xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision 9e7dac7c)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "hw/sysbus.h"
23 #include "exec/address-spaces.h"
24 #include "intel_iommu_internal.h"
25 
26 /*#define DEBUG_INTEL_IOMMU*/
27 #ifdef DEBUG_INTEL_IOMMU
28 enum {
29     DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
30     DEBUG_CACHE,
31 };
32 #define VTD_DBGBIT(x)   (1 << DEBUG_##x)
33 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
34 
35 #define VTD_DPRINTF(what, fmt, ...) do { \
36     if (vtd_dbgflags & VTD_DBGBIT(what)) { \
37         fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
38                 ## __VA_ARGS__); } \
39     } while (0)
40 #else
41 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
42 #endif
43 
44 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
45                             uint64_t wmask, uint64_t w1cmask)
46 {
47     stq_le_p(&s->csr[addr], val);
48     stq_le_p(&s->wmask[addr], wmask);
49     stq_le_p(&s->w1cmask[addr], w1cmask);
50 }
51 
52 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
53 {
54     stq_le_p(&s->womask[addr], mask);
55 }
56 
57 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
58                             uint32_t wmask, uint32_t w1cmask)
59 {
60     stl_le_p(&s->csr[addr], val);
61     stl_le_p(&s->wmask[addr], wmask);
62     stl_le_p(&s->w1cmask[addr], w1cmask);
63 }
64 
65 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
66 {
67     stl_le_p(&s->womask[addr], mask);
68 }
69 
70 /* "External" get/set operations */
71 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
72 {
73     uint64_t oldval = ldq_le_p(&s->csr[addr]);
74     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
75     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
76     stq_le_p(&s->csr[addr],
77              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
78 }
79 
80 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
81 {
82     uint32_t oldval = ldl_le_p(&s->csr[addr]);
83     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
84     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
85     stl_le_p(&s->csr[addr],
86              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
87 }
88 
89 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
90 {
91     uint64_t val = ldq_le_p(&s->csr[addr]);
92     uint64_t womask = ldq_le_p(&s->womask[addr]);
93     return val & ~womask;
94 }
95 
96 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
97 {
98     uint32_t val = ldl_le_p(&s->csr[addr]);
99     uint32_t womask = ldl_le_p(&s->womask[addr]);
100     return val & ~womask;
101 }
102 
103 /* "Internal" get/set operations */
104 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
105 {
106     return ldq_le_p(&s->csr[addr]);
107 }
108 
109 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
110 {
111     return ldl_le_p(&s->csr[addr]);
112 }
113 
114 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
115 {
116     stq_le_p(&s->csr[addr], val);
117 }
118 
119 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
120                                         uint32_t clear, uint32_t mask)
121 {
122     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
123     stl_le_p(&s->csr[addr], new_val);
124     return new_val;
125 }
126 
127 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
128                                         uint64_t clear, uint64_t mask)
129 {
130     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
131     stq_le_p(&s->csr[addr], new_val);
132     return new_val;
133 }
134 
135 /* GHashTable functions */
136 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
137 {
138     return *((const uint64_t *)v1) == *((const uint64_t *)v2);
139 }
140 
141 static guint vtd_uint64_hash(gconstpointer v)
142 {
143     return (guint)*(const uint64_t *)v;
144 }
145 
146 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
147                                           gpointer user_data)
148 {
149     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
150     uint16_t domain_id = *(uint16_t *)user_data;
151     return entry->domain_id == domain_id;
152 }
153 
154 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
155                                         gpointer user_data)
156 {
157     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
158     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
159     uint64_t gfn = info->gfn & info->mask;
160     return (entry->domain_id == info->domain_id) &&
161             ((entry->gfn & info->mask) == gfn);
162 }
163 
164 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
165  * IntelIOMMUState to 1.
166  */
167 static void vtd_reset_context_cache(IntelIOMMUState *s)
168 {
169     VTDAddressSpace **pvtd_as;
170     VTDAddressSpace *vtd_as;
171     uint32_t bus_it;
172     uint32_t devfn_it;
173 
174     VTD_DPRINTF(CACHE, "global context_cache_gen=1");
175     for (bus_it = 0; bus_it < VTD_PCI_BUS_MAX; ++bus_it) {
176         pvtd_as = s->address_spaces[bus_it];
177         if (!pvtd_as) {
178             continue;
179         }
180         for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
181             vtd_as = pvtd_as[devfn_it];
182             if (!vtd_as) {
183                 continue;
184             }
185             vtd_as->context_cache_entry.context_cache_gen = 0;
186         }
187     }
188     s->context_cache_gen = 1;
189 }
190 
191 static void vtd_reset_iotlb(IntelIOMMUState *s)
192 {
193     assert(s->iotlb);
194     g_hash_table_remove_all(s->iotlb);
195 }
196 
197 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
198                                        hwaddr addr)
199 {
200     uint64_t key;
201 
202     key = (addr >> VTD_PAGE_SHIFT_4K) |
203            ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
204     return g_hash_table_lookup(s->iotlb, &key);
205 
206 }
207 
208 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
209                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
210                              bool read_flags, bool write_flags)
211 {
212     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
213     uint64_t *key = g_malloc(sizeof(*key));
214     uint64_t gfn = addr >> VTD_PAGE_SHIFT_4K;
215 
216     VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
217                 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
218                 domain_id);
219     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
220         VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
221         vtd_reset_iotlb(s);
222     }
223 
224     entry->gfn = gfn;
225     entry->domain_id = domain_id;
226     entry->slpte = slpte;
227     entry->read_flags = read_flags;
228     entry->write_flags = write_flags;
229     *key = gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
230     g_hash_table_replace(s->iotlb, key, entry);
231 }
232 
233 /* Given the reg addr of both the message data and address, generate an
234  * interrupt via MSI.
235  */
236 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
237                                    hwaddr mesg_data_reg)
238 {
239     hwaddr addr;
240     uint32_t data;
241 
242     assert(mesg_data_reg < DMAR_REG_SIZE);
243     assert(mesg_addr_reg < DMAR_REG_SIZE);
244 
245     addr = vtd_get_long_raw(s, mesg_addr_reg);
246     data = vtd_get_long_raw(s, mesg_data_reg);
247 
248     VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
249     stl_le_phys(&address_space_memory, addr, data);
250 }
251 
252 /* Generate a fault event to software via MSI if conditions are met.
253  * Notice that the value of FSTS_REG being passed to it should be the one
254  * before any update.
255  */
256 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
257 {
258     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
259         pre_fsts & VTD_FSTS_IQE) {
260         VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
261                     "to be serviced by software, fault event is not generated "
262                     "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
263         return;
264     }
265     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
266     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
267         VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
268     } else {
269         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
270         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
271     }
272 }
273 
274 /* Check if the Fault (F) field of the Fault Recording Register referenced by
275  * @index is Set.
