297         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
298         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
299     }
300 }
301 
302 /* Check if the Fault (F) field of the Fault Recording Register referenced by
303  * @index is Set.
304  */
305 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
306 {
307     /* Each reg is 128-bit */
308     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
309     addr += 8; /* Access the high 64-bit half */
310 
311     assert(index < DMAR_FRCD_REG_NR);
312 
313     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
314 }
315 
316 /* Update the PPF field of Fault Status Register.
317  * Should be called whenever change the F field of any fault recording
318  * registers.
319  */
320 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
321 {
322     uint32_t i;
323     uint32_t ppf_mask = 0;
324 
325     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
326         if (vtd_is_frcd_set(s, i)) {
327             ppf_mask = VTD_FSTS_PPF;
328             break;
329         }
330     }
331     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
332     trace_vtd_fsts_ppf(!!ppf_mask);
333 }
334 
335 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
336 {
337     /* Each reg is 128-bit */
338     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
339     addr += 8; /* Access the high 64-bit half */
340 
341     assert(index < DMAR_FRCD_REG_NR);
342 
343     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
344     vtd_update_fsts_ppf(s);
345 }
346 
347 /* Must not update F field now, should be done later */
348 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
349                             uint16_t source_id, hwaddr addr,
350                             VTDFaultReason fault, bool is_write)
351 {
352     uint64_t hi = 0, lo;
353     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
354 
355     assert(index < DMAR_FRCD_REG_NR);
356 
357     lo = VTD_FRCD_FI(addr);
358     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
359     if (!is_write) {
360         hi |= VTD_FRCD_T;
361     }
362     vtd_set_quad_raw(s, frcd_reg_addr, lo);
363     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
364 
365     trace_vtd_frr_new(index, hi, lo);
366 }
367 
368 /* Try to collapse multiple pending faults from the same requester */
369 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
370 {
371     uint32_t i;
372     uint64_t frcd_reg;
373     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
374 
375     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
376         frcd_reg = vtd_get_quad_raw(s, addr);
377         if ((frcd_reg & VTD_FRCD_F) &&
378             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
379             return true;
380         }
381         addr += 16; /* 128-bit for each */
382     }
383     return false;
384 }
385 
386 /* Log and report an DMAR (address translation) fault to software */
387 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
388                                   hwaddr addr, VTDFaultReason fault,
389                                   bool is_write)
390 {
391     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
392 
393     assert(fault < VTD_FR_MAX);
394 
395     if (fault == VTD_FR_RESERVED_ERR) {
396         /* This is not a normal fault reason case. Drop it. */
397         return;
398     }
399 
400     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
401 
402     if (fsts_reg & VTD_FSTS_PFO) {
403         trace_vtd_err("New fault is not recorded due to "
404                       "Primary Fault Overflow.");
405         return;
406     }
407 
408     if (vtd_try_collapse_fault(s, source_id)) {
409         trace_vtd_err("New fault is not recorded due to "
410                       "compression of faults.");
411         return;
412     }
413 
414     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
415         trace_vtd_err("Next Fault Recording Reg is used, "
416                       "new fault is not recorded, set PFO field.");
417         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
418         return;
419     }
420 
421     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
422 
423     if (fsts_reg & VTD_FSTS_PPF) {
424         trace_vtd_err("There are pending faults already, "
425                       "fault event is not generated.");
426         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
427         s->next_frcd_reg++;
428         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
429             s->next_frcd_reg = 0;
430         }
431     } else {
432         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
433                                 VTD_FSTS_FRI(s->next_frcd_reg));
434         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
435         s->next_frcd_reg++;
436         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
437             s->next_frcd_reg = 0;
438         }
439         /* This case actually cause the PPF to be Set.
440          * So generate fault event (interrupt).
441          */
442          vtd_generate_fault_event(s, fsts_reg);
443     }
444 }
445 
446 /* Handle Invalidation Queue Errors of queued invalidation interface error
447  * conditions.
448  */
449 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
450 {
451     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
452 
453     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
454     vtd_generate_fault_event(s, fsts_reg);
455 }
456 
457 /* Set the IWC field and try to generate an invalidation completion interrupt */
458 static void vtd_generate_completion_event(IntelIOMMUState *s)
459 {
460     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
461         trace_vtd_inv_desc_wait_irq("One pending, skip current");
462         return;
463     }
464     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
465     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
466     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
467         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
468                                     "new event not generated");
469         return;
470     } else {
471         /* Generate the interrupt event */
472         trace_vtd_inv_desc_wait_irq("Generating complete event");
473         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
474         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
475     }
476 }
477 
478 static inline bool vtd_root_entry_present(VTDRootEntry *root)
479 {
480     return root->val & VTD_ROOT_ENTRY_P;
481 }
482 
483 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
484                               VTDRootEntry *re)
485 {
486     dma_addr_t addr;
487 
488     addr = s->root + index * sizeof(*re);
489     if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
490         trace_vtd_re_invalid(re->rsvd, re->val);
491         re->val = 0;
492         return -VTD_FR_ROOT_TABLE_INV;
493     }
494     re->val = le64_to_cpu(re->val);
495     return 0;
496 }
497 
498 static inline bool vtd_ce_present(VTDContextEntry *context)
499 {
500     return context->lo & VTD_CONTEXT_ENTRY_P;
501 }
502 
503 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
504                                            VTDContextEntry *ce)
505 {
506     dma_addr_t addr;
507 
508     /* we have checked that root entry is present */
509     addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
510     if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
511         trace_vtd_re_invalid(root->rsvd, root->val);
512         return -VTD_FR_CONTEXT_TABLE_INV;
513     }
514     ce->lo = le64_to_cpu(ce->lo);
515     ce->hi = le64_to_cpu(ce->hi);
516     return 0;
517 }
518 
519 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
520 {
521     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
522 }
523 
524 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
525 {
526     return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
527 }
528 
529 /* Whether the pte indicates the address of the page frame */
530 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
531 {
532     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
533 }
534 
535 /* Get the content of a spte located in @base_addr[@index] */
536 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
537 {
538     uint64_t slpte;
539 
540     assert(index < VTD_SL_PT_ENTRY_NR);
541 
542     if (dma_memory_read(&address_space_memory,
543                         base_addr + index * sizeof(slpte), &slpte,
544                         sizeof(slpte))) {
545         slpte = (uint64_t)-1;
546         return slpte;
547     }
548     slpte = le64_to_cpu(slpte);
549     return slpte;
550 }
551 
552 /* Given an iova and the level of paging structure, return the offset
553  * of current level.
554  */
555 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
556 {
557     return (iova >> vtd_slpt_level_shift(level)) &
558             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
559 }
560 
561 /* Check Capability Register to see if the @level of page-table is supported */
562 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
563 {
564     return VTD_CAP_SAGAW_MASK & s->cap &
565            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
566 }
567 
568 /* Get the page-table level that hardware should use for the second-level
569  * page-table walk from the Address Width field of context-entry.
570  */
571 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
572 {
573     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
574 }
575 
576 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
577 {
578     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
579 }
580 
581 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
582 {
583     return ce->lo & VTD_CONTEXT_ENTRY_TT;
584 }
585 
586 /* Return true if check passed, otherwise false */
587 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
588                                      VTDContextEntry *ce)
589 {
590     switch (vtd_ce_get_type(ce)) {
591     case VTD_CONTEXT_TT_MULTI_LEVEL:
592         /* Always supported */
593         break;
594     case VTD_CONTEXT_TT_DEV_IOTLB:
595         if (!x86_iommu->dt_supported) {
596             return false;
597         }
598         break;
599     case VTD_CONTEXT_TT_PASS_THROUGH:
600         if (!x86_iommu->pt_supported) {
601             return false;
602         }
603         break;
604     default:
605         /* Unknwon type */
606         return false;
607     }
608     return true;
609 }
610 
611 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
612 {
613     uint32_t ce_agaw = vtd_ce_get_agaw(ce);
614     return 1ULL << MIN(ce_agaw, aw);
615 }
616 
617 /* Return true if IOVA passes range check, otherwise false. */
618 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
619                                         uint8_t aw)
620 {
621     /*
622      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
623      * in CAP_REG and AW in context-entry.
624      */
625     return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
626 }
627 
628 /*
629  * Rsvd field masks for spte:
630  *     Index [1] to [4] 4k pages
631  *     Index [5] to [8] large pages
632  */
633 static uint64_t vtd_paging_entry_rsvd_field[9];
634 
635 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
636 {
637     if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
638         /* Maybe large page */
639         return slpte & vtd_paging_entry_rsvd_field[level + 4];
640     } else {
641         return slpte & vtd_paging_entry_rsvd_field[level];
642     }
643 }
644 
645 /* Find the VTD address space associated with a given bus number */
646 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
647 {
648     VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
649     if (!vtd_bus) {
650         /*
651          * Iterate over the registered buses to find the one which
652          * currently hold this bus number, and update the bus_num
653          * lookup table:
654          */
655         GHashTableIter iter;
656 
657         g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
658         while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
659             if (pci_bus_num(vtd_bus->bus) == bus_num) {
660                 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
661                 return vtd_bus;
662             }
663         }
664     }
665     return vtd_bus;
666 }
667 
668 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
669  * of the translation, can be used for deciding the size of large page.
