xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision ad30c0b0)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "hw/sysbus.h"
23 #include "exec/address-spaces.h"
24 #include "intel_iommu_internal.h"
25 #include "hw/pci/pci.h"
26 
27 /*#define DEBUG_INTEL_IOMMU*/
28 #ifdef DEBUG_INTEL_IOMMU
29 enum {
30     DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
31     DEBUG_CACHE,
32 };
33 #define VTD_DBGBIT(x)   (1 << DEBUG_##x)
34 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
35 
36 #define VTD_DPRINTF(what, fmt, ...) do { \
37     if (vtd_dbgflags & VTD_DBGBIT(what)) { \
38         fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
39                 ## __VA_ARGS__); } \
40     } while (0)
41 #else
42 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
43 #endif
44 
45 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
46                             uint64_t wmask, uint64_t w1cmask)
47 {
48     stq_le_p(&s->csr[addr], val);
49     stq_le_p(&s->wmask[addr], wmask);
50     stq_le_p(&s->w1cmask[addr], w1cmask);
51 }
52 
53 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
54 {
55     stq_le_p(&s->womask[addr], mask);
56 }
57 
58 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
59                             uint32_t wmask, uint32_t w1cmask)
60 {
61     stl_le_p(&s->csr[addr], val);
62     stl_le_p(&s->wmask[addr], wmask);
63     stl_le_p(&s->w1cmask[addr], w1cmask);
64 }
65 
66 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
67 {
68     stl_le_p(&s->womask[addr], mask);
69 }
70 
71 /* "External" get/set operations */
72 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
73 {
74     uint64_t oldval = ldq_le_p(&s->csr[addr]);
75     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
76     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
77     stq_le_p(&s->csr[addr],
78              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
79 }
80 
81 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
82 {
83     uint32_t oldval = ldl_le_p(&s->csr[addr]);
84     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
85     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
86     stl_le_p(&s->csr[addr],
87              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
88 }
89 
90 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
91 {
92     uint64_t val = ldq_le_p(&s->csr[addr]);
93     uint64_t womask = ldq_le_p(&s->womask[addr]);
94     return val & ~womask;
95 }
96 
97 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
98 {
99     uint32_t val = ldl_le_p(&s->csr[addr]);
100     uint32_t womask = ldl_le_p(&s->womask[addr]);
101     return val & ~womask;
102 }
103 
104 /* "Internal" get/set operations */
105 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
106 {
107     return ldq_le_p(&s->csr[addr]);
108 }
109 
110 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
111 {
112     return ldl_le_p(&s->csr[addr]);
113 }
114 
115 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
116 {
117     stq_le_p(&s->csr[addr], val);
118 }
119 
120 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
121                                         uint32_t clear, uint32_t mask)
122 {
123     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
124     stl_le_p(&s->csr[addr], new_val);
125     return new_val;
126 }
127 
128 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
129                                         uint64_t clear, uint64_t mask)
130 {
131     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
132     stq_le_p(&s->csr[addr], new_val);
133     return new_val;
134 }
135 
136 /* GHashTable functions */
137 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
138 {
139     return *((const uint64_t *)v1) == *((const uint64_t *)v2);
140 }
141 
142 static guint vtd_uint64_hash(gconstpointer v)
143 {
144     return (guint)*(const uint64_t *)v;
145 }
146 
147 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
148                                           gpointer user_data)
149 {
150     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
151     uint16_t domain_id = *(uint16_t *)user_data;
152     return entry->domain_id == domain_id;
153 }
154 
155 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
156                                         gpointer user_data)
157 {
158     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
159     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
160     uint64_t gfn = info->gfn & info->mask;
161     return (entry->domain_id == info->domain_id) &&
162             ((entry->gfn & info->mask) == gfn);
163 }
164 
165 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
166  * IntelIOMMUState to 1.
167  */
168 static void vtd_reset_context_cache(IntelIOMMUState *s)
169 {
170     VTDAddressSpace *vtd_as;
171     VTDBus *vtd_bus;
172     GHashTableIter bus_it;
173     uint32_t devfn_it;
174 
175     g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
176 
177     VTD_DPRINTF(CACHE, "global context_cache_gen=1");
178     while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
179         for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
180             vtd_as = vtd_bus->dev_as[devfn_it];
181             if (!vtd_as) {
182                 continue;
183             }
184             vtd_as->context_cache_entry.context_cache_gen = 0;
185         }
186     }
187     s->context_cache_gen = 1;
188 }
189 
190 static void vtd_reset_iotlb(IntelIOMMUState *s)
191 {
192     assert(s->iotlb);
193     g_hash_table_remove_all(s->iotlb);
194 }
195 
196 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
197                                        hwaddr addr)
198 {
199     uint64_t key;
200 
201     key = (addr >> VTD_PAGE_SHIFT_4K) |
202            ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
203     return g_hash_table_lookup(s->iotlb, &key);
204 
205 }
206 
207 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
208                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
209                              bool read_flags, bool write_flags)
210 {
211     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
212     uint64_t *key = g_malloc(sizeof(*key));
213     uint64_t gfn = addr >> VTD_PAGE_SHIFT_4K;
214 
215     VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
216                 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
217                 domain_id);
218     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
219         VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
220         vtd_reset_iotlb(s);
221     }
222 
223     entry->gfn = gfn;
224     entry->domain_id = domain_id;
225     entry->slpte = slpte;
226     entry->read_flags = read_flags;
227     entry->write_flags = write_flags;
228     *key = gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
229     g_hash_table_replace(s->iotlb, key, entry);
230 }
231 
232 /* Given the reg addr of both the message data and address, generate an
233  * interrupt via MSI.
234  */
235 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
236                                    hwaddr mesg_data_reg)
237 {
238     hwaddr addr;
239     uint32_t data;
240 
241     assert(mesg_data_reg < DMAR_REG_SIZE);
242     assert(mesg_addr_reg < DMAR_REG_SIZE);
243 
244     addr = vtd_get_long_raw(s, mesg_addr_reg);
245     data = vtd_get_long_raw(s, mesg_data_reg);
246 
247     VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
248     address_space_stl_le(&address_space_memory, addr, data,
249                          MEMTXATTRS_UNSPECIFIED, NULL);
250 }
251 
252 /* Generate a fault event to software via MSI if conditions are met.
253  * Notice that the value of FSTS_REG being passed to it should be the one
254  * before any update.
255  */
256 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
257 {
258     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
259         pre_fsts & VTD_FSTS_IQE) {
260         VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
261                     "to be serviced by software, fault event is not generated "
262                     "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
263         return;
264     }
265     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
266     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
267         VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
268     } else {
269         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
270         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
271     }
272 }
273 
274 /* Check if the Fault (F) field of the Fault Recording Register referenced by
275  * @index is Set.
276  */
277 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
278 {
279     /* Each reg is 128-bit */
280     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
281     addr += 8; /* Access the high 64-bit half */
282 
283     assert(index < DMAR_FRCD_REG_NR);
284 
285     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
286 }
287 
288 /* Update the PPF field of Fault Status Register.
289  * Should be called whenever change the F field of any fault recording
290  * registers.