276  */
277 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
278 {
279     /* Each reg is 128-bit */
280     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
281     addr += 8; /* Access the high 64-bit half */
282 
283     assert(index < DMAR_FRCD_REG_NR);
284 
285     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
286 }
287 
288 /* Update the PPF field of Fault Status Register.
289  * Should be called whenever change the F field of any fault recording
290  * registers.
291  */
292 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
293 {
294     uint32_t i;
295     uint32_t ppf_mask = 0;
296 
297     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
298         if (vtd_is_frcd_set(s, i)) {
299             ppf_mask = VTD_FSTS_PPF;
300             break;
301         }
302     }
303     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
304     VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
305 }
306 
307 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
308 {
309     /* Each reg is 128-bit */
310     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
311     addr += 8; /* Access the high 64-bit half */
312 
313     assert(index < DMAR_FRCD_REG_NR);
314 
315     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
316     vtd_update_fsts_ppf(s);
317 }
318 
319 /* Must not update F field now, should be done later */
320 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
321                             uint16_t source_id, hwaddr addr,
322                             VTDFaultReason fault, bool is_write)
323 {
324     uint64_t hi = 0, lo;
325     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
326 
327     assert(index < DMAR_FRCD_REG_NR);
328 
329     lo = VTD_FRCD_FI(addr);
330     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
331     if (!is_write) {
332         hi |= VTD_FRCD_T;
333     }
334     vtd_set_quad_raw(s, frcd_reg_addr, lo);
335     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
336     VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
337                 ", lo 0x%"PRIx64, index, hi, lo);
338 }
339 
340 /* Try to collapse multiple pending faults from the same requester */
341 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
342 {
343     uint32_t i;
344     uint64_t frcd_reg;
345     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
346 
347     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
348         frcd_reg = vtd_get_quad_raw(s, addr);
349         VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
350         if ((frcd_reg & VTD_FRCD_F) &&
351             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
352             return true;
353         }
354         addr += 16; /* 128-bit for each */
355     }
356     return false;
357 }
358 
359 /* Log and report an DMAR (address translation) fault to software */
360 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
361                                   hwaddr addr, VTDFaultReason fault,
362                                   bool is_write)
363 {
364     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
365 
366     assert(fault < VTD_FR_MAX);
367 
368     if (fault == VTD_FR_RESERVED_ERR) {
369         /* This is not a normal fault reason case. Drop it. */
370         return;
371     }
372     VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
373                 ", is_write %d", source_id, fault, addr, is_write);
374     if (fsts_reg & VTD_FSTS_PFO) {
375         VTD_DPRINTF(FLOG, "new fault is not recorded due to "
376                     "Primary Fault Overflow");
377         return;
378     }
379     if (vtd_try_collapse_fault(s, source_id)) {
380         VTD_DPRINTF(FLOG, "new fault is not recorded due to "
381                     "compression of faults");
382         return;
383     }
384     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
385         VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
386                     "new fault is not recorded, set PFO field");
387         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
388         return;
389     }
390 
391     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
392 
393     if (fsts_reg & VTD_FSTS_PPF) {
394         VTD_DPRINTF(FLOG, "there are pending faults already, "
395                     "fault event is not generated");
396         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
397         s->next_frcd_reg++;
398         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
399             s->next_frcd_reg = 0;
400         }
401     } else {
402         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
403                                 VTD_FSTS_FRI(s->next_frcd_reg));
404         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
405         s->next_frcd_reg++;
406         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
407             s->next_frcd_reg = 0;
408         }
409         /* This case actually cause the PPF to be Set.
410          * So generate fault event (interrupt).
411          */
412          vtd_generate_fault_event(s, fsts_reg);
413     }
414 }
415 
416 /* Handle Invalidation Queue Errors of queued invalidation interface error
417  * conditions.
418  */
419 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
420 {
421     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
422 
423     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
424     vtd_generate_fault_event(s, fsts_reg);
425 }
426 
427 /* Set the IWC field and try to generate an invalidation completion interrupt */
428 static void vtd_generate_completion_event(IntelIOMMUState *s)
429 {
430     VTD_DPRINTF(INV, "completes an invalidation wait command with "
431                 "Interrupt Flag");
432     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
433         VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
434                     "serviced by software, "
435                     "new invalidation event is not generated");
436         return;
437     }
438     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
439     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
440     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
441         VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
442                     "event is not generated");
443         return;
444     } else {
445         /* Generate the interrupt event */
446         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
447         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
448     }
449 }
450 
451 static inline bool vtd_root_entry_present(VTDRootEntry *root)
452 {
453     return root->val & VTD_ROOT_ENTRY_P;
454 }
455 
456 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
457                               VTDRootEntry *re)
458 {
459     dma_addr_t addr;
460 
461     addr = s->root + index * sizeof(*re);
462     if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
463         VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
464                     " + %"PRIu8, s->root, index);
465         re->val = 0;
466         return -VTD_FR_ROOT_TABLE_INV;
467     }
468     re->val = le64_to_cpu(re->val);
469     return 0;
470 }
471 
472 static inline bool vtd_context_entry_present(VTDContextEntry *context)
473 {
474     return context->lo & VTD_CONTEXT_ENTRY_P;
475 }
476 
477 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
478                                            VTDContextEntry *ce)
479 {
480     dma_addr_t addr;
481 
482     if (!vtd_root_entry_present(root)) {
483         VTD_DPRINTF(GENERAL, "error: root-entry is not present");
484         return -VTD_FR_ROOT_ENTRY_P;
485     }
486     addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
487     if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
488         VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
489                     " + %"PRIu8,
490                     (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
491         return -VTD_FR_CONTEXT_TABLE_INV;
492     }
493     ce->lo = le64_to_cpu(ce->lo);
494     ce->hi = le64_to_cpu(ce->hi);
495     return 0;
496 }
497 
498 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
499 {
500     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
501 }
502 
503 /* The shift of an addr for a certain level of paging structure */
504 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
505 {
506     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
507 }
508 
509 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
510 {
511     return slpte & VTD_SL_PT_BASE_ADDR_MASK;
512 }
513 
514 /* Whether the pte indicates the address of the page frame */
515 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
516 {
517     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
518 }
519 
520 /* Get the content of a spte located in @base_addr[@index] */
521 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
522 {
523     uint64_t slpte;
524 
525     assert(index < VTD_SL_PT_ENTRY_NR);
526 
527     if (dma_memory_read(&address_space_memory,
528                         base_addr + index * sizeof(slpte), &slpte,
529                         sizeof(slpte))) {
530         slpte = (uint64_t)-1;
531         return slpte;
532     }
533     slpte = le64_to_cpu(slpte);
534     return slpte;
535 }
536 
537 /* Given a gpa and the level of paging structure, return the offset of current
538  * level.
539  */
540 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
541 {
542     return (gpa >> vtd_slpt_level_shift(level)) &
543             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
544 }
545 
546 /* Check Capability Register to see if the @level of page-table is supported */
547 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
548 {
549     return VTD_CAP_SAGAW_MASK & s->cap &
550            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
551 }
552 
553 /* Get the page-table level that hardware should use for the second-level
554  * page-table walk from the Address Width field of context-entry.
