xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision 966f2ec3)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39 
40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41                             uint64_t wmask, uint64_t w1cmask)
42 {
43     stq_le_p(&s->csr[addr], val);
44     stq_le_p(&s->wmask[addr], wmask);
45     stq_le_p(&s->w1cmask[addr], w1cmask);
46 }
47 
48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
49 {
50     stq_le_p(&s->womask[addr], mask);
51 }
52 
53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54                             uint32_t wmask, uint32_t w1cmask)
55 {
56     stl_le_p(&s->csr[addr], val);
57     stl_le_p(&s->wmask[addr], wmask);
58     stl_le_p(&s->w1cmask[addr], w1cmask);
59 }
60 
61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
62 {
63     stl_le_p(&s->womask[addr], mask);
64 }
65 
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
68 {
69     uint64_t oldval = ldq_le_p(&s->csr[addr]);
70     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72     stq_le_p(&s->csr[addr],
73              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
74 }
75 
76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
77 {
78     uint32_t oldval = ldl_le_p(&s->csr[addr]);
79     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81     stl_le_p(&s->csr[addr],
82              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
83 }
84 
85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
86 {
87     uint64_t val = ldq_le_p(&s->csr[addr]);
88     uint64_t womask = ldq_le_p(&s->womask[addr]);
89     return val & ~womask;
90 }
91 
92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
93 {
94     uint32_t val = ldl_le_p(&s->csr[addr]);
95     uint32_t womask = ldl_le_p(&s->womask[addr]);
96     return val & ~womask;
97 }
98 
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
101 {
102     return ldq_le_p(&s->csr[addr]);
103 }
104 
105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
106 {
107     return ldl_le_p(&s->csr[addr]);
108 }
109 
110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
111 {
112     stq_le_p(&s->csr[addr], val);
113 }
114 
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116                                         uint32_t clear, uint32_t mask)
117 {
118     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119     stl_le_p(&s->csr[addr], new_val);
120     return new_val;
121 }
122 
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124                                         uint64_t clear, uint64_t mask)
125 {
126     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127     stq_le_p(&s->csr[addr], new_val);
128     return new_val;
129 }
130 
131 static inline void vtd_iommu_lock(IntelIOMMUState *s)
132 {
133     qemu_mutex_lock(&s->iommu_lock);
134 }
135 
136 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
137 {
138     qemu_mutex_unlock(&s->iommu_lock);
139 }
140 
141 /* Whether the address space needs to notify new mappings */
142 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
143 {
144     return as->notifier_flags & IOMMU_NOTIFIER_MAP;
145 }
146 
147 /* GHashTable functions */
148 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
149 {
150     return *((const uint64_t *)v1) == *((const uint64_t *)v2);
151 }
152 
153 static guint vtd_uint64_hash(gconstpointer v)
154 {
155     return (guint)*(const uint64_t *)v;
156 }
157 
158 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
159                                           gpointer user_data)
160 {
161     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
162     uint16_t domain_id = *(uint16_t *)user_data;
163     return entry->domain_id == domain_id;
164 }
165 
166 /* The shift of an addr for a certain level of paging structure */
167 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
168 {
169     assert(level != 0);
170     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
171 }
172 
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
174 {
175     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
176 }
177 
178 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
179                                         gpointer user_data)
180 {
181     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
182     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
183     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
184     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
185     return (entry->domain_id == info->domain_id) &&
186             (((entry->gfn & info->mask) == gfn) ||
187              (entry->gfn == gfn_tlb));
188 }
189 
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191  * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
192  */
193 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
194 {
195     VTDAddressSpace *vtd_as;
196     VTDBus *vtd_bus;
197     GHashTableIter bus_it;
198     uint32_t devfn_it;
199 
200     trace_vtd_context_cache_reset();
201 
202     g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
203 
204     while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
205         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
206             vtd_as = vtd_bus->dev_as[devfn_it];
207             if (!vtd_as) {
208                 continue;
209             }
210             vtd_as->context_cache_entry.context_cache_gen = 0;
211         }
212     }
213     s->context_cache_gen = 1;
214 }
215 
216 /* Must be called with IOMMU lock held. */
217 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
218 {
219     assert(s->iotlb);
220     g_hash_table_remove_all(s->iotlb);
221 }
222 
223 static void vtd_reset_iotlb(IntelIOMMUState *s)
224 {
225     vtd_iommu_lock(s);
226     vtd_reset_iotlb_locked(s);
227     vtd_iommu_unlock(s);
228 }
229 
230 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
231                                   uint32_t level)
232 {
233     return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
234            ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
235 }
236 
237 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
238 {
239     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
240 }
241 
242 /* Must be called with IOMMU lock held */
243 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
244                                        hwaddr addr)
245 {
246     VTDIOTLBEntry *entry;
247     uint64_t key;
248     int level;
249 
250     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
251         key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
252                                 source_id, level);
253         entry = g_hash_table_lookup(s->iotlb, &key);
254         if (entry) {
255             goto out;
256         }
257     }
258 
259 out:
260     return entry;
261 }
262 
263 /* Must be with IOMMU lock held */
264 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
265                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
266                              uint8_t access_flags, uint32_t level)
267 {
268     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
269     uint64_t *key = g_malloc(sizeof(*key));
270     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
271 
272     trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
273     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
274         trace_vtd_iotlb_reset("iotlb exceeds size limit");
275         vtd_reset_iotlb_locked(s);
276     }
277 
278     entry->gfn = gfn;
279     entry->domain_id = domain_id;
280     entry->slpte = slpte;
281     entry->access_flags = access_flags;
282     entry->mask = vtd_slpt_level_page_mask(level);
283     *key = vtd_get_iotlb_key(gfn, source_id, level);
284     g_hash_table_replace(s->iotlb, key, entry);
285 }
286 
287 /* Given the reg addr of both the message data and address, generate an
288  * interrupt via MSI.
