xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision ba632924)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39 
40 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
41 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
42 
43 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
44                             uint64_t wmask, uint64_t w1cmask)
45 {
46     stq_le_p(&s->csr[addr], val);
47     stq_le_p(&s->wmask[addr], wmask);
48     stq_le_p(&s->w1cmask[addr], w1cmask);
49 }
50 
51 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
52 {
53     stq_le_p(&s->womask[addr], mask);
54 }
55 
56 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
57                             uint32_t wmask, uint32_t w1cmask)
58 {
59     stl_le_p(&s->csr[addr], val);
60     stl_le_p(&s->wmask[addr], wmask);
61     stl_le_p(&s->w1cmask[addr], w1cmask);
62 }
63 
64 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
65 {
66     stl_le_p(&s->womask[addr], mask);
67 }
68 
69 /* "External" get/set operations */
70 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
71 {
72     uint64_t oldval = ldq_le_p(&s->csr[addr]);
73     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
74     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
75     stq_le_p(&s->csr[addr],
76              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
77 }
78 
79 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
80 {
81     uint32_t oldval = ldl_le_p(&s->csr[addr]);
82     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
83     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
84     stl_le_p(&s->csr[addr],
85              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
86 }
87 
88 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
89 {
90     uint64_t val = ldq_le_p(&s->csr[addr]);
91     uint64_t womask = ldq_le_p(&s->womask[addr]);
92     return val & ~womask;
93 }
94 
95 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
96 {
97     uint32_t val = ldl_le_p(&s->csr[addr]);
98     uint32_t womask = ldl_le_p(&s->womask[addr]);
99     return val & ~womask;
100 }
101 
102 /* "Internal" get/set operations */
103 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
104 {
105     return ldq_le_p(&s->csr[addr]);
106 }
107 
108 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
109 {
110     return ldl_le_p(&s->csr[addr]);
111 }
112 
113 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
114 {
115     stq_le_p(&s->csr[addr], val);
116 }
117 
118 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
119                                         uint32_t clear, uint32_t mask)
120 {
121     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
122     stl_le_p(&s->csr[addr], new_val);
123     return new_val;
124 }
125 
126 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
127                                         uint64_t clear, uint64_t mask)
128 {
129     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
130     stq_le_p(&s->csr[addr], new_val);
131     return new_val;
132 }
133 
134 static inline void vtd_iommu_lock(IntelIOMMUState *s)
135 {
136     qemu_mutex_lock(&s->iommu_lock);
137 }
138 
139 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
140 {
141     qemu_mutex_unlock(&s->iommu_lock);
142 }
143 
144 /* Whether the address space needs to notify new mappings */
145 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
146 {
147     return as->notifier_flags & IOMMU_NOTIFIER_MAP;
148 }
149 
150 /* GHashTable functions */
151 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
152 {
153     return *((const uint64_t *)v1) == *((const uint64_t *)v2);
154 }
155 
156 static guint vtd_uint64_hash(gconstpointer v)
157 {
158     return (guint)*(const uint64_t *)v;
159 }
160 
161 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
162                                           gpointer user_data)
163 {
164     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
165     uint16_t domain_id = *(uint16_t *)user_data;
166     return entry->domain_id == domain_id;
167 }
168 
169 /* The shift of an addr for a certain level of paging structure */
170 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
171 {
172     assert(level != 0);
173     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
174 }
175 
176 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
177 {
178     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
179 }
180 
181 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
182                                         gpointer user_data)
183 {
184     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
185     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
186     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
187     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
188     return (entry->domain_id == info->domain_id) &&
189             (((entry->gfn & info->mask) == gfn) ||
190              (entry->gfn == gfn_tlb));
191 }
192 
193 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
194  * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
195  */
196 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
197 {
198     VTDAddressSpace *vtd_as;
199     VTDBus *vtd_bus;
200     GHashTableIter bus_it;
201     uint32_t devfn_it;
202 
203     trace_vtd_context_cache_reset();
204 
205     g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
206 
207     while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
208         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
209             vtd_as = vtd_bus->dev_as[devfn_it];
210             if (!vtd_as) {
211                 continue;
212             }
213             vtd_as->context_cache_entry.context_cache_gen = 0;
214         }
215     }
216     s->context_cache_gen = 1;
217 }
218 
219 /* Must be called with IOMMU lock held. */
220 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
221 {
222     assert(s->iotlb);
223     g_hash_table_remove_all(s->iotlb);
224 }
225 
226 static void vtd_reset_iotlb(IntelIOMMUState *s)
227 {
228     vtd_iommu_lock(s);
229     vtd_reset_iotlb_locked(s);
230     vtd_iommu_unlock(s);
231 }
232 
233 static void vtd_reset_caches(IntelIOMMUState *s)
234 {
235     vtd_iommu_lock(s);
236     vtd_reset_iotlb_locked(s);
237     vtd_reset_context_cache_locked(s);
238     vtd_iommu_unlock(s);
239 }
240 
241 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
242                                   uint32_t level)
243 {
244     return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
245            ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
246 }
247 
248 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
249 {
250     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
251 }
252 
253 /* Must be called with IOMMU lock held */
254 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
255                                        hwaddr addr)
256 {
257     VTDIOTLBEntry *entry;
258     uint64_t key;
259     int level;
260 
261     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
262         key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
263                                 source_id, level);
264         entry = g_hash_table_lookup(s->iotlb, &key);
265         if (entry) {
266             goto out;
267         }
268     }
269 
270 out:
271     return entry;
272 }
273 
274 /* Must be with IOMMU lock held */
275 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
276                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
277                              uint8_t access_flags, uint32_t level)
278 {
279     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
280     uint64_t *key = g_malloc(sizeof(*key));
281     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
282 
283     trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
284     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
285         trace_vtd_iotlb_reset("iotlb exceeds size limit");
286         vtd_reset_iotlb_locked(s);
287     }
288 
289     entry->gfn = gfn;
290     entry->domain_id = domain_id;
291     entry->slpte = slpte;
292     entry->access_flags = access_flags;
293     entry->mask = vtd_slpt_level_page_mask(level);
294     *key = vtd_get_iotlb_key(gfn, source_id, level);
295     g_hash_table_replace(s->iotlb, key, entry);
296 }
297 
298 /* Given the reg addr of both the message data and address, generate an
299  * interrupt via MSI.
300  */
301 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
302                                    hwaddr mesg_data_reg)
303 {
304     MSIMessage msi;
305 
306     assert(mesg_data_reg < DMAR_REG_SIZE);
307     assert(mesg_addr_reg < DMAR_REG_SIZE);
308 
309     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
310     msi.data = vtd_get_long_raw(s, mesg_data_reg);
311 
312     trace_vtd_irq_generate(msi.address, msi.data);
313 
314     apic_get_class()->send_msi(&msi);
315 }
316 
317 /* Generate a fault event to software via MSI if conditions are met.
318  * Notice that the value of FSTS_REG being passed to it should be the one
319  * before any update.
320  */
321 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
322 {
323     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
324         pre_fsts & VTD_FSTS_IQE) {
325         error_report_once("There are previous interrupt conditions "
326                           "to be serviced by software, fault event "
327                           "is not generated");
328         return;
329     }
330     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
331     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
332         error_report_once("Interrupt Mask set, irq is not generated");
333     } else {
334         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
335         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
336     }
337 }
338 
339 /* Check if the Fault (F) field of the Fault Recording Register referenced by
340  * @index is Set.
341  */
342 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
343 {
344     /* Each reg is 128-bit */
345     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
346     addr += 8; /* Access the high 64-bit half */
347 
348     assert(index < DMAR_FRCD_REG_NR);
349 
350     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
351 }
352 
353 /* Update the PPF field of Fault Status Register.
354  * Should be called whenever change the F field of any fault recording
355  * registers.
356  */
357 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
358 {
359     uint32_t i;
360     uint32_t ppf_mask = 0;
361 
362     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
363         if (vtd_is_frcd_set(s, i)) {
364             ppf_mask = VTD_FSTS_PPF;
365             break;
366         }
367     }
368     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
369     trace_vtd_fsts_ppf(!!ppf_mask);
370 }
371 
372 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
373 {
374     /* Each reg is 128-bit */
375     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
376     addr += 8; /* Access the high 64-bit half */
377 
378     assert(index < DMAR_FRCD_REG_NR);
379 
380     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
381     vtd_update_fsts_ppf(s);
382 }
383 
384 /* Must not update F field now, should be done later */
385 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
386                             uint16_t source_id, hwaddr addr,
387                             VTDFaultReason fault, bool is_write)
388 {
389     uint64_t hi = 0, lo;
390     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
391 
392     assert(index < DMAR_FRCD_REG_NR);
393 
394     lo = VTD_FRCD_FI(addr);
395     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
396     if (!is_write) {
397         hi |= VTD_FRCD_T;
398     }
399     vtd_set_quad_raw(s, frcd_reg_addr, lo);
400     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
401 
402     trace_vtd_frr_new(index, hi, lo);
403 }
404 
405 /* Try to collapse multiple pending faults from the same requester */
406 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
407 {
408     uint32_t i;
409     uint64_t frcd_reg;
410     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
411 
412     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
413         frcd_reg = vtd_get_quad_raw(s, addr);
414         if ((frcd_reg & VTD_FRCD_F) &&
415             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
416             return true;
417         }
418         addr += 16; /* 128-bit for each */
419     }
420     return false;
421 }
422 
423 /* Log and report an DMAR (address translation) fault to software */
424 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
425                                   hwaddr addr, VTDFaultReason fault,
426                                   bool is_write)
427 {
428     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
429 
430     assert(fault < VTD_FR_MAX);
431 
432     if (fault == VTD_FR_RESERVED_ERR) {
433         /* This is not a normal fault reason case. Drop it. */
434         return;
435     }
436 
437     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
438 
439     if (fsts_reg & VTD_FSTS_PFO) {
440         error_report_once("New fault is not recorded due to "
441                           "Primary Fault Overflow");
442         return;
443     }
444 
445     if (vtd_try_collapse_fault(s, source_id)) {
446         error_report_once("New fault is not recorded due to "
447                           "compression of faults");
448         return;
449     }
450 
451     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
452         error_report_once("Next Fault Recording Reg is used, "
453                           "new fault is not recorded, set PFO field");
454         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
455         return;
456     }
457 
458     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
459 
460     if (fsts_reg & VTD_FSTS_PPF) {
461         error_report_once("There are pending faults already, "
462                           "fault event is not generated");
463         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
464         s->next_frcd_reg++;
465         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
466             s->next_frcd_reg = 0;
467         }
468     } else {
469         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
470                                 VTD_FSTS_FRI(s->next_frcd_reg));
471         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
472         s->next_frcd_reg++;
473         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
474             s->next_frcd_reg = 0;
475         }
476         /* This case actually cause the PPF to be Set.
477          * So generate fault event (interrupt).
478          */
479          vtd_generate_fault_event(s, fsts_reg);
480     }
481 }
482 
483 /* Handle Invalidation Queue Errors of queued invalidation interface error
484  * conditions.