555  */
556 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
557 {
558     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
559 }
560 
561 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
562 {
563     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
564 }
565 
566 static const uint64_t vtd_paging_entry_rsvd_field[] = {
567     [0] = ~0ULL,
568     /* For not large page */
569     [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
570     [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
571     [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
572     [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
573     /* For large page */
574     [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
575     [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
576     [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
577     [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
578 };
579 
580 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
581 {
582     if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
583         /* Maybe large page */
584         return slpte & vtd_paging_entry_rsvd_field[level + 4];
585     } else {
586         return slpte & vtd_paging_entry_rsvd_field[level];
587     }
588 }
589 
590 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
591  * of the translation, can be used for deciding the size of large page.
592  */
593 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
594                             uint64_t *slptep, uint32_t *slpte_level,
595                             bool *reads, bool *writes)
596 {
597     dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
598     uint32_t level = vtd_get_level_from_context_entry(ce);
599     uint32_t offset;
600     uint64_t slpte;
601     uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
602     uint64_t access_right_check;
603 
604     /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
605      * and AW in context-entry.
606      */
607     if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
608         VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
609         return -VTD_FR_ADDR_BEYOND_MGAW;
610     }
611 
612     /* FIXME: what is the Atomics request here? */
613     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
614 
615     while (true) {
616         offset = vtd_gpa_level_offset(gpa, level);
617         slpte = vtd_get_slpte(addr, offset);
618 
619         if (slpte == (uint64_t)-1) {
620             VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
621                         "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
622                         level, gpa);
623             if (level == vtd_get_level_from_context_entry(ce)) {
624                 /* Invalid programming of context-entry */
625                 return -VTD_FR_CONTEXT_ENTRY_INV;
626             } else {
627                 return -VTD_FR_PAGING_ENTRY_INV;
628             }
629         }
630         *reads = (*reads) && (slpte & VTD_SL_R);
631         *writes = (*writes) && (slpte & VTD_SL_W);
632         if (!(slpte & access_right_check)) {
633             VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
634                         "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
635                         (is_write ? "write" : "read"), gpa, slpte);
636             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
637         }
638         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
639             VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
640                         "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
641                         level, slpte);
642             return -VTD_FR_PAGING_ENTRY_RSVD;
643         }
644 
645         if (vtd_is_last_slpte(slpte, level)) {
646             *slptep = slpte;
647             *slpte_level = level;
648             return 0;
649         }
650         addr = vtd_get_slpte_addr(slpte);
651         level--;
652     }
653 }
654 
655 /* Map a device to its corresponding domain (context-entry) */
656 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
657                                     uint8_t devfn, VTDContextEntry *ce)
658 {
659     VTDRootEntry re;
660     int ret_fr;
661 
662     ret_fr = vtd_get_root_entry(s, bus_num, &re);
663     if (ret_fr) {
664         return ret_fr;
665     }
666 
667     if (!vtd_root_entry_present(&re)) {
668         VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
669                     bus_num);
670         return -VTD_FR_ROOT_ENTRY_P;
671     } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
672         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
673                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
674         return -VTD_FR_ROOT_ENTRY_RSVD;
675     }
676 
677     ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
678     if (ret_fr) {
679         return ret_fr;
680     }
681 
682     if (!vtd_context_entry_present(ce)) {
683         VTD_DPRINTF(GENERAL,
684                     "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
685                     "is not present", devfn, bus_num);
686         return -VTD_FR_CONTEXT_ENTRY_P;
687     } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
688                (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
689         VTD_DPRINTF(GENERAL,
690                     "error: non-zero reserved field in context-entry "
691                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
692         return -VTD_FR_CONTEXT_ENTRY_RSVD;
693     }
694     /* Check if the programming of context-entry is valid */
695     if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
696         VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
697                     "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
698                     ce->hi, ce->lo);
699         return -VTD_FR_CONTEXT_ENTRY_INV;
700     } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
701         VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
702                     "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
703                     ce->hi, ce->lo);
704         return -VTD_FR_CONTEXT_ENTRY_INV;
705     }
706     return 0;
707 }
708 
709 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
710 {
711     return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
712 }
713 
714 static const bool vtd_qualified_faults[] = {
715     [VTD_FR_RESERVED] = false,
716     [VTD_FR_ROOT_ENTRY_P] = false,
717     [VTD_FR_CONTEXT_ENTRY_P] = true,
718     [VTD_FR_CONTEXT_ENTRY_INV] = true,
719     [VTD_FR_ADDR_BEYOND_MGAW] = true,
720     [VTD_FR_WRITE] = true,
721     [VTD_FR_READ] = true,
722     [VTD_FR_PAGING_ENTRY_INV] = true,
723     [VTD_FR_ROOT_TABLE_INV] = false,
724     [VTD_FR_CONTEXT_TABLE_INV] = false,
725     [VTD_FR_ROOT_ENTRY_RSVD] = false,
726     [VTD_FR_PAGING_ENTRY_RSVD] = true,
727     [VTD_FR_CONTEXT_ENTRY_TT] = true,
728     [VTD_FR_RESERVED_ERR] = false,
729     [VTD_FR_MAX] = false,
730 };
731 
732 /* To see if a fault condition is "qualified", which is reported to software
733  * only if the FPD field in the context-entry used to process the faulting
734  * request is 0.
735  */
736 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
737 {
738     return vtd_qualified_faults[fault];
739 }
740 
741 static inline bool vtd_is_interrupt_addr(hwaddr addr)
742 {
743     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
744 }
745 
746 /* Map dev to context-entry then do a paging-structures walk to do a iommu
747  * translation.
748  * @bus_num: The bus number
749  * @devfn: The devfn, which is the  combined of device and function number
750  * @is_write: The access is a write operation
751  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
752  */
753 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, uint8_t bus_num,
754                                    uint8_t devfn, hwaddr addr, bool is_write,
755                                    IOMMUTLBEntry *entry)
756 {
757     IntelIOMMUState *s = vtd_as->iommu_state;
758     VTDContextEntry ce;
759     VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
760     uint64_t slpte;
761     uint32_t level;
762     uint16_t source_id = vtd_make_source_id(bus_num, devfn);
763     int ret_fr;
764     bool is_fpd_set = false;
765     bool reads = true;
766     bool writes = true;
767     VTDIOTLBEntry *iotlb_entry;
768 
769     /* Check if the request is in interrupt address range */
770     if (vtd_is_interrupt_addr(addr)) {
771         if (is_write) {
772             /* FIXME: since we don't know the length of the access here, we
773              * treat Non-DWORD length write requests without PASID as
774              * interrupt requests, too. Withoud interrupt remapping support,
775              * we just use 1:1 mapping.