289  */
290 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
291                                    hwaddr mesg_data_reg)
292 {
293     MSIMessage msi;
294 
295     assert(mesg_data_reg < DMAR_REG_SIZE);
296     assert(mesg_addr_reg < DMAR_REG_SIZE);
297 
298     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
299     msi.data = vtd_get_long_raw(s, mesg_data_reg);
300 
301     trace_vtd_irq_generate(msi.address, msi.data);
302 
303     apic_get_class()->send_msi(&msi);
304 }
305 
306 /* Generate a fault event to software via MSI if conditions are met.
307  * Notice that the value of FSTS_REG being passed to it should be the one
308  * before any update.
309  */
310 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
311 {
312     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
313         pre_fsts & VTD_FSTS_IQE) {
314         error_report_once("There are previous interrupt conditions "
315                           "to be serviced by software, fault event "
316                           "is not generated");
317         return;
318     }
319     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
320     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
321         error_report_once("Interrupt Mask set, irq is not generated");
322     } else {
323         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
324         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
325     }
326 }
327 
328 /* Check if the Fault (F) field of the Fault Recording Register referenced by
329  * @index is Set.
330  */
331 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
332 {
333     /* Each reg is 128-bit */
334     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
335     addr += 8; /* Access the high 64-bit half */
336 
337     assert(index < DMAR_FRCD_REG_NR);
338 
339     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
340 }
341 
342 /* Update the PPF field of Fault Status Register.
343  * Should be called whenever change the F field of any fault recording
344  * registers.
345  */
346 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
347 {
348     uint32_t i;
349     uint32_t ppf_mask = 0;
350 
351     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
352         if (vtd_is_frcd_set(s, i)) {
353             ppf_mask = VTD_FSTS_PPF;
354             break;
355         }
356     }
357     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
358     trace_vtd_fsts_ppf(!!ppf_mask);
359 }
360 
361 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
362 {
363     /* Each reg is 128-bit */
364     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
365     addr += 8; /* Access the high 64-bit half */
366 
367     assert(index < DMAR_FRCD_REG_NR);
368 
369     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
370     vtd_update_fsts_ppf(s);
371 }
372 
373 /* Must not update F field now, should be done later */
374 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
375                             uint16_t source_id, hwaddr addr,
376                             VTDFaultReason fault, bool is_write)
377 {
378     uint64_t hi = 0, lo;
379     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
380 
381     assert(index < DMAR_FRCD_REG_NR);
382 
383     lo = VTD_FRCD_FI(addr);
384     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
385     if (!is_write) {
386         hi |= VTD_FRCD_T;
387     }
388     vtd_set_quad_raw(s, frcd_reg_addr, lo);
389     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
390 
391     trace_vtd_frr_new(index, hi, lo);
392 }
393 
394 /* Try to collapse multiple pending faults from the same requester */
395 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
396 {
397     uint32_t i;
398     uint64_t frcd_reg;
399     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
400 
401     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
402         frcd_reg = vtd_get_quad_raw(s, addr);
403         if ((frcd_reg & VTD_FRCD_F) &&
404             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
405             return true;
406         }
407         addr += 16; /* 128-bit for each */
408     }
409     return false;
410 }
411 
412 /* Log and report an DMAR (address translation) fault to software */
413 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
414                                   hwaddr addr, VTDFaultReason fault,
415                                   bool is_write)
416 {
417     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
418 
419     assert(fault < VTD_FR_MAX);
420 
421     if (fault == VTD_FR_RESERVED_ERR) {
422         /* This is not a normal fault reason case. Drop it. */
423         return;
424     }
425 
426     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
427 
428     if (fsts_reg & VTD_FSTS_PFO) {
429         error_report_once("New fault is not recorded due to "
430                           "Primary Fault Overflow");
431         return;
432     }
433 
434     if (vtd_try_collapse_fault(s, source_id)) {
435         error_report_once("New fault is not recorded due to "
436                           "compression of faults");
437         return;
438     }
439 
440     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
441         error_report_once("Next Fault Recording Reg is used, "
442                           "new fault is not recorded, set PFO field");
443         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
444         return;
445     }
446 
447     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
448 
449     if (fsts_reg & VTD_FSTS_PPF) {
450         error_report_once("There are pending faults already, "
451                           "fault event is not generated");
452         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
453         s->next_frcd_reg++;
454         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
455             s->next_frcd_reg = 0;
456         }
457     } else {
458         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
459                                 VTD_FSTS_FRI(s->next_frcd_reg));
460         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
461         s->next_frcd_reg++;
462         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
463             s->next_frcd_reg = 0;
464         }
465         /* This case actually cause the PPF to be Set.