485  */
486 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
487 {
488     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
489 
490     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
491     vtd_generate_fault_event(s, fsts_reg);
492 }
493 
494 /* Set the IWC field and try to generate an invalidation completion interrupt */
495 static void vtd_generate_completion_event(IntelIOMMUState *s)
496 {
497     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
498         trace_vtd_inv_desc_wait_irq("One pending, skip current");
499         return;
500     }
501     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
502     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
503     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
504         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
505                                     "new event not generated");
506         return;
507     } else {
508         /* Generate the interrupt event */
509         trace_vtd_inv_desc_wait_irq("Generating complete event");
510         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
511         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
512     }
513 }
514 
515 static inline bool vtd_root_entry_present(VTDRootEntry *root)
516 {
517     return root->val & VTD_ROOT_ENTRY_P;
518 }
519 
520 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
521                               VTDRootEntry *re)
522 {
523     dma_addr_t addr;
524 
525     addr = s->root + index * sizeof(*re);
526     if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
527         re->val = 0;
528         return -VTD_FR_ROOT_TABLE_INV;
529     }
530     re->val = le64_to_cpu(re->val);
531     return 0;
532 }
533 
534 static inline bool vtd_ce_present(VTDContextEntry *context)
535 {
536     return context->lo & VTD_CONTEXT_ENTRY_P;
537 }
538 
539 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
540                                            VTDContextEntry *ce)
541 {
542     dma_addr_t addr;
543 
544     /* we have checked that root entry is present */
545     addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
546     if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
547         return -VTD_FR_CONTEXT_TABLE_INV;
548     }
549     ce->lo = le64_to_cpu(ce->lo);
550     ce->hi = le64_to_cpu(ce->hi);
551     return 0;
552 }
553 
554 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
555 {
556     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
557 }
558 
559 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
560 {
561     return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
562 }
563 
564 /* Whether the pte indicates the address of the page frame */
565 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
566 {
567     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
568 }
569 
570 /* Get the content of a spte located in @base_addr[@index] */
571 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
572 {
573     uint64_t slpte;
574 
575     assert(index < VTD_SL_PT_ENTRY_NR);
576 
577     if (dma_memory_read(&address_space_memory,
578                         base_addr + index * sizeof(slpte), &slpte,
579                         sizeof(slpte))) {
580         slpte = (uint64_t)-1;
581         return slpte;
582     }
583     slpte = le64_to_cpu(slpte);
584     return slpte;
585 }
586 
587 /* Given an iova and the level of paging structure, return the offset
588  * of current level.
589  */
590 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
591 {
592     return (iova >> vtd_slpt_level_shift(level)) &
593             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
594 }
595 
596 /* Check Capability Register to see if the @level of page-table is supported */
597 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
598 {
599     return VTD_CAP_SAGAW_MASK & s->cap &
600            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
601 }
602 
603 /* Get the page-table level that hardware should use for the second-level
604  * page-table walk from the Address Width field of context-entry.
605  */
606 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
607 {
608     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
609 }
610 
611 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
612 {
613     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
614 }
615 
616 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
617 {
618     return ce->lo & VTD_CONTEXT_ENTRY_TT;
619 }
620 
621 /* Return true if check passed, otherwise false */
622 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
623                                      VTDContextEntry *ce)
624 {
625     switch (vtd_ce_get_type(ce)) {
626     case VTD_CONTEXT_TT_MULTI_LEVEL:
627         /* Always supported */
628         break;
629     case VTD_CONTEXT_TT_DEV_IOTLB:
630         if (!x86_iommu->dt_supported) {
631             error_report_once("%s: DT specified but not supported", __func__);
632             return false;
633         }
634         break;
635     case VTD_CONTEXT_TT_PASS_THROUGH:
636         if (!x86_iommu->pt_supported) {
637             error_report_once("%s: PT specified but not supported", __func__);
638             return false;
639         }
640         break;
641     default:
642         /* Unknwon type */
643         error_report_once("%s: unknown ce type: %"PRIu32, __func__,
644                           vtd_ce_get_type(ce));
645         return false;
646     }
647     return true;
648 }
649 
650 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
651 {
652     uint32_t ce_agaw = vtd_ce_get_agaw(ce);
653     return 1ULL << MIN(ce_agaw, aw);
654 }
655 
656 /* Return true if IOVA passes range check, otherwise false. */
657 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
658                                         uint8_t aw)
659 {
660     /*
661      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
662      * in CAP_REG and AW in context-entry.
663      */
664     return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
665 }
666 
667 /*
668  * Rsvd field masks for spte:
669  *     Index [1] to [4] 4k pages
670  *     Index [5] to [8] large pages
671  */
672 static uint64_t vtd_paging_entry_rsvd_field[9];
673 
674 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
675 {
676     if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
677         /* Maybe large page */
678         return slpte & vtd_paging_entry_rsvd_field[level + 4];
679     } else {
680         return slpte & vtd_paging_entry_rsvd_field[level];
681     }
682 }
683 
684 /* Find the VTD address space associated with a given bus number */
685 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
686 {
687     VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
688     if (!vtd_bus) {
689         /*
690          * Iterate over the registered buses to find the one which
691          * currently hold this bus number, and update the bus_num
692          * lookup table:
693          */
694         GHashTableIter iter;
695 
696         g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
697         while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
698             if (pci_bus_num(vtd_bus->bus) == bus_num) {
699                 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
700                 return vtd_bus;
701             }
702         }
703     }
704     return vtd_bus;
705 }
706 
707 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
708  * of the translation, can be used for deciding the size of large page.
709  */
710 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
711                              uint64_t *slptep, uint32_t *slpte_level,
712                              bool *reads, bool *writes, uint8_t aw_bits)
713 {
714     dma_addr_t addr = vtd_ce_get_slpt_base(ce);
715     uint32_t level = vtd_ce_get_level(ce);
716     uint32_t offset;
717     uint64_t slpte;
718     uint64_t access_right_check;
719 
720     if (!vtd_iova_range_check(iova, ce, aw_bits)) {
721         error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
722                           __func__, iova);
723         return -VTD_FR_ADDR_BEYOND_MGAW;
724     }
725 
726     /* FIXME: what is the Atomics request here? */
727     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
728 
729     while (true) {
730         offset = vtd_iova_level_offset(iova, level);
731         slpte = vtd_get_slpte(addr, offset);
732 
733         if (slpte == (uint64_t)-1) {
734             error_report_once("%s: detected read error on DMAR slpte "
735                               "(iova=0x%" PRIx64 ")", __func__, iova);
736             if (level == vtd_ce_get_level(ce)) {
737                 /* Invalid programming of context-entry */
738                 return -VTD_FR_CONTEXT_ENTRY_INV;
739             } else {
740                 return -VTD_FR_PAGING_ENTRY_INV;
741             }
742         }
743         *reads = (*reads) && (slpte & VTD_SL_R);
744         *writes = (*writes) && (slpte & VTD_SL_W);
745         if (!(slpte & access_right_check)) {
746             error_report_once("%s: detected slpte permission error "
747                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
748                               "slpte=0x%" PRIx64 ", write=%d)", __func__,
749                               iova, level, slpte, is_write);
750             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
751         }
752         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
753             error_report_once("%s: detected splte reserve non-zero "
754                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
755                               "slpte=0x%" PRIx64 ")", __func__, iova,
756                               level, slpte);
757             return -VTD_FR_PAGING_ENTRY_RSVD;
758         }
759 
760         if (vtd_is_last_slpte(slpte, level)) {
761             *slptep = slpte;
762             *slpte_level = level;
763             return 0;
764         }
765         addr = vtd_get_slpte_addr(slpte, aw_bits);
766         level--;
767     }
768 }
769 
770 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
771 
772 /**
773  * Constant information used during page walking
774  *
775  * @hook_fn: hook func to be called when detected page
776  * @private: private data to be passed into hook func
777  * @notify_unmap: whether we should notify invalid entries
778  * @as: VT-d address space of the device
779  * @aw: maximum address width
780  * @domain: domain ID of the page walk
781  */
782 typedef struct {
783     VTDAddressSpace *as;
784     vtd_page_walk_hook hook_fn;
785     void *private;
786     bool notify_unmap;
787     uint8_t aw;
788     uint16_t domain_id;
789 } vtd_page_walk_info;
790 
791 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
792 {
793     VTDAddressSpace *as = info->as;
794     vtd_page_walk_hook hook_fn = info->hook_fn;
795     void *private = info->private;
796     DMAMap target = {
797         .iova = entry->iova,
798         .size = entry->addr_mask,
799         .translated_addr = entry->translated_addr,
800         .perm = entry->perm,
801     };
802     DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
803 
804     if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
805         trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
806         return 0;
807     }
808 
809     assert(hook_fn);
810 
811     /* Update local IOVA mapped ranges */
812     if (entry->perm) {
813         if (mapped) {
814             /* If it's exactly the same translation, skip */
815             if (!memcmp(mapped, &target, sizeof(target))) {
816                 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
817                                                  entry->translated_addr);
818                 return 0;
819             } else {
820                 /*
821                  * Translation changed.  Normally this should not
822                  * happen, but it can happen when with buggy guest
823                  * OSes.  Note that there will be a small window that
824                  * we don't have map at all.  But that's the best
825                  * effort we can do.  The ideal way to emulate this is
826                  * atomically modify the PTE to follow what has
827                  * changed, but we can't.  One example is that vfio
828                  * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
829                  * interface to modify a mapping (meanwhile it seems
830                  * meaningless to even provide one).  Anyway, let's
831                  * mark this as a TODO in case one day we'll have
832                  * a better solution.
833                  */
834                 IOMMUAccessFlags cache_perm = entry->perm;
835                 int ret;
836 
837                 /* Emulate an UNMAP */
838                 entry->perm = IOMMU_NONE;
839                 trace_vtd_page_walk_one(info->domain_id,
840                                         entry->iova,
841                                         entry->translated_addr,
842                                         entry->addr_mask,
843                                         entry->perm);
844                 ret = hook_fn(entry, private);
845                 if (ret) {
846                     return ret;
847                 }
848                 /* Drop any existing mapping */
849                 iova_tree_remove(as->iova_tree, &target);
850                 /* Recover the correct permission */
851                 entry->perm = cache_perm;
852             }
853         }
854         iova_tree_insert(as->iova_tree, &target);
855     } else {
856         if (!mapped) {
857             /* Skip since we didn't map this range at all */
858             trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
859             return 0;
860         }
861         iova_tree_remove(as->iova_tree, &target);
862     }
863 
864     trace_vtd_page_walk_one(info->domain_id, entry->iova,
865                             entry->translated_addr, entry->addr_mask,
866                             entry->perm);
867     return hook_fn(entry, private);
868 }
869 
870 /**
871  * vtd_page_walk_level - walk over specific level for IOVA range
872  *
873  * @addr: base GPA addr to start the walk
874  * @start: IOVA range start address
875  * @end: IOVA range end address (start <= addr < end)
876  * @read: whether parent level has read permission
877  * @write: whether parent level has write permission
878  * @info: constant information for the page walk
879  */
880 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
881                                uint64_t end, uint32_t level, bool read,
882                                bool write, vtd_page_walk_info *info)
883 {
884     bool read_cur, write_cur, entry_valid;
885     uint32_t offset;
886     uint64_t slpte;
887     uint64_t subpage_size, subpage_mask;
888     IOMMUTLBEntry entry;
889     uint64_t iova = start;
890     uint64_t iova_next;
891     int ret = 0;
892 
893     trace_vtd_page_walk_level(addr, level, start, end);
894 
895     subpage_size = 1ULL << vtd_slpt_level_shift(level);
896     subpage_mask = vtd_slpt_level_page_mask(level);
897 
898     while (iova < end) {
899         iova_next = (iova & subpage_mask) + subpage_size;
900 
901         offset = vtd_iova_level_offset(iova, level);
902         slpte = vtd_get_slpte(addr, offset);
903 
904         if (slpte == (uint64_t)-1) {
905             trace_vtd_page_walk_skip_read(iova, iova_next);
906             goto next;
907         }
908 
909         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
910             trace_vtd_page_walk_skip_reserve(iova, iova_next);
911             goto next;
912         }
913 
914         /* Permissions are stacked with parents' */
915         read_cur = read && (slpte & VTD_SL_R);
916         write_cur = write && (slpte & VTD_SL_W);
917 
918         /*
919          * As long as we have either read/write permission, this is a
920          * valid entry. The rule works for both page entries and page
921          * table entries.
922          */
923         entry_valid = read_cur | write_cur;
924 
925         if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
926             /*
927              * This is a valid PDE (or even bigger than PDE).  We need
928              * to walk one further level.
929              */
930             ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
931                                       iova, MIN(iova_next, end), level - 1,
932                                       read_cur, write_cur, info);
933         } else {
934             /*
935              * This means we are either:
936              *
937              * (1) the real page entry (either 4K page, or huge page)
938              * (2) the whole range is invalid
939              *
940              * In either case, we send an IOTLB notification down.