291  */
292 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
293 {
294     uint32_t i;
295     uint32_t ppf_mask = 0;
296 
297     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
298         if (vtd_is_frcd_set(s, i)) {
299             ppf_mask = VTD_FSTS_PPF;
300             break;
301         }
302     }
303     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
304     VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
305 }
306 
307 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
308 {
309     /* Each reg is 128-bit */
310     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
311     addr += 8; /* Access the high 64-bit half */
312 
313     assert(index < DMAR_FRCD_REG_NR);
314 
315     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
316     vtd_update_fsts_ppf(s);
317 }
318 
319 /* Must not update F field now, should be done later */
320 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
321                             uint16_t source_id, hwaddr addr,
322                             VTDFaultReason fault, bool is_write)
323 {
324     uint64_t hi = 0, lo;
325     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
326 
327     assert(index < DMAR_FRCD_REG_NR);
328 
329     lo = VTD_FRCD_FI(addr);
330     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
331     if (!is_write) {
332         hi |= VTD_FRCD_T;
333     }
334     vtd_set_quad_raw(s, frcd_reg_addr, lo);
335     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
336     VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
337                 ", lo 0x%"PRIx64, index, hi, lo);
338 }
339 
340 /* Try to collapse multiple pending faults from the same requester */
341 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
342 {
343     uint32_t i;
344     uint64_t frcd_reg;
345     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
346 
347     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
348         frcd_reg = vtd_get_quad_raw(s, addr);
349         VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
350         if ((frcd_reg & VTD_FRCD_F) &&
351             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
352             return true;
353         }
354         addr += 16; /* 128-bit for each */
355     }
356     return false;
357 }
358 
359 /* Log and report an DMAR (address translation) fault to software */
360 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
361                                   hwaddr addr, VTDFaultReason fault,
362                                   bool is_write)
363 {
364     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
365 
366     assert(fault < VTD_FR_MAX);
367 
368     if (fault == VTD_FR_RESERVED_ERR) {
369         /* This is not a normal fault reason case. Drop it. */
370         return;
371     }
372     VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
373                 ", is_write %d", source_id, fault, addr, is_write);
374     if (fsts_reg & VTD_FSTS_PFO) {
375         VTD_DPRINTF(FLOG, "new fault is not recorded due to "
376                     "Primary Fault Overflow");
377         return;
378     }
379     if (vtd_try_collapse_fault(s, source_id)) {
380         VTD_DPRINTF(FLOG, "new fault is not recorded due to "
381                     "compression of faults");
382         return;
383     }
384     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
385         VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
386                     "new fault is not recorded, set PFO field");
387         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
388         return;
389     }
390 
391     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
392 
393     if (fsts_reg & VTD_FSTS_PPF) {
394         VTD_DPRINTF(FLOG, "there are pending faults already, "
395                     "fault event is not generated");
396         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
397         s->next_frcd_reg++;
398         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
399             s->next_frcd_reg = 0;
400         }
401     } else {
402         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
403                                 VTD_FSTS_FRI(s->next_frcd_reg));
404         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
405         s->next_frcd_reg++;
406         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
407             s->next_frcd_reg = 0;
408         }
409         /* This case actually cause the PPF to be Set.
410          * So generate fault event (interrupt).
411          */
412          vtd_generate_fault_event(s, fsts_reg);
413     }
414 }
415 
416 /* Handle Invalidation Queue Errors of queued invalidation interface error
417  * conditions.
418  */
419 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
420 {
421     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
422 
423     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
424     vtd_generate_fault_event(s, fsts_reg);
425 }
426 
427 /* Set the IWC field and try to generate an invalidation completion interrupt */
428 static void vtd_generate_completion_event(IntelIOMMUState *s)
429 {
430     VTD_DPRINTF(INV, "completes an invalidation wait command with "
431                 "Interrupt Flag");
432     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
433         VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
434                     "serviced by software, "
435                     "new invalidation event is not generated");
436         return;
437     }
438     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
439     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
440     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
441         VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
442                     "event is not generated");
443         return;
444     } else {
445         /* Generate the interrupt event */
446         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
447         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
448     }
449 }
450 
451 static inline bool vtd_root_entry_present(VTDRootEntry *root)
452 {
453     return root->val & VTD_ROOT_ENTRY_P;
454 }
455 
456 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
457                               VTDRootEntry *re)
458 {
459     dma_addr_t addr;
460 
461     addr = s->root + index * sizeof(*re);
462     if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
463         VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
464                     " + %"PRIu8, s->root, index);
465         re->val = 0;
466         return -VTD_FR_ROOT_TABLE_INV;
467     }
468     re->val = le64_to_cpu(re->val);
469     return 0;
470 }
471 
472 static inline bool vtd_context_entry_present(VTDContextEntry *context)
473 {
474     return context->lo & VTD_CONTEXT_ENTRY_P;
475 }
476 
477 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
478                                            VTDContextEntry *ce)
479 {
480     dma_addr_t addr;
481 
482     if (!vtd_root_entry_present(root)) {
483         VTD_DPRINTF(GENERAL, "error: root-entry is not present");
484         return -VTD_FR_ROOT_ENTRY_P;
485     }
486     addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
487     if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
488         VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
489                     " + %"PRIu8,
490                     (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
491         return -VTD_FR_CONTEXT_TABLE_INV;
492     }
493     ce->lo = le64_to_cpu(ce->lo);
494     ce->hi = le64_to_cpu(ce->hi);
495     return 0;
496 }
497 
498 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
499 {
500     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
501 }
502 
503 /* The shift of an addr for a certain level of paging structure */
504 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
505 {
506     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
507 }
508 
509 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
510 {
511     return slpte & VTD_SL_PT_BASE_ADDR_MASK;
512 }
513 
514 /* Whether the pte indicates the address of the page frame */
515 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
516 {
517     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
518 }
519 
520 /* Get the content of a spte located in @base_addr[@index] */
521 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
522 {
523     uint64_t slpte;
524 
525     assert(index < VTD_SL_PT_ENTRY_NR);
526 
527     if (dma_memory_read(&address_space_memory,
528                         base_addr + index * sizeof(slpte), &slpte,
529                         sizeof(slpte))) {
530         slpte = (uint64_t)-1;
531         return slpte;
532     }
533     slpte = le64_to_cpu(slpte);
534     return slpte;
535 }
536 
537 /* Given a gpa and the level of paging structure, return the offset of current
538  * level.
539  */
540 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
541 {
542     return (gpa >> vtd_slpt_level_shift(level)) &
543             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
544 }
545 
546 /* Check Capability Register to see if the @level of page-table is supported */
547 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
548 {
549     return VTD_CAP_SAGAW_MASK & s->cap &
550            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
551 }
552 
553 /* Get the page-table level that hardware should use for the second-level
554  * page-table walk from the Address Width field of context-entry.