776              */
777             VTD_DPRINTF(MMU, "write request to interrupt address "
778                         "gpa 0x%"PRIx64, addr);
779             entry->iova = addr & VTD_PAGE_MASK_4K;
780             entry->translated_addr = addr & VTD_PAGE_MASK_4K;
781             entry->addr_mask = ~VTD_PAGE_MASK_4K;
782             entry->perm = IOMMU_WO;
783             return;
784         } else {
785             VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
786                         "gpa 0x%"PRIx64, addr);
787             vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
788             return;
789         }
790     }
791     /* Try to fetch slpte form IOTLB */
792     iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
793     if (iotlb_entry) {
794         VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
795                     " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
796                     iotlb_entry->slpte, iotlb_entry->domain_id);
797         slpte = iotlb_entry->slpte;
798         reads = iotlb_entry->read_flags;
799         writes = iotlb_entry->write_flags;
800         goto out;
801     }
802     /* Try to fetch context-entry from cache first */
803     if (cc_entry->context_cache_gen == s->context_cache_gen) {
804         VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
805                     "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
806                     bus_num, devfn, cc_entry->context_entry.hi,
807                     cc_entry->context_entry.lo, cc_entry->context_cache_gen);
808         ce = cc_entry->context_entry;
809         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
810     } else {
811         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
812         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
813         if (ret_fr) {
814             ret_fr = -ret_fr;
815             if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
816                 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
817                             "requests through this context-entry "
818                             "(with FPD Set)");
819             } else {
820                 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
821             }
822             return;
823         }
824         /* Update context-cache */
825         VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
826                     "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
827                     bus_num, devfn, ce.hi, ce.lo,
828                     cc_entry->context_cache_gen, s->context_cache_gen);
829         cc_entry->context_entry = ce;
830         cc_entry->context_cache_gen = s->context_cache_gen;
831     }
832 
833     ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
834                               &reads, &writes);
835     if (ret_fr) {
836         ret_fr = -ret_fr;
837         if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
838             VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
839                         "through this context-entry (with FPD Set)");
840         } else {
841             vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
842         }
843         return;
844     }
845 
846     vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
847                      reads, writes);
848 out:
849     entry->iova = addr & VTD_PAGE_MASK_4K;
850     entry->translated_addr = vtd_get_slpte_addr(slpte) & VTD_PAGE_MASK_4K;
851     entry->addr_mask = ~VTD_PAGE_MASK_4K;
852     entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
853 }
854 
855 static void vtd_root_table_setup(IntelIOMMUState *s)
856 {
857     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
858     s->root_extended = s->root & VTD_RTADDR_RTT;
859     s->root &= VTD_RTADDR_ADDR_MASK;
860 
861     VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
862                 (s->root_extended ? "(extended)" : ""));
863 }
864 
865 static void vtd_context_global_invalidate(IntelIOMMUState *s)
866 {
867     s->context_cache_gen++;
868     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
869         vtd_reset_context_cache(s);
870     }
871 }
872 
873 /* Do a context-cache device-selective invalidation.
874  * @func_mask: FM field after shifting
875  */
876 static void vtd_context_device_invalidate(IntelIOMMUState *s,
877                                           uint16_t source_id,
878                                           uint16_t func_mask)
879 {
880     uint16_t mask;
881     VTDAddressSpace **pvtd_as;
882     VTDAddressSpace *vtd_as;
883     uint16_t devfn;
884     uint16_t devfn_it;
885 
886     switch (func_mask & 3) {
887     case 0:
888         mask = 0;   /* No bits in the SID field masked */
889         break;
890     case 1:
891         mask = 4;   /* Mask bit 2 in the SID field */
892         break;
893     case 2:
894         mask = 6;   /* Mask bit 2:1 in the SID field */
895         break;
896     case 3:
897         mask = 7;   /* Mask bit 2:0 in the SID field */
898         break;
899     }
900     VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
901                     " mask %"PRIu16, source_id, mask);
902     pvtd_as = s->address_spaces[VTD_SID_TO_BUS(source_id)];
903     if (pvtd_as) {
904         devfn = VTD_SID_TO_DEVFN(source_id);
905         for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
906             vtd_as = pvtd_as[devfn_it];
907             if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
908                 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
909                             devfn_it);
910                 vtd_as->context_cache_entry.context_cache_gen = 0;
911             }
912         }
913     }
914 }
915 
916 /* Context-cache invalidation
917  * Returns the Context Actual Invalidation Granularity.
918  * @val: the content of the CCMD_REG
919  */
920 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
921 {
922     uint64_t caig;
923     uint64_t type = val & VTD_CCMD_CIRG_MASK;
924 
925     switch (type) {
926     case VTD_CCMD_DOMAIN_INVL:
927         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
928                     (uint16_t)VTD_CCMD_DID(val));
929         /* Fall through */
930     case VTD_CCMD_GLOBAL_INVL:
931         VTD_DPRINTF(INV, "global invalidation");
932         caig = VTD_CCMD_GLOBAL_INVL_A;
933         vtd_context_global_invalidate(s);
934         break;
935 
936     case VTD_CCMD_DEVICE_INVL:
937         caig = VTD_CCMD_DEVICE_INVL_A;
938         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
939         break;
940 
941     default:
942         VTD_DPRINTF(GENERAL, "error: invalid granularity");
943         caig = 0;
944     }
945     return caig;
946 }
947 
948 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
949 {
950     vtd_reset_iotlb(s);
951 }
952 
953 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
954 {
955     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
956                                 &domain_id);
957 }
958 
959 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
960                                       hwaddr addr, uint8_t am)
961 {
962     VTDIOTLBPageInvInfo info;
963 
964     assert(am <= VTD_MAMV);
965     info.domain_id = domain_id;
966     info.gfn = addr >> VTD_PAGE_SHIFT_4K;
967     info.mask = ~((1 << am) - 1);
968     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
969 }
970 
971 /* Flush IOTLB
972  * Returns the IOTLB Actual Invalidation Granularity.