670  */
671 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
672                              uint64_t *slptep, uint32_t *slpte_level,
673                              bool *reads, bool *writes, uint8_t aw_bits)
674 {
675     dma_addr_t addr = vtd_ce_get_slpt_base(ce);
676     uint32_t level = vtd_ce_get_level(ce);
677     uint32_t offset;
678     uint64_t slpte;
679     uint64_t access_right_check;
680 
681     if (!vtd_iova_range_check(iova, ce, aw_bits)) {
682         trace_vtd_err_dmar_iova_overflow(iova);
683         return -VTD_FR_ADDR_BEYOND_MGAW;
684     }
685 
686     /* FIXME: what is the Atomics request here? */
687     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
688 
689     while (true) {
690         offset = vtd_iova_level_offset(iova, level);
691         slpte = vtd_get_slpte(addr, offset);
692 
693         if (slpte == (uint64_t)-1) {
694             trace_vtd_err_dmar_slpte_read_error(iova, level);
695             if (level == vtd_ce_get_level(ce)) {
696                 /* Invalid programming of context-entry */
697                 return -VTD_FR_CONTEXT_ENTRY_INV;
698             } else {
699                 return -VTD_FR_PAGING_ENTRY_INV;
700             }
701         }
702         *reads = (*reads) && (slpte & VTD_SL_R);
703         *writes = (*writes) && (slpte & VTD_SL_W);
704         if (!(slpte & access_right_check)) {
705             trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
706             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
707         }
708         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
709             trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
710             return -VTD_FR_PAGING_ENTRY_RSVD;
711         }
712 
713         if (vtd_is_last_slpte(slpte, level)) {
714             *slptep = slpte;
715             *slpte_level = level;
716             return 0;
717         }
718         addr = vtd_get_slpte_addr(slpte, aw_bits);
719         level--;
720     }
721 }
722 
723 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
724 
725 /**
726  * vtd_page_walk_level - walk over specific level for IOVA range
727  *
728  * @addr: base GPA addr to start the walk
729  * @start: IOVA range start address
730  * @end: IOVA range end address (start <= addr < end)
731  * @hook_fn: hook func to be called when detected page
732  * @private: private data to be passed into hook func
733  * @read: whether parent level has read permission
734  * @write: whether parent level has write permission
735  * @notify_unmap: whether we should notify invalid entries
736  * @aw: maximum address width
737  */
738 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
739                                uint64_t end, vtd_page_walk_hook hook_fn,
740                                void *private, uint32_t level, bool read,
741                                bool write, bool notify_unmap, uint8_t aw)
742 {
743     bool read_cur, write_cur, entry_valid;
744     uint32_t offset;
745     uint64_t slpte;
746     uint64_t subpage_size, subpage_mask;
747     IOMMUTLBEntry entry;
748     uint64_t iova = start;
749     uint64_t iova_next;
750     int ret = 0;
751 
752     trace_vtd_page_walk_level(addr, level, start, end);
753 
754     subpage_size = 1ULL << vtd_slpt_level_shift(level);
755     subpage_mask = vtd_slpt_level_page_mask(level);
756 
757     while (iova < end) {
758         iova_next = (iova & subpage_mask) + subpage_size;
759 
760         offset = vtd_iova_level_offset(iova, level);
761         slpte = vtd_get_slpte(addr, offset);
762 
763         if (slpte == (uint64_t)-1) {
764             trace_vtd_page_walk_skip_read(iova, iova_next);
765             goto next;
766         }
767 
768         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
769             trace_vtd_page_walk_skip_reserve(iova, iova_next);
770             goto next;
771         }
772 
773         /* Permissions are stacked with parents' */
774         read_cur = read && (slpte & VTD_SL_R);
775         write_cur = write && (slpte & VTD_SL_W);
776 
777         /*
778          * As long as we have either read/write permission, this is a
779          * valid entry. The rule works for both page entries and page
780          * table entries.
781          */
782         entry_valid = read_cur | write_cur;
783 
784         if (vtd_is_last_slpte(slpte, level)) {
785             entry.target_as = &address_space_memory;
786             entry.iova = iova & subpage_mask;
787             /* NOTE: this is only meaningful if entry_valid == true */
788             entry.translated_addr = vtd_get_slpte_addr(slpte, aw);
789             entry.addr_mask = ~subpage_mask;
790             entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
791             if (!entry_valid && !notify_unmap) {
792                 trace_vtd_page_walk_skip_perm(iova, iova_next);
793                 goto next;
794             }
795             trace_vtd_page_walk_one(level, entry.iova, entry.translated_addr,
796                                     entry.addr_mask, entry.perm);
797             if (hook_fn) {
798                 ret = hook_fn(&entry, private);
799                 if (ret < 0) {
800                     return ret;
801                 }
802             }
803         } else {
804             if (!entry_valid) {
805                 trace_vtd_page_walk_skip_perm(iova, iova_next);
806                 goto next;
807             }
808             ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, aw), iova,
809                                       MIN(iova_next, end), hook_fn, private,
810                                       level - 1, read_cur, write_cur,
811                                       notify_unmap, aw);
812             if (ret < 0) {
813                 return ret;
814             }
815         }
816 
817 next:
818         iova = iova_next;
819     }
820 
821     return 0;
822 }
823 
824 /**
825  * vtd_page_walk - walk specific IOVA range, and call the hook
826  *
827  * @ce: context entry to walk upon
828  * @start: IOVA address to start the walk
829  * @end: IOVA range end address (start <= addr < end)
830  * @hook_fn: the hook that to be called for each detected area
831  * @private: private data for the hook function
832  * @aw: maximum address width
833  */
834 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
835                          vtd_page_walk_hook hook_fn, void *private,
836                          bool notify_unmap, uint8_t aw)
837 {
838     dma_addr_t addr = vtd_ce_get_slpt_base(ce);
839     uint32_t level = vtd_ce_get_level(ce);
840 
841     if (!vtd_iova_range_check(start, ce, aw)) {
842         return -VTD_FR_ADDR_BEYOND_MGAW;
843     }
844 
845     if (!vtd_iova_range_check(end, ce, aw)) {
846         /* Fix end so that it reaches the maximum */
847         end = vtd_iova_limit(ce, aw);
848     }
849 
850     return vtd_page_walk_level(addr, start, end, hook_fn, private,
851                                level, true, true, notify_unmap, aw);
852 }
853 
854 /* Map a device to its corresponding domain (context-entry) */
855 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
856                                     uint8_t devfn, VTDContextEntry *ce)
857 {
858     VTDRootEntry re;
859     int ret_fr;
860     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
861 
862     ret_fr = vtd_get_root_entry(s, bus_num, &re);
863     if (ret_fr) {
864         return ret_fr;
865     }
866 
867     if (!vtd_root_entry_present(&re)) {
868         /* Not error - it's okay we don't have root entry. */
869         trace_vtd_re_not_present(bus_num);
870         return -VTD_FR_ROOT_ENTRY_P;
871     }
872 
873     if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
874         trace_vtd_re_invalid(re.rsvd, re.val);
875         return -VTD_FR_ROOT_ENTRY_RSVD;
876     }
877 
878     ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
879     if (ret_fr) {
880         return ret_fr;
881     }
882 
883     if (!vtd_ce_present(ce)) {
884         /* Not error - it's okay we don't have context entry. */
885         trace_vtd_ce_not_present(bus_num, devfn);
886         return -VTD_FR_CONTEXT_ENTRY_P;
887     }
888 
889     if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
890                (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
891         trace_vtd_ce_invalid(ce->hi, ce->lo);
892         return -VTD_FR_CONTEXT_ENTRY_RSVD;
893     }
894 
895     /* Check if the programming of context-entry is valid */
896     if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
897         trace_vtd_ce_invalid(ce->hi, ce->lo);
898         return -VTD_FR_CONTEXT_ENTRY_INV;
899     }
900 
901     /* Do translation type check */
902     if (!vtd_ce_type_check(x86_iommu, ce)) {
903         trace_vtd_ce_invalid(ce->hi, ce->lo);
904         return -VTD_FR_CONTEXT_ENTRY_INV;
905     }
906 
907     return 0;
908 }
909 
910 /*
911  * Fetch translation type for specific device. Returns <0 if error
912  * happens, otherwise return the shifted type to check against
913  * VTD_CONTEXT_TT_*.
914  */
915 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
916 {
917     IntelIOMMUState *s;
918     VTDContextEntry ce;
919     int ret;
920 
921     s = as->iommu_state;
922 
923     ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
924                                    as->devfn, &ce);
925     if (ret) {
926         return ret;
927     }
928 
929     return vtd_ce_get_type(&ce);
930 }
931 
932 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
933 {
934     int ret;
935 
936     assert(as);
937 
938     ret = vtd_dev_get_trans_type(as);
939     if (ret < 0) {
940         /*
941          * Possibly failed to parse the context entry for some reason
942          * (e.g., during init, or any guest configuration errors on
943          * context entries). We should assume PT not enabled for
944          * safety.
945          */
946         return false;
947     }
948 
949     return ret == VTD_CONTEXT_TT_PASS_THROUGH;
950 }
951 
952 /* Return whether the device is using IOMMU translation. */
953 static bool vtd_switch_address_space(VTDAddressSpace *as)
954 {
955     bool use_iommu;
956     /* Whether we need to take the BQL on our own */
957     bool take_bql = !qemu_mutex_iothread_locked();
958 
959     assert(as);
960 
961     use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
962 
963     trace_vtd_switch_address_space(pci_bus_num(as->bus),
964                                    VTD_PCI_SLOT(as->devfn),
965                                    VTD_PCI_FUNC(as->devfn),
966                                    use_iommu);
967 
968     /*
969      * It's possible that we reach here without BQL, e.g., when called
970      * from vtd_pt_enable_fast_path(). However the memory APIs need
971      * it. We'd better make sure we have had it already, or, take it.
972      */
973     if (take_bql) {
974         qemu_mutex_lock_iothread();
975     }
976 
977     /* Turn off first then on the other */
978     if (use_iommu) {
979         memory_region_set_enabled(&as->sys_alias, false);
980         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
981     } else {
982         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
983         memory_region_set_enabled(&as->sys_alias, true);
984     }
985 
986     if (take_bql) {
987         qemu_mutex_unlock_iothread();
988     }
989 
990     return use_iommu;
991 }
992 
993 static void vtd_switch_address_space_all(IntelIOMMUState *s)
994 {
995     GHashTableIter iter;
996     VTDBus *vtd_bus;
997     int i;
998 
999     g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1000     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1001         for (i = 0; i < PCI_DEVFN_MAX; i++) {
1002             if (!vtd_bus->dev_as[i]) {
1003                 continue;
1004             }
1005             vtd_switch_address_space(vtd_bus->dev_as[i]);
1006         }
1007     }
1008 }
1009 
1010 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1011 {
1012     return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1013 }
1014 
1015 static const bool vtd_qualified_faults[] = {
1016     [VTD_FR_RESERVED] = false,
1017     [VTD_FR_ROOT_ENTRY_P] = false,
1018     [VTD_FR_CONTEXT_ENTRY_P] = true,
1019     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1020     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1021     [VTD_FR_WRITE] = true,
1022     [VTD_FR_READ] = true,
1023     [VTD_FR_PAGING_ENTRY_INV] = true,
1024     [VTD_FR_ROOT_TABLE_INV] = false,
1025     [VTD_FR_CONTEXT_TABLE_INV] = false,
1026     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1027     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1028     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1029     [VTD_FR_RESERVED_ERR] = false,
1030     [VTD_FR_MAX] = false,
1031 };
1032 
1033 /* To see if a fault condition is "qualified", which is reported to software
1034  * only if the FPD field in the context-entry used to process the faulting
1035  * request is 0.
