1 /* 2 * QEMU emulation of an Intel IOMMU (VT-d) 3 * (DMA Remapping device) 4 * 5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com> 6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qapi/error.h" 25 #include "hw/sysbus.h" 26 #include "exec/address-spaces.h" 27 #include "intel_iommu_internal.h" 28 #include "hw/pci/pci.h" 29 #include "hw/pci/pci_bus.h" 30 #include "hw/i386/pc.h" 31 #include "hw/i386/apic-msidef.h" 32 #include "hw/boards.h" 33 #include "hw/i386/x86-iommu.h" 34 #include "hw/pci-host/q35.h" 35 #include "sysemu/kvm.h" 36 #include "hw/i386/apic_internal.h" 37 #include "kvm_i386.h" 38 #include "trace.h" 39 40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, 41 uint64_t wmask, uint64_t w1cmask) 42 { 43 stq_le_p(&s->csr[addr], val); 44 stq_le_p(&s->wmask[addr], wmask); 45 stq_le_p(&s->w1cmask[addr], w1cmask); 46 } 47 48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) 49 { 50 stq_le_p(&s->womask[addr], mask); 51 } 52 53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, 54 uint32_t wmask, uint32_t w1cmask) 55 { 56 stl_le_p(&s->csr[addr], val); 57 stl_le_p(&s->wmask[addr], wmask); 58 stl_le_p(&s->w1cmask[addr], w1cmask); 59 } 60 61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) 62 { 63 stl_le_p(&s->womask[addr], mask); 64 } 65 66 /* "External" get/set operations */ 67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) 68 { 69 uint64_t oldval = ldq_le_p(&s->csr[addr]); 70 uint64_t wmask = ldq_le_p(&s->wmask[addr]); 71 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); 72 stq_le_p(&s->csr[addr], 73 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 74 } 75 76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) 77 { 78 uint32_t oldval = ldl_le_p(&s->csr[addr]); 79 uint32_t wmask = ldl_le_p(&s->wmask[addr]); 80 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); 81 stl_le_p(&s->csr[addr], 82 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 83 } 84 85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) 86 { 87 uint64_t val = ldq_le_p(&s->csr[addr]); 88 uint64_t womask = ldq_le_p(&s->womask[addr]); 89 return val & ~womask; 90 } 91 92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) 93 { 94 uint32_t val = ldl_le_p(&s->csr[addr]); 95 uint32_t womask = ldl_le_p(&s->womask[addr]); 96 return val & ~womask; 97 } 98 99 /* "Internal" get/set operations */ 100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) 101 { 102 return ldq_le_p(&s->csr[addr]); 103 } 104 105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) 106 { 107 return ldl_le_p(&s->csr[addr]); 108 } 109 110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) 111 { 112 stq_le_p(&s->csr[addr], val); 113 } 114 115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, 116 uint32_t clear, uint32_t mask) 117 { 118 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; 119 stl_le_p(&s->csr[addr], new_val); 120 return new_val; 121 } 122 123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, 124 uint64_t clear, uint64_t mask) 125 { 126 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; 127 stq_le_p(&s->csr[addr], new_val); 128 return new_val; 129 } 130 131 /* GHashTable functions */ 132 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2) 133 { 134 return *((const uint64_t *)v1) == *((const uint64_t *)v2); 135 } 136 137 static guint vtd_uint64_hash(gconstpointer v) 138 { 139 return (guint)*(const uint64_t *)v; 140 } 141 142 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value, 143 gpointer user_data) 144 { 145 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 146 uint16_t domain_id = *(uint16_t *)user_data; 147 return entry->domain_id == domain_id; 148 } 149 150 /* The shift of an addr for a certain level of paging structure */ 151 static inline uint32_t vtd_slpt_level_shift(uint32_t level) 152 { 153 assert(level != 0); 154 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS; 155 } 156 157 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level) 158 { 159 return ~((1ULL << vtd_slpt_level_shift(level)) - 1); 160 } 161 162 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value, 163 gpointer user_data) 164 { 165 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 166 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; 167 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; 168 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; 169 return (entry->domain_id == info->domain_id) && 170 (((entry->gfn & info->mask) == gfn) || 171 (entry->gfn == gfn_tlb)); 172 } 173 174 /* Reset all the gen of VTDAddressSpace to zero and set the gen of 175 * IntelIOMMUState to 1. 176 */ 177 static void vtd_reset_context_cache(IntelIOMMUState *s) 178 { 179 VTDAddressSpace *vtd_as; 180 VTDBus *vtd_bus; 181 GHashTableIter bus_it; 182 uint32_t devfn_it; 183 184 trace_vtd_context_cache_reset(); 185 186 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr); 187 188 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) { 189 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) { 190 vtd_as = vtd_bus->dev_as[devfn_it]; 191 if (!vtd_as) { 192 continue; 193 } 194 vtd_as->context_cache_entry.context_cache_gen = 0; 195 } 196 } 197 s->context_cache_gen = 1; 198 } 199 200 static void vtd_reset_iotlb(IntelIOMMUState *s) 201 { 202 assert(s->iotlb); 203 g_hash_table_remove_all(s->iotlb); 204 } 205 206 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id, 207 uint32_t level) 208 { 209 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) | 210 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT); 211 } 212 213 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level) 214 { 215 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K; 216 } 217 218 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id, 219 hwaddr addr) 220 { 221 VTDIOTLBEntry *entry; 222 uint64_t key; 223 int level; 224 225 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) { 226 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level), 227 source_id, level); 228 entry = g_hash_table_lookup(s->iotlb, &key); 229 if (entry) { 230 goto out; 231 } 232 } 233 234 out: 235 return entry; 236 } 237 238 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id, 239 uint16_t domain_id, hwaddr addr, uint64_t slpte, 240 uint8_t access_flags, uint32_t level) 241 { 242 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry)); 243 uint64_t *key = g_malloc(sizeof(*key)); 244 uint64_t gfn = vtd_get_iotlb_gfn(addr, level); 245 246 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id); 247 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) { 248 trace_vtd_iotlb_reset("iotlb exceeds size limit"); 249 vtd_reset_iotlb(s); 250 } 251 252 entry->gfn = gfn; 253 entry->domain_id = domain_id; 254 entry->slpte = slpte; 255 entry->access_flags = access_flags; 256 entry->mask = vtd_slpt_level_page_mask(level); 257 *key = vtd_get_iotlb_key(gfn, source_id, level); 258 g_hash_table_replace(s->iotlb, key, entry); 259 } 260 261 /* Given the reg addr of both the message data and address, generate an 262 * interrupt via MSI. 263 */ 264 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, 265 hwaddr mesg_data_reg) 266 { 267 MSIMessage msi; 268 269 assert(mesg_data_reg < DMAR_REG_SIZE); 270 assert(mesg_addr_reg < DMAR_REG_SIZE); 271 272 msi.address = vtd_get_long_raw(s, mesg_addr_reg); 273 msi.data = vtd_get_long_raw(s, mesg_data_reg); 274 275 trace_vtd_irq_generate(msi.address, msi.data); 276 277 apic_get_class()->send_msi(&msi); 278 } 279 280 /* Generate a fault event to software via MSI if conditions are met. 281 * Notice that the value of FSTS_REG being passed to it should be the one 282 * before any update. 283 */ 284 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) 285 { 286 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || 287 pre_fsts & VTD_FSTS_IQE) { 288 trace_vtd_err("There are previous interrupt conditions " 289 "to be serviced by software, fault event " 290 "is not generated."); 291 return; 292 } 293 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); 294 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { 295 trace_vtd_err("Interrupt Mask set, irq is not generated."); 296 } else { 297 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 298 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 299 } 300 } 301 302 /* Check if the Fault (F) field of the Fault Recording Register referenced by 303 * @index is Set. 304 */ 305 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) 306 { 307 /* Each reg is 128-bit */ 308 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 309 addr += 8; /* Access the high 64-bit half */ 310 311 assert(index < DMAR_FRCD_REG_NR); 312 313 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; 314 } 315 316 /* Update the PPF field of Fault Status Register. 317 * Should be called whenever change the F field of any fault recording 318 * registers. 319 */ 320 static void vtd_update_fsts_ppf(IntelIOMMUState *s) 321 { 322 uint32_t i; 323 uint32_t ppf_mask = 0; 324 325 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 326 if (vtd_is_frcd_set(s, i)) { 327 ppf_mask = VTD_FSTS_PPF; 328 break; 329 } 330 } 331 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); 332 trace_vtd_fsts_ppf(!!ppf_mask); 333 } 334 335 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) 336 { 337 /* Each reg is 128-bit */ 338 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 339 addr += 8; /* Access the high 64-bit half */ 340 341 assert(index < DMAR_FRCD_REG_NR); 342 343 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); 344 vtd_update_fsts_ppf(s); 345 } 346 347 /* Must not update F field now, should be done later */ 348 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, 349 uint16_t source_id, hwaddr addr, 350 VTDFaultReason fault, bool is_write) 351 { 352 uint64_t hi = 0, lo; 353 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 354 355 assert(index < DMAR_FRCD_REG_NR); 356 357 lo = VTD_FRCD_FI(addr); 358 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault); 359 if (!is_write) { 360 hi |= VTD_FRCD_T; 361 } 362 vtd_set_quad_raw(s, frcd_reg_addr, lo); 363 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); 364 365 trace_vtd_frr_new(index, hi, lo); 366 } 367 368 /* Try to collapse multiple pending faults from the same requester */ 369 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) 370 { 371 uint32_t i; 372 uint64_t frcd_reg; 373 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ 374 375 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 376 frcd_reg = vtd_get_quad_raw(s, addr); 377 if ((frcd_reg & VTD_FRCD_F) && 378 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { 379 return true; 380 } 381 addr += 16; /* 128-bit for each */ 382 } 383 return false; 384 } 385 386 /* Log and report an DMAR (address translation) fault to software */ 387 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, 388 hwaddr addr, VTDFaultReason fault, 389 bool is_write) 390 { 391 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 392 393 assert(fault < VTD_FR_MAX); 394 395 if (fault == VTD_FR_RESERVED_ERR) { 396 /* This is not a normal fault reason case. Drop it. */ 397 return; 398 } 399 400 trace_vtd_dmar_fault(source_id, fault, addr, is_write); 401 402 if (fsts_reg & VTD_FSTS_PFO) { 403 trace_vtd_err("New fault is not recorded due to " 404 "Primary Fault Overflow."); 405 return; 406 } 407 408 if (vtd_try_collapse_fault(s, source_id)) { 409 trace_vtd_err("New fault is not recorded due to " 410 "compression of faults."); 411 return; 412 } 413 414 if (vtd_is_frcd_set(s, s->next_frcd_reg)) { 415 trace_vtd_err("Next Fault Recording Reg is used, " 416 "new fault is not recorded, set PFO field."); 417 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); 418 return; 419 } 420 421 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write); 422 423 if (fsts_reg & VTD_FSTS_PPF) { 424 trace_vtd_err("There are pending faults already, " 425 "fault event is not generated."); 426 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); 427 s->next_frcd_reg++; 428 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 429 s->next_frcd_reg = 0; 430 } 431 } else { 432 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, 433 VTD_FSTS_FRI(s->next_frcd_reg)); 434 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ 435 s->next_frcd_reg++; 436 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 437 s->next_frcd_reg = 0; 438 } 439 /* This case actually cause the PPF to be Set. 440 * So generate fault event (interrupt). 