973  * @val: the content of the IOTLB_REG
974  */
975 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
976 {
977     uint64_t iaig;
978     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
979     uint16_t domain_id;
980     hwaddr addr;
981     uint8_t am;
982 
983     switch (type) {
984     case VTD_TLB_GLOBAL_FLUSH:
985         VTD_DPRINTF(INV, "global invalidation");
986         iaig = VTD_TLB_GLOBAL_FLUSH_A;
987         vtd_iotlb_global_invalidate(s);
988         break;
989 
990     case VTD_TLB_DSI_FLUSH:
991         domain_id = VTD_TLB_DID(val);
992         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
993                     domain_id);
994         iaig = VTD_TLB_DSI_FLUSH_A;
995         vtd_iotlb_domain_invalidate(s, domain_id);
996         break;
997 
998     case VTD_TLB_PSI_FLUSH:
999         domain_id = VTD_TLB_DID(val);
1000         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1001         am = VTD_IVA_AM(addr);
1002         addr = VTD_IVA_ADDR(addr);
1003         VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1004                     " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1005         if (am > VTD_MAMV) {
1006             VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1007                         "%"PRIu8, (uint8_t)VTD_MAMV);
1008             iaig = 0;
1009             break;
1010         }
1011         iaig = VTD_TLB_PSI_FLUSH_A;
1012         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1013         break;
1014 
1015     default:
1016         VTD_DPRINTF(GENERAL, "error: invalid granularity");
1017         iaig = 0;
1018     }
1019     return iaig;
1020 }
1021 
1022 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1023 {
1024     return s->iq_tail == 0;
1025 }
1026 
1027 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1028 {
1029     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1030            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1031 }
1032 
1033 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1034 {
1035     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1036 
1037     VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1038     if (en) {
1039         if (vtd_queued_inv_enable_check(s)) {
1040             s->iq = iqa_val & VTD_IQA_IQA_MASK;
1041             /* 2^(x+8) entries */
1042             s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1043             s->qi_enabled = true;
1044             VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1045             VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1046                         s->iq, s->iq_size);
1047             /* Ok - report back to driver */
1048             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1049         } else {
1050             VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1051                         "tail %"PRIu16, s->iq_tail);
1052         }
1053     } else {
1054         if (vtd_queued_inv_disable_check(s)) {
1055             /* disable Queued Invalidation */
1056             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1057             s->iq_head = 0;
1058             s->qi_enabled = false;
1059             /* Ok - report back to driver */
1060             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1061         } else {
1062             VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1063                         "head %"PRIu16 ", tail %"PRIu16
1064                         ", last_descriptor %"PRIu8,
1065                         s->iq_head, s->iq_tail, s->iq_last_desc_type);
1066         }
1067     }
1068 }
1069 
1070 /* Set Root Table Pointer */
1071 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1072 {
1073     VTD_DPRINTF(CSR, "set Root Table Pointer");
1074 
1075     vtd_root_table_setup(s);
1076     /* Ok - report back to driver */
1077     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1078 }
1079 
1080 /* Handle Translation Enable/Disable */
1081 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1082 {
1083     VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1084 
1085     if (en) {
1086         s->dmar_enabled = true;
1087         /* Ok - report back to driver */
1088         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1089     } else {
1090         s->dmar_enabled = false;
1091 
1092         /* Clear the index of Fault Recording Register */
1093         s->next_frcd_reg = 0;
1094         /* Ok - report back to driver */
1095         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1096     }
1097 }
1098 
1099 /* Handle write to Global Command Register */
1100 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1101 {
1102     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1103     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1104     uint32_t changed = status ^ val;
1105 
1106     VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1107     if (changed & VTD_GCMD_TE) {
1108         /* Translation enable/disable */
1109         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1110     }
1111     if (val & VTD_GCMD_SRTP) {
1112         /* Set/update the root-table pointer */
1113         vtd_handle_gcmd_srtp(s);
1114     }
1115     if (changed & VTD_GCMD_QIE) {
1116         /* Queued Invalidation Enable */
1117         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1118     }
1119 }
1120 
1121 /* Handle write to Context Command Register */
1122 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1123 {
1124     uint64_t ret;
1125     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1126 
1127     /* Context-cache invalidation request */
1128     if (val & VTD_CCMD_ICC) {
1129         if (s->qi_enabled) {
1130             VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1131                         "should not use register-based invalidation");
1132             return;
1133         }
1134         ret = vtd_context_cache_invalidate(s, val);
1135         /* Invalidation completed. Change something to show */
1136         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1137         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1138                                       ret);
1139         VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1140     }
1141 }
1142 
1143 /* Handle write to IOTLB Invalidation Register */
1144 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1145 {
1146     uint64_t ret;
1147     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1148 
1149     /* IOTLB invalidation request */
1150     if (val & VTD_TLB_IVT) {
1151         if (s->qi_enabled) {
1152             VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1153                         "should not use register-based invalidation");
1154             return;
1155         }
1156         ret = vtd_iotlb_flush(s, val);
1157         /* Invalidation completed. Change something to show */
1158         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1159         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1160                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1161         VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1162     }
1163 }
1164 
1165 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1166 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1167                              VTDInvDesc *inv_desc)
1168 {
1169     dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1170     if (dma_memory_read(&address_space_memory, addr, inv_desc,
1171         sizeof(*inv_desc))) {
1172         VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1173                     "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1174         inv_desc->lo = 0;
1175         inv_desc->hi = 0;
1176 
1177         return false;
1178     }
1179     inv_desc->lo = le64_to_cpu(inv_desc->lo);
1180     inv_desc->hi = le64_to_cpu(inv_desc->hi);
1181     return true;
1182 }
1183 
1184 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1185 {
1186     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1187         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1188         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1189                     "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1190                     inv_desc->hi, inv_desc->lo);
1191         return false;
1192     }
1193     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1194         /* Status Write */
1195         uint32_t status_data = (uint32_t)(inv_desc->lo >>
1196                                VTD_INV_DESC_WAIT_DATA_SHIFT);
1197 
1198         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1199 
1200         /* FIXME: need to be masked with HAW? */
1201         dma_addr_t status_addr = inv_desc->hi;
1202         VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1203                     status_data, status_addr);
1204         status_data = cpu_to_le32(status_data);
1205         if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1206                              sizeof(status_data))) {
1207             VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1208             return false;
1209         }
1210     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1211         /* Interrupt flag */
1212         VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1213         vtd_generate_completion_event(s);
1214     } else {