1036  */
1037 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1038 {
1039     return vtd_qualified_faults[fault];
1040 }
1041 
1042 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1043 {
1044     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1045 }
1046 
1047 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1048 {
1049     VTDBus *vtd_bus;
1050     VTDAddressSpace *vtd_as;
1051     bool success = false;
1052 
1053     vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1054     if (!vtd_bus) {
1055         goto out;
1056     }
1057 
1058     vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1059     if (!vtd_as) {
1060         goto out;
1061     }
1062 
1063     if (vtd_switch_address_space(vtd_as) == false) {
1064         /* We switched off IOMMU region successfully. */
1065         success = true;
1066     }
1067 
1068 out:
1069     trace_vtd_pt_enable_fast_path(source_id, success);
1070 }
1071 
1072 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1073  * translation.
1074  *
1075  * Called from RCU critical section.
1076  *
1077  * @bus_num: The bus number
1078  * @devfn: The devfn, which is the  combined of device and function number
1079  * @is_write: The access is a write operation
1080  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1081  *
1082  * Returns true if translation is successful, otherwise false.
1083  */
1084 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1085                                    uint8_t devfn, hwaddr addr, bool is_write,
1086                                    IOMMUTLBEntry *entry)
1087 {
1088     IntelIOMMUState *s = vtd_as->iommu_state;
1089     VTDContextEntry ce;
1090     uint8_t bus_num = pci_bus_num(bus);
1091     VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
1092     uint64_t slpte, page_mask;
1093     uint32_t level;
1094     uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1095     int ret_fr;
1096     bool is_fpd_set = false;
1097     bool reads = true;
1098     bool writes = true;
1099     uint8_t access_flags;
1100     VTDIOTLBEntry *iotlb_entry;
1101 
1102     /*
1103      * We have standalone memory region for interrupt addresses, we
1104      * should never receive translation requests in this region.
1105      */
1106     assert(!vtd_is_interrupt_addr(addr));
1107 
1108     /* Try to fetch slpte form IOTLB */
1109     iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1110     if (iotlb_entry) {
1111         trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1112                                  iotlb_entry->domain_id);
1113         slpte = iotlb_entry->slpte;
1114         access_flags = iotlb_entry->access_flags;
1115         page_mask = iotlb_entry->mask;
1116         goto out;
1117     }
1118 
1119     /* Try to fetch context-entry from cache first */
1120     if (cc_entry->context_cache_gen == s->context_cache_gen) {
1121         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1122                                cc_entry->context_entry.lo,
1123                                cc_entry->context_cache_gen);
1124         ce = cc_entry->context_entry;
1125         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1126     } else {
1127         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1128         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1129         if (ret_fr) {
1130             ret_fr = -ret_fr;
1131             if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1132                 trace_vtd_fault_disabled();
1133             } else {
1134                 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1135             }
1136             goto error;
1137         }
1138         /* Update context-cache */
1139         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1140                                   cc_entry->context_cache_gen,
1141                                   s->context_cache_gen);
1142         cc_entry->context_entry = ce;
1143         cc_entry->context_cache_gen = s->context_cache_gen;
1144     }
1145 
1146     /*
1147      * We don't need to translate for pass-through context entries.
1148      * Also, let's ignore IOTLB caching as well for PT devices.
1149      */
1150     if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1151         entry->iova = addr & VTD_PAGE_MASK_4K;
1152         entry->translated_addr = entry->iova;
1153         entry->addr_mask = ~VTD_PAGE_MASK_4K;
1154         entry->perm = IOMMU_RW;
1155         trace_vtd_translate_pt(source_id, entry->iova);
1156 
1157         /*
1158          * When this happens, it means firstly caching-mode is not
1159          * enabled, and this is the first passthrough translation for
1160          * the device. Let's enable the fast path for passthrough.
1161          *
1162          * When passthrough is disabled again for the device, we can
1163          * capture it via the context entry invalidation, then the
1164          * IOMMU region can be swapped back.
1165          */
1166         vtd_pt_enable_fast_path(s, source_id);
1167 
1168         return true;
1169     }
1170 
1171     ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1172                                &reads, &writes, s->aw_bits);
1173     if (ret_fr) {
1174         ret_fr = -ret_fr;
1175         if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1176             trace_vtd_fault_disabled();
1177         } else {
1178             vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1179         }
1180         goto error;
1181     }
1182 
1183     page_mask = vtd_slpt_level_page_mask(level);
1184     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1185     vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1186                      access_flags, level);
1187 out:
1188     entry->iova = addr & page_mask;
1189     entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1190     entry->addr_mask = ~page_mask;
1191     entry->perm = access_flags;
1192     return true;
1193 
1194 error:
1195     entry->iova = 0;
1196     entry->translated_addr = 0;
1197     entry->addr_mask = 0;
1198     entry->perm = IOMMU_NONE;
1199     return false;
1200 }
1201 
1202 static void vtd_root_table_setup(IntelIOMMUState *s)
1203 {
1204     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1205     s->root_extended = s->root & VTD_RTADDR_RTT;
1206     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1207 
1208     trace_vtd_reg_dmar_root(s->root, s->root_extended);
1209 }
1210 
1211 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1212                                uint32_t index, uint32_t mask)
1213 {
1214     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1215 }
1216 
1217 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1218 {
1219     uint64_t value = 0;
1220     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1221     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1222     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1223     s->intr_eime = value & VTD_IRTA_EIME;
1224 
1225     /* Notify global invalidation */
1226     vtd_iec_notify_all(s, true, 0, 0);
1227 
1228     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1229 }
1230 
1231 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1232 {
1233     IntelIOMMUNotifierNode *node;
1234 
1235     QLIST_FOREACH(node, &s->notifiers_list, next) {
1236         memory_region_iommu_replay_all(&node->vtd_as->iommu);
1237     }
1238 }
1239 
1240 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1241 {
1242     trace_vtd_inv_desc_cc_global();
1243     s->context_cache_gen++;
1244     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1245         vtd_reset_context_cache(s);
1246     }
1247     vtd_switch_address_space_all(s);
1248     /*
1249      * From VT-d spec 6.5.2.1, a global context entry invalidation
1250      * should be followed by a IOTLB global invalidation, so we should
1251      * be safe even without this. Hoewever, let's replay the region as
1252      * well to be safer, and go back here when we need finer tunes for
1253      * VT-d emulation codes.
1254      */
1255     vtd_iommu_replay_all(s);
1256 }
1257 
1258 /* Do a context-cache device-selective invalidation.
1259  * @func_mask: FM field after shifting
1260  */
1261 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1262                                           uint16_t source_id,
1263                                           uint16_t func_mask)
1264 {
1265     uint16_t mask;
1266     VTDBus *vtd_bus;
1267     VTDAddressSpace *vtd_as;
1268     uint8_t bus_n, devfn;
1269     uint16_t devfn_it;
1270 
1271     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1272 
1273     switch (func_mask & 3) {
1274     case 0:
1275         mask = 0;   /* No bits in the SID field masked */
1276         break;
1277     case 1:
1278         mask = 4;   /* Mask bit 2 in the SID field */
1279         break;
1280     case 2:
1281         mask = 6;   /* Mask bit 2:1 in the SID field */
1282         break;
1283     case 3:
1284         mask = 7;   /* Mask bit 2:0 in the SID field */
1285         break;
1286     }
1287     mask = ~mask;
1288 
1289     bus_n = VTD_SID_TO_BUS(source_id);
1290     vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1291     if (vtd_bus) {
1292         devfn = VTD_SID_TO_DEVFN(source_id);
1293         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1294             vtd_as = vtd_bus->dev_as[devfn_it];
1295             if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1296                 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1297                                              VTD_PCI_FUNC(devfn_it));
1298                 vtd_as->context_cache_entry.context_cache_gen = 0;
1299                 /*
1300                  * Do switch address space when needed, in case if the
1301                  * device passthrough bit is switched.
1302                  */
1303                 vtd_switch_address_space(vtd_as);
1304                 /*
1305                  * So a device is moving out of (or moving into) a
1306                  * domain, a replay() suites here to notify all the
1307                  * IOMMU_NOTIFIER_MAP registers about this change.
1308                  * This won't bring bad even if we have no such
1309                  * notifier registered - the IOMMU notification
1310                  * framework will skip MAP notifications if that
1311                  * happened.
1312                  */
1313                 memory_region_iommu_replay_all(&vtd_as->iommu);
1314             }
1315         }
1316     }
1317 }
1318 
1319 /* Context-cache invalidation
1320  * Returns the Context Actual Invalidation Granularity.
1321  * @val: the content of the CCMD_REG
1322  */
1323 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1324 {
1325     uint64_t caig;
1326     uint64_t type = val & VTD_CCMD_CIRG_MASK;
1327 
1328     switch (type) {
1329     case VTD_CCMD_DOMAIN_INVL:
1330         /* Fall through */
1331     case VTD_CCMD_GLOBAL_INVL:
1332         caig = VTD_CCMD_GLOBAL_INVL_A;
1333         vtd_context_global_invalidate(s);
1334         break;
1335 
1336     case VTD_CCMD_DEVICE_INVL:
1337         caig = VTD_CCMD_DEVICE_INVL_A;
1338         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1339         break;
1340 
1341     default:
1342         trace_vtd_err("Context cache invalidate type error.");
1343         caig = 0;
1344     }
1345     return caig;
1346 }
1347 
1348 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1349 {
1350     trace_vtd_inv_desc_iotlb_global();
1351     vtd_reset_iotlb(s);
1352     vtd_iommu_replay_all(s);
1353 }
1354 
1355 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1356 {
1357     IntelIOMMUNotifierNode *node;
1358     VTDContextEntry ce;
1359     VTDAddressSpace *vtd_as;
1360 
1361     trace_vtd_inv_desc_iotlb_domain(domain_id);
1362 
1363     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1364                                 &domain_id);
1365 
1366     QLIST_FOREACH(node, &s->notifiers_list, next) {
1367         vtd_as = node->vtd_as;
1368         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1369                                       vtd_as->devfn, &ce) &&
1370             domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1371             memory_region_iommu_replay_all(&vtd_as->iommu);
1372         }
1373     }
1374 }
1375 
1376 static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
1377                                            void *private)
1378 {
1379     memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
1380     return 0;
1381 }
1382 
1383 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1384                                            uint16_t domain_id, hwaddr addr,
1385                                            uint8_t am)
1386 {
1387     IntelIOMMUNotifierNode *node;
1388     VTDContextEntry ce;
1389     int ret;
1390 
1391     QLIST_FOREACH(node, &(s->notifiers_list), next) {
1392         VTDAddressSpace *vtd_as = node->vtd_as;
1393         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1394                                        vtd_as->devfn, &ce);
1395         if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1396             vtd_page_walk(&ce, addr, addr + (1 << am) * VTD_PAGE_SIZE,
1397                           vtd_page_invalidate_notify_hook,
1398                           (void *)&vtd_as->iommu, true, s->aw_bits);
1399         }
1400     }
1401 }
1402 
1403 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1404                                       hwaddr addr, uint8_t am)
1405 {
1406     VTDIOTLBPageInvInfo info;
1407 
1408     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1409 
1410     assert(am <= VTD_MAMV);
1411     info.domain_id = domain_id;
1412     info.addr = addr;
1413     info.mask = ~((1 << am) - 1);
1414     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1415     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1416 }
1417 
1418 /* Flush IOTLB
1419  * Returns the IOTLB Actual Invalidation Granularity.