555  */
556 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
557 {
558     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
559 }
560 
561 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
562 {
563     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
564 }
565 
566 static const uint64_t vtd_paging_entry_rsvd_field[] = {
567     [0] = ~0ULL,
568     /* For not large page */
569     [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
570     [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
571     [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
572     [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
573     /* For large page */
574     [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
575     [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
576     [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
577     [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
578 };
579 
580 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
581 {
582     if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
583         /* Maybe large page */
584         return slpte & vtd_paging_entry_rsvd_field[level + 4];
585     } else {
586         return slpte & vtd_paging_entry_rsvd_field[level];
587     }
588 }
589 
590 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
591  * of the translation, can be used for deciding the size of large page.
592  */
593 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
594                             uint64_t *slptep, uint32_t *slpte_level,
595                             bool *reads, bool *writes)
596 {
597     dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
598     uint32_t level = vtd_get_level_from_context_entry(ce);
599     uint32_t offset;
600     uint64_t slpte;
601     uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
602     uint64_t access_right_check;
603 
604     /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
605      * and AW in context-entry.
606      */
607     if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
608         VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
609         return -VTD_FR_ADDR_BEYOND_MGAW;
610     }
611 
612     /* FIXME: what is the Atomics request here? */
613     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
614 
615     while (true) {
616         offset = vtd_gpa_level_offset(gpa, level);
617         slpte = vtd_get_slpte(addr, offset);
618 
619         if (slpte == (uint64_t)-1) {
620             VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
621                         "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
622                         level, gpa);
623             if (level == vtd_get_level_from_context_entry(ce)) {
624                 /* Invalid programming of context-entry */
625                 return -VTD_FR_CONTEXT_ENTRY_INV;
626             } else {
627                 return -VTD_FR_PAGING_ENTRY_INV;
628             }
629         }
630         *reads = (*reads) && (slpte & VTD_SL_R);
631         *writes = (*writes) && (slpte & VTD_SL_W);
632         if (!(slpte & access_right_check)) {
633             VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
634                         "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
635                         (is_write ? "write" : "read"), gpa, slpte);
636             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
637         }
638         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
639             VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
640                         "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
641                         level, slpte);
642             return -VTD_FR_PAGING_ENTRY_RSVD;
643         }
644 
645         if (vtd_is_last_slpte(slpte, level)) {
646             *slptep = slpte;
647             *slpte_level = level;
648             return 0;
649         }
650         addr = vtd_get_slpte_addr(slpte);
651         level--;
652     }
653 }
654 
655 /* Map a device to its corresponding domain (context-entry) */
656 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
657                                     uint8_t devfn, VTDContextEntry *ce)
658 {
659     VTDRootEntry re;
660     int ret_fr;
661 
662     ret_fr = vtd_get_root_entry(s, bus_num, &re);
663     if (ret_fr) {
664         return ret_fr;
665     }
666 
667     if (!vtd_root_entry_present(&re)) {
668         VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
669                     bus_num);
670         return -VTD_FR_ROOT_ENTRY_P;
671     } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
672         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
673                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
674         return -VTD_FR_ROOT_ENTRY_RSVD;
675     }
676 
677     ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
678     if (ret_fr) {
679         return ret_fr;
680     }
681 
682     if (!vtd_context_entry_present(ce)) {
683         VTD_DPRINTF(GENERAL,
684                     "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
685                     "is not present", devfn, bus_num);
686         return -VTD_FR_CONTEXT_ENTRY_P;
687     } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
688                (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
689         VTD_DPRINTF(GENERAL,
690                     "error: non-zero reserved field in context-entry "
691                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
692         return -VTD_FR_CONTEXT_ENTRY_RSVD;
693     }
694     /* Check if the programming of context-entry is valid */
695     if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
696         VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
697                     "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
698                     ce->hi, ce->lo);
699         return -VTD_FR_CONTEXT_ENTRY_INV;
700     } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
701         VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
702                     "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
703                     ce->hi, ce->lo);
704         return -VTD_FR_CONTEXT_ENTRY_INV;
705     }
706     return 0;
707 }
708 
709 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
710 {
711     return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
712 }
713 
714 static const bool vtd_qualified_faults[] = {
715     [VTD_FR_RESERVED] = false,
716     [VTD_FR_ROOT_ENTRY_P] = false,
717     [VTD_FR_CONTEXT_ENTRY_P] = true,
718     [VTD_FR_CONTEXT_ENTRY_INV] = true,
719     [VTD_FR_ADDR_BEYOND_MGAW] = true,
720     [VTD_FR_WRITE] = true,
721     [VTD_FR_READ] = true,
722     [VTD_FR_PAGING_ENTRY_INV] = true,
723     [VTD_FR_ROOT_TABLE_INV] = false,
724     [VTD_FR_CONTEXT_TABLE_INV] = false,
725     [VTD_FR_ROOT_ENTRY_RSVD] = false,
726     [VTD_FR_PAGING_ENTRY_RSVD] = true,
727     [VTD_FR_CONTEXT_ENTRY_TT] = true,
728     [VTD_FR_RESERVED_ERR] = false,
729     [VTD_FR_MAX] = false,
730 };
731 
732 /* To see if a fault condition is "qualified", which is reported to software
733  * only if the FPD field in the context-entry used to process the faulting
734  * request is 0.
735  */
736 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
737 {
738     return vtd_qualified_faults[fault];
739 }
740 
741 static inline bool vtd_is_interrupt_addr(hwaddr addr)
742 {
743     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
744 }
745 
746 /* Map dev to context-entry then do a paging-structures walk to do a iommu
747  * translation.
748  *
749  * Called from RCU critical section.
750  *
751  * @bus_num: The bus number
752  * @devfn: The devfn, which is the  combined of device and function number
753  * @is_write: The access is a write operation
754  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
755  */
756 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
757                                    uint8_t devfn, hwaddr addr, bool is_write,
758                                    IOMMUTLBEntry *entry)
759 {
760     IntelIOMMUState *s = vtd_as->iommu_state;
761     VTDContextEntry ce;
762     uint8_t bus_num = pci_bus_num(bus);
763     VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
764     uint64_t slpte;
765     uint32_t level;
766     uint16_t source_id = vtd_make_source_id(bus_num, devfn);
767     int ret_fr;
768     bool is_fpd_set = false;
769     bool reads = true;
770     bool writes = true;
771     VTDIOTLBEntry *iotlb_entry;
772 
773     /* Check if the request is in interrupt address range */
774     if (vtd_is_interrupt_addr(addr)) {
775         if (is_write) {
776             /* FIXME: since we don't know the length of the access here, we
777              * treat Non-DWORD length write requests without PASID as
778              * interrupt requests, too. Withoud interrupt remapping support,
779              * we just use 1:1 mapping.