441 */ 442 vtd_generate_fault_event(s, fsts_reg); 443 } 444 } 445 446 /* Handle Invalidation Queue Errors of queued invalidation interface error 447 * conditions. 448 */ 449 static void vtd_handle_inv_queue_error(IntelIOMMUState *s) 450 { 451 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 452 453 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); 454 vtd_generate_fault_event(s, fsts_reg); 455 } 456 457 /* Set the IWC field and try to generate an invalidation completion interrupt */ 458 static void vtd_generate_completion_event(IntelIOMMUState *s) 459 { 460 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { 461 trace_vtd_inv_desc_wait_irq("One pending, skip current"); 462 return; 463 } 464 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); 465 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); 466 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { 467 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, " 468 "new event not generated"); 469 return; 470 } else { 471 /* Generate the interrupt event */ 472 trace_vtd_inv_desc_wait_irq("Generating complete event"); 473 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 474 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 475 } 476 } 477 478 static inline bool vtd_root_entry_present(VTDRootEntry *root) 479 { 480 return root->val & VTD_ROOT_ENTRY_P; 481 } 482 483 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, 484 VTDRootEntry *re) 485 { 486 dma_addr_t addr; 487 488 addr = s->root + index * sizeof(*re); 489 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) { 490 trace_vtd_re_invalid(re->rsvd, re->val); 491 re->val = 0; 492 return -VTD_FR_ROOT_TABLE_INV; 493 } 494 re->val = le64_to_cpu(re->val); 495 return 0; 496 } 497 498 static inline bool vtd_ce_present(VTDContextEntry *context) 499 { 500 return context->lo & VTD_CONTEXT_ENTRY_P; 501 } 502 503 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index, 504 VTDContextEntry *ce) 505 { 506 dma_addr_t addr; 507 508 /* we have checked that root entry is present */ 509 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce); 510 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) { 511 trace_vtd_re_invalid(root->rsvd, root->val); 512 return -VTD_FR_CONTEXT_TABLE_INV; 513 } 514 ce->lo = le64_to_cpu(ce->lo); 515 ce->hi = le64_to_cpu(ce->hi); 516 return 0; 517 } 518 519 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce) 520 { 521 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; 522 } 523 524 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte) 525 { 526 return slpte & VTD_SL_PT_BASE_ADDR_MASK; 527 } 528 529 /* Whether the pte indicates the address of the page frame */ 530 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level) 531 { 532 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK); 533 } 534 535 /* Get the content of a spte located in @base_addr[@index] */ 536 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index) 537 { 538 uint64_t slpte; 539 540 assert(index < VTD_SL_PT_ENTRY_NR); 541 542 if (dma_memory_read(&address_space_memory, 543 base_addr + index * sizeof(slpte), &slpte, 544 sizeof(slpte))) { 545 slpte = (uint64_t)-1; 546 return slpte; 547 } 548 slpte = le64_to_cpu(slpte); 549 return slpte; 550 } 551 552 /* Given an iova and the level of paging structure, return the offset 553 * of current level. 554 */ 555 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level) 556 { 557 return (iova >> vtd_slpt_level_shift(level)) & 558 ((1ULL << VTD_SL_LEVEL_BITS) - 1); 559 } 560 561 /* Check Capability Register to see if the @level of page-table is supported */ 562 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level) 563 { 564 return VTD_CAP_SAGAW_MASK & s->cap & 565 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); 566 } 567 568 /* Get the page-table level that hardware should use for the second-level 569 * page-table walk from the Address Width field of context-entry. 570 */ 571 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce) 572 { 573 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); 574 } 575 576 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce) 577 { 578 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; 579 } 580 581 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce) 582 { 583 return ce->lo & VTD_CONTEXT_ENTRY_TT; 584 } 585 586 /* Return true if check passed, otherwise false */ 587 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu, 588 VTDContextEntry *ce) 589 { 590 switch (vtd_ce_get_type(ce)) { 591 case VTD_CONTEXT_TT_MULTI_LEVEL: 592 /* Always supported */ 593 break; 594 case VTD_CONTEXT_TT_DEV_IOTLB: 595 if (!x86_iommu->dt_supported) { 596 return false; 597 } 598 break; 599 case VTD_CONTEXT_TT_PASS_THROUGH: 600 if (!x86_iommu->pt_supported) { 601 return false; 602 } 603 break; 604 default: 605 /* Unknwon type */ 606 return false; 607 } 608 return true; 609 } 610 611 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce) 612 { 613 uint32_t ce_agaw = vtd_ce_get_agaw(ce); 614 return 1ULL << MIN(ce_agaw, VTD_MGAW); 615 } 616 617 /* Return true if IOVA passes range check, otherwise false. */ 618 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce) 619 { 620 /* 621 * Check if @iova is above 2^X-1, where X is the minimum of MGAW 622 * in CAP_REG and AW in context-entry. 623 */ 624 return !(iova & ~(vtd_iova_limit(ce) - 1)); 625 } 626 627 static const uint64_t vtd_paging_entry_rsvd_field[] = { 628 [0] = ~0ULL, 629 /* For not large page */ 630 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 631 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 632 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 633 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 634 /* For large page */ 635 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 636 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 637 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 638 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 639 }; 640 641 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) 642 { 643 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) { 644 /* Maybe large page */ 645 return slpte & vtd_paging_entry_rsvd_field[level + 4]; 646 } else { 647 return slpte & vtd_paging_entry_rsvd_field[level]; 648 } 649 } 650 651 /* Find the VTD address space associated with a given bus number */ 652 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num) 653 { 654 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num]; 655 if (!vtd_bus) { 656 /* 657 * Iterate over the registered buses to find the one which 658 * currently hold this bus number, and update the bus_num 659 * lookup table: 660 */ 661 GHashTableIter iter; 662 663 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr); 664 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) { 665 if (pci_bus_num(vtd_bus->bus) == bus_num) { 666 s->vtd_as_by_bus_num[bus_num] = vtd_bus; 667 return vtd_bus; 668 } 669 } 670 } 671 return vtd_bus; 672 } 673 674 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level 675 * of the translation, can be used for deciding the size of large page. 676 */ 677 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write, 678 uint64_t *slptep, uint32_t *slpte_level, 679 bool *reads, bool *writes) 680 { 681 dma_addr_t addr = vtd_ce_get_slpt_base(ce); 682 uint32_t level = vtd_ce_get_level(ce); 683 uint32_t offset; 684 uint64_t slpte; 685 uint64_t access_right_check; 686 687 if (!vtd_iova_range_check(iova, ce)) { 688 trace_vtd_err_dmar_iova_overflow(iova); 689 return -VTD_FR_ADDR_BEYOND_MGAW; 690 } 691 692 /* FIXME: what is the Atomics request here? */ 693 access_right_check = is_write ? VTD_SL_W : VTD_SL_R; 694 695 while (true) { 696 offset = vtd_iova_level_offset(iova, level); 697 slpte = vtd_get_slpte(addr, offset); 698 699 if (slpte == (uint64_t)-1) { 700 trace_vtd_err_dmar_slpte_read_error(iova, level); 701 if (level == vtd_ce_get_level(ce)) { 702 /* Invalid programming of context-entry */ 703 return -VTD_FR_CONTEXT_ENTRY_INV; 704 } else { 705 return -VTD_FR_PAGING_ENTRY_INV; 706 } 707 } 708 *reads = (*reads) && (slpte & VTD_SL_R); 709 *writes = (*writes) && (slpte & VTD_SL_W); 710 if (!(slpte & access_right_check)) { 711 trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write); 712 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; 713 } 714 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 715 trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte); 716 return -VTD_FR_PAGING_ENTRY_RSVD; 717 } 718 719 if (vtd_is_last_slpte(slpte, level)) { 720 *slptep = slpte; 721 *slpte_level = level; 722 return 0; 723 } 724 addr = vtd_get_slpte_addr(slpte); 725 level--; 726 } 727 } 728 729 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private); 730 731 /** 732 * vtd_page_walk_level - walk over specific level for IOVA range 733 * 734 * @addr: base GPA addr to start the walk 735 * @start: IOVA range start address 736 * @end: IOVA range end address (start <= addr < end) 737 * @hook_fn: hook func to be called when detected page 738 * @private: private data to be passed into hook func 739 * @read: whether parent level has read permission 740 * @write: whether parent level has write permission 741 * @notify_unmap: whether we should notify invalid entries 742 */ 743 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start, 744 uint64_t end, vtd_page_walk_hook hook_fn, 745 void *private, uint32_t level, 746 bool read, bool write, bool notify_unmap) 747 { 748 bool read_cur, write_cur, entry_valid; 749 uint32_t offset; 750 uint64_t slpte; 751 uint64_t subpage_size, subpage_mask; 752 IOMMUTLBEntry entry; 753 uint64_t iova = start; 754 uint64_t iova_next; 755 int ret = 0; 756 757 trace_vtd_page_walk_level(addr, level, start, end); 758 759 subpage_size = 1ULL << vtd_slpt_level_shift(level); 760 subpage_mask = vtd_slpt_level_page_mask(level); 761 762 while (iova < end) { 763 iova_next = (iova & subpage_mask) + subpage_size; 764 765 offset = vtd_iova_level_offset(iova, level); 766 slpte = vtd_get_slpte(addr, offset); 767 768 if (slpte == (uint64_t)-1) { 769 trace_vtd_page_walk_skip_read(iova, iova_next); 770 goto next; 771 } 772 773 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 774 trace_vtd_page_walk_skip_reserve(iova, iova_next); 775 goto next; 776 } 777 778 /* Permissions are stacked with parents' */ 779 read_cur = read && (slpte & VTD_SL_R); 780 write_cur = write && (slpte & VTD_SL_W); 781 782 /* 783 * As long as we have either read/write permission, this is a 784 * valid entry. The rule works for both page entries and page 785 * table entries. 