1420  * @val: the content of the IOTLB_REG
1421  */
1422 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1423 {
1424     uint64_t iaig;
1425     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1426     uint16_t domain_id;
1427     hwaddr addr;
1428     uint8_t am;
1429 
1430     switch (type) {
1431     case VTD_TLB_GLOBAL_FLUSH:
1432         iaig = VTD_TLB_GLOBAL_FLUSH_A;
1433         vtd_iotlb_global_invalidate(s);
1434         break;
1435 
1436     case VTD_TLB_DSI_FLUSH:
1437         domain_id = VTD_TLB_DID(val);
1438         iaig = VTD_TLB_DSI_FLUSH_A;
1439         vtd_iotlb_domain_invalidate(s, domain_id);
1440         break;
1441 
1442     case VTD_TLB_PSI_FLUSH:
1443         domain_id = VTD_TLB_DID(val);
1444         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1445         am = VTD_IVA_AM(addr);
1446         addr = VTD_IVA_ADDR(addr);
1447         if (am > VTD_MAMV) {
1448             trace_vtd_err("IOTLB PSI flush: address mask overflow.");
1449             iaig = 0;
1450             break;
1451         }
1452         iaig = VTD_TLB_PSI_FLUSH_A;
1453         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1454         break;
1455 
1456     default:
1457         trace_vtd_err("IOTLB flush: invalid granularity.");
1458         iaig = 0;
1459     }
1460     return iaig;
1461 }
1462 
1463 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1464 
1465 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1466 {
1467     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1468            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1469 }
1470 
1471 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1472 {
1473     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1474 
1475     trace_vtd_inv_qi_enable(en);
1476 
1477     if (en) {
1478         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1479         /* 2^(x+8) entries */
1480         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1481         s->qi_enabled = true;
1482         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1483         /* Ok - report back to driver */
1484         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1485 
1486         if (s->iq_tail != 0) {
1487             /*
1488              * This is a spec violation but Windows guests are known to set up
1489              * Queued Invalidation this way so we allow the write and process
1490              * Invalidation Descriptors right away.
1491              */
1492             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1493             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1494                 vtd_fetch_inv_desc(s);
1495             }
1496         }
1497     } else {
1498         if (vtd_queued_inv_disable_check(s)) {
1499             /* disable Queued Invalidation */
1500             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1501             s->iq_head = 0;
1502             s->qi_enabled = false;
1503             /* Ok - report back to driver */
1504             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1505         } else {
1506             trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1507         }
1508     }
1509 }
1510 
1511 /* Set Root Table Pointer */
1512 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1513 {
1514     vtd_root_table_setup(s);
1515     /* Ok - report back to driver */
1516     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1517 }
1518 
1519 /* Set Interrupt Remap Table Pointer */
1520 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1521 {
1522     vtd_interrupt_remap_table_setup(s);
1523     /* Ok - report back to driver */
1524     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1525 }
1526 
1527 /* Handle Translation Enable/Disable */
1528 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1529 {
1530     if (s->dmar_enabled == en) {
1531         return;
1532     }
1533 
1534     trace_vtd_dmar_enable(en);
1535 
1536     if (en) {
1537         s->dmar_enabled = true;
1538         /* Ok - report back to driver */
1539         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1540     } else {
1541         s->dmar_enabled = false;
1542 
1543         /* Clear the index of Fault Recording Register */
1544         s->next_frcd_reg = 0;
1545         /* Ok - report back to driver */
1546         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1547     }
1548 
1549     vtd_switch_address_space_all(s);
1550 }
1551 
1552 /* Handle Interrupt Remap Enable/Disable */
1553 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1554 {
1555     trace_vtd_ir_enable(en);
1556 
1557     if (en) {
1558         s->intr_enabled = true;
1559         /* Ok - report back to driver */
1560         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1561     } else {
1562         s->intr_enabled = false;
1563         /* Ok - report back to driver */
1564         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1565     }
1566 }
1567 
1568 /* Handle write to Global Command Register */
1569 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1570 {
1571     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1572     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1573     uint32_t changed = status ^ val;
1574 
1575     trace_vtd_reg_write_gcmd(status, val);
1576     if (changed & VTD_GCMD_TE) {
1577         /* Translation enable/disable */
1578         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1579     }
1580     if (val & VTD_GCMD_SRTP) {
1581         /* Set/update the root-table pointer */
1582         vtd_handle_gcmd_srtp(s);
1583     }
1584     if (changed & VTD_GCMD_QIE) {
1585         /* Queued Invalidation Enable */
1586         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1587     }
1588     if (val & VTD_GCMD_SIRTP) {
1589         /* Set/update the interrupt remapping root-table pointer */
1590         vtd_handle_gcmd_sirtp(s);
1591     }
1592     if (changed & VTD_GCMD_IRE) {
1593         /* Interrupt remap enable/disable */
1594         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1595     }
1596 }
1597 
1598 /* Handle write to Context Command Register */
1599 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1600 {
1601     uint64_t ret;
1602     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1603 
1604     /* Context-cache invalidation request */
1605     if (val & VTD_CCMD_ICC) {
1606         if (s->qi_enabled) {
1607             trace_vtd_err("Queued Invalidation enabled, "
1608                           "should not use register-based invalidation");
1609             return;
1610         }
1611         ret = vtd_context_cache_invalidate(s, val);
1612         /* Invalidation completed. Change something to show */
1613         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1614         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1615                                       ret);
1616     }
1617 }
1618 
1619 /* Handle write to IOTLB Invalidation Register */
1620 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1621 {
1622     uint64_t ret;
1623     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1624 
1625     /* IOTLB invalidation request */
1626     if (val & VTD_TLB_IVT) {
1627         if (s->qi_enabled) {
1628             trace_vtd_err("Queued Invalidation enabled, "
1629                           "should not use register-based invalidation.");
1630             return;
1631         }
1632         ret = vtd_iotlb_flush(s, val);
1633         /* Invalidation completed. Change something to show */
1634         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1635         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1636                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1637     }
1638 }
1639 
1640 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1641 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1642                              VTDInvDesc *inv_desc)
1643 {
1644     dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1645     if (dma_memory_read(&address_space_memory, addr, inv_desc,
1646         sizeof(*inv_desc))) {
1647         trace_vtd_err("Read INV DESC failed.");
1648         inv_desc->lo = 0;
1649         inv_desc->hi = 0;
1650         return false;
1651     }
1652     inv_desc->lo = le64_to_cpu(inv_desc->lo);
1653     inv_desc->hi = le64_to_cpu(inv_desc->hi);
1654     return true;
1655 }
1656 
1657 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1658 {
1659     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1660         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1661         trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1662         return false;
1663     }
1664     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1665         /* Status Write */
1666         uint32_t status_data = (uint32_t)(inv_desc->lo >>
1667                                VTD_INV_DESC_WAIT_DATA_SHIFT);
1668 
1669         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1670 
1671         /* FIXME: need to be masked with HAW? */
1672         dma_addr_t status_addr = inv_desc->hi;
1673         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1674         status_data = cpu_to_le32(status_data);
1675         if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1676                              sizeof(status_data))) {
1677             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1678             return false;
1679         }
1680     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1681         /* Interrupt flag */
1682         vtd_generate_completion_event(s);
1683     } else {
1684         trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1685         return false;
1686     }
1687     return true;
1688 }
1689 
1690 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1691                                            VTDInvDesc *inv_desc)
1692 {
1693     uint16_t sid, fmask;
1694 
1695     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1696         trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1697         return false;
1698     }
1699     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1700     case VTD_INV_DESC_CC_DOMAIN:
1701         trace_vtd_inv_desc_cc_domain(
1702             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1703         /* Fall through */
1704     case VTD_INV_DESC_CC_GLOBAL:
1705         vtd_context_global_invalidate(s);
1706         break;
1707 
1708     case VTD_INV_DESC_CC_DEVICE:
1709         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1710         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1711         vtd_context_device_invalidate(s, sid, fmask);
1712         break;
1713 
1714     default:
1715         trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1716         return false;
1717     }
1718     return true;
1719 }
1720 
1721 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1722 {
1723     uint16_t domain_id;
1724     uint8_t am;
1725     hwaddr addr;
1726 
1727     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1728         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1729         trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1730         return false;
1731     }
1732 
1733     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1734     case VTD_INV_DESC_IOTLB_GLOBAL:
1735         vtd_iotlb_global_invalidate(s);
1736         break;
1737 
1738     case VTD_INV_DESC_IOTLB_DOMAIN:
1739         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1740         vtd_iotlb_domain_invalidate(s, domain_id);
1741         break;
1742 
1743     case VTD_INV_DESC_IOTLB_PAGE:
1744         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1745         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1746         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1747         if (am > VTD_MAMV) {
1748             trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1749             return false;
1750         }
1751         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1752         break;
1753 
1754     default:
1755         trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1756         return false;
1757     }
1758     return true;
1759 }
1760 
1761 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1762                                      VTDInvDesc *inv_desc)
1763 {
1764     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1765                            inv_desc->iec.index,
1766                            inv_desc->iec.index_mask);
1767 
1768     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1769                        inv_desc->iec.index,
1770                        inv_desc->iec.index_mask);
1771     return true;
1772 }
1773 
1774 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1775                                           VTDInvDesc *inv_desc)
1776 {
1777     VTDAddressSpace *vtd_dev_as;
1778     IOMMUTLBEntry entry;
1779     struct VTDBus *vtd_bus;
1780     hwaddr addr;
1781     uint64_t sz;
1782     uint16_t sid;
1783     uint8_t devfn;
1784     bool size;
1785     uint8_t bus_num;
1786 
1787     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1788     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1789     devfn = sid & 0xff;
1790     bus_num = sid >> 8;
1791     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1792 
1793     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1794         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1795         trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1796         return false;
1797     }
1798 
1799     vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1800     if (!vtd_bus) {
1801         goto done;
1802     }
1803 
1804     vtd_dev_as = vtd_bus->dev_as[devfn];
1805     if (!vtd_dev_as) {
1806         goto done;
1807     }
1808 
1809     /* According to ATS spec table 2.4:
1810      * S = 0, bits 15:12 = xxxx     range size: 4K
1811      * S = 1, bits 15:12 = xxx0     range size: 8K
1812      * S = 1, bits 15:12 = xx01     range size: 16K
1813      * S = 1, bits 15:12 = x011     range size: 32K
1814      * S = 1, bits 15:12 = 0111     range size: 64K
1815      * ...