1215         VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1216                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1217         return false;
1218     }
1219     return true;
1220 }
1221 
1222 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1223                                            VTDInvDesc *inv_desc)
1224 {
1225     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1226         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1227                     "Invalidate Descriptor");
1228         return false;
1229     }
1230     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1231     case VTD_INV_DESC_CC_DOMAIN:
1232         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1233                     (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1234         /* Fall through */
1235     case VTD_INV_DESC_CC_GLOBAL:
1236         VTD_DPRINTF(INV, "global invalidation");
1237         vtd_context_global_invalidate(s);
1238         break;
1239 
1240     case VTD_INV_DESC_CC_DEVICE:
1241         vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1242                                       VTD_INV_DESC_CC_FM(inv_desc->lo));
1243         break;
1244 
1245     default:
1246         VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1247                     "Invalidate Descriptor hi 0x%"PRIx64  " lo 0x%"PRIx64,
1248                     inv_desc->hi, inv_desc->lo);
1249         return false;
1250     }
1251     return true;
1252 }
1253 
1254 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1255 {
1256     uint16_t domain_id;
1257     uint8_t am;
1258     hwaddr addr;
1259 
1260     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1261         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1262         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1263                     "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1264                     inv_desc->hi, inv_desc->lo);
1265         return false;
1266     }
1267 
1268     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1269     case VTD_INV_DESC_IOTLB_GLOBAL:
1270         VTD_DPRINTF(INV, "global invalidation");
1271         vtd_iotlb_global_invalidate(s);
1272         break;
1273 
1274     case VTD_INV_DESC_IOTLB_DOMAIN:
1275         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1276         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1277                     domain_id);
1278         vtd_iotlb_domain_invalidate(s, domain_id);
1279         break;
1280 
1281     case VTD_INV_DESC_IOTLB_PAGE:
1282         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1283         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1284         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1285         VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1286                     " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1287         if (am > VTD_MAMV) {
1288             VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1289                         "%"PRIu8, (uint8_t)VTD_MAMV);
1290             return false;
1291         }
1292         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1293         break;
1294 
1295     default:
1296         VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1297                     "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1298                     inv_desc->hi, inv_desc->lo);
1299         return false;
1300     }
1301     return true;
1302 }
1303 
1304 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1305 {
1306     VTDInvDesc inv_desc;
1307     uint8_t desc_type;
1308 
1309     VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1310     if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1311         s->iq_last_desc_type = VTD_INV_DESC_NONE;
1312         return false;
1313     }
1314     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1315     /* FIXME: should update at first or at last? */
1316     s->iq_last_desc_type = desc_type;
1317 
1318     switch (desc_type) {
1319     case VTD_INV_DESC_CC:
1320         VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1321                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1322         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1323             return false;
1324         }
1325         break;
1326 
1327     case VTD_INV_DESC_IOTLB:
1328         VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1329                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1330         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1331             return false;
1332         }
1333         break;
1334 
1335     case VTD_INV_DESC_WAIT:
1336         VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1337                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1338         if (!vtd_process_wait_desc(s, &inv_desc)) {
1339             return false;
1340         }
1341         break;
1342 
1343     default:
1344         VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1345                     "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1346                     inv_desc.hi, inv_desc.lo, desc_type);
1347         return false;
1348     }
1349     s->iq_head++;
1350     if (s->iq_head == s->iq_size) {
1351         s->iq_head = 0;
1352     }
1353     return true;
1354 }
1355 
1356 /* Try to fetch and process more Invalidation Descriptors */
1357 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1358 {
1359     VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1360     if (s->iq_tail >= s->iq_size) {
1361         /* Detects an invalid Tail pointer */
1362         VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1363                     " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1364         vtd_handle_inv_queue_error(s);
1365         return;
1366     }
1367     while (s->iq_head != s->iq_tail) {
1368         if (!vtd_process_inv_desc(s)) {
1369             /* Invalidation Queue Errors */
1370             vtd_handle_inv_queue_error(s);
1371             break;
1372         }
1373         /* Must update the IQH_REG in time */
1374         vtd_set_quad_raw(s, DMAR_IQH_REG,
1375                          (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1376                          VTD_IQH_QH_MASK);
1377     }
1378 }
1379 
1380 /* Handle write to Invalidation Queue Tail Register */
1381 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1382 {
1383     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1384 
1385     s->iq_tail = VTD_IQT_QT(val);
1386     VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1387     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1388         /* Process Invalidation Queue here */
1389         vtd_fetch_inv_desc(s);
1390     }
1391 }
1392 
1393 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1394 {
1395     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1396     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1397     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1398 
1399     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1400         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1401         VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1402                     "IP field of FECTL_REG");
1403     }
1404     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1405      * Descriptors if there are any when Queued Invalidation is enabled?
1406      */
1407 }
1408 
1409 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1410 {
1411     uint32_t fectl_reg;
1412     /* FIXME: when software clears the IM field, check the IP field. But do we
1413      * need to compare the old value and the new value to conclude that
1414      * software clears the IM field? Or just check if the IM field is zero?
1415      */
1416     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1417     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1418         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1419         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1420         VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1421                     "fault event interrupt");
1422     }
1423 }
1424 
1425 static void vtd_handle_ics_write(IntelIOMMUState *s)
1426 {
1427     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1428     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1429 
1430     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1431         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1432         VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1433                     "clear IP field of IECTL_REG");
1434     }
1435 }
1436 
1437 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1438 {
1439     uint32_t iectl_reg;
1440     /* FIXME: when software clears the IM field, check the IP field. But do we
1441      * need to compare the old value and the new value to conclude that
1442      * software clears the IM field? Or just check if the IM field is zero?
1443      */
1444     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1445     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1446         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1447         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1448         VTD_DPRINTF(INV, "IM field is cleared, generate "
1449                     "invalidation event interrupt");
1450     }
1451 }
1452 
1453 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1454 {
1455     IntelIOMMUState *s = opaque;