786 */ 787 entry_valid = read_cur | write_cur; 788 789 if (vtd_is_last_slpte(slpte, level)) { 790 entry.target_as = &address_space_memory; 791 entry.iova = iova & subpage_mask; 792 /* NOTE: this is only meaningful if entry_valid == true */ 793 entry.translated_addr = vtd_get_slpte_addr(slpte); 794 entry.addr_mask = ~subpage_mask; 795 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur); 796 if (!entry_valid && !notify_unmap) { 797 trace_vtd_page_walk_skip_perm(iova, iova_next); 798 goto next; 799 } 800 trace_vtd_page_walk_one(level, entry.iova, entry.translated_addr, 801 entry.addr_mask, entry.perm); 802 if (hook_fn) { 803 ret = hook_fn(&entry, private); 804 if (ret < 0) { 805 return ret; 806 } 807 } 808 } else { 809 if (!entry_valid) { 810 trace_vtd_page_walk_skip_perm(iova, iova_next); 811 goto next; 812 } 813 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte), iova, 814 MIN(iova_next, end), hook_fn, private, 815 level - 1, read_cur, write_cur, 816 notify_unmap); 817 if (ret < 0) { 818 return ret; 819 } 820 } 821 822 next: 823 iova = iova_next; 824 } 825 826 return 0; 827 } 828 829 /** 830 * vtd_page_walk - walk specific IOVA range, and call the hook 831 * 832 * @ce: context entry to walk upon 833 * @start: IOVA address to start the walk 834 * @end: IOVA range end address (start <= addr < end) 835 * @hook_fn: the hook that to be called for each detected area 836 * @private: private data for the hook function 837 */ 838 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end, 839 vtd_page_walk_hook hook_fn, void *private, 840 bool notify_unmap) 841 { 842 dma_addr_t addr = vtd_ce_get_slpt_base(ce); 843 uint32_t level = vtd_ce_get_level(ce); 844 845 if (!vtd_iova_range_check(start, ce)) { 846 return -VTD_FR_ADDR_BEYOND_MGAW; 847 } 848 849 if (!vtd_iova_range_check(end, ce)) { 850 /* Fix end so that it reaches the maximum */ 851 end = vtd_iova_limit(ce); 852 } 853 854 return vtd_page_walk_level(addr, start, end, hook_fn, private, 855 level, true, true, notify_unmap); 856 } 857 858 /* Map a device to its corresponding domain (context-entry) */ 859 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, 860 uint8_t devfn, VTDContextEntry *ce) 861 { 862 VTDRootEntry re; 863 int ret_fr; 864 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 865 866 ret_fr = vtd_get_root_entry(s, bus_num, &re); 867 if (ret_fr) { 868 return ret_fr; 869 } 870 871 if (!vtd_root_entry_present(&re)) { 872 /* Not error - it's okay we don't have root entry. */ 873 trace_vtd_re_not_present(bus_num); 874 return -VTD_FR_ROOT_ENTRY_P; 875 } 876 877 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) { 878 trace_vtd_re_invalid(re.rsvd, re.val); 879 return -VTD_FR_ROOT_ENTRY_RSVD; 880 } 881 882 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce); 883 if (ret_fr) { 884 return ret_fr; 885 } 886 887 if (!vtd_ce_present(ce)) { 888 /* Not error - it's okay we don't have context entry. */ 889 trace_vtd_ce_not_present(bus_num, devfn); 890 return -VTD_FR_CONTEXT_ENTRY_P; 891 } 892 893 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) || 894 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) { 895 trace_vtd_ce_invalid(ce->hi, ce->lo); 896 return -VTD_FR_CONTEXT_ENTRY_RSVD; 897 } 898 899 /* Check if the programming of context-entry is valid */ 900 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) { 901 trace_vtd_ce_invalid(ce->hi, ce->lo); 902 return -VTD_FR_CONTEXT_ENTRY_INV; 903 } 904 905 /* Do translation type check */ 906 if (!vtd_ce_type_check(x86_iommu, ce)) { 907 trace_vtd_ce_invalid(ce->hi, ce->lo); 908 return -VTD_FR_CONTEXT_ENTRY_INV; 909 } 910 911 return 0; 912 } 913 914 /* 915 * Fetch translation type for specific device. Returns <0 if error 916 * happens, otherwise return the shifted type to check against 917 * VTD_CONTEXT_TT_*. 918 */ 919 static int vtd_dev_get_trans_type(VTDAddressSpace *as) 920 { 921 IntelIOMMUState *s; 922 VTDContextEntry ce; 923 int ret; 924 925 s = as->iommu_state; 926 927 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus), 928 as->devfn, &ce); 929 if (ret) { 930 return ret; 931 } 932 933 return vtd_ce_get_type(&ce); 934 } 935 936 static bool vtd_dev_pt_enabled(VTDAddressSpace *as) 937 { 938 int ret; 939 940 assert(as); 941 942 ret = vtd_dev_get_trans_type(as); 943 if (ret < 0) { 944 /* 945 * Possibly failed to parse the context entry for some reason 946 * (e.g., during init, or any guest configuration errors on 947 * context entries). We should assume PT not enabled for 948 * safety. 949 */ 950 return false; 951 } 952 953 return ret == VTD_CONTEXT_TT_PASS_THROUGH; 954 } 955 956 /* Return whether the device is using IOMMU translation. */ 957 static bool vtd_switch_address_space(VTDAddressSpace *as) 958 { 959 bool use_iommu; 960 /* Whether we need to take the BQL on our own */ 961 bool take_bql = !qemu_mutex_iothread_locked(); 962 963 assert(as); 964 965 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as); 966 967 trace_vtd_switch_address_space(pci_bus_num(as->bus), 968 VTD_PCI_SLOT(as->devfn), 969 VTD_PCI_FUNC(as->devfn), 970 use_iommu); 971 972 /* 973 * It's possible that we reach here without BQL, e.g., when called 974 * from vtd_pt_enable_fast_path(). However the memory APIs need 975 * it. We'd better make sure we have had it already, or, take it. 976 */ 977 if (take_bql) { 978 qemu_mutex_lock_iothread(); 979 } 980 981 /* Turn off first then on the other */ 982 if (use_iommu) { 983 memory_region_set_enabled(&as->sys_alias, false); 984 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true); 985 } else { 986 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false); 987 memory_region_set_enabled(&as->sys_alias, true); 988 } 989 990 if (take_bql) { 991 qemu_mutex_unlock_iothread(); 992 } 993 994 return use_iommu; 995 } 996 997 static void vtd_switch_address_space_all(IntelIOMMUState *s) 998 { 999 GHashTableIter iter; 1000 VTDBus *vtd_bus; 1001 int i; 1002 1003 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr); 1004 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) { 1005 for (i = 0; i < X86_IOMMU_PCI_DEVFN_MAX; i++) { 1006 if (!vtd_bus->dev_as[i]) { 1007 continue; 1008 } 1009 vtd_switch_address_space(vtd_bus->dev_as[i]); 1010 } 1011 } 1012 } 1013 1014 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn) 1015 { 1016 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL); 1017 } 1018 1019 static const bool vtd_qualified_faults[] = { 1020 [VTD_FR_RESERVED] = false, 1021 [VTD_FR_ROOT_ENTRY_P] = false, 1022 [VTD_FR_CONTEXT_ENTRY_P] = true, 1023 [VTD_FR_CONTEXT_ENTRY_INV] = true, 1024 [VTD_FR_ADDR_BEYOND_MGAW] = true, 1025 [VTD_FR_WRITE] = true, 1026 [VTD_FR_READ] = true, 1027 [VTD_FR_PAGING_ENTRY_INV] = true, 1028 [VTD_FR_ROOT_TABLE_INV] = false, 1029 [VTD_FR_CONTEXT_TABLE_INV] = false, 1030 [VTD_FR_ROOT_ENTRY_RSVD] = false, 1031 [VTD_FR_PAGING_ENTRY_RSVD] = true, 1032 [VTD_FR_CONTEXT_ENTRY_TT] = true, 1033 [VTD_FR_RESERVED_ERR] = false, 1034 [VTD_FR_MAX] = false, 1035 }; 1036 1037 /* To see if a fault condition is "qualified", which is reported to software 1038 * only if the FPD field in the context-entry used to process the faulting 1039 * request is 0. 1040 */ 1041 static inline bool vtd_is_qualified_fault(VTDFaultReason fault) 1042 { 1043 return vtd_qualified_faults[fault]; 1044 } 1045 1046 static inline bool vtd_is_interrupt_addr(hwaddr addr) 1047 { 1048 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; 1049 } 1050 1051 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id) 1052 { 1053 VTDBus *vtd_bus; 1054 VTDAddressSpace *vtd_as; 1055 bool success = false; 1056 1057 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id)); 1058 if (!vtd_bus) { 1059 goto out; 1060 } 1061 1062 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)]; 1063 if (!vtd_as) { 1064 goto out; 1065 } 1066 1067 if (vtd_switch_address_space(vtd_as) == false) { 1068 /* We switched off IOMMU region successfully. */ 1069 success = true; 1070 } 1071 1072 out: 1073 trace_vtd_pt_enable_fast_path(source_id, success); 1074 } 1075 1076 /* Map dev to context-entry then do a paging-structures walk to do a iommu 1077 * translation. 1078 * 1079 * Called from RCU critical section. 1080 * 1081 * @bus_num: The bus number 1082 * @devfn: The devfn, which is the combined of device and function number 1083 * @is_write: The access is a write operation 1084 * @entry: IOMMUTLBEntry that contain the addr to be translated and result 1085 * 1086 * Returns true if translation is successful, otherwise false. 1087 */ 1088 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus, 1089 uint8_t devfn, hwaddr addr, bool is_write, 1090 IOMMUTLBEntry *entry) 1091 { 1092 IntelIOMMUState *s = vtd_as->iommu_state; 1093 VTDContextEntry ce; 1094 uint8_t bus_num = pci_bus_num(bus); 1095 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry; 1096 uint64_t slpte, page_mask; 1097 uint32_t level; 1098 uint16_t source_id = vtd_make_source_id(bus_num, devfn); 1099 int ret_fr; 1100 bool is_fpd_set = false; 1101 bool reads = true; 1102 bool writes = true; 1103 uint8_t access_flags; 1104 VTDIOTLBEntry *iotlb_entry; 1105 1106 /* 1107 * We have standalone memory region for interrupt addresses, we 1108 * should never receive translation requests in this region. 1109 */ 1110 assert(!vtd_is_interrupt_addr(addr)); 1111 1112 /* Try to fetch slpte form IOTLB */ 1113 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr); 1114 if (iotlb_entry) { 1115 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 1116 iotlb_entry->domain_id); 1117 slpte = iotlb_entry->slpte; 1118 access_flags = iotlb_entry->access_flags; 1119 page_mask = iotlb_entry->mask; 1120 goto out; 1121 } 1122 1123 /* Try to fetch context-entry from cache first */ 1124 if (cc_entry->context_cache_gen == s->context_cache_gen) { 1125 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi, 1126 cc_entry->context_entry.lo, 1127 cc_entry->context_cache_gen); 1128 ce = cc_entry->context_entry; 1129 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1130 } else { 1131 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); 1132 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1133 if (ret_fr) { 1134 ret_fr = -ret_fr; 1135 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { 1136 trace_vtd_fault_disabled(); 1137 } else { 1138 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); 1139 } 1140 goto error; 1141 } 1142 /* Update context-cache */ 1143 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo, 1144 cc_entry->context_cache_gen, 1145 s->context_cache_gen); 1146 cc_entry->context_entry = ce; 1147 cc_entry->context_cache_gen = s->context_cache_gen; 1148 } 1149 1150 /* 1151 * We don't need to translate for pass-through context entries. 1152 * Also, let's ignore IOTLB caching as well for PT devices. 1153 */ 1154 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) { 1155 entry->iova = addr & VTD_PAGE_MASK_4K; 1156 entry->translated_addr = entry->iova; 1157 entry->addr_mask = ~VTD_PAGE_MASK_4K; 1158 entry->perm = IOMMU_RW; 1159 trace_vtd_translate_pt(source_id, entry->iova); 1160 1161 /* 1162 * When this happens, it means firstly caching-mode is not 1163 * enabled, and this is the first passthrough translation for 1164 * the device. Let's enable the fast path for passthrough. 