1816      */
1817     if (size) {
1818         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
1819         addr &= ~(sz - 1);
1820     } else {
1821         sz = VTD_PAGE_SIZE;
1822     }
1823 
1824     entry.target_as = &vtd_dev_as->as;
1825     entry.addr_mask = sz - 1;
1826     entry.iova = addr;
1827     entry.perm = IOMMU_NONE;
1828     entry.translated_addr = 0;
1829     memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
1830 
1831 done:
1832     return true;
1833 }
1834 
1835 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1836 {
1837     VTDInvDesc inv_desc;
1838     uint8_t desc_type;
1839 
1840     trace_vtd_inv_qi_head(s->iq_head);
1841     if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1842         s->iq_last_desc_type = VTD_INV_DESC_NONE;
1843         return false;
1844     }
1845     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1846     /* FIXME: should update at first or at last? */
1847     s->iq_last_desc_type = desc_type;
1848 
1849     switch (desc_type) {
1850     case VTD_INV_DESC_CC:
1851         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
1852         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1853             return false;
1854         }
1855         break;
1856 
1857     case VTD_INV_DESC_IOTLB:
1858         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
1859         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1860             return false;
1861         }
1862         break;
1863 
1864     case VTD_INV_DESC_WAIT:
1865         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
1866         if (!vtd_process_wait_desc(s, &inv_desc)) {
1867             return false;
1868         }
1869         break;
1870 
1871     case VTD_INV_DESC_IEC:
1872         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
1873         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1874             return false;
1875         }
1876         break;
1877 
1878     case VTD_INV_DESC_DEVICE:
1879         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
1880         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1881             return false;
1882         }
1883         break;
1884 
1885     default:
1886         trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
1887         return false;
1888     }
1889     s->iq_head++;
1890     if (s->iq_head == s->iq_size) {
1891         s->iq_head = 0;
1892     }
1893     return true;
1894 }
1895 
1896 /* Try to fetch and process more Invalidation Descriptors */
1897 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1898 {
1899     trace_vtd_inv_qi_fetch();
1900 
1901     if (s->iq_tail >= s->iq_size) {
1902         /* Detects an invalid Tail pointer */
1903         trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
1904         vtd_handle_inv_queue_error(s);
1905         return;
1906     }
1907     while (s->iq_head != s->iq_tail) {
1908         if (!vtd_process_inv_desc(s)) {
1909             /* Invalidation Queue Errors */
1910             vtd_handle_inv_queue_error(s);
1911             break;
1912         }
1913         /* Must update the IQH_REG in time */
1914         vtd_set_quad_raw(s, DMAR_IQH_REG,
1915                          (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1916                          VTD_IQH_QH_MASK);
1917     }
1918 }
1919 
1920 /* Handle write to Invalidation Queue Tail Register */
1921 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1922 {
1923     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1924 
1925     s->iq_tail = VTD_IQT_QT(val);
1926     trace_vtd_inv_qi_tail(s->iq_tail);
1927 
1928     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1929         /* Process Invalidation Queue here */
1930         vtd_fetch_inv_desc(s);
1931     }
1932 }
1933 
1934 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1935 {
1936     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1937     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1938     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1939 
1940     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1941         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1942         trace_vtd_fsts_clear_ip();
1943     }
1944     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1945      * Descriptors if there are any when Queued Invalidation is enabled?
1946      */
1947 }
1948 
1949 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1950 {
1951     uint32_t fectl_reg;
1952     /* FIXME: when software clears the IM field, check the IP field. But do we
1953      * need to compare the old value and the new value to conclude that
1954      * software clears the IM field? Or just check if the IM field is zero?
1955      */
1956     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1957 
1958     trace_vtd_reg_write_fectl(fectl_reg);
1959 
1960     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1961         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1962         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1963     }
1964 }
1965 
1966 static void vtd_handle_ics_write(IntelIOMMUState *s)
1967 {
1968     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1969     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1970 
1971     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1972         trace_vtd_reg_ics_clear_ip();
1973         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1974     }
1975 }
1976 
1977 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1978 {
1979     uint32_t iectl_reg;
1980     /* FIXME: when software clears the IM field, check the IP field. But do we
1981      * need to compare the old value and the new value to conclude that
1982      * software clears the IM field? Or just check if the IM field is zero?
1983      */
1984     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1985 
1986     trace_vtd_reg_write_iectl(iectl_reg);
1987 
1988     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1989         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1990         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1991     }
1992 }
1993 
1994 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1995 {
1996     IntelIOMMUState *s = opaque;
1997     uint64_t val;
1998 
1999     trace_vtd_reg_read(addr, size);
2000 
2001     if (addr + size > DMAR_REG_SIZE) {
2002         trace_vtd_err("Read MMIO over range.");
2003         return (uint64_t)-1;
2004     }
2005 
2006     switch (addr) {
2007     /* Root Table Address Register, 64-bit */
2008     case DMAR_RTADDR_REG:
2009         if (size == 4) {
2010             val = s->root & ((1ULL << 32) - 1);
2011         } else {
2012             val = s->root;
2013         }
2014         break;
2015 
2016     case DMAR_RTADDR_REG_HI:
2017         assert(size == 4);
2018         val = s->root >> 32;
2019         break;
2020 
2021     /* Invalidation Queue Address Register, 64-bit */
2022     case DMAR_IQA_REG:
2023         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2024         if (size == 4) {
2025             val = val & ((1ULL << 32) - 1);
2026         }
2027         break;
2028 
2029     case DMAR_IQA_REG_HI:
2030         assert(size == 4);
2031         val = s->iq >> 32;
2032         break;
2033 
2034     default:
2035         if (size == 4) {
2036             val = vtd_get_long(s, addr);
2037         } else {
2038             val = vtd_get_quad(s, addr);
2039         }
2040     }
2041 
2042     return val;
2043 }
2044 
2045 static void vtd_mem_write(void *opaque, hwaddr addr,
2046                           uint64_t val, unsigned size)
2047 {
2048     IntelIOMMUState *s = opaque;
2049 
2050     trace_vtd_reg_write(addr, size, val);
2051 
2052     if (addr + size > DMAR_REG_SIZE) {
2053         trace_vtd_err("Write MMIO over range.");
2054         return;
2055     }
2056 
2057     switch (addr) {
2058     /* Global Command Register, 32-bit */
2059     case DMAR_GCMD_REG:
2060         vtd_set_long(s, addr, val);
2061         vtd_handle_gcmd_write(s);
2062         break;
2063 
2064     /* Context Command Register, 64-bit */
2065     case DMAR_CCMD_REG:
2066         if (size == 4) {
2067             vtd_set_long(s, addr, val);
2068         } else {
2069             vtd_set_quad(s, addr, val);
2070             vtd_handle_ccmd_write(s);
2071         }
2072         break;
2073 
2074     case DMAR_CCMD_REG_HI:
2075         assert(size == 4);
2076         vtd_set_long(s, addr, val);
2077         vtd_handle_ccmd_write(s);
2078         break;
2079 
2080     /* IOTLB Invalidation Register, 64-bit */
2081     case DMAR_IOTLB_REG:
2082         if (size == 4) {
2083             vtd_set_long(s, addr, val);
2084         } else {
2085             vtd_set_quad(s, addr, val);
2086             vtd_handle_iotlb_write(s);