466          * So generate fault event (interrupt).
467          */
468          vtd_generate_fault_event(s, fsts_reg);
469     }
470 }
471 
472 /* Handle Invalidation Queue Errors of queued invalidation interface error
473  * conditions.
474  */
475 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
476 {
477     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
478 
479     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
480     vtd_generate_fault_event(s, fsts_reg);
481 }
482 
483 /* Set the IWC field and try to generate an invalidation completion interrupt */
484 static void vtd_generate_completion_event(IntelIOMMUState *s)
485 {
486     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
487         trace_vtd_inv_desc_wait_irq("One pending, skip current");
488         return;
489     }
490     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
491     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
492     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
493         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
494                                     "new event not generated");
495         return;
496     } else {
497         /* Generate the interrupt event */
498         trace_vtd_inv_desc_wait_irq("Generating complete event");
499         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
500         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
501     }
502 }
503 
504 static inline bool vtd_root_entry_present(VTDRootEntry *root)
505 {
506     return root->val & VTD_ROOT_ENTRY_P;
507 }
508 
509 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
510                               VTDRootEntry *re)
511 {
512     dma_addr_t addr;
513 
514     addr = s->root + index * sizeof(*re);
515     if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
516         trace_vtd_re_invalid(re->rsvd, re->val);
517         re->val = 0;
518         return -VTD_FR_ROOT_TABLE_INV;
519     }
520     re->val = le64_to_cpu(re->val);
521     return 0;
522 }
523 
524 static inline bool vtd_ce_present(VTDContextEntry *context)
525 {
526     return context->lo & VTD_CONTEXT_ENTRY_P;
527 }
528 
529 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
530                                            VTDContextEntry *ce)
531 {
532     dma_addr_t addr;
533 
534     /* we have checked that root entry is present */
535     addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
536     if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
537         trace_vtd_re_invalid(root->rsvd, root->val);
538         return -VTD_FR_CONTEXT_TABLE_INV;
539     }
540     ce->lo = le64_to_cpu(ce->lo);
541     ce->hi = le64_to_cpu(ce->hi);
542     return 0;
543 }
544 
545 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
546 {
547     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
548 }
549 
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
551 {
552     return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
553 }
554 
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
557 {
558     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
559 }
560 
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
563 {
564     uint64_t slpte;
565 
566     assert(index < VTD_SL_PT_ENTRY_NR);
567 
568     if (dma_memory_read(&address_space_memory,
569                         base_addr + index * sizeof(slpte), &slpte,
570                         sizeof(slpte))) {
571         slpte = (uint64_t)-1;
572         return slpte;
573     }
574     slpte = le64_to_cpu(slpte);
575     return slpte;
576 }
577 
578 /* Given an iova and the level of paging structure, return the offset
579  * of current level.
580  */
581 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
582 {
583     return (iova >> vtd_slpt_level_shift(level)) &
584             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
585 }
586 
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
589 {
590     return VTD_CAP_SAGAW_MASK & s->cap &
591            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
592 }
593 
594 /* Get the page-table level that hardware should use for the second-level
595  * page-table walk from the Address Width field of context-entry.
596  */
597 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
598 {
599     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
600 }
601 
602 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
603 {
604     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
605 }
606 
607 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
608 {
609     return ce->lo & VTD_CONTEXT_ENTRY_TT;
610 }
611 
612 /* Return true if check passed, otherwise false */
613 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
614                                      VTDContextEntry *ce)
615 {
616     switch (vtd_ce_get_type(ce)) {
617     case VTD_CONTEXT_TT_MULTI_LEVEL:
618         /* Always supported */
619         break;
620     case VTD_CONTEXT_TT_DEV_IOTLB:
621         if (!x86_iommu->dt_supported) {
622             return false;
623         }
624         break;
625     case VTD_CONTEXT_TT_PASS_THROUGH:
626         if (!x86_iommu->pt_supported) {
627             return false;
628         }
629         break;
630     default:
631         /* Unknwon type */
632         return false;
633     }
634     return true;
635 }
636 
637 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
638 {
639     uint32_t ce_agaw = vtd_ce_get_agaw(ce);
640     return 1ULL << MIN(ce_agaw, aw);
641 }
642 
643 /* Return true if IOVA passes range check, otherwise false. */
644 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
645                                         uint8_t aw)
646 {
647     /*
648      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
649      * in CAP_REG and AW in context-entry.