941              */
942             entry.target_as = &address_space_memory;
943             entry.iova = iova & subpage_mask;
944             entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
945             entry.addr_mask = ~subpage_mask;
946             /* NOTE: this is only meaningful if entry_valid == true */
947             entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
948             ret = vtd_page_walk_one(&entry, info);
949         }
950 
951         if (ret < 0) {
952             return ret;
953         }
954 
955 next:
956         iova = iova_next;
957     }
958 
959     return 0;
960 }
961 
962 /**
963  * vtd_page_walk - walk specific IOVA range, and call the hook
964  *
965  * @ce: context entry to walk upon
966  * @start: IOVA address to start the walk
967  * @end: IOVA range end address (start <= addr < end)
968  * @info: page walking information struct
969  */
970 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
971                          vtd_page_walk_info *info)
972 {
973     dma_addr_t addr = vtd_ce_get_slpt_base(ce);
974     uint32_t level = vtd_ce_get_level(ce);
975 
976     if (!vtd_iova_range_check(start, ce, info->aw)) {
977         return -VTD_FR_ADDR_BEYOND_MGAW;
978     }
979 
980     if (!vtd_iova_range_check(end, ce, info->aw)) {
981         /* Fix end so that it reaches the maximum */
982         end = vtd_iova_limit(ce, info->aw);
983     }
984 
985     return vtd_page_walk_level(addr, start, end, level, true, true, info);
986 }
987 
988 /* Map a device to its corresponding domain (context-entry) */
989 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
990                                     uint8_t devfn, VTDContextEntry *ce)
991 {
992     VTDRootEntry re;
993     int ret_fr;
994     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
995 
996     ret_fr = vtd_get_root_entry(s, bus_num, &re);
997     if (ret_fr) {
998         return ret_fr;
999     }
1000 
1001     if (!vtd_root_entry_present(&re)) {
1002         /* Not error - it's okay we don't have root entry. */
1003         trace_vtd_re_not_present(bus_num);
1004         return -VTD_FR_ROOT_ENTRY_P;
1005     }
1006 
1007     if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
1008         error_report_once("%s: invalid root entry: rsvd=0x%"PRIx64
1009                           ", val=0x%"PRIx64" (reserved nonzero)",
1010                           __func__, re.rsvd, re.val);
1011         return -VTD_FR_ROOT_ENTRY_RSVD;
1012     }
1013 
1014     ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
1015     if (ret_fr) {
1016         return ret_fr;
1017     }
1018 
1019     if (!vtd_ce_present(ce)) {
1020         /* Not error - it's okay we don't have context entry. */
1021         trace_vtd_ce_not_present(bus_num, devfn);
1022         return -VTD_FR_CONTEXT_ENTRY_P;
1023     }
1024 
1025     if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
1026                (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1027         error_report_once("%s: invalid context entry: hi=%"PRIx64
1028                           ", lo=%"PRIx64" (reserved nonzero)",
1029                           __func__, ce->hi, ce->lo);
1030         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1031     }
1032 
1033     /* Check if the programming of context-entry is valid */
1034     if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1035         error_report_once("%s: invalid context entry: hi=%"PRIx64
1036                           ", lo=%"PRIx64" (level %d not supported)",
1037                           __func__, ce->hi, ce->lo, vtd_ce_get_level(ce));
1038         return -VTD_FR_CONTEXT_ENTRY_INV;
1039     }
1040 
1041     /* Do translation type check */
1042     if (!vtd_ce_type_check(x86_iommu, ce)) {
1043         /* Errors dumped in vtd_ce_type_check() */
1044         return -VTD_FR_CONTEXT_ENTRY_INV;
1045     }
1046 
1047     return 0;
1048 }
1049 
1050 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1051                                      void *private)
1052 {
1053     memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1054     return 0;
1055 }
1056 
1057 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1058                                             VTDContextEntry *ce,
1059                                             hwaddr addr, hwaddr size)
1060 {
1061     IntelIOMMUState *s = vtd_as->iommu_state;
1062     vtd_page_walk_info info = {
1063         .hook_fn = vtd_sync_shadow_page_hook,
1064         .private = (void *)&vtd_as->iommu,
1065         .notify_unmap = true,
1066         .aw = s->aw_bits,
1067         .as = vtd_as,
1068         .domain_id = VTD_CONTEXT_ENTRY_DID(ce->hi),
1069     };
1070 
1071     return vtd_page_walk(ce, addr, addr + size, &info);
1072 }
1073 
1074 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1075 {
1076     int ret;
1077     VTDContextEntry ce;
1078     IOMMUNotifier *n;
1079 
1080     ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1081                                    pci_bus_num(vtd_as->bus),
1082                                    vtd_as->devfn, &ce);
1083     if (ret) {
1084         if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1085             /*
1086              * It's a valid scenario to have a context entry that is
1087              * not present.  For example, when a device is removed
1088              * from an existing domain then the context entry will be
1089              * zeroed by the guest before it was put into another
1090              * domain.  When this happens, instead of synchronizing
1091              * the shadow pages we should invalidate all existing
1092              * mappings and notify the backends.
1093              */
1094             IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1095                 vtd_address_space_unmap(vtd_as, n);
1096             }
1097             ret = 0;
1098         }
1099         return ret;
1100     }
1101 
1102     return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1103 }
1104 
1105 /*
1106  * Fetch translation type for specific device. Returns <0 if error
1107  * happens, otherwise return the shifted type to check against
1108  * VTD_CONTEXT_TT_*.
1109  */
1110 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
1111 {
1112     IntelIOMMUState *s;
1113     VTDContextEntry ce;
1114     int ret;
1115 
1116     s = as->iommu_state;
1117 
1118     ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1119                                    as->devfn, &ce);
1120     if (ret) {
1121         return ret;
1122     }
1123 
1124     return vtd_ce_get_type(&ce);
1125 }
1126 
1127 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1128 {
1129     int ret;
1130 
1131     assert(as);
1132 
1133     ret = vtd_dev_get_trans_type(as);
1134     if (ret < 0) {
1135         /*
1136          * Possibly failed to parse the context entry for some reason
1137          * (e.g., during init, or any guest configuration errors on
1138          * context entries). We should assume PT not enabled for
1139          * safety.
1140          */
1141         return false;
1142     }
1143 
1144     return ret == VTD_CONTEXT_TT_PASS_THROUGH;
1145 }
1146 
1147 /* Return whether the device is using IOMMU translation. */
1148 static bool vtd_switch_address_space(VTDAddressSpace *as)
1149 {
1150     bool use_iommu;
1151     /* Whether we need to take the BQL on our own */
1152     bool take_bql = !qemu_mutex_iothread_locked();
1153 
1154     assert(as);
1155 
1156     use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1157 
1158     trace_vtd_switch_address_space(pci_bus_num(as->bus),
1159                                    VTD_PCI_SLOT(as->devfn),
1160                                    VTD_PCI_FUNC(as->devfn),
1161                                    use_iommu);
1162 
1163     /*
1164      * It's possible that we reach here without BQL, e.g., when called
1165      * from vtd_pt_enable_fast_path(). However the memory APIs need
1166      * it. We'd better make sure we have had it already, or, take it.
1167      */
1168     if (take_bql) {
1169         qemu_mutex_lock_iothread();
1170     }
1171 
1172     /* Turn off first then on the other */
1173     if (use_iommu) {
1174         memory_region_set_enabled(&as->sys_alias, false);
1175         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1176     } else {
1177         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1178         memory_region_set_enabled(&as->sys_alias, true);
1179     }
1180 
1181     if (take_bql) {
1182         qemu_mutex_unlock_iothread();
1183     }
1184 
1185     return use_iommu;
1186 }
1187 
1188 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1189 {
1190     GHashTableIter iter;
1191     VTDBus *vtd_bus;
1192     int i;
1193 
1194     g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1195     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1196         for (i = 0; i < PCI_DEVFN_MAX; i++) {
1197             if (!vtd_bus->dev_as[i]) {
1198                 continue;
1199             }
1200             vtd_switch_address_space(vtd_bus->dev_as[i]);
1201         }
1202     }
1203 }
1204 
1205 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1206 {
1207     return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1208 }
1209 
1210 static const bool vtd_qualified_faults[] = {
1211     [VTD_FR_RESERVED] = false,
1212     [VTD_FR_ROOT_ENTRY_P] = false,
1213     [VTD_FR_CONTEXT_ENTRY_P] = true,
1214     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1215     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1216     [VTD_FR_WRITE] = true,
1217     [VTD_FR_READ] = true,
1218     [VTD_FR_PAGING_ENTRY_INV] = true,
1219     [VTD_FR_ROOT_TABLE_INV] = false,
1220     [VTD_FR_CONTEXT_TABLE_INV] = false,
1221     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1222     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1223     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1224     [VTD_FR_RESERVED_ERR] = false,
1225     [VTD_FR_MAX] = false,
1226 };
1227 
1228 /* To see if a fault condition is "qualified", which is reported to software
1229  * only if the FPD field in the context-entry used to process the faulting
1230  * request is 0.
1231  */
1232 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1233 {
1234     return vtd_qualified_faults[fault];
1235 }
1236 
1237 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1238 {
1239     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1240 }
1241 
1242 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1243 {
1244     VTDBus *vtd_bus;
1245     VTDAddressSpace *vtd_as;
1246     bool success = false;
1247 
1248     vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1249     if (!vtd_bus) {
1250         goto out;
1251     }
1252 
1253     vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1254     if (!vtd_as) {
1255         goto out;
1256     }
1257 
1258     if (vtd_switch_address_space(vtd_as) == false) {
1259         /* We switched off IOMMU region successfully. */
1260         success = true;
1261     }
1262 
1263 out:
1264     trace_vtd_pt_enable_fast_path(source_id, success);
1265 }
1266 
1267 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1268  * translation.
1269  *
1270  * Called from RCU critical section.
1271  *
1272  * @bus_num: The bus number
1273  * @devfn: The devfn, which is the  combined of device and function number
1274  * @is_write: The access is a write operation
1275  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1276  *
1277  * Returns true if translation is successful, otherwise false.
1278  */
1279 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1280                                    uint8_t devfn, hwaddr addr, bool is_write,
1281                                    IOMMUTLBEntry *entry)
1282 {
1283     IntelIOMMUState *s = vtd_as->iommu_state;
1284     VTDContextEntry ce;
1285     uint8_t bus_num = pci_bus_num(bus);
1286     VTDContextCacheEntry *cc_entry;
1287     uint64_t slpte, page_mask;
1288     uint32_t level;
1289     uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1290     int ret_fr;
1291     bool is_fpd_set = false;
1292     bool reads = true;
1293     bool writes = true;
1294     uint8_t access_flags;
1295     VTDIOTLBEntry *iotlb_entry;
1296 
1297     /*
1298      * We have standalone memory region for interrupt addresses, we
1299      * should never receive translation requests in this region.
1300      */
1301     assert(!vtd_is_interrupt_addr(addr));
1302 
1303     vtd_iommu_lock(s);
1304 
1305     cc_entry = &vtd_as->context_cache_entry;
1306 
1307     /* Try to fetch slpte form IOTLB */
1308     iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1309     if (iotlb_entry) {
1310         trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1311                                  iotlb_entry->domain_id);
1312         slpte = iotlb_entry->slpte;
1313         access_flags = iotlb_entry->access_flags;
1314         page_mask = iotlb_entry->mask;
1315         goto out;
1316     }
1317 
1318     /* Try to fetch context-entry from cache first */
1319     if (cc_entry->context_cache_gen == s->context_cache_gen) {
1320         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1321                                cc_entry->context_entry.lo,
1322                                cc_entry->context_cache_gen);
1323         ce = cc_entry->context_entry;
1324         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1325     } else {
1326         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1327         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1328         if (ret_fr) {
1329             ret_fr = -ret_fr;
1330             if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1331                 trace_vtd_fault_disabled();
1332             } else {
1333                 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1334             }
1335             goto error;
1336         }
1337         /* Update context-cache */
1338         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1339                                   cc_entry->context_cache_gen,
1340                                   s->context_cache_gen);
1341         cc_entry->context_entry = ce;
1342         cc_entry->context_cache_gen = s->context_cache_gen;
1343     }
1344 
1345     /*
1346      * We don't need to translate for pass-through context entries.
1347      * Also, let's ignore IOTLB caching as well for PT devices.