2087         }
2088         break;
2089 
2090     case DMAR_IOTLB_REG_HI:
2091         assert(size == 4);
2092         vtd_set_long(s, addr, val);
2093         vtd_handle_iotlb_write(s);
2094         break;
2095 
2096     /* Invalidate Address Register, 64-bit */
2097     case DMAR_IVA_REG:
2098         if (size == 4) {
2099             vtd_set_long(s, addr, val);
2100         } else {
2101             vtd_set_quad(s, addr, val);
2102         }
2103         break;
2104 
2105     case DMAR_IVA_REG_HI:
2106         assert(size == 4);
2107         vtd_set_long(s, addr, val);
2108         break;
2109 
2110     /* Fault Status Register, 32-bit */
2111     case DMAR_FSTS_REG:
2112         assert(size == 4);
2113         vtd_set_long(s, addr, val);
2114         vtd_handle_fsts_write(s);
2115         break;
2116 
2117     /* Fault Event Control Register, 32-bit */
2118     case DMAR_FECTL_REG:
2119         assert(size == 4);
2120         vtd_set_long(s, addr, val);
2121         vtd_handle_fectl_write(s);
2122         break;
2123 
2124     /* Fault Event Data Register, 32-bit */
2125     case DMAR_FEDATA_REG:
2126         assert(size == 4);
2127         vtd_set_long(s, addr, val);
2128         break;
2129 
2130     /* Fault Event Address Register, 32-bit */
2131     case DMAR_FEADDR_REG:
2132         assert(size == 4);
2133         vtd_set_long(s, addr, val);
2134         break;
2135 
2136     /* Fault Event Upper Address Register, 32-bit */
2137     case DMAR_FEUADDR_REG:
2138         assert(size == 4);
2139         vtd_set_long(s, addr, val);
2140         break;
2141 
2142     /* Protected Memory Enable Register, 32-bit */
2143     case DMAR_PMEN_REG:
2144         assert(size == 4);
2145         vtd_set_long(s, addr, val);
2146         break;
2147 
2148     /* Root Table Address Register, 64-bit */
2149     case DMAR_RTADDR_REG:
2150         if (size == 4) {
2151             vtd_set_long(s, addr, val);
2152         } else {
2153             vtd_set_quad(s, addr, val);
2154         }
2155         break;
2156 
2157     case DMAR_RTADDR_REG_HI:
2158         assert(size == 4);
2159         vtd_set_long(s, addr, val);
2160         break;
2161 
2162     /* Invalidation Queue Tail Register, 64-bit */
2163     case DMAR_IQT_REG:
2164         if (size == 4) {
2165             vtd_set_long(s, addr, val);
2166         } else {
2167             vtd_set_quad(s, addr, val);
2168         }
2169         vtd_handle_iqt_write(s);
2170         break;
2171 
2172     case DMAR_IQT_REG_HI:
2173         assert(size == 4);
2174         vtd_set_long(s, addr, val);
2175         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2176         break;
2177 
2178     /* Invalidation Queue Address Register, 64-bit */
2179     case DMAR_IQA_REG:
2180         if (size == 4) {
2181             vtd_set_long(s, addr, val);
2182         } else {
2183             vtd_set_quad(s, addr, val);
2184         }
2185         break;
2186 
2187     case DMAR_IQA_REG_HI:
2188         assert(size == 4);
2189         vtd_set_long(s, addr, val);
2190         break;
2191 
2192     /* Invalidation Completion Status Register, 32-bit */
2193     case DMAR_ICS_REG:
2194         assert(size == 4);
2195         vtd_set_long(s, addr, val);
2196         vtd_handle_ics_write(s);
2197         break;
2198 
2199     /* Invalidation Event Control Register, 32-bit */
2200     case DMAR_IECTL_REG:
2201         assert(size == 4);
2202         vtd_set_long(s, addr, val);
2203         vtd_handle_iectl_write(s);
2204         break;
2205 
2206     /* Invalidation Event Data Register, 32-bit */
2207     case DMAR_IEDATA_REG:
2208         assert(size == 4);
2209         vtd_set_long(s, addr, val);
2210         break;
2211 
2212     /* Invalidation Event Address Register, 32-bit */
2213     case DMAR_IEADDR_REG:
2214         assert(size == 4);
2215         vtd_set_long(s, addr, val);
2216         break;
2217 
2218     /* Invalidation Event Upper Address Register, 32-bit */
2219     case DMAR_IEUADDR_REG:
2220         assert(size == 4);
2221         vtd_set_long(s, addr, val);
2222         break;
2223 
2224     /* Fault Recording Registers, 128-bit */
2225     case DMAR_FRCD_REG_0_0:
2226         if (size == 4) {
2227             vtd_set_long(s, addr, val);
2228         } else {
2229             vtd_set_quad(s, addr, val);
2230         }
2231         break;
2232 
2233     case DMAR_FRCD_REG_0_1:
2234         assert(size == 4);
2235         vtd_set_long(s, addr, val);
2236         break;
2237 
2238     case DMAR_FRCD_REG_0_2:
2239         if (size == 4) {
2240             vtd_set_long(s, addr, val);
2241         } else {
2242             vtd_set_quad(s, addr, val);
2243             /* May clear bit 127 (Fault), update PPF */
2244             vtd_update_fsts_ppf(s);
2245         }
2246         break;
2247 
2248     case DMAR_FRCD_REG_0_3:
2249         assert(size == 4);
2250         vtd_set_long(s, addr, val);
2251         /* May clear bit 127 (Fault), update PPF */
2252         vtd_update_fsts_ppf(s);
2253         break;
2254 
2255     case DMAR_IRTA_REG:
2256         if (size == 4) {
2257             vtd_set_long(s, addr, val);
2258         } else {
2259             vtd_set_quad(s, addr, val);
2260         }
2261         break;
2262 
2263     case DMAR_IRTA_REG_HI:
2264         assert(size == 4);
2265         vtd_set_long(s, addr, val);
2266         break;
2267 
2268     default:
2269         if (size == 4) {
2270             vtd_set_long(s, addr, val);
2271         } else {
2272             vtd_set_quad(s, addr, val);
2273         }
2274     }
2275 }
2276 
2277 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2278                                          IOMMUAccessFlags flag)
2279 {
2280     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2281     IntelIOMMUState *s = vtd_as->iommu_state;
2282     IOMMUTLBEntry iotlb = {
2283         /* We'll fill in the rest later. */
2284         .target_as = &address_space_memory,
2285     };
2286     bool success;
2287 
2288     if (likely(s->dmar_enabled)) {
2289         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2290                                          addr, flag & IOMMU_WO, &iotlb);
2291     } else {
2292         /* DMAR disabled, passthrough, use 4k-page*/
2293         iotlb.iova = addr & VTD_PAGE_MASK_4K;
2294         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2295         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2296         iotlb.perm = IOMMU_RW;
2297         success = true;
2298     }
2299 
2300     if (likely(success)) {
2301         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2302                                  VTD_PCI_SLOT(vtd_as->devfn),
2303                                  VTD_PCI_FUNC(vtd_as->devfn),
2304                                  iotlb.iova, iotlb.translated_addr,
2305                                  iotlb.addr_mask);
2306     } else {
2307         trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2308                                      VTD_PCI_SLOT(vtd_as->devfn),
2309                                      VTD_PCI_FUNC(vtd_as->devfn),
2310                                      iotlb.iova);
2311     }
2312 
2313     return iotlb;
2314 }
2315 
2316 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2317                                           IOMMUNotifierFlag old,
2318                                           IOMMUNotifierFlag new)
2319 {
2320     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2321     IntelIOMMUState *s = vtd_as->iommu_state;
2322     IntelIOMMUNotifierNode *node = NULL;
2323     IntelIOMMUNotifierNode *next_node = NULL;
2324 
2325     if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2326         error_report("We need to set caching-mode=1 for intel-iommu to enable "
2327                      "device assignment with IOMMU protection.");
2328         exit(1);
2329     }
2330 
2331     if (old == IOMMU_NOTIFIER_NONE) {
2332         node = g_malloc0(sizeof(*node));
2333         node->vtd_as = vtd_as;
2334         QLIST_INSERT_HEAD(&s->notifiers_list, node, next);
2335         return;
2336     }
2337 
2338     /* update notifier node with new flags */
2339     QLIST_FOREACH_SAFE(node, &s->notifiers_list, next, next_node) {
2340         if (node->vtd_as == vtd_as) {
2341             if (new == IOMMU_NOTIFIER_NONE) {
2342                 QLIST_REMOVE(node, next);
2343                 g_free(node);
2344             }
2345             return;
2346         }
2347     }
2348 }
2349 
2350 static int vtd_post_load(void *opaque, int version_id)
2351 {
2352     IntelIOMMUState *iommu = opaque;
2353 
2354     /*
2355      * Memory regions are dynamically turned on/off depending on
2356      * context entry configurations from the guest. After migration,
2357      * we need to make sure the memory regions are still correct.