650      */
651     return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
652 }
653 
654 /*
655  * Rsvd field masks for spte:
656  *     Index [1] to [4] 4k pages
657  *     Index [5] to [8] large pages
658  */
659 static uint64_t vtd_paging_entry_rsvd_field[9];
660 
661 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
662 {
663     if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
664         /* Maybe large page */
665         return slpte & vtd_paging_entry_rsvd_field[level + 4];
666     } else {
667         return slpte & vtd_paging_entry_rsvd_field[level];
668     }
669 }
670 
671 /* Find the VTD address space associated with a given bus number */
672 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
673 {
674     VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
675     if (!vtd_bus) {
676         /*
677          * Iterate over the registered buses to find the one which
678          * currently hold this bus number, and update the bus_num
679          * lookup table:
680          */
681         GHashTableIter iter;
682 
683         g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
684         while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
685             if (pci_bus_num(vtd_bus->bus) == bus_num) {
686                 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
687                 return vtd_bus;
688             }
689         }
690     }
691     return vtd_bus;
692 }
693 
694 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
695  * of the translation, can be used for deciding the size of large page.
696  */
697 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
698                              uint64_t *slptep, uint32_t *slpte_level,
699                              bool *reads, bool *writes, uint8_t aw_bits)
700 {
701     dma_addr_t addr = vtd_ce_get_slpt_base(ce);
702     uint32_t level = vtd_ce_get_level(ce);
703     uint32_t offset;
704     uint64_t slpte;
705     uint64_t access_right_check;
706 
707     if (!vtd_iova_range_check(iova, ce, aw_bits)) {
708         error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
709                           __func__, iova);
710         return -VTD_FR_ADDR_BEYOND_MGAW;
711     }
712 
713     /* FIXME: what is the Atomics request here? */
714     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
715 
716     while (true) {
717         offset = vtd_iova_level_offset(iova, level);
718         slpte = vtd_get_slpte(addr, offset);
719 
720         if (slpte == (uint64_t)-1) {
721             error_report_once("%s: detected read error on DMAR slpte "
722                               "(iova=0x%" PRIx64 ")", __func__, iova);
723             if (level == vtd_ce_get_level(ce)) {
724                 /* Invalid programming of context-entry */
725                 return -VTD_FR_CONTEXT_ENTRY_INV;
726             } else {
727                 return -VTD_FR_PAGING_ENTRY_INV;
728             }
729         }
730         *reads = (*reads) && (slpte & VTD_SL_R);
731         *writes = (*writes) && (slpte & VTD_SL_W);
732         if (!(slpte & access_right_check)) {
733             error_report_once("%s: detected slpte permission error "
734                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
735                               "slpte=0x%" PRIx64 ", write=%d)", __func__,
736                               iova, level, slpte, is_write);
737             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
738         }
739         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
740             error_report_once("%s: detected splte reserve non-zero "
741                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
742                               "slpte=0x%" PRIx64 ")", __func__, iova,
743                               level, slpte);
744             return -VTD_FR_PAGING_ENTRY_RSVD;
745         }
746 
747         if (vtd_is_last_slpte(slpte, level)) {
748             *slptep = slpte;
749             *slpte_level = level;
750             return 0;
751         }
752         addr = vtd_get_slpte_addr(slpte, aw_bits);
753         level--;
754     }
755 }
756 
757 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
758 
759 /**
760  * Constant information used during page walking
761  *
762  * @hook_fn: hook func to be called when detected page
763  * @private: private data to be passed into hook func
764  * @notify_unmap: whether we should notify invalid entries
765  * @as: VT-d address space of the device
766  * @aw: maximum address width
767  * @domain: domain ID of the page walk
768  */
769 typedef struct {
770     VTDAddressSpace *as;
771     vtd_page_walk_hook hook_fn;
772     void *private;
773     bool notify_unmap;
774     uint8_t aw;
775     uint16_t domain_id;
776 } vtd_page_walk_info;
777 
778 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
779 {
780     VTDAddressSpace *as = info->as;
781     vtd_page_walk_hook hook_fn = info->hook_fn;
782     void *private = info->private;
783     DMAMap target = {
784         .iova = entry->iova,
785         .size = entry->addr_mask,
786         .translated_addr = entry->translated_addr,
787         .perm = entry->perm,
788     };
789     DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
790 
791     if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
792         trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
793         return 0;
794     }
795 
796     assert(hook_fn);
797 
798     /* Update local IOVA mapped ranges */
799     if (entry->perm) {
800         if (mapped) {
801             /* If it's exactly the same translation, skip */
802             if (!memcmp(mapped, &target, sizeof(target))) {
803                 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
804                                                  entry->translated_addr);
805                 return 0;
806             } else {
807                 /*
808                  * Translation changed.  Normally this should not
809                  * happen, but it can happen when with buggy guest
810                  * OSes.  Note that there will be a small window that
811                  * we don't have map at all.  But that's the best
812                  * effort we can do.  The ideal way to emulate this is
813                  * atomically modify the PTE to follow what has
814                  * changed, but we can't.  One example is that vfio
815                  * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
816                  * interface to modify a mapping (meanwhile it seems
817                  * meaningless to even provide one).  Anyway, let's
818                  * mark this as a TODO in case one day we'll have
819                  * a better solution.