780              */
781             VTD_DPRINTF(MMU, "write request to interrupt address "
782                         "gpa 0x%"PRIx64, addr);
783             entry->iova = addr & VTD_PAGE_MASK_4K;
784             entry->translated_addr = addr & VTD_PAGE_MASK_4K;
785             entry->addr_mask = ~VTD_PAGE_MASK_4K;
786             entry->perm = IOMMU_WO;
787             return;
788         } else {
789             VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
790                         "gpa 0x%"PRIx64, addr);
791             vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
792             return;
793         }
794     }
795     /* Try to fetch slpte form IOTLB */
796     iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
797     if (iotlb_entry) {
798         VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
799                     " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
800                     iotlb_entry->slpte, iotlb_entry->domain_id);
801         slpte = iotlb_entry->slpte;
802         reads = iotlb_entry->read_flags;
803         writes = iotlb_entry->write_flags;
804         goto out;
805     }
806     /* Try to fetch context-entry from cache first */
807     if (cc_entry->context_cache_gen == s->context_cache_gen) {
808         VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
809                     "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
810                     bus_num, devfn, cc_entry->context_entry.hi,
811                     cc_entry->context_entry.lo, cc_entry->context_cache_gen);
812         ce = cc_entry->context_entry;
813         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
814     } else {
815         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
816         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
817         if (ret_fr) {
818             ret_fr = -ret_fr;
819             if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
820                 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
821                             "requests through this context-entry "
822                             "(with FPD Set)");
823             } else {
824                 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
825             }
826             return;
827         }
828         /* Update context-cache */
829         VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
830                     "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
831                     bus_num, devfn, ce.hi, ce.lo,
832                     cc_entry->context_cache_gen, s->context_cache_gen);
833         cc_entry->context_entry = ce;
834         cc_entry->context_cache_gen = s->context_cache_gen;
835     }
836 
837     ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
838                               &reads, &writes);
839     if (ret_fr) {
840         ret_fr = -ret_fr;
841         if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
842             VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
843                         "through this context-entry (with FPD Set)");
844         } else {
845             vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
846         }
847         return;
848     }
849 
850     vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
851                      reads, writes);
852 out:
853     entry->iova = addr & VTD_PAGE_MASK_4K;
854     entry->translated_addr = vtd_get_slpte_addr(slpte) & VTD_PAGE_MASK_4K;
855     entry->addr_mask = ~VTD_PAGE_MASK_4K;
856     entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
857 }
858 
859 static void vtd_root_table_setup(IntelIOMMUState *s)
860 {
861     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
862     s->root_extended = s->root & VTD_RTADDR_RTT;
863     s->root &= VTD_RTADDR_ADDR_MASK;
864 
865     VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
866                 (s->root_extended ? "(extended)" : ""));
867 }
868 
869 static void vtd_context_global_invalidate(IntelIOMMUState *s)
870 {
871     s->context_cache_gen++;
872     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
873         vtd_reset_context_cache(s);
874     }
875 }
876 
877 
878 /* Find the VTD address space currently associated with a given bus number,
879  */
880 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
881 {
882     VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
883     if (!vtd_bus) {
884         /* Iterate over the registered buses to find the one
885          * which currently hold this bus number, and update the bus_num lookup table:
886          */
887         GHashTableIter iter;
888 
889         g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
890         while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
891             if (pci_bus_num(vtd_bus->bus) == bus_num) {
892                 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
893                 return vtd_bus;
894             }
895         }
896     }
897     return vtd_bus;
898 }
899 
900 /* Do a context-cache device-selective invalidation.
901  * @func_mask: FM field after shifting
902  */
903 static void vtd_context_device_invalidate(IntelIOMMUState *s,
904                                           uint16_t source_id,
905                                           uint16_t func_mask)
906 {
907     uint16_t mask;
908     VTDBus *vtd_bus;
909     VTDAddressSpace *vtd_as;
910     uint16_t devfn;
911     uint16_t devfn_it;
912 
913     switch (func_mask & 3) {
914     case 0:
915         mask = 0;   /* No bits in the SID field masked */
916         break;
917     case 1:
918         mask = 4;   /* Mask bit 2 in the SID field */
919         break;
920     case 2:
921         mask = 6;   /* Mask bit 2:1 in the SID field */
922         break;
923     case 3:
924         mask = 7;   /* Mask bit 2:0 in the SID field */
925         break;
926     }
927     VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
928                     " mask %"PRIu16, source_id, mask);
929     vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
930     if (vtd_bus) {
931         devfn = VTD_SID_TO_DEVFN(source_id);
932         for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
933             vtd_as = vtd_bus->dev_as[devfn_it];
934             if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
935                 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
936                             devfn_it);
937                 vtd_as->context_cache_entry.context_cache_gen = 0;
938             }
939         }
940     }
941 }
942 
943 /* Context-cache invalidation
944  * Returns the Context Actual Invalidation Granularity.
945  * @val: the content of the CCMD_REG
946  */
947 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
948 {
949     uint64_t caig;
950     uint64_t type = val & VTD_CCMD_CIRG_MASK;
951 
952     switch (type) {
953     case VTD_CCMD_DOMAIN_INVL:
954         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
955                     (uint16_t)VTD_CCMD_DID(val));
956         /* Fall through */
957     case VTD_CCMD_GLOBAL_INVL:
958         VTD_DPRINTF(INV, "global invalidation");
959         caig = VTD_CCMD_GLOBAL_INVL_A;
960         vtd_context_global_invalidate(s);
961         break;
962 
963     case VTD_CCMD_DEVICE_INVL:
964         caig = VTD_CCMD_DEVICE_INVL_A;
965         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
966         break;
967 
968     default:
969         VTD_DPRINTF(GENERAL, "error: invalid granularity");
970         caig = 0;
971     }
972     return caig;
973 }
974 
975 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
976 {
977     vtd_reset_iotlb(s);
978 }
979 
980 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
981 {
982     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
983                                 &domain_id);
984 }
985 
986 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
987                                       hwaddr addr, uint8_t am)
988 {
989     VTDIOTLBPageInvInfo info;
990 
991     assert(am <= VTD_MAMV);
992     info.domain_id = domain_id;
993     info.gfn = addr >> VTD_PAGE_SHIFT_4K;
994     info.mask = ~((1 << am) - 1);
995     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
996 }
997 
998 /* Flush IOTLB
999  * Returns the IOTLB Actual Invalidation Granularity.