1348      */
1349     if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1350         entry->iova = addr & VTD_PAGE_MASK_4K;
1351         entry->translated_addr = entry->iova;
1352         entry->addr_mask = ~VTD_PAGE_MASK_4K;
1353         entry->perm = IOMMU_RW;
1354         trace_vtd_translate_pt(source_id, entry->iova);
1355 
1356         /*
1357          * When this happens, it means firstly caching-mode is not
1358          * enabled, and this is the first passthrough translation for
1359          * the device. Let's enable the fast path for passthrough.
1360          *
1361          * When passthrough is disabled again for the device, we can
1362          * capture it via the context entry invalidation, then the
1363          * IOMMU region can be swapped back.
1364          */
1365         vtd_pt_enable_fast_path(s, source_id);
1366         vtd_iommu_unlock(s);
1367         return true;
1368     }
1369 
1370     ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1371                                &reads, &writes, s->aw_bits);
1372     if (ret_fr) {
1373         ret_fr = -ret_fr;
1374         if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1375             trace_vtd_fault_disabled();
1376         } else {
1377             vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1378         }
1379         goto error;
1380     }
1381 
1382     page_mask = vtd_slpt_level_page_mask(level);
1383     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1384     vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1385                      access_flags, level);
1386 out:
1387     vtd_iommu_unlock(s);
1388     entry->iova = addr & page_mask;
1389     entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1390     entry->addr_mask = ~page_mask;
1391     entry->perm = access_flags;
1392     return true;
1393 
1394 error:
1395     vtd_iommu_unlock(s);
1396     entry->iova = 0;
1397     entry->translated_addr = 0;
1398     entry->addr_mask = 0;
1399     entry->perm = IOMMU_NONE;
1400     return false;
1401 }
1402 
1403 static void vtd_root_table_setup(IntelIOMMUState *s)
1404 {
1405     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1406     s->root_extended = s->root & VTD_RTADDR_RTT;
1407     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1408 
1409     trace_vtd_reg_dmar_root(s->root, s->root_extended);
1410 }
1411 
1412 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1413                                uint32_t index, uint32_t mask)
1414 {
1415     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1416 }
1417 
1418 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1419 {
1420     uint64_t value = 0;
1421     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1422     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1423     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1424     s->intr_eime = value & VTD_IRTA_EIME;
1425 
1426     /* Notify global invalidation */
1427     vtd_iec_notify_all(s, true, 0, 0);
1428 
1429     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1430 }
1431 
1432 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1433 {
1434     VTDAddressSpace *vtd_as;
1435 
1436     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1437         vtd_sync_shadow_page_table(vtd_as);
1438     }
1439 }
1440 
1441 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1442 {
1443     trace_vtd_inv_desc_cc_global();
1444     /* Protects context cache */
1445     vtd_iommu_lock(s);
1446     s->context_cache_gen++;
1447     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1448         vtd_reset_context_cache_locked(s);
1449     }
1450     vtd_iommu_unlock(s);
1451     vtd_address_space_refresh_all(s);
1452     /*
1453      * From VT-d spec 6.5.2.1, a global context entry invalidation
1454      * should be followed by a IOTLB global invalidation, so we should
1455      * be safe even without this. Hoewever, let's replay the region as
1456      * well to be safer, and go back here when we need finer tunes for
1457      * VT-d emulation codes.
1458      */
1459     vtd_iommu_replay_all(s);
1460 }
1461 
1462 /* Do a context-cache device-selective invalidation.
1463  * @func_mask: FM field after shifting
1464  */
1465 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1466                                           uint16_t source_id,
1467                                           uint16_t func_mask)
1468 {
1469     uint16_t mask;
1470     VTDBus *vtd_bus;
1471     VTDAddressSpace *vtd_as;
1472     uint8_t bus_n, devfn;
1473     uint16_t devfn_it;
1474 
1475     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1476 
1477     switch (func_mask & 3) {
1478     case 0:
1479         mask = 0;   /* No bits in the SID field masked */
1480         break;
1481     case 1:
1482         mask = 4;   /* Mask bit 2 in the SID field */
1483         break;
1484     case 2:
1485         mask = 6;   /* Mask bit 2:1 in the SID field */
1486         break;
1487     case 3:
1488         mask = 7;   /* Mask bit 2:0 in the SID field */
1489         break;
1490     }
1491     mask = ~mask;
1492 
1493     bus_n = VTD_SID_TO_BUS(source_id);
1494     vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1495     if (vtd_bus) {
1496         devfn = VTD_SID_TO_DEVFN(source_id);
1497         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1498             vtd_as = vtd_bus->dev_as[devfn_it];
1499             if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1500                 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1501                                              VTD_PCI_FUNC(devfn_it));
1502                 vtd_iommu_lock(s);
1503                 vtd_as->context_cache_entry.context_cache_gen = 0;
1504                 vtd_iommu_unlock(s);
1505                 /*
1506                  * Do switch address space when needed, in case if the
1507                  * device passthrough bit is switched.
1508                  */
1509                 vtd_switch_address_space(vtd_as);
1510                 /*
1511                  * So a device is moving out of (or moving into) a
1512                  * domain, resync the shadow page table.
1513                  * This won't bring bad even if we have no such
1514                  * notifier registered - the IOMMU notification
1515                  * framework will skip MAP notifications if that
1516                  * happened.
1517                  */
1518                 vtd_sync_shadow_page_table(vtd_as);
1519             }
1520         }
1521     }
1522 }
1523 
1524 /* Context-cache invalidation
1525  * Returns the Context Actual Invalidation Granularity.
1526  * @val: the content of the CCMD_REG
1527  */
1528 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1529 {
1530     uint64_t caig;
1531     uint64_t type = val & VTD_CCMD_CIRG_MASK;
1532 
1533     switch (type) {
1534     case VTD_CCMD_DOMAIN_INVL:
1535         /* Fall through */
1536     case VTD_CCMD_GLOBAL_INVL:
1537         caig = VTD_CCMD_GLOBAL_INVL_A;
1538         vtd_context_global_invalidate(s);
1539         break;
1540 
1541     case VTD_CCMD_DEVICE_INVL:
1542         caig = VTD_CCMD_DEVICE_INVL_A;
1543         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1544         break;
1545 
1546     default:
1547         error_report_once("%s: invalid context: 0x%" PRIx64,
1548                           __func__, val);
1549         caig = 0;
1550     }
1551     return caig;
1552 }
1553 
1554 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1555 {
1556     trace_vtd_inv_desc_iotlb_global();
1557     vtd_reset_iotlb(s);
1558     vtd_iommu_replay_all(s);
1559 }
1560 
1561 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1562 {
1563     VTDContextEntry ce;
1564     VTDAddressSpace *vtd_as;
1565 
1566     trace_vtd_inv_desc_iotlb_domain(domain_id);
1567 
1568     vtd_iommu_lock(s);
1569     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1570                                 &domain_id);
1571     vtd_iommu_unlock(s);
1572 
1573     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1574         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1575                                       vtd_as->devfn, &ce) &&
1576             domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1577             vtd_sync_shadow_page_table(vtd_as);
1578         }
1579     }
1580 }
1581 
1582 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1583                                            uint16_t domain_id, hwaddr addr,
1584                                            uint8_t am)
1585 {
1586     VTDAddressSpace *vtd_as;
1587     VTDContextEntry ce;
1588     int ret;
1589     hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1590 
1591     QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1592         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1593                                        vtd_as->devfn, &ce);
1594         if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1595             if (vtd_as_has_map_notifier(vtd_as)) {
1596                 /*
1597                  * As long as we have MAP notifications registered in
1598                  * any of our IOMMU notifiers, we need to sync the
1599                  * shadow page table.
1600                  */
1601                 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1602             } else {
1603                 /*
1604                  * For UNMAP-only notifiers, we don't need to walk the
1605                  * page tables.  We just deliver the PSI down to
1606                  * invalidate caches.
1607                  */
1608                 IOMMUTLBEntry entry = {
1609                     .target_as = &address_space_memory,
1610                     .iova = addr,
1611                     .translated_addr = 0,
1612                     .addr_mask = size - 1,
1613                     .perm = IOMMU_NONE,
1614                 };
1615                 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1616             }
1617         }
1618     }
1619 }
1620 
1621 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1622                                       hwaddr addr, uint8_t am)
1623 {
1624     VTDIOTLBPageInvInfo info;
1625 
1626     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1627 
1628     assert(am <= VTD_MAMV);
1629     info.domain_id = domain_id;
1630     info.addr = addr;
1631     info.mask = ~((1 << am) - 1);
1632     vtd_iommu_lock(s);
1633     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1634     vtd_iommu_unlock(s);
1635     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1636 }
1637 
1638 /* Flush IOTLB
1639  * Returns the IOTLB Actual Invalidation Granularity.
1640  * @val: the content of the IOTLB_REG
1641  */
1642 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1643 {
1644     uint64_t iaig;
1645     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1646     uint16_t domain_id;
1647     hwaddr addr;
1648     uint8_t am;
1649 
1650     switch (type) {
1651     case VTD_TLB_GLOBAL_FLUSH:
1652         iaig = VTD_TLB_GLOBAL_FLUSH_A;
1653         vtd_iotlb_global_invalidate(s);
1654         break;
1655 
1656     case VTD_TLB_DSI_FLUSH:
1657         domain_id = VTD_TLB_DID(val);
1658         iaig = VTD_TLB_DSI_FLUSH_A;
1659         vtd_iotlb_domain_invalidate(s, domain_id);
1660         break;
1661 
1662     case VTD_TLB_PSI_FLUSH:
1663         domain_id = VTD_TLB_DID(val);
1664         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1665         am = VTD_IVA_AM(addr);
1666         addr = VTD_IVA_ADDR(addr);
1667         if (am > VTD_MAMV) {
1668             error_report_once("%s: address mask overflow: 0x%" PRIx64,
1669                               __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1670             iaig = 0;
1671             break;
1672         }
1673         iaig = VTD_TLB_PSI_FLUSH_A;
1674         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1675         break;
1676 
1677     default:
1678         error_report_once("%s: invalid granularity: 0x%" PRIx64,
1679                           __func__, val);
1680         iaig = 0;
1681     }
1682     return iaig;
1683 }
1684 
1685 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1686 
1687 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1688 {
1689     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1690            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1691 }
1692 
1693 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1694 {
1695     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1696 
1697     trace_vtd_inv_qi_enable(en);
1698 
1699     if (en) {
1700         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1701         /* 2^(x+8) entries */
1702         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1703         s->qi_enabled = true;
1704         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1705         /* Ok - report back to driver */
1706         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1707 
1708         if (s->iq_tail != 0) {
1709             /*
1710              * This is a spec violation but Windows guests are known to set up
1711              * Queued Invalidation this way so we allow the write and process
1712              * Invalidation Descriptors right away.