1165 * 1166 * When passthrough is disabled again for the device, we can 1167 * capture it via the context entry invalidation, then the 1168 * IOMMU region can be swapped back. 1169 */ 1170 vtd_pt_enable_fast_path(s, source_id); 1171 1172 return true; 1173 } 1174 1175 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level, 1176 &reads, &writes); 1177 if (ret_fr) { 1178 ret_fr = -ret_fr; 1179 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { 1180 trace_vtd_fault_disabled(); 1181 } else { 1182 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); 1183 } 1184 goto error; 1185 } 1186 1187 page_mask = vtd_slpt_level_page_mask(level); 1188 access_flags = IOMMU_ACCESS_FLAG(reads, writes); 1189 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte, 1190 access_flags, level); 1191 out: 1192 entry->iova = addr & page_mask; 1193 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask; 1194 entry->addr_mask = ~page_mask; 1195 entry->perm = access_flags; 1196 return true; 1197 1198 error: 1199 entry->iova = 0; 1200 entry->translated_addr = 0; 1201 entry->addr_mask = 0; 1202 entry->perm = IOMMU_NONE; 1203 return false; 1204 } 1205 1206 static void vtd_root_table_setup(IntelIOMMUState *s) 1207 { 1208 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 1209 s->root_extended = s->root & VTD_RTADDR_RTT; 1210 s->root &= VTD_RTADDR_ADDR_MASK; 1211 1212 trace_vtd_reg_dmar_root(s->root, s->root_extended); 1213 } 1214 1215 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global, 1216 uint32_t index, uint32_t mask) 1217 { 1218 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); 1219 } 1220 1221 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s) 1222 { 1223 uint64_t value = 0; 1224 value = vtd_get_quad_raw(s, DMAR_IRTA_REG); 1225 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1); 1226 s->intr_root = value & VTD_IRTA_ADDR_MASK; 1227 s->intr_eime = value & VTD_IRTA_EIME; 1228 1229 /* Notify global invalidation */ 1230 vtd_iec_notify_all(s, true, 0, 0); 1231 1232 trace_vtd_reg_ir_root(s->intr_root, s->intr_size); 1233 } 1234 1235 static void vtd_iommu_replay_all(IntelIOMMUState *s) 1236 { 1237 IntelIOMMUNotifierNode *node; 1238 1239 QLIST_FOREACH(node, &s->notifiers_list, next) { 1240 memory_region_iommu_replay_all(&node->vtd_as->iommu); 1241 } 1242 } 1243 1244 static void vtd_context_global_invalidate(IntelIOMMUState *s) 1245 { 1246 trace_vtd_inv_desc_cc_global(); 1247 s->context_cache_gen++; 1248 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) { 1249 vtd_reset_context_cache(s); 1250 } 1251 vtd_switch_address_space_all(s); 1252 /* 1253 * From VT-d spec 6.5.2.1, a global context entry invalidation 1254 * should be followed by a IOTLB global invalidation, so we should 1255 * be safe even without this. Hoewever, let's replay the region as 1256 * well to be safer, and go back here when we need finer tunes for 1257 * VT-d emulation codes. 1258 */ 1259 vtd_iommu_replay_all(s); 1260 } 1261 1262 /* Do a context-cache device-selective invalidation. 1263 * @func_mask: FM field after shifting 1264 */ 1265 static void vtd_context_device_invalidate(IntelIOMMUState *s, 1266 uint16_t source_id, 1267 uint16_t func_mask) 1268 { 1269 uint16_t mask; 1270 VTDBus *vtd_bus; 1271 VTDAddressSpace *vtd_as; 1272 uint8_t bus_n, devfn; 1273 uint16_t devfn_it; 1274 1275 trace_vtd_inv_desc_cc_devices(source_id, func_mask); 1276 1277 switch (func_mask & 3) { 1278 case 0: 1279 mask = 0; /* No bits in the SID field masked */ 1280 break; 1281 case 1: 1282 mask = 4; /* Mask bit 2 in the SID field */ 1283 break; 1284 case 2: 1285 mask = 6; /* Mask bit 2:1 in the SID field */ 1286 break; 1287 case 3: 1288 mask = 7; /* Mask bit 2:0 in the SID field */ 1289 break; 1290 } 1291 mask = ~mask; 1292 1293 bus_n = VTD_SID_TO_BUS(source_id); 1294 vtd_bus = vtd_find_as_from_bus_num(s, bus_n); 1295 if (vtd_bus) { 1296 devfn = VTD_SID_TO_DEVFN(source_id); 1297 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) { 1298 vtd_as = vtd_bus->dev_as[devfn_it]; 1299 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) { 1300 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it), 1301 VTD_PCI_FUNC(devfn_it)); 1302 vtd_as->context_cache_entry.context_cache_gen = 0; 1303 /* 1304 * Do switch address space when needed, in case if the 1305 * device passthrough bit is switched. 1306 */ 1307 vtd_switch_address_space(vtd_as); 1308 /* 1309 * So a device is moving out of (or moving into) a 1310 * domain, a replay() suites here to notify all the 1311 * IOMMU_NOTIFIER_MAP registers about this change. 1312 * This won't bring bad even if we have no such 1313 * notifier registered - the IOMMU notification 1314 * framework will skip MAP notifications if that 1315 * happened. 1316 */ 1317 memory_region_iommu_replay_all(&vtd_as->iommu); 1318 } 1319 } 1320 } 1321 } 1322 1323 /* Context-cache invalidation 1324 * Returns the Context Actual Invalidation Granularity. 1325 * @val: the content of the CCMD_REG 1326 */ 1327 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) 1328 { 1329 uint64_t caig; 1330 uint64_t type = val & VTD_CCMD_CIRG_MASK; 1331 1332 switch (type) { 1333 case VTD_CCMD_DOMAIN_INVL: 1334 /* Fall through */ 1335 case VTD_CCMD_GLOBAL_INVL: 1336 caig = VTD_CCMD_GLOBAL_INVL_A; 1337 vtd_context_global_invalidate(s); 1338 break; 1339 1340 case VTD_CCMD_DEVICE_INVL: 1341 caig = VTD_CCMD_DEVICE_INVL_A; 1342 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val)); 1343 break; 1344 1345 default: 1346 trace_vtd_err("Context cache invalidate type error."); 1347 caig = 0; 1348 } 1349 return caig; 1350 } 1351 1352 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s) 1353 { 1354 trace_vtd_inv_desc_iotlb_global(); 1355 vtd_reset_iotlb(s); 1356 vtd_iommu_replay_all(s); 1357 } 1358 1359 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id) 1360 { 1361 IntelIOMMUNotifierNode *node; 1362 VTDContextEntry ce; 1363 VTDAddressSpace *vtd_as; 1364 1365 trace_vtd_inv_desc_iotlb_domain(domain_id); 1366 1367 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain, 1368 &domain_id); 1369 1370 QLIST_FOREACH(node, &s->notifiers_list, next) { 1371 vtd_as = node->vtd_as; 1372 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 1373 vtd_as->devfn, &ce) && 1374 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) { 1375 memory_region_iommu_replay_all(&vtd_as->iommu); 1376 } 1377 } 1378 } 1379 1380 static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry, 1381 void *private) 1382 { 1383 memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry); 1384 return 0; 1385 } 1386 1387 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s, 1388 uint16_t domain_id, hwaddr addr, 1389 uint8_t am) 1390 { 1391 IntelIOMMUNotifierNode *node; 1392 VTDContextEntry ce; 1393 int ret; 1394 1395 QLIST_FOREACH(node, &(s->notifiers_list), next) { 1396 VTDAddressSpace *vtd_as = node->vtd_as; 1397 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 1398 vtd_as->devfn, &ce); 1399 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) { 1400 vtd_page_walk(&ce, addr, addr + (1 << am) * VTD_PAGE_SIZE, 1401 vtd_page_invalidate_notify_hook, 1402 (void *)&vtd_as->iommu, true); 1403 } 1404 } 1405 } 1406 1407 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, 1408 hwaddr addr, uint8_t am) 1409 { 1410 VTDIOTLBPageInvInfo info; 1411 1412 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am); 1413 1414 assert(am <= VTD_MAMV); 1415 info.domain_id = domain_id; 1416 info.addr = addr; 1417 info.mask = ~((1 << am) - 1); 1418 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info); 1419 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am); 1420 } 1421 1422 /* Flush IOTLB 1423 * Returns the IOTLB Actual Invalidation Granularity. 1424 * @val: the content of the IOTLB_REG 1425 */ 1426 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) 1427 { 1428 uint64_t iaig; 1429 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; 1430 uint16_t domain_id; 1431 hwaddr addr; 1432 uint8_t am; 1433 1434 switch (type) { 1435 case VTD_TLB_GLOBAL_FLUSH: 1436 iaig = VTD_TLB_GLOBAL_FLUSH_A; 1437 vtd_iotlb_global_invalidate(s); 1438 break; 1439 1440 case VTD_TLB_DSI_FLUSH: 1441 domain_id = VTD_TLB_DID(val); 1442 iaig = VTD_TLB_DSI_FLUSH_A; 1443 vtd_iotlb_domain_invalidate(s, domain_id); 1444 break; 1445 1446 case VTD_TLB_PSI_FLUSH: 1447 domain_id = VTD_TLB_DID(val); 1448 addr = vtd_get_quad_raw(s, DMAR_IVA_REG); 1449 am = VTD_IVA_AM(addr); 1450 addr = VTD_IVA_ADDR(addr); 1451 if (am > VTD_MAMV) { 1452 trace_vtd_err("IOTLB PSI flush: address mask overflow."); 1453 iaig = 0; 1454 break; 1455 } 1456 iaig = VTD_TLB_PSI_FLUSH_A; 1457 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 1458 break; 1459 1460 default: 1461 trace_vtd_err("IOTLB flush: invalid granularity."); 1462 iaig = 0; 1463 } 1464 return iaig; 1465 } 1466 1467 static void vtd_fetch_inv_desc(IntelIOMMUState *s); 1468 1469 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) 1470 { 1471 return s->qi_enabled && (s->iq_tail == s->iq_head) && 1472 (s->iq_last_desc_type == VTD_INV_DESC_WAIT); 1473 } 1474 1475 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) 1476 { 1477 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); 1478 1479 trace_vtd_inv_qi_enable(en); 1480 1481 if (en) { 1482 s->iq = iqa_val & VTD_IQA_IQA_MASK; 1483 /* 2^(x+8) entries */ 1484 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8); 1485 s->qi_enabled = true; 1486 trace_vtd_inv_qi_setup(s->iq, s->iq_size); 1487 /* Ok - report back to driver */ 1488 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); 1489 1490 if (s->iq_tail != 0) { 1491 /* 1492 * This is a spec violation but Windows guests are known to set up 1493 * Queued Invalidation this way so we allow the write and process 1494 * Invalidation Descriptors right away. 1495 */ 1496 trace_vtd_warn_invalid_qi_tail(s->iq_tail); 1497 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 1498 vtd_fetch_inv_desc(s); 1499 } 1500 } 1501 } else { 1502 if (vtd_queued_inv_disable_check(s)) { 1503 /* disable Queued Invalidation */ 1504 vtd_set_quad_raw(s, DMAR_IQH_REG, 0); 1505 s->iq_head = 0; 1506 s->qi_enabled = false; 1507 /* Ok - report back to driver */ 1508 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); 1509 } else { 1510 trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type); 1511 } 1512 } 1513 } 1514 1515 /* Set Root Table Pointer */ 1516 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) 1517 { 1518 vtd_root_table_setup(s); 1519 /* Ok - report back to driver */ 1520 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); 1521 } 1522 1523 /* Set Interrupt Remap Table Pointer */ 1524 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s) 1525 { 1526 vtd_interrupt_remap_table_setup(s); 1527 /* Ok - report back to driver */ 1528 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS); 1529 } 1530 1531 /* Handle Translation Enable/Disable */ 1532 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) 1533 { 1534 if (s->dmar_enabled == en) { 1535 return; 1536 } 1537 1538 trace_vtd_dmar_enable(en); 1539 1540 if (en) { 1541 s->dmar_enabled = true; 1542 /* Ok - report back to driver */ 1543 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); 1544 } else { 1545 s->dmar_enabled = false; 1546 1547 /* Clear the index of Fault Recording Register */ 1548 s->next_frcd_reg = 0; 1549 /* Ok - report back to driver */ 1550 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); 1551 } 1552 1553 vtd_switch_address_space_all(s); 1554 } 1555 1556 /* Handle Interrupt Remap Enable/Disable */ 1557 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en) 1558 { 1559 trace_vtd_ir_enable(en); 1560 1561 if (en) { 1562 s->intr_enabled = true; 1563 /* Ok - report back to driver */ 1564 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES); 1565 } else { 1566 s->intr_enabled = false; 1567 /* Ok - report back to driver */ 1568 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0); 1569 } 1570 } 1571 1572 /* Handle write to Global Command Register */ 1573 static void vtd_handle_gcmd_write(IntelIOMMUState *s) 1574 { 1575 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); 1576 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); 1577 uint32_t changed = status ^ val; 1578 1579 trace_vtd_reg_write_gcmd(status, val); 1580 if (changed & VTD_GCMD_TE) { 1581 /* Translation enable/disable */ 1582 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); 1583 } 1584 if (val & VTD_GCMD_SRTP) { 1585 /* Set/update the root-table pointer */ 1586 vtd_handle_gcmd_srtp(s); 1587 } 1588 if (changed & VTD_GCMD_QIE) { 1589 /* Queued Invalidation Enable */ 1590 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); 1591 } 1592 if (val & VTD_GCMD_SIRTP) { 1593 /* Set/update the interrupt remapping root-table pointer */ 1594 vtd_handle_gcmd_sirtp(s); 1595 } 1596 if (changed & VTD_GCMD_IRE) { 1597 /* Interrupt remap enable/disable */ 1598 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE); 1599 } 1600 } 1601 1602 /* Handle write to Context Command Register */ 1603 static void vtd_handle_ccmd_write(IntelIOMMUState *s) 1604 { 1605 uint64_t ret; 1606 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); 1607 1608 /* Context-cache invalidation request */ 1609 if (val & VTD_CCMD_ICC) { 1610 if (s->qi_enabled) { 1611 trace_vtd_err("Queued Invalidation enabled, " 1612 "should not use register-based invalidation"); 1613 return; 1614 } 1615 ret = vtd_context_cache_invalidate(s, val); 1616 /* Invalidation completed. Change something to show */ 1617 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); 1618 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, 1619 ret); 1620 } 1621 } 1622 1623 /* Handle write to IOTLB Invalidation Register */ 1624 static void vtd_handle_iotlb_write(IntelIOMMUState *s) 1625 { 1626 uint64_t ret; 1627 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); 1628 1629 /* IOTLB invalidation request */ 1630 if (val & VTD_TLB_IVT) { 1631 if (s->qi_enabled) { 1632 trace_vtd_err("Queued Invalidation enabled, " 1633 "should not use register-based invalidation."); 1634 return; 1635 } 1636 ret = vtd_iotlb_flush(s, val); 1637 /* Invalidation completed. Change something to show */ 1638 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); 1639 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, 1640 VTD_TLB_FLUSH_GRANU_MASK_A, ret); 1641 } 1642 } 1643 1644 /* Fetch an Invalidation Descriptor from the Invalidation Queue */ 1645 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset, 1646 VTDInvDesc *inv_desc) 1647 { 1648 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc); 1649 if (dma_memory_read(&address_space_memory, addr, inv_desc, 1650 sizeof(*inv_desc))) { 1651 trace_vtd_err("Read INV DESC failed."); 1652 inv_desc->lo = 0; 1653 inv_desc->hi = 0; 1654 return false; 1655 } 1656 inv_desc->lo = le64_to_cpu(inv_desc->lo); 1657 inv_desc->hi = le64_to_cpu(inv_desc->hi); 1658 return true; 1659 } 1660 1661 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 1662 { 1663 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) || 1664 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) { 1665 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo); 1666 return false; 1667 } 1668 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { 1669 /* Status Write */ 1670 uint32_t status_data = (uint32_t)(inv_desc->lo >> 1671 VTD_INV_DESC_WAIT_DATA_SHIFT); 1672 1673 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); 1674 1675 /* FIXME: need to be masked with HAW? */ 1676 dma_addr_t status_addr = inv_desc->hi; 1677 trace_vtd_inv_desc_wait_sw(status_addr, status_data); 1678 status_data = cpu_to_le32(status_data); 1679 if (dma_memory_write(&address_space_memory, status_addr, &status_data, 1680 sizeof(status_data))) { 1681 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo); 1682 return false; 1683 } 1684 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { 1685 /* Interrupt flag */ 1686 vtd_generate_completion_event(s); 1687 } else { 1688 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo); 1689 return false; 1690 } 1691 return true; 1692 } 1693 1694 static bool vtd_process_context_cache_desc(IntelIOMMUState *s, 1695 VTDInvDesc *inv_desc) 1696 { 1697 uint16_t sid, fmask; 1698 1699 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) { 1700 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo); 1701 return false; 1702 } 1703 switch (inv_desc->lo & VTD_INV_DESC_CC_G) { 1704 case VTD_INV_DESC_CC_DOMAIN: 1705 trace_vtd_inv_desc_cc_domain( 1706 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo)); 1707 /* Fall through */ 1708 case VTD_INV_DESC_CC_GLOBAL: 1709 vtd_context_global_invalidate(s); 1710 break; 1711 1712 case VTD_INV_DESC_CC_DEVICE: 1713 sid = VTD_INV_DESC_CC_SID(inv_desc->lo); 1714 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo); 1715 vtd_context_device_invalidate(s, sid, fmask); 1716 break; 1717 1718 default: 1719 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo); 1720 return false; 1721 } 1722 return true; 1723 } 1724 1725 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 1726 { 1727 uint16_t domain_id; 1728 uint8_t am; 1729 hwaddr addr; 1730 1731 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) || 1732 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) { 1733 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo); 1734 return false; 1735 } 1736 1737 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) { 1738 case VTD_INV_DESC_IOTLB_GLOBAL: 1739 vtd_iotlb_global_invalidate(s); 1740 break; 1741 1742 case VTD_INV_DESC_IOTLB_DOMAIN: 1743 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 1744 vtd_iotlb_domain_invalidate(s, domain_id); 1745 break; 1746 1747 case VTD_INV_DESC_IOTLB_PAGE: 1748 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 1749 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi); 1750 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi); 1751 if (am > VTD_MAMV) { 1752 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo); 1753 return false; 1754 } 1755 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 1756 break; 1757 1758 default: 1759 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo); 1760 return false; 1761 } 1762 return true; 1763 } 1764 1765 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s, 1766 VTDInvDesc *inv_desc) 1767 { 1768 trace_vtd_inv_desc_iec(inv_desc->iec.granularity, 1769 inv_desc->iec.index, 1770 inv_desc->iec.index_mask); 1771 1772 vtd_iec_notify_all(s, !inv_desc->iec.granularity, 1773 inv_desc->iec.index, 1774 inv_desc->iec.index_mask); 1775 return true; 1776 } 1777 1778 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s, 1779 VTDInvDesc *inv_desc) 1780 { 1781 VTDAddressSpace *vtd_dev_as; 1782 IOMMUTLBEntry entry; 1783 struct VTDBus *vtd_bus; 1784 hwaddr addr; 1785 uint64_t sz; 1786 uint16_t sid; 1787 uint8_t devfn; 1788 bool size; 1789 uint8_t bus_num; 1790 1791 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi); 1792 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo); 1793 devfn = sid & 0xff; 1794 bus_num = sid >> 8; 1795 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi); 1796 1797 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) || 1798 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) { 1799 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo); 1800 return false; 1801 } 1802 1803 vtd_bus = vtd_find_as_from_bus_num(s, bus_num); 1804 if (!vtd_bus) { 1805 goto done; 1806 } 1807 1808 vtd_dev_as = vtd_bus->dev_as[devfn]; 1809 if (!vtd_dev_as) { 1810 goto done; 1811 } 1812 1813 /* According to ATS spec table 2.4: 1814 * S = 0, bits 15:12 = xxxx range size: 4K 1815 * S = 1, bits 15:12 = xxx0 range size: 8K 1816 * S = 1, bits 15:12 = xx01 range size: 16K 1817 * S = 1, bits 15:12 = x011 range size: 32K 1818 * S = 1, bits 15:12 = 0111 range size: 64K 1819 * ... 1820 */ 1821 if (size) { 1822 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT); 1823 addr &= ~(sz - 1); 1824 } else { 1825 sz = VTD_PAGE_SIZE; 1826 } 1827 1828 entry.target_as = &vtd_dev_as->as; 1829 entry.addr_mask = sz - 1; 1830 entry.iova = addr; 1831 entry.perm = IOMMU_NONE; 1832 entry.translated_addr = 0; 1833 memory_region_notify_iommu(&vtd_dev_as->iommu, entry); 1834 1835 done: 1836 return true; 1837 } 1838 1839 static bool vtd_process_inv_desc(IntelIOMMUState *s) 1840 { 1841 VTDInvDesc inv_desc; 1842 uint8_t desc_type; 1843 1844 trace_vtd_inv_qi_head(s->iq_head); 1845 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) { 1846 s->iq_last_desc_type = VTD_INV_DESC_NONE; 1847 return false; 1848 } 1849 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE; 1850 /* FIXME: should update at first or at last? */ 1851 s->iq_last_desc_type = desc_type; 1852 1853 switch (desc_type) { 1854 case VTD_INV_DESC_CC: 1855 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo); 1856 if (!vtd_process_context_cache_desc(s, &inv_desc)) { 1857 return false; 1858 } 1859 break; 1860 1861 case VTD_INV_DESC_IOTLB: 1862 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo); 1863 if (!vtd_process_iotlb_desc(s, &inv_desc)) { 1864 return false; 1865 } 1866 break; 1867 1868 case VTD_INV_DESC_WAIT: 1869 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo); 1870 if (!vtd_process_wait_desc(s, &inv_desc)) { 1871 return false; 1872 } 1873 break; 1874 1875 case VTD_INV_DESC_IEC: 1876 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo); 1877 if (!vtd_process_inv_iec_desc(s, &inv_desc)) { 1878 return false; 1879 } 1880 break; 1881 1882 case VTD_INV_DESC_DEVICE: 1883 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo); 1884 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) { 1885 return false; 1886 } 1887 break; 1888 1889 default: 1890 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo); 1891 return false; 1892 } 1893 s->iq_head++; 1894 if (s->iq_head == s->iq_size) { 1895 s->iq_head = 0; 1896 } 1897 return true; 1898 } 1899 1900 /* Try to fetch and process more Invalidation Descriptors */ 1901 static void vtd_fetch_inv_desc(IntelIOMMUState *s) 1902 { 1903 trace_vtd_inv_qi_fetch(); 1904 1905 if (s->iq_tail >= s->iq_size) { 1906 /* Detects an invalid Tail pointer */ 1907 trace_vtd_err_qi_tail(s->iq_tail, s->iq_size); 1908 vtd_handle_inv_queue_error(s); 1909 return; 1910 } 1911 while (s->iq_head != s->iq_tail) { 1912 if (!vtd_process_inv_desc(s)) { 1913 /* Invalidation Queue Errors */ 1914 vtd_handle_inv_queue_error(s); 1915 break; 1916 } 1917 /* Must update the IQH_REG in time */ 1918 vtd_set_quad_raw(s, DMAR_IQH_REG, 1919 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) & 1920 VTD_IQH_QH_MASK); 1921 } 1922 } 1923 1924 /* Handle write to Invalidation Queue Tail Register */ 1925 static void vtd_handle_iqt_write(IntelIOMMUState *s) 1926 { 1927 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); 1928 1929 s->iq_tail = VTD_IQT_QT(val); 1930 trace_vtd_inv_qi_tail(s->iq_tail); 1931 1932 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 1933 /* Process Invalidation Queue here */ 1934 vtd_fetch_inv_desc(s); 1935 } 1936 } 1937 1938 static void vtd_handle_fsts_write(IntelIOMMUState *s) 1939 { 1940 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 1941 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 1942 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; 1943 1944 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { 1945 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 1946 trace_vtd_fsts_clear_ip(); 1947 } 1948 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation 1949 * Descriptors if there are any when Queued Invalidation is enabled? 