2358      */
2359     vtd_switch_address_space_all(iommu);
2360 
2361     return 0;
2362 }
2363 
2364 static const VMStateDescription vtd_vmstate = {
2365     .name = "iommu-intel",
2366     .version_id = 1,
2367     .minimum_version_id = 1,
2368     .priority = MIG_PRI_IOMMU,
2369     .post_load = vtd_post_load,
2370     .fields = (VMStateField[]) {
2371         VMSTATE_UINT64(root, IntelIOMMUState),
2372         VMSTATE_UINT64(intr_root, IntelIOMMUState),
2373         VMSTATE_UINT64(iq, IntelIOMMUState),
2374         VMSTATE_UINT32(intr_size, IntelIOMMUState),
2375         VMSTATE_UINT16(iq_head, IntelIOMMUState),
2376         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2377         VMSTATE_UINT16(iq_size, IntelIOMMUState),
2378         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2379         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2380         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2381         VMSTATE_BOOL(root_extended, IntelIOMMUState),
2382         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2383         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2384         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2385         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2386         VMSTATE_END_OF_LIST()
2387     }
2388 };
2389 
2390 static const MemoryRegionOps vtd_mem_ops = {
2391     .read = vtd_mem_read,
2392     .write = vtd_mem_write,
2393     .endianness = DEVICE_LITTLE_ENDIAN,
2394     .impl = {
2395         .min_access_size = 4,
2396         .max_access_size = 8,
2397     },
2398     .valid = {
2399         .min_access_size = 4,
2400         .max_access_size = 8,
2401     },
2402 };
2403 
2404 static Property vtd_properties[] = {
2405     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2406     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2407                             ON_OFF_AUTO_AUTO),
2408     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2409     DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2410                       VTD_HOST_ADDRESS_WIDTH),
2411     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2412     DEFINE_PROP_END_OF_LIST(),
2413 };
2414 
2415 /* Read IRTE entry with specific index */
2416 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2417                         VTD_IR_TableEntry *entry, uint16_t sid)
2418 {
2419     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2420         {0xffff, 0xfffb, 0xfff9, 0xfff8};
2421     dma_addr_t addr = 0x00;
2422     uint16_t mask, source_id;
2423     uint8_t bus, bus_max, bus_min;
2424 
2425     addr = iommu->intr_root + index * sizeof(*entry);
2426     if (dma_memory_read(&address_space_memory, addr, entry,
2427                         sizeof(*entry))) {
2428         trace_vtd_err("Memory read failed for IRTE.");
2429         return -VTD_FR_IR_ROOT_INVAL;
2430     }
2431 
2432     trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2433                           le64_to_cpu(entry->data[0]));
2434 
2435     if (!entry->irte.present) {
2436         trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2437                            le64_to_cpu(entry->data[0]));
2438         return -VTD_FR_IR_ENTRY_P;
2439     }
2440 
2441     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2442         entry->irte.__reserved_2) {
2443         trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2444                            le64_to_cpu(entry->data[0]));
2445         return -VTD_FR_IR_IRTE_RSVD;
2446     }
2447 
2448     if (sid != X86_IOMMU_SID_INVALID) {
2449         /* Validate IRTE SID */
2450         source_id = le32_to_cpu(entry->irte.source_id);
2451         switch (entry->irte.sid_vtype) {
2452         case VTD_SVT_NONE:
2453             break;
2454 
2455         case VTD_SVT_ALL:
2456             mask = vtd_svt_mask[entry->irte.sid_q];
2457             if ((source_id & mask) != (sid & mask)) {
2458                 trace_vtd_err_irte_sid(index, sid, source_id);
2459                 return -VTD_FR_IR_SID_ERR;
2460             }
2461             break;
2462 
2463         case VTD_SVT_BUS:
2464             bus_max = source_id >> 8;
2465             bus_min = source_id & 0xff;
2466             bus = sid >> 8;
2467             if (bus > bus_max || bus < bus_min) {
2468                 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2469                 return -VTD_FR_IR_SID_ERR;
2470             }
2471             break;
2472 
2473         default:
2474             trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2475             /* Take this as verification failure. */
2476             return -VTD_FR_IR_SID_ERR;
2477             break;
2478         }
2479     }
2480 
2481     return 0;
2482 }
2483 
2484 /* Fetch IRQ information of specific IR index */
2485 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2486                              VTDIrq *irq, uint16_t sid)
2487 {
2488     VTD_IR_TableEntry irte = {};
2489     int ret = 0;
2490 
2491     ret = vtd_irte_get(iommu, index, &irte, sid);
2492     if (ret) {
2493         return ret;
2494     }
2495 
2496     irq->trigger_mode = irte.irte.trigger_mode;
2497     irq->vector = irte.irte.vector;
2498     irq->delivery_mode = irte.irte.delivery_mode;
2499     irq->dest = le32_to_cpu(irte.irte.dest_id);
2500     if (!iommu->intr_eime) {
2501 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
2502 #define  VTD_IR_APIC_DEST_SHIFT        (8)
2503         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2504             VTD_IR_APIC_DEST_SHIFT;
2505     }
2506     irq->dest_mode = irte.irte.dest_mode;
2507     irq->redir_hint = irte.irte.redir_hint;
2508 
2509     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2510                        irq->delivery_mode, irq->dest, irq->dest_mode);
2511 
2512     return 0;
2513 }
2514 
2515 /* Generate one MSI message from VTDIrq info */
2516 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2517 {
2518     VTD_MSIMessage msg = {};
2519 
2520     /* Generate address bits */
2521     msg.dest_mode = irq->dest_mode;
2522     msg.redir_hint = irq->redir_hint;
2523     msg.dest = irq->dest;
2524     msg.__addr_hi = irq->dest & 0xffffff00;
2525     msg.__addr_head = cpu_to_le32(0xfee);
2526     /* Keep this from original MSI address bits */
2527     msg.__not_used = irq->msi_addr_last_bits;
2528 
2529     /* Generate data bits */
2530     msg.vector = irq->vector;
2531     msg.delivery_mode = irq->delivery_mode;
2532     msg.level = 1;
2533     msg.trigger_mode = irq->trigger_mode;
2534 
2535     msg_out->address = msg.msi_addr;
2536     msg_out->data = msg.msi_data;
2537 }
2538 
2539 /* Interrupt remapping for MSI/MSI-X entry */
2540 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2541                                    MSIMessage *origin,
2542                                    MSIMessage *translated,
2543                                    uint16_t sid)
2544 {
2545     int ret = 0;
2546     VTD_IR_MSIAddress addr;
2547     uint16_t index;
2548     VTDIrq irq = {};
2549 
2550     assert(origin && translated);
2551 
2552     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2553 
2554     if (!iommu || !iommu->intr_enabled) {
2555         memcpy(translated, origin, sizeof(*origin));
2556         goto out;
2557     }
2558 
2559     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2560         trace_vtd_err("MSI address high 32 bits non-zero when "
2561                       "Interrupt Remapping enabled.");
2562         return -VTD_FR_IR_REQ_RSVD;
2563     }
2564 
2565     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2566     if (addr.addr.__head != 0xfee) {
2567         trace_vtd_err("MSI addr low 32 bit invalid.");
2568         return -VTD_FR_IR_REQ_RSVD;
2569     }
2570 
2571     /* This is compatible mode. */
2572     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2573         memcpy(translated, origin, sizeof(*origin));
2574         goto out;
2575     }
2576 
2577     index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2578 
2579 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
2580 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
2581 
2582     if (addr.addr.sub_valid) {
2583         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2584         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2585     }
2586 
2587     ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2588     if (ret) {
2589         return ret;
2590     }
2591 
2592     if (addr.addr.sub_valid) {
2593         trace_vtd_ir_remap_type("MSI");
2594         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2595             trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2596             return -VTD_FR_IR_REQ_RSVD;
2597         }
2598     } else {
2599         uint8_t vector = origin->data & 0xff;
2600         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2601 
2602         trace_vtd_ir_remap_type("IOAPIC");
2603         /* IOAPIC entry vector should be aligned with IRTE vector
2604          * (see vt-d spec 5.1.5.1). */
2605         if (vector != irq.vector) {
2606             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2607         }
2608 
2609         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2610          * (see vt-d spec 5.1.5.1). */
2611         if (trigger_mode != irq.trigger_mode) {
2612             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2613                                       irq.trigger_mode);
2614         }
2615     }
2616 
2617     /*
2618      * We'd better keep the last two bits, assuming that guest OS
2619      * might modify it. Keep it does not hurt after all.
2620      */
2621     irq.msi_addr_last_bits = addr.addr.__not_care;
2622 
2623     /* Translate VTDIrq to MSI message */
2624     vtd_generate_msi_message(&irq, translated);
2625 
2626 out:
2627     trace_vtd_ir_remap_msi(origin->address, origin->data,
2628                            translated->address, translated->data);
2629     return 0;
2630 }
2631 
2632 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2633                          MSIMessage *dst, uint16_t sid)
2634 {
2635     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2636                                    src, dst, sid);
2637 }
2638 
2639 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2640                                    uint64_t *data, unsigned size,
2641                                    MemTxAttrs attrs)
2642 {
2643     return MEMTX_OK;
2644 }
2645 
2646 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2647                                     uint64_t value, unsigned size,
2648                                     MemTxAttrs attrs)
2649 {
2650     int ret = 0;
2651     MSIMessage from = {}, to = {};
2652     uint16_t sid = X86_IOMMU_SID_INVALID;
2653 
2654     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2655     from.data = (uint32_t) value;
2656 
2657     if (!attrs.unspecified) {
2658         /* We have explicit Source ID */
2659         sid = attrs.requester_id;
2660     }
2661 
2662     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2663     if (ret) {
2664         /* TODO: report error */
2665         /* Drop this interrupt */
2666         return MEMTX_ERROR;
2667     }
2668 
2669     apic_get_class()->send_msi(&to);
2670 
2671     return MEMTX_OK;
2672 }
2673 
2674 static const MemoryRegionOps vtd_mem_ir_ops = {
2675     .read_with_attrs = vtd_mem_ir_read,
2676     .write_with_attrs = vtd_mem_ir_write,
2677     .endianness = DEVICE_LITTLE_ENDIAN,
2678     .impl = {
2679         .min_access_size = 4,
2680         .max_access_size = 4,
2681     },
2682     .valid = {
2683         .min_access_size = 4,
2684         .max_access_size = 4,
2685     },
2686 };
2687 
2688 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2689 {
2690     uintptr_t key = (uintptr_t)bus;
2691     VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2692     VTDAddressSpace *vtd_dev_as;
2693     char name[128];
2694 
2695     if (!vtd_bus) {
2696         uintptr_t *new_key = g_malloc(sizeof(*new_key));
2697         *new_key = (uintptr_t)bus;
2698         /* No corresponding free() */
2699         vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2700                             PCI_DEVFN_MAX);
2701         vtd_bus->bus = bus;
2702         g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2703     }
2704 
2705     vtd_dev_as = vtd_bus->dev_as[devfn];
2706 
2707     if (!vtd_dev_as) {
2708         snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2709         vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2710 
2711         vtd_dev_as->bus = bus;
2712         vtd_dev_as->devfn = (uint8_t)devfn;
2713         vtd_dev_as->iommu_state = s;
2714         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2715 
2716         /*
2717          * Memory region relationships looks like (Address range shows
2718          * only lower 32 bits to make it short in length...):
2719          *
2720          * |-----------------+-------------------+----------|
2721          * | Name            | Address range     | Priority |
2722          * |-----------------+-------------------+----------+
2723          * | vtd_root        | 00000000-ffffffff |        0 |
2724          * |  intel_iommu    | 00000000-ffffffff |        1 |
2725          * |  vtd_sys_alias  | 00000000-ffffffff |        1 |
2726          * |  intel_iommu_ir | fee00000-feefffff |       64 |
2727          * |-----------------+-------------------+----------|
2728          *
2729          * We enable/disable DMAR by switching enablement for
2730          * vtd_sys_alias and intel_iommu regions. IR region is always
2731          * enabled.
2732          */
2733         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2734                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2735                                  "intel_iommu_dmar",
2736                                  UINT64_MAX);
2737         memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2738                                  "vtd_sys_alias", get_system_memory(),
2739                                  0, memory_region_size(get_system_memory()));
2740         memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2741                               &vtd_mem_ir_ops, s, "intel_iommu_ir",
2742                               VTD_INTERRUPT_ADDR_SIZE);
2743         memory_region_init(&vtd_dev_as->root, OBJECT(s),
2744                            "vtd_root", UINT64_MAX);
2745         memory_region_add_subregion_overlap(&vtd_dev_as->root,
2746                                             VTD_INTERRUPT_ADDR_FIRST,
2747                                             &vtd_dev_as->iommu_ir, 64);
2748         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2749         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2750                                             &vtd_dev_as->sys_alias, 1);
2751         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2752                                             MEMORY_REGION(&vtd_dev_as->iommu),
2753                                             1);
2754         vtd_switch_address_space(vtd_dev_as);
2755     }
2756     return vtd_dev_as;
2757 }
2758 
2759 /* Unmap the whole range in the notifier's scope. */
2760 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2761 {
2762     IOMMUTLBEntry entry;
2763     hwaddr size;
2764     hwaddr start = n->start;
2765     hwaddr end = n->end;
2766     IntelIOMMUState *s = as->iommu_state;
2767 
2768     /*
2769      * Note: all the codes in this function has a assumption that IOVA
2770      * bits are no more than VTD_MGAW bits (which is restricted by
2771      * VT-d spec), otherwise we need to consider overflow of 64 bits.