1713              */
1714             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1715             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1716                 vtd_fetch_inv_desc(s);
1717             }
1718         }
1719     } else {
1720         if (vtd_queued_inv_disable_check(s)) {
1721             /* disable Queued Invalidation */
1722             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1723             s->iq_head = 0;
1724             s->qi_enabled = false;
1725             /* Ok - report back to driver */
1726             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1727         } else {
1728             error_report_once("%s: detected improper state when disable QI "
1729                               "(head=0x%x, tail=0x%x, last_type=%d)",
1730                               __func__,
1731                               s->iq_head, s->iq_tail, s->iq_last_desc_type);
1732         }
1733     }
1734 }
1735 
1736 /* Set Root Table Pointer */
1737 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1738 {
1739     vtd_root_table_setup(s);
1740     /* Ok - report back to driver */
1741     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1742     vtd_reset_caches(s);
1743     vtd_address_space_refresh_all(s);
1744 }
1745 
1746 /* Set Interrupt Remap Table Pointer */
1747 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1748 {
1749     vtd_interrupt_remap_table_setup(s);
1750     /* Ok - report back to driver */
1751     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1752 }
1753 
1754 /* Handle Translation Enable/Disable */
1755 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1756 {
1757     if (s->dmar_enabled == en) {
1758         return;
1759     }
1760 
1761     trace_vtd_dmar_enable(en);
1762 
1763     if (en) {
1764         s->dmar_enabled = true;
1765         /* Ok - report back to driver */
1766         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1767     } else {
1768         s->dmar_enabled = false;
1769 
1770         /* Clear the index of Fault Recording Register */
1771         s->next_frcd_reg = 0;
1772         /* Ok - report back to driver */
1773         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1774     }
1775 
1776     vtd_reset_caches(s);
1777     vtd_address_space_refresh_all(s);
1778 }
1779 
1780 /* Handle Interrupt Remap Enable/Disable */
1781 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1782 {
1783     trace_vtd_ir_enable(en);
1784 
1785     if (en) {
1786         s->intr_enabled = true;
1787         /* Ok - report back to driver */
1788         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1789     } else {
1790         s->intr_enabled = false;
1791         /* Ok - report back to driver */
1792         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1793     }
1794 }
1795 
1796 /* Handle write to Global Command Register */
1797 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1798 {
1799     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1800     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1801     uint32_t changed = status ^ val;
1802 
1803     trace_vtd_reg_write_gcmd(status, val);
1804     if (changed & VTD_GCMD_TE) {
1805         /* Translation enable/disable */
1806         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1807     }
1808     if (val & VTD_GCMD_SRTP) {
1809         /* Set/update the root-table pointer */
1810         vtd_handle_gcmd_srtp(s);
1811     }
1812     if (changed & VTD_GCMD_QIE) {
1813         /* Queued Invalidation Enable */
1814         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1815     }
1816     if (val & VTD_GCMD_SIRTP) {
1817         /* Set/update the interrupt remapping root-table pointer */
1818         vtd_handle_gcmd_sirtp(s);
1819     }
1820     if (changed & VTD_GCMD_IRE) {
1821         /* Interrupt remap enable/disable */
1822         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1823     }
1824 }
1825 
1826 /* Handle write to Context Command Register */
1827 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1828 {
1829     uint64_t ret;
1830     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1831 
1832     /* Context-cache invalidation request */
1833     if (val & VTD_CCMD_ICC) {
1834         if (s->qi_enabled) {
1835             error_report_once("Queued Invalidation enabled, "
1836                               "should not use register-based invalidation");
1837             return;
1838         }
1839         ret = vtd_context_cache_invalidate(s, val);
1840         /* Invalidation completed. Change something to show */
1841         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1842         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1843                                       ret);
1844     }
1845 }
1846 
1847 /* Handle write to IOTLB Invalidation Register */
1848 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1849 {
1850     uint64_t ret;
1851     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1852 
1853     /* IOTLB invalidation request */
1854     if (val & VTD_TLB_IVT) {
1855         if (s->qi_enabled) {
1856             error_report_once("Queued Invalidation enabled, "
1857                               "should not use register-based invalidation");
1858             return;
1859         }
1860         ret = vtd_iotlb_flush(s, val);
1861         /* Invalidation completed. Change something to show */
1862         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1863         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1864                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1865     }
1866 }
1867 
1868 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1869 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1870                              VTDInvDesc *inv_desc)
1871 {
1872     dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1873     if (dma_memory_read(&address_space_memory, addr, inv_desc,
1874         sizeof(*inv_desc))) {
1875         error_report_once("Read INV DESC failed");
1876         inv_desc->lo = 0;
1877         inv_desc->hi = 0;
1878         return false;
1879     }
1880     inv_desc->lo = le64_to_cpu(inv_desc->lo);
1881     inv_desc->hi = le64_to_cpu(inv_desc->hi);
1882     return true;
1883 }
1884 
1885 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1886 {
1887     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1888         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1889         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
1890                           " (reserved nonzero)", __func__, inv_desc->hi,
1891                           inv_desc->lo);
1892         return false;
1893     }
1894     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1895         /* Status Write */
1896         uint32_t status_data = (uint32_t)(inv_desc->lo >>
1897                                VTD_INV_DESC_WAIT_DATA_SHIFT);
1898 
1899         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1900 
1901         /* FIXME: need to be masked with HAW? */
1902         dma_addr_t status_addr = inv_desc->hi;
1903         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1904         status_data = cpu_to_le32(status_data);
1905         if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1906                              sizeof(status_data))) {
1907             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1908             return false;
1909         }
1910     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1911         /* Interrupt flag */
1912         vtd_generate_completion_event(s);
1913     } else {
1914         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
1915                           " (unknown type)", __func__, inv_desc->hi,
1916                           inv_desc->lo);
1917         return false;
1918     }
1919     return true;
1920 }
1921 
1922 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1923                                            VTDInvDesc *inv_desc)
1924 {
1925     uint16_t sid, fmask;
1926 
1927     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1928         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
1929                           " (reserved nonzero)", __func__, inv_desc->hi,
1930                           inv_desc->lo);
1931         return false;
1932     }
1933     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1934     case VTD_INV_DESC_CC_DOMAIN:
1935         trace_vtd_inv_desc_cc_domain(
1936             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1937         /* Fall through */
1938     case VTD_INV_DESC_CC_GLOBAL:
1939         vtd_context_global_invalidate(s);
1940         break;
1941 
1942     case VTD_INV_DESC_CC_DEVICE:
1943         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1944         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1945         vtd_context_device_invalidate(s, sid, fmask);
1946         break;
1947 
1948     default:
1949         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
1950                           " (invalid type)", __func__, inv_desc->hi,
1951                           inv_desc->lo);
1952         return false;
1953     }
1954     return true;
1955 }
1956 
1957 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1958 {
1959     uint16_t domain_id;
1960     uint8_t am;
1961     hwaddr addr;
1962 
1963     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1964         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1965         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
1966                           ", lo=0x%"PRIx64" (reserved bits unzero)\n",
1967                           __func__, inv_desc->hi, inv_desc->lo);
1968         return false;
1969     }
1970 
1971     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1972     case VTD_INV_DESC_IOTLB_GLOBAL:
1973         vtd_iotlb_global_invalidate(s);
1974         break;
1975 
1976     case VTD_INV_DESC_IOTLB_DOMAIN:
1977         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1978         vtd_iotlb_domain_invalidate(s, domain_id);
1979         break;
1980 
1981     case VTD_INV_DESC_IOTLB_PAGE:
1982         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1983         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1984         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1985         if (am > VTD_MAMV) {
1986             error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
1987                               ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
1988                               __func__, inv_desc->hi, inv_desc->lo,
1989                               am, (unsigned)VTD_MAMV);
1990             return false;
1991         }
1992         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1993         break;
1994 
1995     default:
1996         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
1997                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
1998                           __func__, inv_desc->hi, inv_desc->lo,
1999                           inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2000         return false;
2001     }
2002     return true;
2003 }
2004 
2005 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2006                                      VTDInvDesc *inv_desc)
2007 {
2008     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2009                            inv_desc->iec.index,
2010                            inv_desc->iec.index_mask);
2011 
2012     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2013                        inv_desc->iec.index,
2014                        inv_desc->iec.index_mask);
2015     return true;
2016 }
2017 
2018 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2019                                           VTDInvDesc *inv_desc)
2020 {
2021     VTDAddressSpace *vtd_dev_as;
2022     IOMMUTLBEntry entry;
2023     struct VTDBus *vtd_bus;
2024     hwaddr addr;
2025     uint64_t sz;
2026     uint16_t sid;
2027     uint8_t devfn;
2028     bool size;
2029     uint8_t bus_num;
2030 
2031     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2032     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2033     devfn = sid & 0xff;
2034     bus_num = sid >> 8;
2035     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2036 
2037     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2038         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2039         error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2040                           ", lo=%"PRIx64" (reserved nonzero)", __func__,
2041                           inv_desc->hi, inv_desc->lo);
2042         return false;
2043     }
2044 
2045     vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2046     if (!vtd_bus) {
2047         goto done;
2048     }
2049 
2050     vtd_dev_as = vtd_bus->dev_as[devfn];
2051     if (!vtd_dev_as) {
2052         goto done;
2053     }
2054 
2055     /* According to ATS spec table 2.4:
2056      * S = 0, bits 15:12 = xxxx     range size: 4K
2057      * S = 1, bits 15:12 = xxx0     range size: 8K
2058      * S = 1, bits 15:12 = xx01     range size: 16K
2059      * S = 1, bits 15:12 = x011     range size: 32K
2060      * S = 1, bits 15:12 = 0111     range size: 64K
2061      * ...
2062      */
2063     if (size) {
2064         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2065         addr &= ~(sz - 1);
2066     } else {
2067         sz = VTD_PAGE_SIZE;
2068     }
2069 
2070     entry.target_as = &vtd_dev_as->as;
2071     entry.addr_mask = sz - 1;
2072     entry.iova = addr;
2073     entry.perm = IOMMU_NONE;
2074     entry.translated_addr = 0;
2075     memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2076 
2077 done:
2078     return true;
2079 }
2080 
2081 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2082 {
2083     VTDInvDesc inv_desc;
2084     uint8_t desc_type;
2085 
2086     trace_vtd_inv_qi_head(s->iq_head);
2087     if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
2088         s->iq_last_desc_type = VTD_INV_DESC_NONE;
2089         return false;
2090     }
2091     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2092     /* FIXME: should update at first or at last? */
2093     s->iq_last_desc_type = desc_type;
2094 
2095     switch (desc_type) {
2096     case VTD_INV_DESC_CC:
2097         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2098         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2099             return false;
2100         }
2101         break;
2102 
2103     case VTD_INV_DESC_IOTLB:
2104         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2105         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2106             return false;
2107         }
2108         break;
2109 
2110     case VTD_INV_DESC_WAIT:
2111         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2112         if (!vtd_process_wait_desc(s, &inv_desc)) {
2113             return false;
2114         }
2115         break;
2116 
2117     case VTD_INV_DESC_IEC:
2118         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2119         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2120             return false;
2121         }
2122         break;
2123 
2124     case VTD_INV_DESC_DEVICE:
2125         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2126         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2127             return false;
2128         }
2129         break;
2130 
2131     default:
2132         error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2133                           " (unknown type)", __func__, inv_desc.hi,
2134                           inv_desc.lo);
2135         return false;
2136     }
2137     s->iq_head++;
2138     if (s->iq_head == s->iq_size) {
2139         s->iq_head = 0;
2140     }
2141     return true;
2142 }
2143 
2144 /* Try to fetch and process more Invalidation Descriptors */
2145 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2146 {
2147     trace_vtd_inv_qi_fetch();
2148 
2149     if (s->iq_tail >= s->iq_size) {
2150         /* Detects an invalid Tail pointer */
2151         error_report_once("%s: detected invalid QI tail "
2152                           "(tail=0x%x, size=0x%x)",
2153                           __func__, s->iq_tail, s->iq_size);
2154         vtd_handle_inv_queue_error(s);
2155         return;
2156     }
2157     while (s->iq_head != s->iq_tail) {
2158         if (!vtd_process_inv_desc(s)) {
2159             /* Invalidation Queue Errors */
2160             vtd_handle_inv_queue_error(s);
2161             break;
2162         }
2163         /* Must update the IQH_REG in time */
2164         vtd_set_quad_raw(s, DMAR_IQH_REG,
2165                          (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2166                          VTD_IQH_QH_MASK);
2167     }
2168 }
2169 
2170 /* Handle write to Invalidation Queue Tail Register */
2171 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2172 {
2173     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2174 
2175     s->iq_tail = VTD_IQT_QT(val);
2176     trace_vtd_inv_qi_tail(s->iq_tail);
2177 
2178     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2179         /* Process Invalidation Queue here */
2180         vtd_fetch_inv_desc(s);
2181     }
2182 }
2183 
2184 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2185 {
2186     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2187     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2188     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2189 
2190     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2191         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2192         trace_vtd_fsts_clear_ip();
2193     }
2194     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2195      * Descriptors if there are any when Queued Invalidation is enabled?
2196      */
2197 }
2198 
2199 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2200 {
2201     uint32_t fectl_reg;
2202     /* FIXME: when software clears the IM field, check the IP field. But do we
2203      * need to compare the old value and the new value to conclude that
2204      * software clears the IM field? Or just check if the IM field is zero?