1950 */ 1951 } 1952 1953 static void vtd_handle_fectl_write(IntelIOMMUState *s) 1954 { 1955 uint32_t fectl_reg; 1956 /* FIXME: when software clears the IM field, check the IP field. But do we 1957 * need to compare the old value and the new value to conclude that 1958 * software clears the IM field? Or just check if the IM field is zero? 1959 */ 1960 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 1961 1962 trace_vtd_reg_write_fectl(fectl_reg); 1963 1964 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { 1965 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 1966 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 1967 } 1968 } 1969 1970 static void vtd_handle_ics_write(IntelIOMMUState *s) 1971 { 1972 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); 1973 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 1974 1975 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { 1976 trace_vtd_reg_ics_clear_ip(); 1977 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 1978 } 1979 } 1980 1981 static void vtd_handle_iectl_write(IntelIOMMUState *s) 1982 { 1983 uint32_t iectl_reg; 1984 /* FIXME: when software clears the IM field, check the IP field. But do we 1985 * need to compare the old value and the new value to conclude that 1986 * software clears the IM field? Or just check if the IM field is zero? 1987 */ 1988 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 1989 1990 trace_vtd_reg_write_iectl(iectl_reg); 1991 1992 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { 1993 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 1994 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 1995 } 1996 } 1997 1998 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) 1999 { 2000 IntelIOMMUState *s = opaque; 2001 uint64_t val; 2002 2003 trace_vtd_reg_read(addr, size); 2004 2005 if (addr + size > DMAR_REG_SIZE) { 2006 trace_vtd_err("Read MMIO over range."); 2007 return (uint64_t)-1; 2008 } 2009 2010 switch (addr) { 2011 /* Root Table Address Register, 64-bit */ 2012 case DMAR_RTADDR_REG: 2013 if (size == 4) { 2014 val = s->root & ((1ULL << 32) - 1); 2015 } else { 2016 val = s->root; 2017 } 2018 break; 2019 2020 case DMAR_RTADDR_REG_HI: 2021 assert(size == 4); 2022 val = s->root >> 32; 2023 break; 2024 2025 /* Invalidation Queue Address Register, 64-bit */ 2026 case DMAR_IQA_REG: 2027 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS); 2028 if (size == 4) { 2029 val = val & ((1ULL << 32) - 1); 2030 } 2031 break; 2032 2033 case DMAR_IQA_REG_HI: 2034 assert(size == 4); 2035 val = s->iq >> 32; 2036 break; 2037 2038 default: 2039 if (size == 4) { 2040 val = vtd_get_long(s, addr); 2041 } else { 2042 val = vtd_get_quad(s, addr); 2043 } 2044 } 2045 2046 return val; 2047 } 2048 2049 static void vtd_mem_write(void *opaque, hwaddr addr, 2050 uint64_t val, unsigned size) 2051 { 2052 IntelIOMMUState *s = opaque; 2053 2054 trace_vtd_reg_write(addr, size, val); 2055 2056 if (addr + size > DMAR_REG_SIZE) { 2057 trace_vtd_err("Write MMIO over range."); 2058 return; 2059 } 2060 2061 switch (addr) { 2062 /* Global Command Register, 32-bit */ 2063 case DMAR_GCMD_REG: 2064 vtd_set_long(s, addr, val); 2065 vtd_handle_gcmd_write(s); 2066 break; 2067 2068 /* Context Command Register, 64-bit */ 2069 case DMAR_CCMD_REG: 2070 if (size == 4) { 2071 vtd_set_long(s, addr, val); 2072 } else { 2073 vtd_set_quad(s, addr, val); 2074 vtd_handle_ccmd_write(s); 2075 } 2076 break; 2077 2078 case DMAR_CCMD_REG_HI: 2079 assert(size == 4); 2080 vtd_set_long(s, addr, val); 2081 vtd_handle_ccmd_write(s); 2082 break; 2083 2084 /* IOTLB Invalidation Register, 64-bit */ 2085 case DMAR_IOTLB_REG: 2086 if (size == 4) { 2087 vtd_set_long(s, addr, val); 2088 } else { 2089 vtd_set_quad(s, addr, val); 2090 vtd_handle_iotlb_write(s); 2091 } 2092 break; 2093 2094 case DMAR_IOTLB_REG_HI: 2095 assert(size == 4); 2096 vtd_set_long(s, addr, val); 2097 vtd_handle_iotlb_write(s); 2098 break; 2099 2100 /* Invalidate Address Register, 64-bit */ 2101 case DMAR_IVA_REG: 2102 if (size == 4) { 2103 vtd_set_long(s, addr, val); 2104 } else { 2105 vtd_set_quad(s, addr, val); 2106 } 2107 break; 2108 2109 case DMAR_IVA_REG_HI: 2110 assert(size == 4); 2111 vtd_set_long(s, addr, val); 2112 break; 2113 2114 /* Fault Status Register, 32-bit */ 2115 case DMAR_FSTS_REG: 2116 assert(size == 4); 2117 vtd_set_long(s, addr, val); 2118 vtd_handle_fsts_write(s); 2119 break; 2120 2121 /* Fault Event Control Register, 32-bit */ 2122 case DMAR_FECTL_REG: 2123 assert(size == 4); 2124 vtd_set_long(s, addr, val); 2125 vtd_handle_fectl_write(s); 2126 break; 2127 2128 /* Fault Event Data Register, 32-bit */ 2129 case DMAR_FEDATA_REG: 2130 assert(size == 4); 2131 vtd_set_long(s, addr, val); 2132 break; 2133 2134 /* Fault Event Address Register, 32-bit */ 2135 case DMAR_FEADDR_REG: 2136 assert(size == 4); 2137 vtd_set_long(s, addr, val); 2138 break; 2139 2140 /* Fault Event Upper Address Register, 32-bit */ 2141 case DMAR_FEUADDR_REG: 2142 assert(size == 4); 2143 vtd_set_long(s, addr, val); 2144 break; 2145 2146 /* Protected Memory Enable Register, 32-bit */ 2147 case DMAR_PMEN_REG: 2148 assert(size == 4); 2149 vtd_set_long(s, addr, val); 2150 break; 2151 2152 /* Root Table Address Register, 64-bit */ 2153 case DMAR_RTADDR_REG: 2154 if (size == 4) { 2155 vtd_set_long(s, addr, val); 2156 } else { 2157 vtd_set_quad(s, addr, val); 2158 } 2159 break; 2160 2161 case DMAR_RTADDR_REG_HI: 2162 assert(size == 4); 2163 vtd_set_long(s, addr, val); 2164 break; 2165 2166 /* Invalidation Queue Tail Register, 64-bit */ 2167 case DMAR_IQT_REG: 2168 if (size == 4) { 2169 vtd_set_long(s, addr, val); 2170 } else { 2171 vtd_set_quad(s, addr, val); 2172 } 2173 vtd_handle_iqt_write(s); 2174 break; 2175 2176 case DMAR_IQT_REG_HI: 2177 assert(size == 4); 2178 vtd_set_long(s, addr, val); 2179 /* 19:63 of IQT_REG is RsvdZ, do nothing here */ 2180 break; 2181 2182 /* Invalidation Queue Address Register, 64-bit */ 2183 case DMAR_IQA_REG: 2184 if (size == 4) { 2185 vtd_set_long(s, addr, val); 2186 } else { 2187 vtd_set_quad(s, addr, val); 2188 } 2189 break; 2190 2191 case DMAR_IQA_REG_HI: 2192 assert(size == 4); 2193 vtd_set_long(s, addr, val); 2194 break; 2195 2196 /* Invalidation Completion Status Register, 32-bit */ 2197 case DMAR_ICS_REG: 2198 assert(size == 4); 2199 vtd_set_long(s, addr, val); 2200 vtd_handle_ics_write(s); 2201 break; 2202 2203 /* Invalidation Event Control Register, 32-bit */ 2204 case DMAR_IECTL_REG: 2205 assert(size == 4); 2206 vtd_set_long(s, addr, val); 2207 vtd_handle_iectl_write(s); 2208 break; 2209 2210 /* Invalidation Event Data Register, 32-bit */ 2211 case DMAR_IEDATA_REG: 2212 assert(size == 4); 2213 vtd_set_long(s, addr, val); 2214 break; 2215 2216 /* Invalidation Event Address Register, 32-bit */ 2217 case DMAR_IEADDR_REG: 2218 assert(size == 4); 2219 vtd_set_long(s, addr, val); 2220 break; 2221 2222 /* Invalidation Event Upper Address Register, 32-bit */ 2223 case DMAR_IEUADDR_REG: 2224 assert(size == 4); 2225 vtd_set_long(s, addr, val); 2226 break; 2227 2228 /* Fault Recording Registers, 128-bit */ 2229 case DMAR_FRCD_REG_0_0: 2230 if (size == 4) { 2231 vtd_set_long(s, addr, val); 2232 } else { 2233 vtd_set_quad(s, addr, val); 2234 } 2235 break; 2236 2237 case DMAR_FRCD_REG_0_1: 2238 assert(size == 4); 2239 vtd_set_long(s, addr, val); 2240 break; 2241 2242 case DMAR_FRCD_REG_0_2: 2243 if (size == 4) { 2244 vtd_set_long(s, addr, val); 2245 } else { 2246 vtd_set_quad(s, addr, val); 2247 /* May clear bit 127 (Fault), update PPF */ 2248 vtd_update_fsts_ppf(s); 2249 } 2250 break; 2251 2252 case DMAR_FRCD_REG_0_3: 2253 assert(size == 4); 2254 vtd_set_long(s, addr, val); 2255 /* May clear bit 127 (Fault), update PPF */ 2256 vtd_update_fsts_ppf(s); 2257 break; 2258 2259 case DMAR_IRTA_REG: 2260 if (size == 4) { 2261 vtd_set_long(s, addr, val); 2262 } else { 2263 vtd_set_quad(s, addr, val); 2264 } 2265 break; 2266 2267 case DMAR_IRTA_REG_HI: 2268 assert(size == 4); 2269 vtd_set_long(s, addr, val); 2270 break; 2271 2272 default: 2273 if (size == 4) { 2274 vtd_set_long(s, addr, val); 2275 } else { 2276 vtd_set_quad(s, addr, val); 2277 } 2278 } 2279 } 2280 2281 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr, 2282 IOMMUAccessFlags flag) 2283 { 2284 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 2285 IntelIOMMUState *s = vtd_as->iommu_state; 2286 IOMMUTLBEntry iotlb = { 2287 /* We'll fill in the rest later. */ 2288 .target_as = &address_space_memory, 2289 }; 2290 bool success; 2291 2292 if (likely(s->dmar_enabled)) { 2293 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, 2294 addr, flag & IOMMU_WO, &iotlb); 2295 } else { 2296 /* DMAR disabled, passthrough, use 4k-page*/ 2297 iotlb.iova = addr & VTD_PAGE_MASK_4K; 2298 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K; 2299 iotlb.addr_mask = ~VTD_PAGE_MASK_4K; 2300 iotlb.perm = IOMMU_RW; 2301 success = true; 2302 } 2303 2304 if (likely(success)) { 2305 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus), 2306 VTD_PCI_SLOT(vtd_as->devfn), 2307 VTD_PCI_FUNC(vtd_as->devfn), 2308 iotlb.iova, iotlb.translated_addr, 2309 iotlb.addr_mask); 2310 } else { 2311 trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus), 2312 VTD_PCI_SLOT(vtd_as->devfn), 2313 VTD_PCI_FUNC(vtd_as->devfn), 2314 iotlb.iova); 2315 } 2316 2317 return iotlb; 2318 } 2319 2320 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, 2321 IOMMUNotifierFlag old, 2322 IOMMUNotifierFlag new) 2323 { 2324 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 2325 IntelIOMMUState *s = vtd_as->iommu_state; 2326 IntelIOMMUNotifierNode *node = NULL; 2327 IntelIOMMUNotifierNode *next_node = NULL; 2328 2329 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) { 2330 error_report("We need to set cache_mode=1 for intel-iommu to enable " 2331 "device assignment with IOMMU protection."); 2332 exit(1); 2333 } 2334 2335 if (old == IOMMU_NOTIFIER_NONE) { 2336 node = g_malloc0(sizeof(*node)); 2337 node->vtd_as = vtd_as; 2338 QLIST_INSERT_HEAD(&s->notifiers_list, node, next); 2339 return; 2340 } 2341 2342 /* update notifier node with new flags */ 2343 QLIST_FOREACH_SAFE(node, &s->notifiers_list, next, next_node) { 2344 if (node->vtd_as == vtd_as) { 2345 if (new == IOMMU_NOTIFIER_NONE) { 2346 QLIST_REMOVE(node, next); 2347 g_free(node); 2348 } 2349 return; 2350 } 2351 } 2352 } 2353 2354 static int vtd_post_load(void *opaque, int version_id) 2355 { 2356 IntelIOMMUState *iommu = opaque; 2357 2358 /* 2359 * Memory regions are dynamically turned on/off depending on 2360 * context entry configurations from the guest. After migration, 2361 * we need to make sure the memory regions are still correct. 