1456     uint64_t val;
1457 
1458     if (addr + size > DMAR_REG_SIZE) {
1459         VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1460                     ", got 0x%"PRIx64 " %d",
1461                     (uint64_t)DMAR_REG_SIZE, addr, size);
1462         return (uint64_t)-1;
1463     }
1464 
1465     switch (addr) {
1466     /* Root Table Address Register, 64-bit */
1467     case DMAR_RTADDR_REG:
1468         if (size == 4) {
1469             val = s->root & ((1ULL << 32) - 1);
1470         } else {
1471             val = s->root;
1472         }
1473         break;
1474 
1475     case DMAR_RTADDR_REG_HI:
1476         assert(size == 4);
1477         val = s->root >> 32;
1478         break;
1479 
1480     /* Invalidation Queue Address Register, 64-bit */
1481     case DMAR_IQA_REG:
1482         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1483         if (size == 4) {
1484             val = val & ((1ULL << 32) - 1);
1485         }
1486         break;
1487 
1488     case DMAR_IQA_REG_HI:
1489         assert(size == 4);
1490         val = s->iq >> 32;
1491         break;
1492 
1493     default:
1494         if (size == 4) {
1495             val = vtd_get_long(s, addr);
1496         } else {
1497             val = vtd_get_quad(s, addr);
1498         }
1499     }
1500     VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1501                 addr, size, val);
1502     return val;
1503 }
1504 
1505 static void vtd_mem_write(void *opaque, hwaddr addr,
1506                           uint64_t val, unsigned size)
1507 {
1508     IntelIOMMUState *s = opaque;
1509 
1510     if (addr + size > DMAR_REG_SIZE) {
1511         VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1512                     ", got 0x%"PRIx64 " %d",
1513                     (uint64_t)DMAR_REG_SIZE, addr, size);
1514         return;
1515     }
1516 
1517     switch (addr) {
1518     /* Global Command Register, 32-bit */
1519     case DMAR_GCMD_REG:
1520         VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1521                     ", size %d, val 0x%"PRIx64, addr, size, val);
1522         vtd_set_long(s, addr, val);
1523         vtd_handle_gcmd_write(s);
1524         break;
1525 
1526     /* Context Command Register, 64-bit */
1527     case DMAR_CCMD_REG:
1528         VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1529                     ", size %d, val 0x%"PRIx64, addr, size, val);
1530         if (size == 4) {
1531             vtd_set_long(s, addr, val);
1532         } else {
1533             vtd_set_quad(s, addr, val);
1534             vtd_handle_ccmd_write(s);
1535         }
1536         break;
1537 
1538     case DMAR_CCMD_REG_HI:
1539         VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1540                     ", size %d, val 0x%"PRIx64, addr, size, val);
1541         assert(size == 4);
1542         vtd_set_long(s, addr, val);
1543         vtd_handle_ccmd_write(s);
1544         break;
1545 
1546     /* IOTLB Invalidation Register, 64-bit */
1547     case DMAR_IOTLB_REG:
1548         VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1549                     ", size %d, val 0x%"PRIx64, addr, size, val);
1550         if (size == 4) {
1551             vtd_set_long(s, addr, val);
1552         } else {
1553             vtd_set_quad(s, addr, val);
1554             vtd_handle_iotlb_write(s);
1555         }
1556         break;
1557 
1558     case DMAR_IOTLB_REG_HI:
1559         VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1560                     ", size %d, val 0x%"PRIx64, addr, size, val);
1561         assert(size == 4);
1562         vtd_set_long(s, addr, val);
1563         vtd_handle_iotlb_write(s);
1564         break;
1565 
1566     /* Invalidate Address Register, 64-bit */
1567     case DMAR_IVA_REG:
1568         VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1569                     ", size %d, val 0x%"PRIx64, addr, size, val);
1570         if (size == 4) {
1571             vtd_set_long(s, addr, val);
1572         } else {
1573             vtd_set_quad(s, addr, val);
1574         }
1575         break;
1576 
1577     case DMAR_IVA_REG_HI:
1578         VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1579                     ", size %d, val 0x%"PRIx64, addr, size, val);
1580         assert(size == 4);
1581         vtd_set_long(s, addr, val);
1582         break;
1583 
1584     /* Fault Status Register, 32-bit */
1585     case DMAR_FSTS_REG:
1586         VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1587                     ", size %d, val 0x%"PRIx64, addr, size, val);
1588         assert(size == 4);
1589         vtd_set_long(s, addr, val);
1590         vtd_handle_fsts_write(s);
1591         break;
1592 
1593     /* Fault Event Control Register, 32-bit */
1594     case DMAR_FECTL_REG:
1595         VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1596                     ", size %d, val 0x%"PRIx64, addr, size, val);
1597         assert(size == 4);
1598         vtd_set_long(s, addr, val);
1599         vtd_handle_fectl_write(s);
1600         break;
1601 
1602     /* Fault Event Data Register, 32-bit */
1603     case DMAR_FEDATA_REG:
1604         VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1605                     ", size %d, val 0x%"PRIx64, addr, size, val);
1606         assert(size == 4);
1607         vtd_set_long(s, addr, val);
1608         break;
1609 
1610     /* Fault Event Address Register, 32-bit */
1611     case DMAR_FEADDR_REG:
1612         VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1613                     ", size %d, val 0x%"PRIx64, addr, size, val);
1614         assert(size == 4);
1615         vtd_set_long(s, addr, val);
1616         break;
1617 
1618     /* Fault Event Upper Address Register, 32-bit */
1619     case DMAR_FEUADDR_REG:
1620         VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1621                     ", size %d, val 0x%"PRIx64, addr, size, val);
1622         assert(size == 4);
1623         vtd_set_long(s, addr, val);
1624         break;
1625 
1626     /* Protected Memory Enable Register, 32-bit */
1627     case DMAR_PMEN_REG:
1628         VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1629                     ", size %d, val 0x%"PRIx64, addr, size, val);
1630         assert(size == 4);
1631         vtd_set_long(s, addr, val);
1632         break;
1633 
1634     /* Root Table Address Register, 64-bit */
1635     case DMAR_RTADDR_REG:
1636         VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1637                     ", size %d, val 0x%"PRIx64, addr, size, val);
1638         if (size == 4) {
1639             vtd_set_long(s, addr, val);
1640         } else {
1641             vtd_set_quad(s, addr, val);
1642         }
1643         break;
1644 
1645     case DMAR_RTADDR_REG_HI:
1646         VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1647                     ", size %d, val 0x%"PRIx64, addr, size, val);
1648         assert(size == 4);
1649         vtd_set_long(s, addr, val);
1650         break;
1651 
1652     /* Invalidation Queue Tail Register, 64-bit */
1653     case DMAR_IQT_REG:
1654         VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1655                     ", size %d, val 0x%"PRIx64, addr, size, val);
1656         if (size == 4) {
1657             vtd_set_long(s, addr, val);
1658         } else {
1659             vtd_set_quad(s, addr, val);
1660         }
1661         vtd_handle_iqt_write(s);
1662         break;
1663 
1664     case DMAR_IQT_REG_HI:
1665         VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1666                     ", size %d, val 0x%"PRIx64, addr, size, val);
1667         assert(size == 4);
1668         vtd_set_long(s, addr, val);
1669         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1670         break;
1671 
1672     /* Invalidation Queue Address Register, 64-bit */
1673     case DMAR_IQA_REG:
1674         VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1675                     ", size %d, val 0x%"PRIx64, addr, size, val);
1676         if (size == 4) {
1677             vtd_set_long(s, addr, val);
1678         } else {
1679             vtd_set_quad(s, addr, val);
1680         }
1681         break;
1682 
1683     case DMAR_IQA_REG_HI:
1684         VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1685                     ", size %d, val 0x%"PRIx64, addr, size, val);
1686         assert(size == 4);
1687         vtd_set_long(s, addr, val);
1688         break;
1689 
1690     /* Invalidation Completion Status Register, 32-bit */
1691     case DMAR_ICS_REG:
1692         VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1693                     ", size %d, val 0x%"PRIx64, addr, size, val);
1694         assert(size == 4);
1695         vtd_set_long(s, addr, val);
1696         vtd_handle_ics_write(s);
1697         break;
1698 
1699     /* Invalidation Event Control Register, 32-bit */
1700     case DMAR_IECTL_REG:
1701         VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1702                     ", size %d, val 0x%"PRIx64, addr, size, val);
1703         assert(size == 4);
1704         vtd_set_long(s, addr, val);
1705         vtd_handle_iectl_write(s);
1706         break;
1707 
1708     /* Invalidation Event Data Register, 32-bit */
1709     case DMAR_IEDATA_REG:
1710         VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1711                     ", size %d, val 0x%"PRIx64, addr, size, val);
1712         assert(size == 4);
1713         vtd_set_long(s, addr, val);
1714         break;