2205      */
2206     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2207 
2208     trace_vtd_reg_write_fectl(fectl_reg);
2209 
2210     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2211         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2212         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2213     }
2214 }
2215 
2216 static void vtd_handle_ics_write(IntelIOMMUState *s)
2217 {
2218     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2219     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2220 
2221     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2222         trace_vtd_reg_ics_clear_ip();
2223         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2224     }
2225 }
2226 
2227 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2228 {
2229     uint32_t iectl_reg;
2230     /* FIXME: when software clears the IM field, check the IP field. But do we
2231      * need to compare the old value and the new value to conclude that
2232      * software clears the IM field? Or just check if the IM field is zero?
2233      */
2234     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2235 
2236     trace_vtd_reg_write_iectl(iectl_reg);
2237 
2238     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2239         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2240         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2241     }
2242 }
2243 
2244 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2245 {
2246     IntelIOMMUState *s = opaque;
2247     uint64_t val;
2248 
2249     trace_vtd_reg_read(addr, size);
2250 
2251     if (addr + size > DMAR_REG_SIZE) {
2252         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2253                           " size=0x%u", __func__, addr, size);
2254         return (uint64_t)-1;
2255     }
2256 
2257     switch (addr) {
2258     /* Root Table Address Register, 64-bit */
2259     case DMAR_RTADDR_REG:
2260         if (size == 4) {
2261             val = s->root & ((1ULL << 32) - 1);
2262         } else {
2263             val = s->root;
2264         }
2265         break;
2266 
2267     case DMAR_RTADDR_REG_HI:
2268         assert(size == 4);
2269         val = s->root >> 32;
2270         break;
2271 
2272     /* Invalidation Queue Address Register, 64-bit */
2273     case DMAR_IQA_REG:
2274         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2275         if (size == 4) {
2276             val = val & ((1ULL << 32) - 1);
2277         }
2278         break;
2279 
2280     case DMAR_IQA_REG_HI:
2281         assert(size == 4);
2282         val = s->iq >> 32;
2283         break;
2284 
2285     default:
2286         if (size == 4) {
2287             val = vtd_get_long(s, addr);
2288         } else {
2289             val = vtd_get_quad(s, addr);
2290         }
2291     }
2292 
2293     return val;
2294 }
2295 
2296 static void vtd_mem_write(void *opaque, hwaddr addr,
2297                           uint64_t val, unsigned size)
2298 {
2299     IntelIOMMUState *s = opaque;
2300 
2301     trace_vtd_reg_write(addr, size, val);
2302 
2303     if (addr + size > DMAR_REG_SIZE) {
2304         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2305                           " size=0x%u", __func__, addr, size);
2306         return;
2307     }
2308 
2309     switch (addr) {
2310     /* Global Command Register, 32-bit */
2311     case DMAR_GCMD_REG:
2312         vtd_set_long(s, addr, val);
2313         vtd_handle_gcmd_write(s);
2314         break;
2315 
2316     /* Context Command Register, 64-bit */
2317     case DMAR_CCMD_REG:
2318         if (size == 4) {
2319             vtd_set_long(s, addr, val);
2320         } else {
2321             vtd_set_quad(s, addr, val);
2322             vtd_handle_ccmd_write(s);
2323         }
2324         break;
2325 
2326     case DMAR_CCMD_REG_HI:
2327         assert(size == 4);
2328         vtd_set_long(s, addr, val);
2329         vtd_handle_ccmd_write(s);
2330         break;
2331 
2332     /* IOTLB Invalidation Register, 64-bit */
2333     case DMAR_IOTLB_REG:
2334         if (size == 4) {
2335             vtd_set_long(s, addr, val);
2336         } else {
2337             vtd_set_quad(s, addr, val);
2338             vtd_handle_iotlb_write(s);
2339         }
2340         break;
2341 
2342     case DMAR_IOTLB_REG_HI:
2343         assert(size == 4);
2344         vtd_set_long(s, addr, val);
2345         vtd_handle_iotlb_write(s);
2346         break;
2347 
2348     /* Invalidate Address Register, 64-bit */
2349     case DMAR_IVA_REG:
2350         if (size == 4) {
2351             vtd_set_long(s, addr, val);
2352         } else {
2353             vtd_set_quad(s, addr, val);
2354         }
2355         break;
2356 
2357     case DMAR_IVA_REG_HI:
2358         assert(size == 4);
2359         vtd_set_long(s, addr, val);
2360         break;
2361 
2362     /* Fault Status Register, 32-bit */
2363     case DMAR_FSTS_REG:
2364         assert(size == 4);
2365         vtd_set_long(s, addr, val);
2366         vtd_handle_fsts_write(s);
2367         break;
2368 
2369     /* Fault Event Control Register, 32-bit */
2370     case DMAR_FECTL_REG:
2371         assert(size == 4);
2372         vtd_set_long(s, addr, val);
2373         vtd_handle_fectl_write(s);
2374         break;
2375 
2376     /* Fault Event Data Register, 32-bit */
2377     case DMAR_FEDATA_REG:
2378         assert(size == 4);
2379         vtd_set_long(s, addr, val);
2380         break;
2381 
2382     /* Fault Event Address Register, 32-bit */
2383     case DMAR_FEADDR_REG:
2384         if (size == 4) {
2385             vtd_set_long(s, addr, val);
2386         } else {
2387             /*
2388              * While the register is 32-bit only, some guests (Xen...) write to
2389              * it with 64-bit.
2390              */
2391             vtd_set_quad(s, addr, val);
2392         }
2393         break;
2394 
2395     /* Fault Event Upper Address Register, 32-bit */
2396     case DMAR_FEUADDR_REG:
2397         assert(size == 4);
2398         vtd_set_long(s, addr, val);
2399         break;
2400 
2401     /* Protected Memory Enable Register, 32-bit */
2402     case DMAR_PMEN_REG:
2403         assert(size == 4);
2404         vtd_set_long(s, addr, val);
2405         break;
2406 
2407     /* Root Table Address Register, 64-bit */
2408     case DMAR_RTADDR_REG:
2409         if (size == 4) {
2410             vtd_set_long(s, addr, val);
2411         } else {
2412             vtd_set_quad(s, addr, val);
2413         }
2414         break;
2415 
2416     case DMAR_RTADDR_REG_HI:
2417         assert(size == 4);
2418         vtd_set_long(s, addr, val);
2419         break;
2420 
2421     /* Invalidation Queue Tail Register, 64-bit */
2422     case DMAR_IQT_REG:
2423         if (size == 4) {
2424             vtd_set_long(s, addr, val);
2425         } else {
2426             vtd_set_quad(s, addr, val);
2427         }
2428         vtd_handle_iqt_write(s);
2429         break;
2430 
2431     case DMAR_IQT_REG_HI:
2432         assert(size == 4);
2433         vtd_set_long(s, addr, val);
2434         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2435         break;
2436 
2437     /* Invalidation Queue Address Register, 64-bit */
2438     case DMAR_IQA_REG:
2439         if (size == 4) {
2440             vtd_set_long(s, addr, val);
2441         } else {
2442             vtd_set_quad(s, addr, val);
2443         }
2444         break;
2445 
2446     case DMAR_IQA_REG_HI:
2447         assert(size == 4);
2448         vtd_set_long(s, addr, val);
2449         break;
2450 
2451     /* Invalidation Completion Status Register, 32-bit */
2452     case DMAR_ICS_REG:
2453         assert(size == 4);
2454         vtd_set_long(s, addr, val);
2455         vtd_handle_ics_write(s);
2456         break;
2457 
2458     /* Invalidation Event Control Register, 32-bit */
2459     case DMAR_IECTL_REG:
2460         assert(size == 4);
2461         vtd_set_long(s, addr, val);
2462         vtd_handle_iectl_write(s);
2463         break;
2464 
2465     /* Invalidation Event Data Register, 32-bit */
2466     case DMAR_IEDATA_REG:
2467         assert(size == 4);
2468         vtd_set_long(s, addr, val);
2469         break;
2470 
2471     /* Invalidation Event Address Register, 32-bit */
2472     case DMAR_IEADDR_REG:
2473         assert(size == 4);
2474         vtd_set_long(s, addr, val);
2475         break;
2476 
2477     /* Invalidation Event Upper Address Register, 32-bit */
2478     case DMAR_IEUADDR_REG:
2479         assert(size == 4);
2480         vtd_set_long(s, addr, val);
2481         break;
2482 
2483     /* Fault Recording Registers, 128-bit */
2484     case DMAR_FRCD_REG_0_0:
2485         if (size == 4) {
2486             vtd_set_long(s, addr, val);
2487         } else {
2488             vtd_set_quad(s, addr, val);
2489         }
2490         break;
2491 
2492     case DMAR_FRCD_REG_0_1:
2493         assert(size == 4);
2494         vtd_set_long(s, addr, val);
2495         break;
2496 
2497     case DMAR_FRCD_REG_0_2:
2498         if (size == 4) {
2499             vtd_set_long(s, addr, val);
2500         } else {
2501             vtd_set_quad(s, addr, val);
2502             /* May clear bit 127 (Fault), update PPF */
2503             vtd_update_fsts_ppf(s);
2504         }
2505         break;
2506 
2507     case DMAR_FRCD_REG_0_3:
2508         assert(size == 4);
2509         vtd_set_long(s, addr, val);
2510         /* May clear bit 127 (Fault), update PPF */
2511         vtd_update_fsts_ppf(s);
2512         break;
2513 
2514     case DMAR_IRTA_REG:
2515         if (size == 4) {
2516             vtd_set_long(s, addr, val);
2517         } else {
2518             vtd_set_quad(s, addr, val);
2519         }
2520         break;
2521 
2522     case DMAR_IRTA_REG_HI:
2523         assert(size == 4);
2524         vtd_set_long(s, addr, val);
2525         break;
2526 
2527     default:
2528         if (size == 4) {
2529             vtd_set_long(s, addr, val);
2530         } else {
2531             vtd_set_quad(s, addr, val);
2532         }
2533     }
2534 }
2535 
2536 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2537                                          IOMMUAccessFlags flag, int iommu_idx)
2538 {
2539     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2540     IntelIOMMUState *s = vtd_as->iommu_state;
2541     IOMMUTLBEntry iotlb = {
2542         /* We'll fill in the rest later. */
2543         .target_as = &address_space_memory,
2544     };
2545     bool success;
2546 
2547     if (likely(s->dmar_enabled)) {
2548         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2549                                          addr, flag & IOMMU_WO, &iotlb);
2550     } else {
2551         /* DMAR disabled, passthrough, use 4k-page*/
2552         iotlb.iova = addr & VTD_PAGE_MASK_4K;
2553         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2554         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2555         iotlb.perm = IOMMU_RW;
2556         success = true;
2557     }
2558 
2559     if (likely(success)) {
2560         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2561                                  VTD_PCI_SLOT(vtd_as->devfn),
2562                                  VTD_PCI_FUNC(vtd_as->devfn),
2563                                  iotlb.iova, iotlb.translated_addr,
2564                                  iotlb.addr_mask);
2565     } else {
2566         error_report_once("%s: detected translation failure "
2567                           "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2568                           __func__, pci_bus_num(vtd_as->bus),
2569                           VTD_PCI_SLOT(vtd_as->devfn),
2570                           VTD_PCI_FUNC(vtd_as->devfn),
2571                           addr);
2572     }
2573 
2574     return iotlb;
2575 }
2576 
2577 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2578                                           IOMMUNotifierFlag old,
2579                                           IOMMUNotifierFlag new)
2580 {
2581     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2582     IntelIOMMUState *s = vtd_as->iommu_state;
2583 
2584     if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2585         error_report("We need to set caching-mode=1 for intel-iommu to enable "
2586                      "device assignment with IOMMU protection.");
2587         exit(1);
2588     }
2589 
2590     /* Update per-address-space notifier flags */
2591     vtd_as->notifier_flags = new;
2592 
2593     if (old == IOMMU_NOTIFIER_NONE) {
2594         QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2595     } else if (new == IOMMU_NOTIFIER_NONE) {
2596         QLIST_REMOVE(vtd_as, next);
2597     }
2598 }
2599 
2600 static int vtd_post_load(void *opaque, int version_id)
2601 {
2602     IntelIOMMUState *iommu = opaque;
2603 
2604     /*
2605      * Memory regions are dynamically turned on/off depending on
2606      * context entry configurations from the guest. After migration,
2607      * we need to make sure the memory regions are still correct.