2362 */ 2363 vtd_switch_address_space_all(iommu); 2364 2365 return 0; 2366 } 2367 2368 static const VMStateDescription vtd_vmstate = { 2369 .name = "iommu-intel", 2370 .version_id = 1, 2371 .minimum_version_id = 1, 2372 .priority = MIG_PRI_IOMMU, 2373 .post_load = vtd_post_load, 2374 .fields = (VMStateField[]) { 2375 VMSTATE_UINT64(root, IntelIOMMUState), 2376 VMSTATE_UINT64(intr_root, IntelIOMMUState), 2377 VMSTATE_UINT64(iq, IntelIOMMUState), 2378 VMSTATE_UINT32(intr_size, IntelIOMMUState), 2379 VMSTATE_UINT16(iq_head, IntelIOMMUState), 2380 VMSTATE_UINT16(iq_tail, IntelIOMMUState), 2381 VMSTATE_UINT16(iq_size, IntelIOMMUState), 2382 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState), 2383 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE), 2384 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState), 2385 VMSTATE_BOOL(root_extended, IntelIOMMUState), 2386 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState), 2387 VMSTATE_BOOL(qi_enabled, IntelIOMMUState), 2388 VMSTATE_BOOL(intr_enabled, IntelIOMMUState), 2389 VMSTATE_BOOL(intr_eime, IntelIOMMUState), 2390 VMSTATE_END_OF_LIST() 2391 } 2392 }; 2393 2394 static const MemoryRegionOps vtd_mem_ops = { 2395 .read = vtd_mem_read, 2396 .write = vtd_mem_write, 2397 .endianness = DEVICE_LITTLE_ENDIAN, 2398 .impl = { 2399 .min_access_size = 4, 2400 .max_access_size = 8, 2401 }, 2402 .valid = { 2403 .min_access_size = 4, 2404 .max_access_size = 8, 2405 }, 2406 }; 2407 2408 static Property vtd_properties[] = { 2409 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), 2410 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim, 2411 ON_OFF_AUTO_AUTO), 2412 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false), 2413 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE), 2414 DEFINE_PROP_END_OF_LIST(), 2415 }; 2416 2417 /* Read IRTE entry with specific index */ 2418 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index, 2419 VTD_IR_TableEntry *entry, uint16_t sid) 2420 { 2421 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \ 2422 {0xffff, 0xfffb, 0xfff9, 0xfff8}; 2423 dma_addr_t addr = 0x00; 2424 uint16_t mask, source_id; 2425 uint8_t bus, bus_max, bus_min; 2426 2427 addr = iommu->intr_root + index * sizeof(*entry); 2428 if (dma_memory_read(&address_space_memory, addr, entry, 2429 sizeof(*entry))) { 2430 trace_vtd_err("Memory read failed for IRTE."); 2431 return -VTD_FR_IR_ROOT_INVAL; 2432 } 2433 2434 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]), 2435 le64_to_cpu(entry->data[0])); 2436 2437 if (!entry->irte.present) { 2438 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]), 2439 le64_to_cpu(entry->data[0])); 2440 return -VTD_FR_IR_ENTRY_P; 2441 } 2442 2443 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 || 2444 entry->irte.__reserved_2) { 2445 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]), 2446 le64_to_cpu(entry->data[0])); 2447 return -VTD_FR_IR_IRTE_RSVD; 2448 } 2449 2450 if (sid != X86_IOMMU_SID_INVALID) { 2451 /* Validate IRTE SID */ 2452 source_id = le32_to_cpu(entry->irte.source_id); 2453 switch (entry->irte.sid_vtype) { 2454 case VTD_SVT_NONE: 2455 break; 2456 2457 case VTD_SVT_ALL: 2458 mask = vtd_svt_mask[entry->irte.sid_q]; 2459 if ((source_id & mask) != (sid & mask)) { 2460 trace_vtd_err_irte_sid(index, sid, source_id); 2461 return -VTD_FR_IR_SID_ERR; 2462 } 2463 break; 2464 2465 case VTD_SVT_BUS: 2466 bus_max = source_id >> 8; 2467 bus_min = source_id & 0xff; 2468 bus = sid >> 8; 2469 if (bus > bus_max || bus < bus_min) { 2470 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max); 2471 return -VTD_FR_IR_SID_ERR; 2472 } 2473 break; 2474 2475 default: 2476 trace_vtd_err_irte_svt(index, entry->irte.sid_vtype); 2477 /* Take this as verification failure. */ 2478 return -VTD_FR_IR_SID_ERR; 2479 break; 2480 } 2481 } 2482 2483 return 0; 2484 } 2485 2486 /* Fetch IRQ information of specific IR index */ 2487 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, 2488 VTDIrq *irq, uint16_t sid) 2489 { 2490 VTD_IR_TableEntry irte = {}; 2491 int ret = 0; 2492 2493 ret = vtd_irte_get(iommu, index, &irte, sid); 2494 if (ret) { 2495 return ret; 2496 } 2497 2498 irq->trigger_mode = irte.irte.trigger_mode; 2499 irq->vector = irte.irte.vector; 2500 irq->delivery_mode = irte.irte.delivery_mode; 2501 irq->dest = le32_to_cpu(irte.irte.dest_id); 2502 if (!iommu->intr_eime) { 2503 #define VTD_IR_APIC_DEST_MASK (0xff00ULL) 2504 #define VTD_IR_APIC_DEST_SHIFT (8) 2505 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >> 2506 VTD_IR_APIC_DEST_SHIFT; 2507 } 2508 irq->dest_mode = irte.irte.dest_mode; 2509 irq->redir_hint = irte.irte.redir_hint; 2510 2511 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector, 2512 irq->delivery_mode, irq->dest, irq->dest_mode); 2513 2514 return 0; 2515 } 2516 2517 /* Generate one MSI message from VTDIrq info */ 2518 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out) 2519 { 2520 VTD_MSIMessage msg = {}; 2521 2522 /* Generate address bits */ 2523 msg.dest_mode = irq->dest_mode; 2524 msg.redir_hint = irq->redir_hint; 2525 msg.dest = irq->dest; 2526 msg.__addr_hi = irq->dest & 0xffffff00; 2527 msg.__addr_head = cpu_to_le32(0xfee); 2528 /* Keep this from original MSI address bits */ 2529 msg.__not_used = irq->msi_addr_last_bits; 2530 2531 /* Generate data bits */ 2532 msg.vector = irq->vector; 2533 msg.delivery_mode = irq->delivery_mode; 2534 msg.level = 1; 2535 msg.trigger_mode = irq->trigger_mode; 2536 2537 msg_out->address = msg.msi_addr; 2538 msg_out->data = msg.msi_data; 2539 } 2540 2541 /* Interrupt remapping for MSI/MSI-X entry */ 2542 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, 2543 MSIMessage *origin, 2544 MSIMessage *translated, 2545 uint16_t sid) 2546 { 2547 int ret = 0; 2548 VTD_IR_MSIAddress addr; 2549 uint16_t index; 2550 VTDIrq irq = {}; 2551 2552 assert(origin && translated); 2553 2554 trace_vtd_ir_remap_msi_req(origin->address, origin->data); 2555 2556 if (!iommu || !iommu->intr_enabled) { 2557 memcpy(translated, origin, sizeof(*origin)); 2558 goto out; 2559 } 2560 2561 if (origin->address & VTD_MSI_ADDR_HI_MASK) { 2562 trace_vtd_err("MSI address high 32 bits non-zero when " 2563 "Interrupt Remapping enabled."); 2564 return -VTD_FR_IR_REQ_RSVD; 2565 } 2566 2567 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; 2568 if (addr.addr.__head != 0xfee) { 2569 trace_vtd_err("MSI addr low 32 bit invalid."); 2570 return -VTD_FR_IR_REQ_RSVD; 2571 } 2572 2573 /* This is compatible mode. */ 2574 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { 2575 memcpy(translated, origin, sizeof(*origin)); 2576 goto out; 2577 } 2578 2579 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l); 2580 2581 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) 2582 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) 2583 2584 if (addr.addr.sub_valid) { 2585 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ 2586 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; 2587 } 2588 2589 ret = vtd_remap_irq_get(iommu, index, &irq, sid); 2590 if (ret) { 2591 return ret; 2592 } 2593 2594 if (addr.addr.sub_valid) { 2595 trace_vtd_ir_remap_type("MSI"); 2596 if (origin->data & VTD_IR_MSI_DATA_RESERVED) { 2597 trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data); 2598 return -VTD_FR_IR_REQ_RSVD; 2599 } 2600 } else { 2601 uint8_t vector = origin->data & 0xff; 2602 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; 2603 2604 trace_vtd_ir_remap_type("IOAPIC"); 2605 /* IOAPIC entry vector should be aligned with IRTE vector 2606 * (see vt-d spec 5.1.5.1). */ 2607 if (vector != irq.vector) { 2608 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector); 2609 } 2610 2611 /* The Trigger Mode field must match the Trigger Mode in the IRTE. 2612 * (see vt-d spec 5.1.5.1). */ 2613 if (trigger_mode != irq.trigger_mode) { 2614 trace_vtd_warn_ir_trigger(sid, index, trigger_mode, 2615 irq.trigger_mode); 2616 } 2617 } 2618 2619 /* 2620 * We'd better keep the last two bits, assuming that guest OS 2621 * might modify it. Keep it does not hurt after all. 2622 */ 2623 irq.msi_addr_last_bits = addr.addr.__not_care; 2624 2625 /* Translate VTDIrq to MSI message */ 2626 vtd_generate_msi_message(&irq, translated); 2627 2628 out: 2629 trace_vtd_ir_remap_msi(origin->address, origin->data, 2630 translated->address, translated->data); 2631 return 0; 2632 } 2633 2634 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src, 2635 MSIMessage *dst, uint16_t sid) 2636 { 2637 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), 2638 src, dst, sid); 2639 } 2640 2641 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr, 2642 uint64_t *data, unsigned size, 2643 MemTxAttrs attrs) 2644 { 2645 return MEMTX_OK; 2646 } 2647 2648 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr, 2649 uint64_t value, unsigned size, 2650 MemTxAttrs attrs) 2651 { 2652 int ret = 0; 2653 MSIMessage from = {}, to = {}; 2654 uint16_t sid = X86_IOMMU_SID_INVALID; 2655 2656 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST; 2657 from.data = (uint32_t) value; 2658 2659 if (!attrs.unspecified) { 2660 /* We have explicit Source ID */ 2661 sid = attrs.requester_id; 2662 } 2663 2664 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid); 2665 if (ret) { 2666 /* TODO: report error */ 2667 /* Drop this interrupt */ 2668 return MEMTX_ERROR; 2669 } 2670 2671 apic_get_class()->send_msi(&to); 2672 2673 return MEMTX_OK; 2674 } 2675 2676 static const MemoryRegionOps vtd_mem_ir_ops = { 2677 .read_with_attrs = vtd_mem_ir_read, 2678 .write_with_attrs = vtd_mem_ir_write, 2679 .endianness = DEVICE_LITTLE_ENDIAN, 2680 .impl = { 2681 .min_access_size = 4, 2682 .max_access_size = 4, 2683 }, 2684 .valid = { 2685 .min_access_size = 4, 2686 .max_access_size = 4, 2687 }, 2688 }; 2689 2690 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn) 2691 { 2692 uintptr_t key = (uintptr_t)bus; 2693 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key); 2694 VTDAddressSpace *vtd_dev_as; 2695 char name[128]; 2696 2697 if (!vtd_bus) { 2698 uintptr_t *new_key = g_malloc(sizeof(*new_key)); 2699 *new_key = (uintptr_t)bus; 2700 /* No corresponding free() */ 2701 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \ 2702 X86_IOMMU_PCI_DEVFN_MAX); 2703 vtd_bus->bus = bus; 2704 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus); 2705 } 2706 2707 vtd_dev_as = vtd_bus->dev_as[devfn]; 2708 2709 if (!vtd_dev_as) { 2710 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn); 2711 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace)); 2712 2713 vtd_dev_as->bus = bus; 2714 vtd_dev_as->devfn = (uint8_t)devfn; 2715 vtd_dev_as->iommu_state = s; 2716 vtd_dev_as->context_cache_entry.context_cache_gen = 0; 2717 2718 /* 2719 * Memory region relationships looks like (Address range shows 2720 * only lower 32 bits to make it short in length...): 2721 * 2722 * |-----------------+-------------------+----------| 2723 * | Name | Address range | Priority | 2724 * |-----------------+-------------------+----------+ 2725 * | vtd_root | 00000000-ffffffff | 0 | 2726 * | intel_iommu | 00000000-ffffffff | 1 | 2727 * | vtd_sys_alias | 00000000-ffffffff | 1 | 2728 * | intel_iommu_ir | fee00000-feefffff | 64 | 2729 * |-----------------+-------------------+----------| 2730 * 2731 * We enable/disable DMAR by switching enablement for 2732 * vtd_sys_alias and intel_iommu regions. IR region is always 2733 * enabled. 