1000  * @val: the content of the IOTLB_REG
1001  */
1002 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1003 {
1004     uint64_t iaig;
1005     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1006     uint16_t domain_id;
1007     hwaddr addr;
1008     uint8_t am;
1009 
1010     switch (type) {
1011     case VTD_TLB_GLOBAL_FLUSH:
1012         VTD_DPRINTF(INV, "global invalidation");
1013         iaig = VTD_TLB_GLOBAL_FLUSH_A;
1014         vtd_iotlb_global_invalidate(s);
1015         break;
1016 
1017     case VTD_TLB_DSI_FLUSH:
1018         domain_id = VTD_TLB_DID(val);
1019         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1020                     domain_id);
1021         iaig = VTD_TLB_DSI_FLUSH_A;
1022         vtd_iotlb_domain_invalidate(s, domain_id);
1023         break;
1024 
1025     case VTD_TLB_PSI_FLUSH:
1026         domain_id = VTD_TLB_DID(val);
1027         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1028         am = VTD_IVA_AM(addr);
1029         addr = VTD_IVA_ADDR(addr);
1030         VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1031                     " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1032         if (am > VTD_MAMV) {
1033             VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1034                         "%"PRIu8, (uint8_t)VTD_MAMV);
1035             iaig = 0;
1036             break;
1037         }
1038         iaig = VTD_TLB_PSI_FLUSH_A;
1039         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1040         break;
1041 
1042     default:
1043         VTD_DPRINTF(GENERAL, "error: invalid granularity");
1044         iaig = 0;
1045     }
1046     return iaig;
1047 }
1048 
1049 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1050 {
1051     return s->iq_tail == 0;
1052 }
1053 
1054 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1055 {
1056     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1057            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1058 }
1059 
1060 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1061 {
1062     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1063 
1064     VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1065     if (en) {
1066         if (vtd_queued_inv_enable_check(s)) {
1067             s->iq = iqa_val & VTD_IQA_IQA_MASK;
1068             /* 2^(x+8) entries */
1069             s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1070             s->qi_enabled = true;
1071             VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1072             VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1073                         s->iq, s->iq_size);
1074             /* Ok - report back to driver */
1075             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1076         } else {
1077             VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1078                         "tail %"PRIu16, s->iq_tail);
1079         }
1080     } else {
1081         if (vtd_queued_inv_disable_check(s)) {
1082             /* disable Queued Invalidation */
1083             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1084             s->iq_head = 0;
1085             s->qi_enabled = false;
1086             /* Ok - report back to driver */
1087             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1088         } else {
1089             VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1090                         "head %"PRIu16 ", tail %"PRIu16
1091                         ", last_descriptor %"PRIu8,
1092                         s->iq_head, s->iq_tail, s->iq_last_desc_type);
1093         }
1094     }
1095 }
1096 
1097 /* Set Root Table Pointer */
1098 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1099 {
1100     VTD_DPRINTF(CSR, "set Root Table Pointer");
1101 
1102     vtd_root_table_setup(s);
1103     /* Ok - report back to driver */
1104     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1105 }
1106 
1107 /* Handle Translation Enable/Disable */
1108 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1109 {
1110     VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1111 
1112     if (en) {
1113         s->dmar_enabled = true;
1114         /* Ok - report back to driver */
1115         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1116     } else {
1117         s->dmar_enabled = false;
1118 
1119         /* Clear the index of Fault Recording Register */
1120         s->next_frcd_reg = 0;
1121         /* Ok - report back to driver */
1122         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1123     }
1124 }
1125 
1126 /* Handle write to Global Command Register */
1127 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1128 {
1129     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1130     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1131     uint32_t changed = status ^ val;
1132 
1133     VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1134     if (changed & VTD_GCMD_TE) {
1135         /* Translation enable/disable */
1136         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1137     }
1138     if (val & VTD_GCMD_SRTP) {
1139         /* Set/update the root-table pointer */
1140         vtd_handle_gcmd_srtp(s);
1141     }
1142     if (changed & VTD_GCMD_QIE) {
1143         /* Queued Invalidation Enable */
1144         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1145     }
1146 }
1147 
1148 /* Handle write to Context Command Register */
1149 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1150 {
1151     uint64_t ret;
1152     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1153 
1154     /* Context-cache invalidation request */
1155     if (val & VTD_CCMD_ICC) {
1156         if (s->qi_enabled) {
1157             VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1158                         "should not use register-based invalidation");
1159             return;
1160         }
1161         ret = vtd_context_cache_invalidate(s, val);
1162         /* Invalidation completed. Change something to show */
1163         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1164         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1165                                       ret);
1166         VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1167     }
1168 }
1169 
1170 /* Handle write to IOTLB Invalidation Register */
1171 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1172 {
1173     uint64_t ret;
1174     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1175 
1176     /* IOTLB invalidation request */
1177     if (val & VTD_TLB_IVT) {
1178         if (s->qi_enabled) {
1179             VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1180                         "should not use register-based invalidation");
1181             return;
1182         }
1183         ret = vtd_iotlb_flush(s, val);
1184         /* Invalidation completed. Change something to show */
1185         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1186         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1187                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1188         VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1189     }
1190 }
1191 
1192 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1193 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1194                              VTDInvDesc *inv_desc)
1195 {
1196     dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1197     if (dma_memory_read(&address_space_memory, addr, inv_desc,
1198         sizeof(*inv_desc))) {
1199         VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1200                     "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1201         inv_desc->lo = 0;
1202         inv_desc->hi = 0;
1203 
1204         return false;
1205     }
1206     inv_desc->lo = le64_to_cpu(inv_desc->lo);
1207     inv_desc->hi = le64_to_cpu(inv_desc->hi);
1208     return true;
1209 }
1210 
1211 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1212 {
1213     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1214         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1215         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1216                     "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1217                     inv_desc->hi, inv_desc->lo);
1218         return false;
1219     }
1220     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1221         /* Status Write */
1222         uint32_t status_data = (uint32_t)(inv_desc->lo >>
1223                                VTD_INV_DESC_WAIT_DATA_SHIFT);
1224 
1225         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1226 
1227         /* FIXME: need to be masked with HAW? */
1228         dma_addr_t status_addr = inv_desc->hi;
1229         VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1230                     status_data, status_addr);
1231         status_data = cpu_to_le32(status_data);
1232         if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1233                              sizeof(status_data))) {
1234             VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1235             return false;
1236         }
1237     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1238         /* Interrupt flag */
1239         VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1240         vtd_generate_completion_event(s);
1241     } else {
1242         VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1243                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1244         return false;
1245     }
1246     return true;
1247 }
1248 
1249 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1250                                            VTDInvDesc *inv_desc)
1251 {