2608      */
2609     vtd_switch_address_space_all(iommu);
2610 
2611     return 0;
2612 }
2613 
2614 static const VMStateDescription vtd_vmstate = {
2615     .name = "iommu-intel",
2616     .version_id = 1,
2617     .minimum_version_id = 1,
2618     .priority = MIG_PRI_IOMMU,
2619     .post_load = vtd_post_load,
2620     .fields = (VMStateField[]) {
2621         VMSTATE_UINT64(root, IntelIOMMUState),
2622         VMSTATE_UINT64(intr_root, IntelIOMMUState),
2623         VMSTATE_UINT64(iq, IntelIOMMUState),
2624         VMSTATE_UINT32(intr_size, IntelIOMMUState),
2625         VMSTATE_UINT16(iq_head, IntelIOMMUState),
2626         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2627         VMSTATE_UINT16(iq_size, IntelIOMMUState),
2628         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2629         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2630         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2631         VMSTATE_BOOL(root_extended, IntelIOMMUState),
2632         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2633         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2634         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2635         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2636         VMSTATE_END_OF_LIST()
2637     }
2638 };
2639 
2640 static const MemoryRegionOps vtd_mem_ops = {
2641     .read = vtd_mem_read,
2642     .write = vtd_mem_write,
2643     .endianness = DEVICE_LITTLE_ENDIAN,
2644     .impl = {
2645         .min_access_size = 4,
2646         .max_access_size = 8,
2647     },
2648     .valid = {
2649         .min_access_size = 4,
2650         .max_access_size = 8,
2651     },
2652 };
2653 
2654 static Property vtd_properties[] = {
2655     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2656     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2657                             ON_OFF_AUTO_AUTO),
2658     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2659     DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
2660                       VTD_HOST_ADDRESS_WIDTH),
2661     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2662     DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
2663     DEFINE_PROP_END_OF_LIST(),
2664 };
2665 
2666 /* Read IRTE entry with specific index */
2667 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2668                         VTD_IR_TableEntry *entry, uint16_t sid)
2669 {
2670     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2671         {0xffff, 0xfffb, 0xfff9, 0xfff8};
2672     dma_addr_t addr = 0x00;
2673     uint16_t mask, source_id;
2674     uint8_t bus, bus_max, bus_min;
2675 
2676     addr = iommu->intr_root + index * sizeof(*entry);
2677     if (dma_memory_read(&address_space_memory, addr, entry,
2678                         sizeof(*entry))) {
2679         error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
2680                           __func__, index, addr);
2681         return -VTD_FR_IR_ROOT_INVAL;
2682     }
2683 
2684     trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2685                           le64_to_cpu(entry->data[0]));
2686 
2687     if (!entry->irte.present) {
2688         error_report_once("%s: detected non-present IRTE "
2689                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
2690                           __func__, index, le64_to_cpu(entry->data[1]),
2691                           le64_to_cpu(entry->data[0]));
2692         return -VTD_FR_IR_ENTRY_P;
2693     }
2694 
2695     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2696         entry->irte.__reserved_2) {
2697         error_report_once("%s: detected non-zero reserved IRTE "
2698                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
2699                           __func__, index, le64_to_cpu(entry->data[1]),
2700                           le64_to_cpu(entry->data[0]));
2701         return -VTD_FR_IR_IRTE_RSVD;
2702     }
2703 
2704     if (sid != X86_IOMMU_SID_INVALID) {
2705         /* Validate IRTE SID */
2706         source_id = le32_to_cpu(entry->irte.source_id);
2707         switch (entry->irte.sid_vtype) {
2708         case VTD_SVT_NONE:
2709             break;
2710 
2711         case VTD_SVT_ALL:
2712             mask = vtd_svt_mask[entry->irte.sid_q];
2713             if ((source_id & mask) != (sid & mask)) {
2714                 error_report_once("%s: invalid IRTE SID "
2715                                   "(index=%u, sid=%u, source_id=%u)",
2716                                   __func__, index, sid, source_id);
2717                 return -VTD_FR_IR_SID_ERR;
2718             }
2719             break;
2720 
2721         case VTD_SVT_BUS:
2722             bus_max = source_id >> 8;
2723             bus_min = source_id & 0xff;
2724             bus = sid >> 8;
2725             if (bus > bus_max || bus < bus_min) {
2726                 error_report_once("%s: invalid SVT_BUS "
2727                                   "(index=%u, bus=%u, min=%u, max=%u)",
2728                                   __func__, index, bus, bus_min, bus_max);
2729                 return -VTD_FR_IR_SID_ERR;
2730             }
2731             break;
2732 
2733         default:
2734             error_report_once("%s: detected invalid IRTE SVT "
2735                               "(index=%u, type=%d)", __func__,
2736                               index, entry->irte.sid_vtype);
2737             /* Take this as verification failure. */
2738             return -VTD_FR_IR_SID_ERR;
2739             break;
2740         }
2741     }
2742 
2743     return 0;
2744 }
2745 
2746 /* Fetch IRQ information of specific IR index */
2747 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2748                              X86IOMMUIrq *irq, uint16_t sid)
2749 {
2750     VTD_IR_TableEntry irte = {};
2751     int ret = 0;
2752 
2753     ret = vtd_irte_get(iommu, index, &irte, sid);
2754     if (ret) {
2755         return ret;
2756     }
2757 
2758     irq->trigger_mode = irte.irte.trigger_mode;
2759     irq->vector = irte.irte.vector;
2760     irq->delivery_mode = irte.irte.delivery_mode;
2761     irq->dest = le32_to_cpu(irte.irte.dest_id);
2762     if (!iommu->intr_eime) {
2763 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
2764 #define  VTD_IR_APIC_DEST_SHIFT        (8)
2765         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2766             VTD_IR_APIC_DEST_SHIFT;
2767     }
2768     irq->dest_mode = irte.irte.dest_mode;
2769     irq->redir_hint = irte.irte.redir_hint;
2770 
2771     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2772                        irq->delivery_mode, irq->dest, irq->dest_mode);
2773 
2774     return 0;
2775 }
2776 
2777 /* Interrupt remapping for MSI/MSI-X entry */
2778 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2779                                    MSIMessage *origin,
2780                                    MSIMessage *translated,
2781                                    uint16_t sid)
2782 {
2783     int ret = 0;
2784     VTD_IR_MSIAddress addr;
2785     uint16_t index;
2786     X86IOMMUIrq irq = {};
2787 
2788     assert(origin && translated);
2789 
2790     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2791 
2792     if (!iommu || !iommu->intr_enabled) {
2793         memcpy(translated, origin, sizeof(*origin));
2794         goto out;
2795     }
2796 
2797     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2798         error_report_once("%s: MSI address high 32 bits non-zero detected: "
2799                           "address=0x%" PRIx64, __func__, origin->address);
2800         return -VTD_FR_IR_REQ_RSVD;
2801     }
2802 
2803     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2804     if (addr.addr.__head != 0xfee) {
2805         error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
2806                           __func__, addr.data);
2807         return -VTD_FR_IR_REQ_RSVD;
2808     }
2809 
2810     /* This is compatible mode. */
2811     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2812         memcpy(translated, origin, sizeof(*origin));
2813         goto out;
2814     }
2815 
2816     index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2817 
2818 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
2819 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
2820 
2821     if (addr.addr.sub_valid) {
2822         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2823         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2824     }
2825 
2826     ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2827     if (ret) {
2828         return ret;
2829     }
2830 
2831     if (addr.addr.sub_valid) {
2832         trace_vtd_ir_remap_type("MSI");
2833         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2834             error_report_once("%s: invalid IR MSI "
2835                               "(sid=%u, address=0x%" PRIx64
2836                               ", data=0x%" PRIx32 ")",
2837                               __func__, sid, origin->address, origin->data);
2838             return -VTD_FR_IR_REQ_RSVD;
2839         }
2840     } else {
2841         uint8_t vector = origin->data & 0xff;
2842         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2843 
2844         trace_vtd_ir_remap_type("IOAPIC");
2845         /* IOAPIC entry vector should be aligned with IRTE vector
2846          * (see vt-d spec 5.1.5.1). */
2847         if (vector != irq.vector) {
2848             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2849         }
2850 
2851         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2852          * (see vt-d spec 5.1.5.1). */
2853         if (trigger_mode != irq.trigger_mode) {
2854             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2855                                       irq.trigger_mode);
2856         }
2857     }
2858 
2859     /*
2860      * We'd better keep the last two bits, assuming that guest OS
2861      * might modify it. Keep it does not hurt after all.
2862      */
2863     irq.msi_addr_last_bits = addr.addr.__not_care;
2864 
2865     /* Translate X86IOMMUIrq to MSI message */
2866     x86_iommu_irq_to_msi_message(&irq, translated);
2867 
2868 out:
2869     trace_vtd_ir_remap_msi(origin->address, origin->data,
2870                            translated->address, translated->data);
2871     return 0;
2872 }
2873 
2874 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2875                          MSIMessage *dst, uint16_t sid)
2876 {
2877     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2878                                    src, dst, sid);
2879 }
2880 
2881 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2882                                    uint64_t *data, unsigned size,
2883                                    MemTxAttrs attrs)
2884 {
2885     return MEMTX_OK;
2886 }
2887 
2888 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2889                                     uint64_t value, unsigned size,
2890                                     MemTxAttrs attrs)
2891 {
2892     int ret = 0;
2893     MSIMessage from = {}, to = {};
2894     uint16_t sid = X86_IOMMU_SID_INVALID;
2895 
2896     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2897     from.data = (uint32_t) value;
2898 
2899     if (!attrs.unspecified) {
2900         /* We have explicit Source ID */
2901         sid = attrs.requester_id;
2902     }
2903 
2904     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2905     if (ret) {
2906         /* TODO: report error */
2907         /* Drop this interrupt */
2908         return MEMTX_ERROR;
2909     }
2910 
2911     apic_get_class()->send_msi(&to);
2912 
2913     return MEMTX_OK;
2914 }
2915 
2916 static const MemoryRegionOps vtd_mem_ir_ops = {
2917     .read_with_attrs = vtd_mem_ir_read,
2918     .write_with_attrs = vtd_mem_ir_write,
2919     .endianness = DEVICE_LITTLE_ENDIAN,
2920     .impl = {
2921         .min_access_size = 4,
2922         .max_access_size = 4,
2923     },
2924     .valid = {
2925         .min_access_size = 4,
2926         .max_access_size = 4,
2927     },
2928 };
2929 
2930 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2931 {
2932     uintptr_t key = (uintptr_t)bus;
2933     VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2934     VTDAddressSpace *vtd_dev_as;
2935     char name[128];
2936 
2937     if (!vtd_bus) {
2938         uintptr_t *new_key = g_malloc(sizeof(*new_key));
2939         *new_key = (uintptr_t)bus;
2940         /* No corresponding free() */
2941         vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2942                             PCI_DEVFN_MAX);
2943         vtd_bus->bus = bus;
2944         g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2945     }
2946 
2947     vtd_dev_as = vtd_bus->dev_as[devfn];
2948 
2949     if (!vtd_dev_as) {
2950         snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2951         vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2952 
2953         vtd_dev_as->bus = bus;
2954         vtd_dev_as->devfn = (uint8_t)devfn;
2955         vtd_dev_as->iommu_state = s;
2956         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2957         vtd_dev_as->iova_tree = iova_tree_new();
2958 
2959         /*
2960          * Memory region relationships looks like (Address range shows
2961          * only lower 32 bits to make it short in length...):
2962          *
2963          * |-----------------+-------------------+----------|
2964          * | Name            | Address range     | Priority |
2965          * |-----------------+-------------------+----------+
2966          * | vtd_root        | 00000000-ffffffff |        0 |
2967          * |  intel_iommu    | 00000000-ffffffff |        1 |
2968          * |  vtd_sys_alias  | 00000000-ffffffff |        1 |
2969          * |  intel_iommu_ir | fee00000-feefffff |       64 |
2970          * |-----------------+-------------------+----------|
2971          *
2972          * We enable/disable DMAR by switching enablement for
2973          * vtd_sys_alias and intel_iommu regions. IR region is always
2974          * enabled.