2734 */ 2735 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu), 2736 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s), 2737 "intel_iommu_dmar", 2738 UINT64_MAX); 2739 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s), 2740 "vtd_sys_alias", get_system_memory(), 2741 0, memory_region_size(get_system_memory())); 2742 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s), 2743 &vtd_mem_ir_ops, s, "intel_iommu_ir", 2744 VTD_INTERRUPT_ADDR_SIZE); 2745 memory_region_init(&vtd_dev_as->root, OBJECT(s), 2746 "vtd_root", UINT64_MAX); 2747 memory_region_add_subregion_overlap(&vtd_dev_as->root, 2748 VTD_INTERRUPT_ADDR_FIRST, 2749 &vtd_dev_as->iommu_ir, 64); 2750 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name); 2751 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 2752 &vtd_dev_as->sys_alias, 1); 2753 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 2754 MEMORY_REGION(&vtd_dev_as->iommu), 2755 1); 2756 vtd_switch_address_space(vtd_dev_as); 2757 } 2758 return vtd_dev_as; 2759 } 2760 2761 /* Unmap the whole range in the notifier's scope. */ 2762 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n) 2763 { 2764 IOMMUTLBEntry entry; 2765 hwaddr size; 2766 hwaddr start = n->start; 2767 hwaddr end = n->end; 2768 2769 /* 2770 * Note: all the codes in this function has a assumption that IOVA 2771 * bits are no more than VTD_MGAW bits (which is restricted by 2772 * VT-d spec), otherwise we need to consider overflow of 64 bits. 2773 */ 2774 2775 if (end > VTD_ADDRESS_SIZE) { 2776 /* 2777 * Don't need to unmap regions that is bigger than the whole 2778 * VT-d supported address space size 2779 */ 2780 end = VTD_ADDRESS_SIZE; 2781 } 2782 2783 assert(start <= end); 2784 size = end - start; 2785 2786 if (ctpop64(size) != 1) { 2787 /* 2788 * This size cannot format a correct mask. Let's enlarge it to 2789 * suite the minimum available mask. 2790 */ 2791 int n = 64 - clz64(size); 2792 if (n > VTD_MGAW) { 2793 /* should not happen, but in case it happens, limit it */ 2794 n = VTD_MGAW; 2795 } 2796 size = 1ULL << n; 2797 } 2798 2799 entry.target_as = &address_space_memory; 2800 /* Adjust iova for the size */ 2801 entry.iova = n->start & ~(size - 1); 2802 /* This field is meaningless for unmap */ 2803 entry.translated_addr = 0; 2804 entry.perm = IOMMU_NONE; 2805 entry.addr_mask = size - 1; 2806 2807 trace_vtd_as_unmap_whole(pci_bus_num(as->bus), 2808 VTD_PCI_SLOT(as->devfn), 2809 VTD_PCI_FUNC(as->devfn), 2810 entry.iova, size); 2811 2812 memory_region_notify_one(n, &entry); 2813 } 2814 2815 static void vtd_address_space_unmap_all(IntelIOMMUState *s) 2816 { 2817 IntelIOMMUNotifierNode *node; 2818 VTDAddressSpace *vtd_as; 2819 IOMMUNotifier *n; 2820 2821 QLIST_FOREACH(node, &s->notifiers_list, next) { 2822 vtd_as = node->vtd_as; 2823 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 2824 vtd_address_space_unmap(vtd_as, n); 2825 } 2826 } 2827 } 2828 2829 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private) 2830 { 2831 memory_region_notify_one((IOMMUNotifier *)private, entry); 2832 return 0; 2833 } 2834 2835 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) 2836 { 2837 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu); 2838 IntelIOMMUState *s = vtd_as->iommu_state; 2839 uint8_t bus_n = pci_bus_num(vtd_as->bus); 2840 VTDContextEntry ce; 2841 2842 /* 2843 * The replay can be triggered by either a invalidation or a newly 2844 * created entry. No matter what, we release existing mappings 2845 * (it means flushing caches for UNMAP-only registers). 2846 */ 2847 vtd_address_space_unmap(vtd_as, n); 2848 2849 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 2850 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn), 2851 PCI_FUNC(vtd_as->devfn), 2852 VTD_CONTEXT_ENTRY_DID(ce.hi), 2853 ce.hi, ce.lo); 2854 vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false); 2855 } else { 2856 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn), 2857 PCI_FUNC(vtd_as->devfn)); 2858 } 2859 2860 return; 2861 } 2862 2863 /* Do the initialization. It will also be called when reset, so pay 2864 * attention when adding new initialization stuff. 2865 */ 2866 static void vtd_init(IntelIOMMUState *s) 2867 { 2868 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 2869 2870 memset(s->csr, 0, DMAR_REG_SIZE); 2871 memset(s->wmask, 0, DMAR_REG_SIZE); 2872 memset(s->w1cmask, 0, DMAR_REG_SIZE); 2873 memset(s->womask, 0, DMAR_REG_SIZE); 2874 2875 s->root = 0; 2876 s->root_extended = false; 2877 s->dmar_enabled = false; 2878 s->iq_head = 0; 2879 s->iq_tail = 0; 2880 s->iq = 0; 2881 s->iq_size = 0; 2882 s->qi_enabled = false; 2883 s->iq_last_desc_type = VTD_INV_DESC_NONE; 2884 s->next_frcd_reg = 0; 2885 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW | 2886 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS; 2887 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; 2888 2889 if (x86_iommu->intr_supported) { 2890 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV; 2891 if (s->intr_eim == ON_OFF_AUTO_ON) { 2892 s->ecap |= VTD_ECAP_EIM; 2893 } 2894 assert(s->intr_eim != ON_OFF_AUTO_AUTO); 2895 } 2896 2897 if (x86_iommu->dt_supported) { 2898 s->ecap |= VTD_ECAP_DT; 2899 } 2900 2901 if (x86_iommu->pt_supported) { 2902 s->ecap |= VTD_ECAP_PT; 2903 } 2904 2905 if (s->caching_mode) { 2906 s->cap |= VTD_CAP_CM; 2907 } 2908 2909 vtd_reset_context_cache(s); 2910 vtd_reset_iotlb(s); 2911 2912 /* Define registers with default values and bit semantics */ 2913 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); 2914 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); 2915 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); 2916 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); 2917 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); 2918 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); 2919 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0); 2920 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); 2921 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); 2922 2923 /* Advanced Fault Logging not supported */ 2924 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); 2925 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); 2926 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); 2927 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); 2928 2929 /* Treated as RsvdZ when EIM in ECAP_REG is not supported 2930 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); 2931 */ 2932 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); 2933 2934 /* Treated as RO for implementations that PLMR and PHMR fields reported 2935 * as Clear in the CAP_REG. 2936 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); 2937 */ 2938 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); 2939 2940 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); 2941 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); 2942 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0); 2943 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); 2944 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); 2945 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); 2946 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); 2947 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ 2948 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); 2949 2950 /* IOTLB registers */ 2951 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); 2952 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); 2953 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); 2954 2955 /* Fault Recording Registers, 128-bit */ 2956 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); 2957 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); 2958 2959 /* 2960 * Interrupt remapping registers. 2961 */ 2962 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0); 2963 } 2964 2965 /* Should not reset address_spaces when reset because devices will still use 2966 * the address space they got at first (won't ask the bus again). 2967 */ 2968 static void vtd_reset(DeviceState *dev) 2969 { 2970 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 2971 2972 vtd_init(s); 2973 2974 /* 2975 * When device reset, throw away all mappings and external caches 2976 */ 2977 vtd_address_space_unmap_all(s); 2978 } 2979 2980 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) 2981 { 2982 IntelIOMMUState *s = opaque; 2983 VTDAddressSpace *vtd_as; 2984 2985 assert(0 <= devfn && devfn < X86_IOMMU_PCI_DEVFN_MAX); 2986 2987 vtd_as = vtd_find_add_as(s, bus, devfn); 2988 return &vtd_as->as; 2989 } 2990 2991 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp) 2992 { 2993 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 2994 2995 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */ 2996 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() && 2997 !kvm_irqchip_is_split()) { 2998 error_setg(errp, "Intel Interrupt Remapping cannot work with " 2999 "kernel-irqchip=on, please use 'split|off'."); 3000 return false; 3001 } 3002 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) { 3003 error_setg(errp, "eim=on cannot be selected without intremap=on"); 3004 return false; 3005 } 3006 3007 if (s->intr_eim == ON_OFF_AUTO_AUTO) { 3008 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim) 3009 && x86_iommu->intr_supported ? 3010 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 3011 } 3012 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) { 3013 if (!kvm_irqchip_in_kernel()) { 3014 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split"); 3015 return false; 3016 } 3017 if (!kvm_enable_x2apic()) { 3018 error_setg(errp, "eim=on requires support on the KVM side" 3019 "(X2APIC_API, first shipped in v4.7)"); 3020 return false; 3021 } 3022 } 3023 3024 return true; 3025 } 3026 3027 static void vtd_realize(DeviceState *dev, Error **errp) 3028 { 3029 MachineState *ms = MACHINE(qdev_get_machine()); 3030 MachineClass *mc = MACHINE_GET_CLASS(ms); 3031 PCMachineState *pcms = 3032 PC_MACHINE(object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)); 3033 PCIBus *bus; 3034 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 3035 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev); 3036 3037 if (!pcms) { 3038 error_setg(errp, "Machine-type '%s' not supported by intel-iommu", 3039 mc->name); 3040 return; 3041 } 3042 3043 bus = pcms->bus; 3044 x86_iommu->type = TYPE_INTEL; 3045 3046 if (!vtd_decide_config(s, errp)) { 3047 return; 3048 } 3049 3050 QLIST_INIT(&s->notifiers_list); 3051 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num)); 3052 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, 3053 "intel_iommu", DMAR_REG_SIZE); 3054 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem); 3055 /* No corresponding destroy */ 3056 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal, 3057 g_free, g_free); 3058 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal, 3059 g_free, g_free); 3060 vtd_init(s); 3061 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR); 3062 pci_setup_iommu(bus, vtd_host_dma_iommu, dev); 3063 /* Pseudo address space under root PCI bus. */ 3064 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC); 3065 } 3066 3067 static void vtd_class_init(ObjectClass *klass, void *data) 3068 { 3069 DeviceClass *dc = DEVICE_CLASS(klass); 3070 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass); 3071 3072 dc->reset = vtd_reset; 3073 dc->vmsd = &vtd_vmstate; 3074 dc->props = vtd_properties; 3075 dc->hotpluggable = false; 3076 x86_class->realize = vtd_realize; 3077 x86_class->int_remap = vtd_int_remap; 3078 /* Supported by the pc-q35-* machine types */ 3079 dc->user_creatable = true; 3080 } 3081 3082 static const TypeInfo vtd_info = { 3083 .name = TYPE_INTEL_IOMMU_DEVICE, 3084 .parent = TYPE_X86_IOMMU_DEVICE, 3085 .instance_size = sizeof(IntelIOMMUState), 3086 .class_init = vtd_class_init, 3087 }; 3088 3089 static void vtd_iommu_memory_region_class_init(ObjectClass *klass, 3090 void *data) 3091 { 3092 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 3093 3094 imrc->translate = vtd_iommu_translate; 3095 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed; 3096 imrc->replay = vtd_iommu_replay; 3097 } 3098 3099 static const TypeInfo vtd_iommu_memory_region_info = { 3100 .parent = TYPE_IOMMU_MEMORY_REGION, 3101 .name = TYPE_INTEL_IOMMU_MEMORY_REGION, 3102 .class_init = vtd_iommu_memory_region_class_init, 3103 }; 3104 3105 static void vtd_register_types(void) 3106 { 3107 type_register_static(&vtd_info); 3108 type_register_static(&vtd_iommu_memory_region_info); 3109 } 3110 3111 type_init(vtd_register_types) 3112