820                  */
821                 IOMMUAccessFlags cache_perm = entry->perm;
822                 int ret;
823 
824                 /* Emulate an UNMAP */
825                 entry->perm = IOMMU_NONE;
826                 trace_vtd_page_walk_one(info->domain_id,
827                                         entry->iova,
828                                         entry->translated_addr,
829                                         entry->addr_mask,
830                                         entry->perm);
831                 ret = hook_fn(entry, private);
832                 if (ret) {
833                     return ret;
834                 }
835                 /* Drop any existing mapping */
836                 iova_tree_remove(as->iova_tree, &target);
837                 /* Recover the correct permission */
838                 entry->perm = cache_perm;
839             }
840         }
841         iova_tree_insert(as->iova_tree, &target);
842     } else {
843         if (!mapped) {
844             /* Skip since we didn't map this range at all */
845             trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
846             return 0;
847         }
848         iova_tree_remove(as->iova_tree, &target);
849     }
850 
851     trace_vtd_page_walk_one(info->domain_id, entry->iova,
852                             entry->translated_addr, entry->addr_mask,
853                             entry->perm);
854     return hook_fn(entry, private);
855 }
856 
857 /**
858  * vtd_page_walk_level - walk over specific level for IOVA range
859  *
860  * @addr: base GPA addr to start the walk
861  * @start: IOVA range start address
862  * @end: IOVA range end address (start <= addr < end)
863  * @read: whether parent level has read permission
864  * @write: whether parent level has write permission
865  * @info: constant information for the page walk
866  */
867 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
868                                uint64_t end, uint32_t level, bool read,
869                                bool write, vtd_page_walk_info *info)
870 {
871     bool read_cur, write_cur, entry_valid;
872     uint32_t offset;
873     uint64_t slpte;
874     uint64_t subpage_size, subpage_mask;
875     IOMMUTLBEntry entry;
876     uint64_t iova = start;
877     uint64_t iova_next;
878     int ret = 0;
879 
880     trace_vtd_page_walk_level(addr, level, start, end);
881 
882     subpage_size = 1ULL << vtd_slpt_level_shift(level);
883     subpage_mask = vtd_slpt_level_page_mask(level);
884 
885     while (iova < end) {
886         iova_next = (iova & subpage_mask) + subpage_size;
887 
888         offset = vtd_iova_level_offset(iova, level);
889         slpte = vtd_get_slpte(addr, offset);
890 
891         if (slpte == (uint64_t)-1) {
892             trace_vtd_page_walk_skip_read(iova, iova_next);
893             goto next;
894         }
895 
896         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
897             trace_vtd_page_walk_skip_reserve(iova, iova_next);
898             goto next;
899         }
900 
901         /* Permissions are stacked with parents' */
902         read_cur = read && (slpte & VTD_SL_R);
903         write_cur = write && (slpte & VTD_SL_W);
904 
905         /*
906          * As long as we have either read/write permission, this is a
907          * valid entry. The rule works for both page entries and page
908          * table entries.
909          */
910         entry_valid = read_cur | write_cur;
911 
912         if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
913             /*
914              * This is a valid PDE (or even bigger than PDE).  We need
915              * to walk one further level.
916              */
917             ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
918                                       iova, MIN(iova_next, end), level - 1,
919                                       read_cur, write_cur, info);
920         } else {
921             /*
922              * This means we are either:
923              *
924              * (1) the real page entry (either 4K page, or huge page)
925              * (2) the whole range is invalid
926              *
927              * In either case, we send an IOTLB notification down.
928              */
929             entry.target_as = &address_space_memory;
930             entry.iova = iova & subpage_mask;
931             entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
932             entry.addr_mask = ~subpage_mask;
933             /* NOTE: this is only meaningful if entry_valid == true */
934             entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
935             ret = vtd_page_walk_one(&entry, info);
936         }
937 
938         if (ret < 0) {
939             return ret;
940         }
941 
942 next:
943         iova = iova_next;
944     }
945 
946     return 0;
947 }
948 
949 /**
950  * vtd_page_walk - walk specific IOVA range, and call the hook
951  *
952  * @ce: context entry to walk upon
953  * @start: IOVA address to start the walk
954  * @end: IOVA range end address (start <= addr < end)
955  * @info: page walking information struct
956  */
957 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
958                          vtd_page_walk_info *info)
959 {
960     dma_addr_t addr = vtd_ce_get_slpt_base(ce);
961     uint32_t level = vtd_ce_get_level(ce);
962 
963     if (!vtd_iova_range_check(start, ce, info->aw)) {
964         return -VTD_FR_ADDR_BEYOND_MGAW;
965     }
966 
967     if (!vtd_iova_range_check(end, ce, info->aw)) {
968         /* Fix end so that it reaches the maximum */
969         end = vtd_iova_limit(ce, info->aw);
970     }
971 
972     return vtd_page_walk_level(addr, start, end, level, true, true, info);
973 }
974 
975 /* Map a device to its corresponding domain (context-entry) */
976 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