1252     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1253         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1254                     "Invalidate Descriptor");
1255         return false;
1256     }
1257     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1258     case VTD_INV_DESC_CC_DOMAIN:
1259         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1260                     (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1261         /* Fall through */
1262     case VTD_INV_DESC_CC_GLOBAL:
1263         VTD_DPRINTF(INV, "global invalidation");
1264         vtd_context_global_invalidate(s);
1265         break;
1266 
1267     case VTD_INV_DESC_CC_DEVICE:
1268         vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1269                                       VTD_INV_DESC_CC_FM(inv_desc->lo));
1270         break;
1271 
1272     default:
1273         VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1274                     "Invalidate Descriptor hi 0x%"PRIx64  " lo 0x%"PRIx64,
1275                     inv_desc->hi, inv_desc->lo);
1276         return false;
1277     }
1278     return true;
1279 }
1280 
1281 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1282 {
1283     uint16_t domain_id;
1284     uint8_t am;
1285     hwaddr addr;
1286 
1287     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1288         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1289         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1290                     "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1291                     inv_desc->hi, inv_desc->lo);
1292         return false;
1293     }
1294 
1295     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1296     case VTD_INV_DESC_IOTLB_GLOBAL:
1297         VTD_DPRINTF(INV, "global invalidation");
1298         vtd_iotlb_global_invalidate(s);
1299         break;
1300 
1301     case VTD_INV_DESC_IOTLB_DOMAIN:
1302         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1303         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1304                     domain_id);
1305         vtd_iotlb_domain_invalidate(s, domain_id);
1306         break;
1307 
1308     case VTD_INV_DESC_IOTLB_PAGE:
1309         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1310         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1311         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1312         VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1313                     " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1314         if (am > VTD_MAMV) {
1315             VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1316                         "%"PRIu8, (uint8_t)VTD_MAMV);
1317             return false;
1318         }
1319         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1320         break;
1321 
1322     default:
1323         VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1324                     "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1325                     inv_desc->hi, inv_desc->lo);
1326         return false;
1327     }
1328     return true;
1329 }
1330 
1331 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1332 {
1333     VTDInvDesc inv_desc;
1334     uint8_t desc_type;
1335 
1336     VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1337     if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1338         s->iq_last_desc_type = VTD_INV_DESC_NONE;
1339         return false;
1340     }
1341     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1342     /* FIXME: should update at first or at last? */
1343     s->iq_last_desc_type = desc_type;
1344 
1345     switch (desc_type) {
1346     case VTD_INV_DESC_CC:
1347         VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1348                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1349         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1350             return false;
1351         }
1352         break;
1353 
1354     case VTD_INV_DESC_IOTLB:
1355         VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1356                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1357         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1358             return false;
1359         }
1360         break;
1361 
1362     case VTD_INV_DESC_WAIT:
1363         VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1364                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1365         if (!vtd_process_wait_desc(s, &inv_desc)) {
1366             return false;
1367         }
1368         break;
1369 
1370     default:
1371         VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1372                     "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1373                     inv_desc.hi, inv_desc.lo, desc_type);
1374         return false;
1375     }
1376     s->iq_head++;
1377     if (s->iq_head == s->iq_size) {
1378         s->iq_head = 0;
1379     }
1380     return true;
1381 }
1382 
1383 /* Try to fetch and process more Invalidation Descriptors */
1384 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1385 {
1386     VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1387     if (s->iq_tail >= s->iq_size) {
1388         /* Detects an invalid Tail pointer */
1389         VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1390                     " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1391         vtd_handle_inv_queue_error(s);
1392         return;
1393     }
1394     while (s->iq_head != s->iq_tail) {
1395         if (!vtd_process_inv_desc(s)) {
1396             /* Invalidation Queue Errors */
1397             vtd_handle_inv_queue_error(s);
1398             break;
1399         }
1400         /* Must update the IQH_REG in time */
1401         vtd_set_quad_raw(s, DMAR_IQH_REG,
1402                          (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1403                          VTD_IQH_QH_MASK);
1404     }
1405 }
1406 
1407 /* Handle write to Invalidation Queue Tail Register */
1408 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1409 {
1410     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1411 
1412     s->iq_tail = VTD_IQT_QT(val);
1413     VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1414     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1415         /* Process Invalidation Queue here */
1416         vtd_fetch_inv_desc(s);
1417     }
1418 }
1419 
1420 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1421 {
1422     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1423     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1424     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1425 
1426     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1427         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1428         VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1429                     "IP field of FECTL_REG");
1430     }
1431     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1432      * Descriptors if there are any when Queued Invalidation is enabled?
1433      */
1434 }
1435 
1436 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1437 {
1438     uint32_t fectl_reg;
1439     /* FIXME: when software clears the IM field, check the IP field. But do we
1440      * need to compare the old value and the new value to conclude that
1441      * software clears the IM field? Or just check if the IM field is zero?
1442      */
1443     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1444     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1445         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1446         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1447         VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1448                     "fault event interrupt");
1449     }
1450 }
1451 
1452 static void vtd_handle_ics_write(IntelIOMMUState *s)
1453 {
1454     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1455     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1456 
1457     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1458         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1459         VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1460                     "clear IP field of IECTL_REG");
1461     }
1462 }
1463 
1464 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1465 {
1466     uint32_t iectl_reg;
1467     /* FIXME: when software clears the IM field, check the IP field. But do we
1468      * need to compare the old value and the new value to conclude that
1469      * software clears the IM field? Or just check if the IM field is zero?
1470      */
1471     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1472     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1473         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1474         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1475         VTD_DPRINTF(INV, "IM field is cleared, generate "
1476                     "invalidation event interrupt");
1477     }
1478 }
1479 
1480 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1481 {
1482     IntelIOMMUState *s = opaque;
1483     uint64_t val;
1484 
1485     if (addr + size > DMAR_REG_SIZE) {
1486         VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1487                     ", got 0x%"PRIx64 " %d",
1488                     (uint64_t)DMAR_REG_SIZE, addr, size);
1489         return (uint64_t)-1;
1490     }
1491 
1492     switch (addr) {
1493     /* Root Table Address Register, 64-bit */
1494     case DMAR_RTADDR_REG:
1495         if (size == 4) {
1496             val = s->root & ((1ULL << 32) - 1);
1497         } else {
1498             val = s->root;
1499         }
1500         break;
1501 
1502     case DMAR_RTADDR_REG_HI:
1503         assert(size == 4);