1715 
1716     /* Invalidation Event Address Register, 32-bit */
1717     case DMAR_IEADDR_REG:
1718         VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1719                     ", size %d, val 0x%"PRIx64, addr, size, val);
1720         assert(size == 4);
1721         vtd_set_long(s, addr, val);
1722         break;
1723 
1724     /* Invalidation Event Upper Address Register, 32-bit */
1725     case DMAR_IEUADDR_REG:
1726         VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1727                     ", size %d, val 0x%"PRIx64, addr, size, val);
1728         assert(size == 4);
1729         vtd_set_long(s, addr, val);
1730         break;
1731 
1732     /* Fault Recording Registers, 128-bit */
1733     case DMAR_FRCD_REG_0_0:
1734         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1735                     ", size %d, val 0x%"PRIx64, addr, size, val);
1736         if (size == 4) {
1737             vtd_set_long(s, addr, val);
1738         } else {
1739             vtd_set_quad(s, addr, val);
1740         }
1741         break;
1742 
1743     case DMAR_FRCD_REG_0_1:
1744         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1745                     ", size %d, val 0x%"PRIx64, addr, size, val);
1746         assert(size == 4);
1747         vtd_set_long(s, addr, val);
1748         break;
1749 
1750     case DMAR_FRCD_REG_0_2:
1751         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1752                     ", size %d, val 0x%"PRIx64, addr, size, val);
1753         if (size == 4) {
1754             vtd_set_long(s, addr, val);
1755         } else {
1756             vtd_set_quad(s, addr, val);
1757             /* May clear bit 127 (Fault), update PPF */
1758             vtd_update_fsts_ppf(s);
1759         }
1760         break;
1761 
1762     case DMAR_FRCD_REG_0_3:
1763         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1764                     ", size %d, val 0x%"PRIx64, addr, size, val);
1765         assert(size == 4);
1766         vtd_set_long(s, addr, val);
1767         /* May clear bit 127 (Fault), update PPF */
1768         vtd_update_fsts_ppf(s);
1769         break;
1770 
1771     default:
1772         VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1773                     ", size %d, val 0x%"PRIx64, addr, size, val);
1774         if (size == 4) {
1775             vtd_set_long(s, addr, val);
1776         } else {
1777             vtd_set_quad(s, addr, val);
1778         }
1779     }
1780 }
1781 
1782 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1783                                          bool is_write)
1784 {
1785     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1786     IntelIOMMUState *s = vtd_as->iommu_state;
1787     IOMMUTLBEntry ret = {
1788         .target_as = &address_space_memory,
1789         .iova = addr,
1790         .translated_addr = 0,
1791         .addr_mask = ~(hwaddr)0,
1792         .perm = IOMMU_NONE,
1793     };
1794 
1795     if (!s->dmar_enabled) {
1796         /* DMAR disabled, passthrough, use 4k-page*/
1797         ret.iova = addr & VTD_PAGE_MASK_4K;
1798         ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1799         ret.addr_mask = ~VTD_PAGE_MASK_4K;
1800         ret.perm = IOMMU_RW;
1801         return ret;
1802     }
1803 
1804     vtd_do_iommu_translate(vtd_as, vtd_as->bus_num, vtd_as->devfn, addr,
1805                            is_write, &ret);
1806     VTD_DPRINTF(MMU,
1807                 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1808                 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, vtd_as->bus_num,
1809                 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1810                 vtd_as->devfn, addr, ret.translated_addr);
1811     return ret;
1812 }
1813 
1814 static const VMStateDescription vtd_vmstate = {
1815     .name = "iommu-intel",
1816     .unmigratable = 1,
1817 };
1818 
1819 static const MemoryRegionOps vtd_mem_ops = {
1820     .read = vtd_mem_read,
1821     .write = vtd_mem_write,
1822     .endianness = DEVICE_LITTLE_ENDIAN,
1823     .impl = {
1824         .min_access_size = 4,
1825         .max_access_size = 8,
1826     },
1827     .valid = {
1828         .min_access_size = 4,
1829         .max_access_size = 8,
1830     },
1831 };
1832 
1833 static Property vtd_properties[] = {
1834     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1835     DEFINE_PROP_END_OF_LIST(),
1836 };
1837 
1838 /* Do the initialization. It will also be called when reset, so pay
1839  * attention when adding new initialization stuff.
1840  */
1841 static void vtd_init(IntelIOMMUState *s)
1842 {
1843     memset(s->csr, 0, DMAR_REG_SIZE);
1844     memset(s->wmask, 0, DMAR_REG_SIZE);
1845     memset(s->w1cmask, 0, DMAR_REG_SIZE);
1846     memset(s->womask, 0, DMAR_REG_SIZE);
1847 
1848     s->iommu_ops.translate = vtd_iommu_translate;
1849     s->root = 0;
1850     s->root_extended = false;
1851     s->dmar_enabled = false;
1852     s->iq_head = 0;
1853     s->iq_tail = 0;
1854     s->iq = 0;
1855     s->iq_size = 0;
1856     s->qi_enabled = false;
1857     s->iq_last_desc_type = VTD_INV_DESC_NONE;
1858     s->next_frcd_reg = 0;
1859     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
1860              VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI;
1861     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1862 
1863     vtd_reset_context_cache(s);
1864     vtd_reset_iotlb(s);
1865 
1866     /* Define registers with default values and bit semantics */
1867     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1868     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1869     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1870     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1871     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1872     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1873     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1874     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1875     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1876 
1877     /* Advanced Fault Logging not supported */
1878     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1879     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1880     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1881     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
1882 
1883     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1884      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1885      */
1886     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
1887 
1888     /* Treated as RO for implementations that PLMR and PHMR fields reported
1889      * as Clear in the CAP_REG.
1890      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1891      */
1892     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
1893 
1894     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
1895     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
1896     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
1897     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
1898     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1899     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
1900     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
1901     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
1902     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
1903 
1904     /* IOTLB registers */
1905     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
1906     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
1907     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
1908 
1909     /* Fault Recording Registers, 128-bit */
1910     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
1911     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
1912 }
1913 
1914 /* Should not reset address_spaces when reset because devices will still use
1915  * the address space they got at first (won't ask the bus again).
1916  */
1917 static void vtd_reset(DeviceState *dev)
1918 {
1919     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1920 
1921     VTD_DPRINTF(GENERAL, "");
1922     vtd_init(s);
1923 }
1924 
1925 static void vtd_realize(DeviceState *dev, Error **errp)
1926 {
1927     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1928 
1929     VTD_DPRINTF(GENERAL, "");
1930     memset(s->address_spaces, 0, sizeof(s->address_spaces));
1931     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
1932                           "intel_iommu", DMAR_REG_SIZE);
1933     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
1934     /* No corresponding destroy */
1935     s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
1936                                      g_free, g_free);
1937     vtd_init(s);
1938 }
1939 
1940 static void vtd_class_init(ObjectClass *klass, void *data)
1941 {
1942     DeviceClass *dc = DEVICE_CLASS(klass);
1943 
1944     dc->reset = vtd_reset;
1945     dc->realize = vtd_realize;
1946     dc->vmsd = &vtd_vmstate;
1947     dc->props = vtd_properties;
1948 }
1949 
1950 static const TypeInfo vtd_info = {
1951     .name          = TYPE_INTEL_IOMMU_DEVICE,
1952     .parent        = TYPE_SYS_BUS_DEVICE,
1953     .instance_size = sizeof(IntelIOMMUState),
1954     .class_init    = vtd_class_init,
1955 };
1956 
1957 static void vtd_register_types(void)
1958 {
1959     VTD_DPRINTF(GENERAL, "");
1960     type_register_static(&vtd_info);
1961 }
1962 
1963 type_init(vtd_register_types)
1964