977                                     uint8_t devfn, VTDContextEntry *ce)
978 {
979     VTDRootEntry re;
980     int ret_fr;
981     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
982 
983     ret_fr = vtd_get_root_entry(s, bus_num, &re);
984     if (ret_fr) {
985         return ret_fr;
986     }
987 
988     if (!vtd_root_entry_present(&re)) {
989         /* Not error - it's okay we don't have root entry. */
990         trace_vtd_re_not_present(bus_num);
991         return -VTD_FR_ROOT_ENTRY_P;
992     }
993 
994     if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
995         trace_vtd_re_invalid(re.rsvd, re.val);
996         return -VTD_FR_ROOT_ENTRY_RSVD;
997     }
998 
999     ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
1000     if (ret_fr) {
1001         return ret_fr;
1002     }
1003 
1004     if (!vtd_ce_present(ce)) {
1005         /* Not error - it's okay we don't have context entry. */
1006         trace_vtd_ce_not_present(bus_num, devfn);
1007         return -VTD_FR_CONTEXT_ENTRY_P;
1008     }
1009 
1010     if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
1011                (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1012         trace_vtd_ce_invalid(ce->hi, ce->lo);
1013         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1014     }
1015 
1016     /* Check if the programming of context-entry is valid */
1017     if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1018         trace_vtd_ce_invalid(ce->hi, ce->lo);
1019         return -VTD_FR_CONTEXT_ENTRY_INV;
1020     }
1021 
1022     /* Do translation type check */
1023     if (!vtd_ce_type_check(x86_iommu, ce)) {
1024         trace_vtd_ce_invalid(ce->hi, ce->lo);
1025         return -VTD_FR_CONTEXT_ENTRY_INV;
1026     }
1027 
1028     return 0;
1029 }
1030 
1031 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1032                                      void *private)
1033 {
1034     memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1035     return 0;
1036 }
1037 
1038 /* If context entry is NULL, we'll try to fetch it on our own. */
1039 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1040                                             VTDContextEntry *ce,
1041                                             hwaddr addr, hwaddr size)
1042 {
1043     IntelIOMMUState *s = vtd_as->iommu_state;
1044     vtd_page_walk_info info = {
1045         .hook_fn = vtd_sync_shadow_page_hook,
1046         .private = (void *)&vtd_as->iommu,
1047         .notify_unmap = true,
1048         .aw = s->aw_bits,
1049         .as = vtd_as,
1050     };
1051     VTDContextEntry ce_cache;
1052     int ret;
1053 
1054     if (ce) {
1055         /* If the caller provided context entry, use it */
1056         ce_cache = *ce;
1057     } else {
1058         /* If the caller didn't provide ce, try to fetch */
1059         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1060                                        vtd_as->devfn, &ce_cache);
1061         if (ret) {
1062             /*
1063              * This should not really happen, but in case it happens,
1064              * we just skip the sync for this time.  After all we even
1065              * don't have the root table pointer!
1066              */
1067             error_report_once("%s: invalid context entry for bus 0x%x"
1068                               " devfn 0x%x",
1069                               __func__, pci_bus_num(vtd_as->bus),
1070                               vtd_as->devfn);
1071             return 0;
1072         }
1073     }
1074 
1075     info.domain_id = VTD_CONTEXT_ENTRY_DID(ce_cache.hi);
1076 
1077     return vtd_page_walk(&ce_cache, addr, addr + size, &info);
1078 }
1079 
1080 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1081 {
1082     return vtd_sync_shadow_page_table_range(vtd_as, NULL, 0, UINT64_MAX);
1083 }
1084 
1085 /*
1086  * Fetch translation type for specific device. Returns <0 if error
1087  * happens, otherwise return the shifted type to check against
1088  * VTD_CONTEXT_TT_*.
1089  */
1090 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
1091 {
1092     IntelIOMMUState *s;
1093     VTDContextEntry ce;
1094     int ret;
1095 
1096     s = as->iommu_state;
1097 
1098     ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1099                                    as->devfn, &ce);
1100     if (ret) {
1101         return ret;
1102     }
1103 
1104     return vtd_ce_get_type(&ce);
1105 }
1106 
1107 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1108 {
1109     int ret;
1110 
1111     assert(as);
1112 
1113     ret = vtd_dev_get_trans_type(as);
1114     if (ret < 0) {
1115         /*
1116          * Possibly failed to parse the context entry for some reason
1117          * (e.g., during init, or any guest configuration errors on
1118          * context entries). We should assume PT not enabled for
1119          * safety.
1120          */
1121         return false;
1122     }
1123 
1124     return ret == VTD_CONTEXT_TT_PASS_THROUGH;
1125 }
1126 
1127 /* Return whether the device is using IOMMU translation. */
1128 static bool vtd_switch_address_space(VTDAddressSpace *as)
1129 {
1130     bool use_iommu;
1131     /* Whether we need to take the BQL on our own */
1132     bool take_bql = !qemu_mutex_iothread_locked();
1133 
1134     assert(as);
1135 
1136     use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
1137 
1138     trace_vtd_switch_address_space(pci_bus_num(as->bus),
1139                                    VTD_PCI_SLOT(as->devfn),
1140                                    VTD_PCI_FUNC(as->devfn),
1141                                    use_iommu);
1142 
1143     /*
1144      * It's possible that we reach here without BQL, e.g., when called
1145      * from vtd_pt_enable_fast_path(). However the memory APIs need
1146      * it. We'd better make sure we have had it already, or, take it.