1504         val = s->root >> 32;
1505         break;
1506 
1507     /* Invalidation Queue Address Register, 64-bit */
1508     case DMAR_IQA_REG:
1509         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1510         if (size == 4) {
1511             val = val & ((1ULL << 32) - 1);
1512         }
1513         break;
1514 
1515     case DMAR_IQA_REG_HI:
1516         assert(size == 4);
1517         val = s->iq >> 32;
1518         break;
1519 
1520     default:
1521         if (size == 4) {
1522             val = vtd_get_long(s, addr);
1523         } else {
1524             val = vtd_get_quad(s, addr);
1525         }
1526     }
1527     VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1528                 addr, size, val);
1529     return val;
1530 }
1531 
1532 static void vtd_mem_write(void *opaque, hwaddr addr,
1533                           uint64_t val, unsigned size)
1534 {
1535     IntelIOMMUState *s = opaque;
1536 
1537     if (addr + size > DMAR_REG_SIZE) {
1538         VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1539                     ", got 0x%"PRIx64 " %d",
1540                     (uint64_t)DMAR_REG_SIZE, addr, size);
1541         return;
1542     }
1543 
1544     switch (addr) {
1545     /* Global Command Register, 32-bit */
1546     case DMAR_GCMD_REG:
1547         VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1548                     ", size %d, val 0x%"PRIx64, addr, size, val);
1549         vtd_set_long(s, addr, val);
1550         vtd_handle_gcmd_write(s);
1551         break;
1552 
1553     /* Context Command Register, 64-bit */
1554     case DMAR_CCMD_REG:
1555         VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1556                     ", size %d, val 0x%"PRIx64, addr, size, val);
1557         if (size == 4) {
1558             vtd_set_long(s, addr, val);
1559         } else {
1560             vtd_set_quad(s, addr, val);
1561             vtd_handle_ccmd_write(s);
1562         }
1563         break;
1564 
1565     case DMAR_CCMD_REG_HI:
1566         VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1567                     ", size %d, val 0x%"PRIx64, addr, size, val);
1568         assert(size == 4);
1569         vtd_set_long(s, addr, val);
1570         vtd_handle_ccmd_write(s);
1571         break;
1572 
1573     /* IOTLB Invalidation Register, 64-bit */
1574     case DMAR_IOTLB_REG:
1575         VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1576                     ", size %d, val 0x%"PRIx64, addr, size, val);
1577         if (size == 4) {
1578             vtd_set_long(s, addr, val);
1579         } else {
1580             vtd_set_quad(s, addr, val);
1581             vtd_handle_iotlb_write(s);
1582         }
1583         break;
1584 
1585     case DMAR_IOTLB_REG_HI:
1586         VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1587                     ", size %d, val 0x%"PRIx64, addr, size, val);
1588         assert(size == 4);
1589         vtd_set_long(s, addr, val);
1590         vtd_handle_iotlb_write(s);
1591         break;
1592 
1593     /* Invalidate Address Register, 64-bit */
1594     case DMAR_IVA_REG:
1595         VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1596                     ", size %d, val 0x%"PRIx64, addr, size, val);
1597         if (size == 4) {
1598             vtd_set_long(s, addr, val);
1599         } else {
1600             vtd_set_quad(s, addr, val);
1601         }
1602         break;
1603 
1604     case DMAR_IVA_REG_HI:
1605         VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1606                     ", size %d, val 0x%"PRIx64, addr, size, val);
1607         assert(size == 4);
1608         vtd_set_long(s, addr, val);
1609         break;
1610 
1611     /* Fault Status Register, 32-bit */
1612     case DMAR_FSTS_REG:
1613         VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1614                     ", size %d, val 0x%"PRIx64, addr, size, val);
1615         assert(size == 4);
1616         vtd_set_long(s, addr, val);
1617         vtd_handle_fsts_write(s);
1618         break;
1619 
1620     /* Fault Event Control Register, 32-bit */
1621     case DMAR_FECTL_REG:
1622         VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1623                     ", size %d, val 0x%"PRIx64, addr, size, val);
1624         assert(size == 4);
1625         vtd_set_long(s, addr, val);
1626         vtd_handle_fectl_write(s);
1627         break;
1628 
1629     /* Fault Event Data Register, 32-bit */
1630     case DMAR_FEDATA_REG:
1631         VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1632                     ", size %d, val 0x%"PRIx64, addr, size, val);
1633         assert(size == 4);
1634         vtd_set_long(s, addr, val);
1635         break;
1636 
1637     /* Fault Event Address Register, 32-bit */
1638     case DMAR_FEADDR_REG:
1639         VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1640                     ", size %d, val 0x%"PRIx64, addr, size, val);
1641         assert(size == 4);
1642         vtd_set_long(s, addr, val);
1643         break;
1644 
1645     /* Fault Event Upper Address Register, 32-bit */
1646     case DMAR_FEUADDR_REG:
1647         VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1648                     ", size %d, val 0x%"PRIx64, addr, size, val);
1649         assert(size == 4);
1650         vtd_set_long(s, addr, val);
1651         break;
1652 
1653     /* Protected Memory Enable Register, 32-bit */
1654     case DMAR_PMEN_REG:
1655         VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1656                     ", size %d, val 0x%"PRIx64, addr, size, val);
1657         assert(size == 4);
1658         vtd_set_long(s, addr, val);
1659         break;
1660 
1661     /* Root Table Address Register, 64-bit */
1662     case DMAR_RTADDR_REG:
1663         VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1664                     ", size %d, val 0x%"PRIx64, addr, size, val);
1665         if (size == 4) {
1666             vtd_set_long(s, addr, val);
1667         } else {
1668             vtd_set_quad(s, addr, val);
1669         }
1670         break;
1671 
1672     case DMAR_RTADDR_REG_HI:
1673         VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1674                     ", size %d, val 0x%"PRIx64, addr, size, val);
1675         assert(size == 4);
1676         vtd_set_long(s, addr, val);
1677         break;
1678 
1679     /* Invalidation Queue Tail Register, 64-bit */
1680     case DMAR_IQT_REG:
1681         VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1682                     ", size %d, val 0x%"PRIx64, addr, size, val);
1683         if (size == 4) {
1684             vtd_set_long(s, addr, val);
1685         } else {
1686             vtd_set_quad(s, addr, val);
1687         }
1688         vtd_handle_iqt_write(s);
1689         break;
1690 
1691     case DMAR_IQT_REG_HI:
1692         VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1693                     ", size %d, val 0x%"PRIx64, addr, size, val);
1694         assert(size == 4);
1695         vtd_set_long(s, addr, val);
1696         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1697         break;
1698 
1699     /* Invalidation Queue Address Register, 64-bit */
1700     case DMAR_IQA_REG:
1701         VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1702                     ", size %d, val 0x%"PRIx64, addr, size, val);
1703         if (size == 4) {
1704             vtd_set_long(s, addr, val);
1705         } else {
1706             vtd_set_quad(s, addr, val);
1707         }
1708         break;
1709 
1710     case DMAR_IQA_REG_HI:
1711         VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1712                     ", size %d, val 0x%"PRIx64, addr, size, val);
1713         assert(size == 4);
1714         vtd_set_long(s, addr, val);
1715         break;
1716 
1717     /* Invalidation Completion Status Register, 32-bit */
1718     case DMAR_ICS_REG:
1719         VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1720                     ", size %d, val 0x%"PRIx64, addr, size, val);
1721         assert(size == 4);
1722         vtd_set_long(s, addr, val);
1723         vtd_handle_ics_write(s);
1724         break;
1725 
1726     /* Invalidation Event Control Register, 32-bit */
1727     case DMAR_IECTL_REG:
1728         VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1729                     ", size %d, val 0x%"PRIx64, addr, size, val);
1730         assert(size == 4);
1731         vtd_set_long(s, addr, val);
1732         vtd_handle_iectl_write(s);
1733         break;
1734 
1735     /* Invalidation Event Data Register, 32-bit */
1736     case DMAR_IEDATA_REG:
1737         VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1738                     ", size %d, val 0x%"PRIx64, addr, size, val);
1739         assert(size == 4);
1740         vtd_set_long(s, addr, val);
1741         break;
1742 
1743     /* Invalidation Event Address Register, 32-bit */
1744     case DMAR_IEADDR_REG:
1745         VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1746                     ", size %d, val 0x%"PRIx64, addr, size, val);
1747         assert(size == 4);
1748         vtd_set_long(s, addr, val);
1749         break;
1750 
1751     /* Invalidation Event Upper Address Register, 32-bit */
1752     case DMAR_IEUADDR_REG:
1753         VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1754                     ", size %d, val 0x%"PRIx64, addr, size, val);
1755         assert(size == 4);
1756         vtd_set_long(s, addr, val);
1757         break;
1758 
1759     /* Fault Recording Registers, 128-bit */
1760     case DMAR_FRCD_REG_0_0:
1761         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1762                     ", size %d, val 0x%"PRIx64, addr, size, val);
1763         if (size == 4) {
1764             vtd_set_long(s, addr, val);