2975          */
2976         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2977                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2978                                  "intel_iommu_dmar",
2979                                  UINT64_MAX);
2980         memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2981                                  "vtd_sys_alias", get_system_memory(),
2982                                  0, memory_region_size(get_system_memory()));
2983         memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2984                               &vtd_mem_ir_ops, s, "intel_iommu_ir",
2985                               VTD_INTERRUPT_ADDR_SIZE);
2986         memory_region_init(&vtd_dev_as->root, OBJECT(s),
2987                            "vtd_root", UINT64_MAX);
2988         memory_region_add_subregion_overlap(&vtd_dev_as->root,
2989                                             VTD_INTERRUPT_ADDR_FIRST,
2990                                             &vtd_dev_as->iommu_ir, 64);
2991         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2992         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2993                                             &vtd_dev_as->sys_alias, 1);
2994         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2995                                             MEMORY_REGION(&vtd_dev_as->iommu),
2996                                             1);
2997         vtd_switch_address_space(vtd_dev_as);
2998     }
2999     return vtd_dev_as;
3000 }
3001 
3002 /* Unmap the whole range in the notifier's scope. */
3003 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3004 {
3005     IOMMUTLBEntry entry;
3006     hwaddr size;
3007     hwaddr start = n->start;
3008     hwaddr end = n->end;
3009     IntelIOMMUState *s = as->iommu_state;
3010     DMAMap map;
3011 
3012     /*
3013      * Note: all the codes in this function has a assumption that IOVA
3014      * bits are no more than VTD_MGAW bits (which is restricted by
3015      * VT-d spec), otherwise we need to consider overflow of 64 bits.
3016      */
3017 
3018     if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
3019         /*
3020          * Don't need to unmap regions that is bigger than the whole
3021          * VT-d supported address space size
3022          */
3023         end = VTD_ADDRESS_SIZE(s->aw_bits);
3024     }
3025 
3026     assert(start <= end);
3027     size = end - start;
3028 
3029     if (ctpop64(size) != 1) {
3030         /*
3031          * This size cannot format a correct mask. Let's enlarge it to
3032          * suite the minimum available mask.
3033          */
3034         int n = 64 - clz64(size);
3035         if (n > s->aw_bits) {
3036             /* should not happen, but in case it happens, limit it */
3037             n = s->aw_bits;
3038         }
3039         size = 1ULL << n;
3040     }
3041 
3042     entry.target_as = &address_space_memory;
3043     /* Adjust iova for the size */
3044     entry.iova = n->start & ~(size - 1);
3045     /* This field is meaningless for unmap */
3046     entry.translated_addr = 0;
3047     entry.perm = IOMMU_NONE;
3048     entry.addr_mask = size - 1;
3049 
3050     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3051                              VTD_PCI_SLOT(as->devfn),
3052                              VTD_PCI_FUNC(as->devfn),
3053                              entry.iova, size);
3054 
3055     map.iova = entry.iova;
3056     map.size = entry.addr_mask;
3057     iova_tree_remove(as->iova_tree, &map);
3058 
3059     memory_region_notify_one(n, &entry);
3060 }
3061 
3062 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3063 {
3064     VTDAddressSpace *vtd_as;
3065     IOMMUNotifier *n;
3066 
3067     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3068         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3069             vtd_address_space_unmap(vtd_as, n);
3070         }
3071     }
3072 }
3073 
3074 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3075 {
3076     vtd_address_space_unmap_all(s);
3077     vtd_switch_address_space_all(s);
3078 }
3079 
3080 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3081 {
3082     memory_region_notify_one((IOMMUNotifier *)private, entry);
3083     return 0;
3084 }
3085 
3086 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3087 {
3088     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3089     IntelIOMMUState *s = vtd_as->iommu_state;
3090     uint8_t bus_n = pci_bus_num(vtd_as->bus);
3091     VTDContextEntry ce;
3092 
3093     /*
3094      * The replay can be triggered by either a invalidation or a newly
3095      * created entry. No matter what, we release existing mappings
3096      * (it means flushing caches for UNMAP-only registers).
3097      */
3098     vtd_address_space_unmap(vtd_as, n);
3099 
3100     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3101         trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
3102                                   PCI_FUNC(vtd_as->devfn),
3103                                   VTD_CONTEXT_ENTRY_DID(ce.hi),
3104                                   ce.hi, ce.lo);
3105         if (vtd_as_has_map_notifier(vtd_as)) {
3106             /* This is required only for MAP typed notifiers */
3107             vtd_page_walk_info info = {
3108                 .hook_fn = vtd_replay_hook,
3109                 .private = (void *)n,
3110                 .notify_unmap = false,
3111                 .aw = s->aw_bits,
3112                 .as = vtd_as,
3113                 .domain_id = VTD_CONTEXT_ENTRY_DID(ce.hi),
3114             };
3115 
3116             vtd_page_walk(&ce, 0, ~0ULL, &info);
3117         }
3118     } else {
3119         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3120                                     PCI_FUNC(vtd_as->devfn));
3121     }
3122 
3123     return;
3124 }
3125 
3126 /* Do the initialization. It will also be called when reset, so pay
3127  * attention when adding new initialization stuff.
3128  */
3129 static void vtd_init(IntelIOMMUState *s)
3130 {
3131     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3132 
3133     memset(s->csr, 0, DMAR_REG_SIZE);
3134     memset(s->wmask, 0, DMAR_REG_SIZE);
3135     memset(s->w1cmask, 0, DMAR_REG_SIZE);
3136     memset(s->womask, 0, DMAR_REG_SIZE);
3137 
3138     s->root = 0;
3139     s->root_extended = false;
3140     s->dmar_enabled = false;
3141     s->intr_enabled = false;
3142     s->iq_head = 0;
3143     s->iq_tail = 0;
3144     s->iq = 0;
3145     s->iq_size = 0;
3146     s->qi_enabled = false;
3147     s->iq_last_desc_type = VTD_INV_DESC_NONE;
3148     s->next_frcd_reg = 0;
3149     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3150              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3151              VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3152     if (s->dma_drain) {
3153         s->cap |= VTD_CAP_DRAIN;
3154     }
3155     if (s->aw_bits == VTD_HOST_AW_48BIT) {
3156         s->cap |= VTD_CAP_SAGAW_48bit;
3157     }
3158     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3159 
3160     /*
3161      * Rsvd field masks for spte
3162      */
3163     vtd_paging_entry_rsvd_field[0] = ~0ULL;
3164     vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3165     vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3166     vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3167     vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3168     vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3169     vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3170     vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3171     vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3172 
3173     if (x86_iommu_ir_supported(x86_iommu)) {
3174         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3175         if (s->intr_eim == ON_OFF_AUTO_ON) {
3176             s->ecap |= VTD_ECAP_EIM;
3177         }
3178         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3179     }
3180 
3181     if (x86_iommu->dt_supported) {
3182         s->ecap |= VTD_ECAP_DT;
3183     }
3184 
3185     if (x86_iommu->pt_supported) {
3186         s->ecap |= VTD_ECAP_PT;
3187     }
3188 
3189     if (s->caching_mode) {
3190         s->cap |= VTD_CAP_CM;
3191     }
3192 
3193     vtd_reset_caches(s);
3194 
3195     /* Define registers with default values and bit semantics */
3196     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3197     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3198     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3199     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3200     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3201     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3202     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
3203     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3204     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3205 
3206     /* Advanced Fault Logging not supported */
3207     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3208     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3209     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3210     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3211 
3212     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3213      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3214      */
3215     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3216 
3217     /* Treated as RO for implementations that PLMR and PHMR fields reported
3218      * as Clear in the CAP_REG.
3219      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3220      */
3221     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3222 
3223     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3224     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3225     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
3226     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3227     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3228     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3229     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3230     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3231     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3232 
3233     /* IOTLB registers */
3234     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3235     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3236     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3237 
3238     /* Fault Recording Registers, 128-bit */
3239     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3240     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3241 
3242     /*
3243      * Interrupt remapping registers.
3244      */
3245     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3246 }
3247 
3248 /* Should not reset address_spaces when reset because devices will still use
3249  * the address space they got at first (won't ask the bus again).
3250  */
3251 static void vtd_reset(DeviceState *dev)
3252 {
3253     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3254 
3255     vtd_init(s);
3256     vtd_address_space_refresh_all(s);
3257 }
3258 
3259 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3260 {
3261     IntelIOMMUState *s = opaque;
3262     VTDAddressSpace *vtd_as;
3263 
3264     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3265 
3266     vtd_as = vtd_find_add_as(s, bus, devfn);
3267     return &vtd_as->as;
3268 }
3269 
3270 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3271 {
3272     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3273 
3274     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3275         error_setg(errp, "eim=on cannot be selected without intremap=on");
3276         return false;
3277     }
3278 
3279     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3280         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3281                       && x86_iommu_ir_supported(x86_iommu) ?
3282                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3283     }
3284     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3285         if (!kvm_irqchip_in_kernel()) {
3286             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3287             return false;
3288         }
3289         if (!kvm_enable_x2apic()) {
3290             error_setg(errp, "eim=on requires support on the KVM side"
3291                              "(X2APIC_API, first shipped in v4.7)");
3292             return false;
3293         }
3294     }
3295 
3296     /* Currently only address widths supported are 39 and 48 bits */
3297     if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3298         (s->aw_bits != VTD_HOST_AW_48BIT)) {
3299         error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3300                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3301         return false;
3302     }
3303 
3304     return true;
3305 }
3306 
3307 static void vtd_realize(DeviceState *dev, Error **errp)
3308 {
3309     MachineState *ms = MACHINE(qdev_get_machine());
3310     PCMachineState *pcms = PC_MACHINE(ms);
3311     PCIBus *bus = pcms->bus;
3312     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3313     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3314 
3315     x86_iommu->type = TYPE_INTEL;
3316 
3317     if (!vtd_decide_config(s, errp)) {
3318         return;
3319     }
3320 
3321     QLIST_INIT(&s->vtd_as_with_notifiers);
3322     qemu_mutex_init(&s->iommu_lock);
3323     memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3324     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3325                           "intel_iommu", DMAR_REG_SIZE);
3326     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3327     /* No corresponding destroy */
3328     s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3329                                      g_free, g_free);
3330     s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3331                                               g_free, g_free);
3332     vtd_init(s);
3333     sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3334     pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3335     /* Pseudo address space under root PCI bus. */
3336     pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3337 }
3338 
3339 static void vtd_class_init(ObjectClass *klass, void *data)
3340 {
3341     DeviceClass *dc = DEVICE_CLASS(klass);
3342     X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3343 
3344     dc->reset = vtd_reset;
3345     dc->vmsd = &vtd_vmstate;
3346     dc->props = vtd_properties;
3347     dc->hotpluggable = false;
3348     x86_class->realize = vtd_realize;
3349     x86_class->int_remap = vtd_int_remap;
3350     /* Supported by the pc-q35-* machine types */
3351     dc->user_creatable = true;
3352 }
3353 
3354 static const TypeInfo vtd_info = {
3355     .name          = TYPE_INTEL_IOMMU_DEVICE,
3356     .parent        = TYPE_X86_IOMMU_DEVICE,
3357     .instance_size = sizeof(IntelIOMMUState),
3358     .class_init    = vtd_class_init,
3359 };
3360 
3361 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3362                                                      void *data)
3363 {
3364     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3365 
3366     imrc->translate = vtd_iommu_translate;
3367     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3368     imrc->replay = vtd_iommu_replay;
3369 }
3370 
3371 static const TypeInfo vtd_iommu_memory_region_info = {
3372     .parent = TYPE_IOMMU_MEMORY_REGION,
3373     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3374     .class_init = vtd_iommu_memory_region_class_init,
3375 };
3376 
3377 static void vtd_register_types(void)
3378 {
3379     type_register_static(&vtd_info);
3380     type_register_static(&vtd_iommu_memory_region_info);
3381 }
3382 
3383 type_init(vtd_register_types)
3384