1147      */
1148     if (take_bql) {
1149         qemu_mutex_lock_iothread();
1150     }
1151 
1152     /* Turn off first then on the other */
1153     if (use_iommu) {
1154         memory_region_set_enabled(&as->sys_alias, false);
1155         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1156     } else {
1157         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1158         memory_region_set_enabled(&as->sys_alias, true);
1159     }
1160 
1161     if (take_bql) {
1162         qemu_mutex_unlock_iothread();
1163     }
1164 
1165     return use_iommu;
1166 }
1167 
1168 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1169 {
1170     GHashTableIter iter;
1171     VTDBus *vtd_bus;
1172     int i;
1173 
1174     g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1175     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1176         for (i = 0; i < PCI_DEVFN_MAX; i++) {
1177             if (!vtd_bus->dev_as[i]) {
1178                 continue;
1179             }
1180             vtd_switch_address_space(vtd_bus->dev_as[i]);
1181         }
1182     }
1183 }
1184 
1185 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1186 {
1187     return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1188 }
1189 
1190 static const bool vtd_qualified_faults[] = {
1191     [VTD_FR_RESERVED] = false,
1192     [VTD_FR_ROOT_ENTRY_P] = false,
1193     [VTD_FR_CONTEXT_ENTRY_P] = true,
1194     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1195     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1196     [VTD_FR_WRITE] = true,
1197     [VTD_FR_READ] = true,
1198     [VTD_FR_PAGING_ENTRY_INV] = true,
1199     [VTD_FR_ROOT_TABLE_INV] = false,
1200     [VTD_FR_CONTEXT_TABLE_INV] = false,
1201     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1202     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1203     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1204     [VTD_FR_RESERVED_ERR] = false,
1205     [VTD_FR_MAX] = false,
1206 };
1207 
1208 /* To see if a fault condition is "qualified", which is reported to software
1209  * only if the FPD field in the context-entry used to process the faulting
1210  * request is 0.
1211  */
1212 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1213 {
1214     return vtd_qualified_faults[fault];
1215 }
1216 
1217 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1218 {
1219     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1220 }
1221 
1222 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1223 {
1224     VTDBus *vtd_bus;
1225     VTDAddressSpace *vtd_as;
1226     bool success = false;
1227 
1228     vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1229     if (!vtd_bus) {
1230         goto out;
1231     }
1232 
1233     vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1234     if (!vtd_as) {
1235         goto out;
1236     }
1237 
1238     if (vtd_switch_address_space(vtd_as) == false) {
1239         /* We switched off IOMMU region successfully. */
1240         success = true;
1241     }
1242 
1243 out:
1244     trace_vtd_pt_enable_fast_path(source_id, success);
1245 }
1246 
1247 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1248  * translation.
1249  *
1250  * Called from RCU critical section.
1251  *
1252  * @bus_num: The bus number
1253  * @devfn: The devfn, which is the  combined of device and function number
1254  * @is_write: The access is a write operation
1255  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1256  *
1257  * Returns true if translation is successful, otherwise false.
1258  */
1259 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1260                                    uint8_t devfn, hwaddr addr, bool is_write,
1261                                    IOMMUTLBEntry *entry)
1262 {
1263     IntelIOMMUState *s = vtd_as->iommu_state;
1264     VTDContextEntry ce;
1265     uint8_t bus_num = pci_bus_num(bus);
1266     VTDContextCacheEntry *cc_entry;
1267     uint64_t slpte, page_mask;
1268     uint32_t level;
1269     uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1270     int ret_fr;
1271     bool is_fpd_set = false;
1272     bool reads = true;
1273     bool writes = true;
1274     uint8_t access_flags;
1275     VTDIOTLBEntry *iotlb_entry;
1276 
1277     /*
1278      * We have standalone memory region for interrupt addresses, we
1279      * should never receive translation requests in this region.
1280      */
1281     assert(!vtd_is_interrupt_addr(addr));
1282 
1283     vtd_iommu_lock(s);
1284 
1285     cc_entry = &vtd_as->context_cache_entry;
1286 
1287     /* Try to fetch slpte form IOTLB */
1288     iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1289     if (iotlb_entry) {
1290         trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1291                                  iotlb_entry->domain_id);
1292         slpte = iotlb_entry->slpte;
1293         access_flags = iotlb_entry->access_flags;
1294         page_mask = iotlb_entry->mask;
1295         goto out;
1296     }
1297 
1298     /* Try to fetch context-entry from cache first */
1299     if (cc_entry->context_cache_gen == s->context_cache_gen) {
1300         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1301                                cc_entry->context_entry.lo,
1302                                cc_entry->context_cache_gen);
1303         ce = cc_entry->context_entry;
1304         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1305     } else {
1306         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1307         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1308         if (ret_fr) {
1309             ret_fr = -ret_fr;
1310             if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1311                 trace_vtd_fault_disabled();
1312             } else {
1313                 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1314             }
1315             goto error;
1316         }
1317         /* Update context-cache */
1318         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1319                                   cc_entry->context_cache_gen,
1320                                   s->context_cache_gen);
1321         cc_entry->context_entry = ce;
1322         cc_entry->context_cache_gen = s->context_cache_gen;
1323     }
1324 
1325     /*
1326      * We don't need to translate for pass-through context entries.