2772      */
2773 
2774     if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
2775         /*
2776          * Don't need to unmap regions that is bigger than the whole
2777          * VT-d supported address space size
2778          */
2779         end = VTD_ADDRESS_SIZE(s->aw_bits);
2780     }
2781 
2782     assert(start <= end);
2783     size = end - start;
2784 
2785     if (ctpop64(size) != 1) {
2786         /*
2787          * This size cannot format a correct mask. Let's enlarge it to
2788          * suite the minimum available mask.
2789          */
2790         int n = 64 - clz64(size);
2791         if (n > s->aw_bits) {
2792             /* should not happen, but in case it happens, limit it */
2793             n = s->aw_bits;
2794         }
2795         size = 1ULL << n;
2796     }
2797 
2798     entry.target_as = &address_space_memory;
2799     /* Adjust iova for the size */
2800     entry.iova = n->start & ~(size - 1);
2801     /* This field is meaningless for unmap */
2802     entry.translated_addr = 0;
2803     entry.perm = IOMMU_NONE;
2804     entry.addr_mask = size - 1;
2805 
2806     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2807                              VTD_PCI_SLOT(as->devfn),
2808                              VTD_PCI_FUNC(as->devfn),
2809                              entry.iova, size);
2810 
2811     memory_region_notify_one(n, &entry);
2812 }
2813 
2814 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
2815 {
2816     IntelIOMMUNotifierNode *node;
2817     VTDAddressSpace *vtd_as;
2818     IOMMUNotifier *n;
2819 
2820     QLIST_FOREACH(node, &s->notifiers_list, next) {
2821         vtd_as = node->vtd_as;
2822         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
2823             vtd_address_space_unmap(vtd_as, n);
2824         }
2825     }
2826 }
2827 
2828 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
2829 {
2830     memory_region_notify_one((IOMMUNotifier *)private, entry);
2831     return 0;
2832 }
2833 
2834 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
2835 {
2836     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
2837     IntelIOMMUState *s = vtd_as->iommu_state;
2838     uint8_t bus_n = pci_bus_num(vtd_as->bus);
2839     VTDContextEntry ce;
2840 
2841     /*
2842      * The replay can be triggered by either a invalidation or a newly
2843      * created entry. No matter what, we release existing mappings
2844      * (it means flushing caches for UNMAP-only registers).
2845      */
2846     vtd_address_space_unmap(vtd_as, n);
2847 
2848     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
2849         trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
2850                                   PCI_FUNC(vtd_as->devfn),
2851                                   VTD_CONTEXT_ENTRY_DID(ce.hi),
2852                                   ce.hi, ce.lo);
2853         vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false,
2854                       s->aw_bits);
2855     } else {
2856         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
2857                                     PCI_FUNC(vtd_as->devfn));
2858     }
2859 
2860     return;
2861 }
2862 
2863 /* Do the initialization. It will also be called when reset, so pay
2864  * attention when adding new initialization stuff.
2865  */
2866 static void vtd_init(IntelIOMMUState *s)
2867 {
2868     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2869 
2870     memset(s->csr, 0, DMAR_REG_SIZE);
2871     memset(s->wmask, 0, DMAR_REG_SIZE);
2872     memset(s->w1cmask, 0, DMAR_REG_SIZE);
2873     memset(s->womask, 0, DMAR_REG_SIZE);
2874 
2875     s->root = 0;
2876     s->root_extended = false;
2877     s->dmar_enabled = false;
2878     s->iq_head = 0;
2879     s->iq_tail = 0;
2880     s->iq = 0;
2881     s->iq_size = 0;
2882     s->qi_enabled = false;
2883     s->iq_last_desc_type = VTD_INV_DESC_NONE;
2884     s->next_frcd_reg = 0;
2885     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
2886              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
2887              VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
2888     if (s->aw_bits == VTD_HOST_AW_48BIT) {
2889         s->cap |= VTD_CAP_SAGAW_48bit;
2890     }
2891     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2892 
2893     /*
2894      * Rsvd field masks for spte
2895      */
2896     vtd_paging_entry_rsvd_field[0] = ~0ULL;
2897     vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
2898     vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
2899     vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
2900     vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
2901     vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
2902     vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
2903     vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
2904     vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
2905 
2906     if (x86_iommu->intr_supported) {
2907         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2908         if (s->intr_eim == ON_OFF_AUTO_ON) {
2909             s->ecap |= VTD_ECAP_EIM;
2910         }
2911         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2912     }
2913 
2914     if (x86_iommu->dt_supported) {
2915         s->ecap |= VTD_ECAP_DT;
2916     }
2917 
2918     if (x86_iommu->pt_supported) {
2919         s->ecap |= VTD_ECAP_PT;
2920     }
2921 
2922     if (s->caching_mode) {
2923         s->cap |= VTD_CAP_CM;
2924     }
2925 
2926     vtd_reset_context_cache(s);
2927     vtd_reset_iotlb(s);
2928 
2929     /* Define registers with default values and bit semantics */
2930     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2931     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2932     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2933     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2934     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2935     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2936     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2937     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2938     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2939 
2940     /* Advanced Fault Logging not supported */
2941     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2942     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2943     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2944     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2945 
2946     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2947      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2948      */
2949     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2950 
2951     /* Treated as RO for implementations that PLMR and PHMR fields reported
2952      * as Clear in the CAP_REG.
2953      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2954      */
2955     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2956 
2957     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2958     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2959     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2960     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2961     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2962     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2963     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2964     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2965     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2966 
2967     /* IOTLB registers */
2968     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2969     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2970     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2971 
2972     /* Fault Recording Registers, 128-bit */
2973     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2974     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2975 
2976     /*
2977      * Interrupt remapping registers.
2978      */
2979     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2980 }
2981 
2982 /* Should not reset address_spaces when reset because devices will still use
2983  * the address space they got at first (won't ask the bus again).
2984  */
2985 static void vtd_reset(DeviceState *dev)
2986 {
2987     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2988 
2989     vtd_init(s);
2990 
2991     /*
2992      * When device reset, throw away all mappings and external caches
2993      */
2994     vtd_address_space_unmap_all(s);
2995 }
2996 
2997 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2998 {
2999     IntelIOMMUState *s = opaque;
3000     VTDAddressSpace *vtd_as;
3001 
3002     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3003 
3004     vtd_as = vtd_find_add_as(s, bus, devfn);
3005     return &vtd_as->as;
3006 }
3007 
3008 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3009 {
3010     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3011 
3012     /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3013     if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3014         !kvm_irqchip_is_split()) {
3015         error_setg(errp, "Intel Interrupt Remapping cannot work with "
3016                          "kernel-irqchip=on, please use 'split|off'.");
3017         return false;
3018     }
3019     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3020         error_setg(errp, "eim=on cannot be selected without intremap=on");
3021         return false;
3022     }
3023 
3024     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3025         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3026                       && x86_iommu->intr_supported ?
3027                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3028     }
3029     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3030         if (!kvm_irqchip_in_kernel()) {
3031             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3032             return false;
3033         }
3034         if (!kvm_enable_x2apic()) {
3035             error_setg(errp, "eim=on requires support on the KVM side"
3036                              "(X2APIC_API, first shipped in v4.7)");
3037             return false;
3038         }
3039     }
3040 
3041     /* Currently only address widths supported are 39 and 48 bits */
3042     if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3043         (s->aw_bits != VTD_HOST_AW_48BIT)) {
3044         error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3045                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3046         return false;
3047     }
3048 
3049     return true;
3050 }
3051 
3052 static void vtd_realize(DeviceState *dev, Error **errp)
3053 {
3054     MachineState *ms = MACHINE(qdev_get_machine());
3055     PCMachineState *pcms = PC_MACHINE(ms);
3056     PCIBus *bus = pcms->bus;
3057     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3058     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3059 
3060     x86_iommu->type = TYPE_INTEL;
3061 
3062     if (!vtd_decide_config(s, errp)) {
3063         return;
3064     }
3065 
3066     QLIST_INIT(&s->notifiers_list);
3067     memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3068     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3069                           "intel_iommu", DMAR_REG_SIZE);
3070     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3071     /* No corresponding destroy */
3072     s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3073                                      g_free, g_free);
3074     s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3075                                               g_free, g_free);
3076     vtd_init(s);
3077     sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3078     pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3079     /* Pseudo address space under root PCI bus. */
3080     pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3081 }
3082 
3083 static void vtd_class_init(ObjectClass *klass, void *data)
3084 {
3085     DeviceClass *dc = DEVICE_CLASS(klass);
3086     X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3087 
3088     dc->reset = vtd_reset;
3089     dc->vmsd = &vtd_vmstate;
3090     dc->props = vtd_properties;
3091     dc->hotpluggable = false;
3092     x86_class->realize = vtd_realize;
3093     x86_class->int_remap = vtd_int_remap;
3094     /* Supported by the pc-q35-* machine types */
3095     dc->user_creatable = true;
3096 }
3097 
3098 static const TypeInfo vtd_info = {
3099     .name          = TYPE_INTEL_IOMMU_DEVICE,
3100     .parent        = TYPE_X86_IOMMU_DEVICE,
3101     .instance_size = sizeof(IntelIOMMUState),
3102     .class_init    = vtd_class_init,
3103 };
3104 
3105 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3106                                                      void *data)
3107 {
3108     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3109 
3110     imrc->translate = vtd_iommu_translate;
3111     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3112     imrc->replay = vtd_iommu_replay;
3113 }
3114 
3115 static const TypeInfo vtd_iommu_memory_region_info = {
3116     .parent = TYPE_IOMMU_MEMORY_REGION,
3117     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3118     .class_init = vtd_iommu_memory_region_class_init,
3119 };
3120 
3121 static void vtd_register_types(void)
3122 {
3123     type_register_static(&vtd_info);
3124     type_register_static(&vtd_iommu_memory_region_info);
3125 }
3126 
3127 type_init(vtd_register_types)
3128