1765         } else {
1766             vtd_set_quad(s, addr, val);
1767         }
1768         break;
1769 
1770     case DMAR_FRCD_REG_0_1:
1771         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1772                     ", size %d, val 0x%"PRIx64, addr, size, val);
1773         assert(size == 4);
1774         vtd_set_long(s, addr, val);
1775         break;
1776 
1777     case DMAR_FRCD_REG_0_2:
1778         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1779                     ", size %d, val 0x%"PRIx64, addr, size, val);
1780         if (size == 4) {
1781             vtd_set_long(s, addr, val);
1782         } else {
1783             vtd_set_quad(s, addr, val);
1784             /* May clear bit 127 (Fault), update PPF */
1785             vtd_update_fsts_ppf(s);
1786         }
1787         break;
1788 
1789     case DMAR_FRCD_REG_0_3:
1790         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1791                     ", size %d, val 0x%"PRIx64, addr, size, val);
1792         assert(size == 4);
1793         vtd_set_long(s, addr, val);
1794         /* May clear bit 127 (Fault), update PPF */
1795         vtd_update_fsts_ppf(s);
1796         break;
1797 
1798     default:
1799         VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1800                     ", size %d, val 0x%"PRIx64, addr, size, val);
1801         if (size == 4) {
1802             vtd_set_long(s, addr, val);
1803         } else {
1804             vtd_set_quad(s, addr, val);
1805         }
1806     }
1807 }
1808 
1809 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1810                                          bool is_write)
1811 {
1812     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1813     IntelIOMMUState *s = vtd_as->iommu_state;
1814     IOMMUTLBEntry ret = {
1815         .target_as = &address_space_memory,
1816         .iova = addr,
1817         .translated_addr = 0,
1818         .addr_mask = ~(hwaddr)0,
1819         .perm = IOMMU_NONE,
1820     };
1821 
1822     if (!s->dmar_enabled) {
1823         /* DMAR disabled, passthrough, use 4k-page*/
1824         ret.iova = addr & VTD_PAGE_MASK_4K;
1825         ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1826         ret.addr_mask = ~VTD_PAGE_MASK_4K;
1827         ret.perm = IOMMU_RW;
1828         return ret;
1829     }
1830 
1831     vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1832                            is_write, &ret);
1833     VTD_DPRINTF(MMU,
1834                 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1835                 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1836                 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1837                 vtd_as->devfn, addr, ret.translated_addr);
1838     return ret;
1839 }
1840 
1841 static const VMStateDescription vtd_vmstate = {
1842     .name = "iommu-intel",
1843     .unmigratable = 1,
1844 };
1845 
1846 static const MemoryRegionOps vtd_mem_ops = {
1847     .read = vtd_mem_read,
1848     .write = vtd_mem_write,
1849     .endianness = DEVICE_LITTLE_ENDIAN,
1850     .impl = {
1851         .min_access_size = 4,
1852         .max_access_size = 8,
1853     },
1854     .valid = {
1855         .min_access_size = 4,
1856         .max_access_size = 8,
1857     },
1858 };
1859 
1860 static Property vtd_properties[] = {
1861     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1862     DEFINE_PROP_END_OF_LIST(),
1863 };
1864 
1865 
1866 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
1867 {
1868     uintptr_t key = (uintptr_t)bus;
1869     VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
1870     VTDAddressSpace *vtd_dev_as;
1871 
1872     if (!vtd_bus) {
1873         /* No corresponding free() */
1874         vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * VTD_PCI_DEVFN_MAX);
1875         vtd_bus->bus = bus;
1876         key = (uintptr_t)bus;
1877         g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
1878     }
1879 
1880     vtd_dev_as = vtd_bus->dev_as[devfn];
1881 
1882     if (!vtd_dev_as) {
1883         vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
1884 
1885         vtd_dev_as->bus = bus;
1886         vtd_dev_as->devfn = (uint8_t)devfn;
1887         vtd_dev_as->iommu_state = s;
1888         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
1889         memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
1890                                  &s->iommu_ops, "intel_iommu", UINT64_MAX);
1891         address_space_init(&vtd_dev_as->as,
1892                            &vtd_dev_as->iommu, "intel_iommu");
1893     }
1894     return vtd_dev_as;
1895 }
1896 
1897 /* Do the initialization. It will also be called when reset, so pay
1898  * attention when adding new initialization stuff.
1899  */
1900 static void vtd_init(IntelIOMMUState *s)
1901 {
1902     memset(s->csr, 0, DMAR_REG_SIZE);
1903     memset(s->wmask, 0, DMAR_REG_SIZE);
1904     memset(s->w1cmask, 0, DMAR_REG_SIZE);
1905     memset(s->womask, 0, DMAR_REG_SIZE);
1906 
1907     s->iommu_ops.translate = vtd_iommu_translate;
1908     s->root = 0;
1909     s->root_extended = false;
1910     s->dmar_enabled = false;
1911     s->iq_head = 0;
1912     s->iq_tail = 0;
1913     s->iq = 0;
1914     s->iq_size = 0;
1915     s->qi_enabled = false;
1916     s->iq_last_desc_type = VTD_INV_DESC_NONE;
1917     s->next_frcd_reg = 0;
1918     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
1919              VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI;
1920     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1921 
1922     vtd_reset_context_cache(s);
1923     vtd_reset_iotlb(s);
1924 
1925     /* Define registers with default values and bit semantics */
1926     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1927     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1928     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1929     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1930     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1931     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1932     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1933     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1934     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1935 
1936     /* Advanced Fault Logging not supported */
1937     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1938     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1939     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1940     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
1941 
1942     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1943      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1944      */
1945     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
1946 
1947     /* Treated as RO for implementations that PLMR and PHMR fields reported
1948      * as Clear in the CAP_REG.
1949      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1950      */
1951     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
1952 
1953     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
1954     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
1955     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
1956     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
1957     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1958     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
1959     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
1960     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
1961     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
1962 
1963     /* IOTLB registers */
1964     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
1965     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
1966     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
1967 
1968     /* Fault Recording Registers, 128-bit */
1969     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
1970     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
1971 }
1972 
1973 /* Should not reset address_spaces when reset because devices will still use
1974  * the address space they got at first (won't ask the bus again).
1975  */
1976 static void vtd_reset(DeviceState *dev)
1977 {
1978     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1979 
1980     VTD_DPRINTF(GENERAL, "");
1981     vtd_init(s);
1982 }
1983 
1984 static void vtd_realize(DeviceState *dev, Error **errp)
1985 {
1986     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1987 
1988     VTD_DPRINTF(GENERAL, "");
1989     memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
1990     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
1991                           "intel_iommu", DMAR_REG_SIZE);
1992     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
1993     /* No corresponding destroy */
1994     s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
1995                                      g_free, g_free);
1996     s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
1997                                               g_free, g_free);
1998     vtd_init(s);
1999 }
2000 
2001 static void vtd_class_init(ObjectClass *klass, void *data)
2002 {
2003     DeviceClass *dc = DEVICE_CLASS(klass);
2004 
2005     dc->reset = vtd_reset;
2006     dc->realize = vtd_realize;
2007     dc->vmsd = &vtd_vmstate;
2008     dc->props = vtd_properties;
2009 }
2010 
2011 static const TypeInfo vtd_info = {
2012     .name          = TYPE_INTEL_IOMMU_DEVICE,
2013     .parent        = TYPE_SYS_BUS_DEVICE,
2014     .instance_size = sizeof(IntelIOMMUState),
2015     .class_init    = vtd_class_init,
2016 };
2017 
2018 static void vtd_register_types(void)
2019 {
2020     VTD_DPRINTF(GENERAL, "");
2021     type_register_static(&vtd_info);
2022 }
2023 
2024 type_init(vtd_register_types)
2025