1327      * Also, let's ignore IOTLB caching as well for PT devices.
1328      */
1329     if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1330         entry->iova = addr & VTD_PAGE_MASK_4K;
1331         entry->translated_addr = entry->iova;
1332         entry->addr_mask = ~VTD_PAGE_MASK_4K;
1333         entry->perm = IOMMU_RW;
1334         trace_vtd_translate_pt(source_id, entry->iova);
1335 
1336         /*
1337          * When this happens, it means firstly caching-mode is not
1338          * enabled, and this is the first passthrough translation for
1339          * the device. Let's enable the fast path for passthrough.
1340          *
1341          * When passthrough is disabled again for the device, we can
1342          * capture it via the context entry invalidation, then the
1343          * IOMMU region can be swapped back.
1344          */
1345         vtd_pt_enable_fast_path(s, source_id);
1346         vtd_iommu_unlock(s);
1347         return true;
1348     }
1349 
1350     ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1351                                &reads, &writes, s->aw_bits);
1352     if (ret_fr) {
1353         ret_fr = -ret_fr;
1354         if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1355             trace_vtd_fault_disabled();
1356         } else {
1357             vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1358         }
1359         goto error;
1360     }
1361 
1362     page_mask = vtd_slpt_level_page_mask(level);
1363     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1364     vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1365                      access_flags, level);
1366 out:
1367     vtd_iommu_unlock(s);
1368     entry->iova = addr & page_mask;
1369     entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1370     entry->addr_mask = ~page_mask;
1371     entry->perm = access_flags;
1372     return true;
1373 
1374 error:
1375     vtd_iommu_unlock(s);
1376     entry->iova = 0;
1377     entry->translated_addr = 0;
1378     entry->addr_mask = 0;
1379     entry->perm = IOMMU_NONE;
1380     return false;
1381 }
1382 
1383 static void vtd_root_table_setup(IntelIOMMUState *s)
1384 {
1385     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1386     s->root_extended = s->root & VTD_RTADDR_RTT;
1387     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1388 
1389     trace_vtd_reg_dmar_root(s->root, s->root_extended);
1390 }
1391 
1392 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1393                                uint32_t index, uint32_t mask)
1394 {
1395     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1396 }
1397 
1398 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1399 {
1400     uint64_t value = 0;
1401     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1402     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1403     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1404     s->intr_eime = value & VTD_IRTA_EIME;
1405 
1406     /* Notify global invalidation */
1407     vtd_iec_notify_all(s, true, 0, 0);
1408 
1409     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1410 }
1411 
1412 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1413 {
1414     VTDAddressSpace *vtd_as;
1415 
1416     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1417         vtd_sync_shadow_page_table(vtd_as);
1418     }
1419 }
1420 
1421 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1422 {
1423     trace_vtd_inv_desc_cc_global();
1424     /* Protects context cache */
1425     vtd_iommu_lock(s);
1426     s->context_cache_gen++;
1427     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1428         vtd_reset_context_cache_locked(s);
1429     }
1430     vtd_iommu_unlock(s);
1431     vtd_switch_address_space_all(s);
1432     /*
1433      * From VT-d spec 6.5.2.1, a global context entry invalidation
1434      * should be followed by a IOTLB global invalidation, so we should
1435      * be safe even without this. Hoewever, let's replay the region as
1436      * well to be safer, and go back here when we need finer tunes for
1437      * VT-d emulation codes.
1438      */
1439     vtd_iommu_replay_all(s);
1440 }
1441 
1442 /* Do a context-cache device-selective invalidation.
1443  * @func_mask: FM field after shifting
1444  */
1445 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1446                                           uint16_t source_id,
1447                                           uint16_t func_mask)
1448 {
1449     uint16_t mask;
1450     VTDBus *vtd_bus;
1451     VTDAddressSpace *vtd_as;
1452     uint8_t bus_n, devfn;
1453     uint16_t devfn_it;
1454 
1455     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1456 
1457     switch (func_mask & 3) {
1458     case 0:
1459         mask = 0;   /* No bits in the SID field masked */
1460         break;
1461     case 1:
1462         mask = 4;   /* Mask bit 2 in the SID field */
1463         break;
1464     case 2:
1465         mask = 6;   /* Mask bit 2:1 in the SID field */
1466         break;
1467     case 3:
1468         mask = 7;   /* Mask bit 2:0 in the SID field */
1469         break;
1470     }
1471     mask = ~mask;
1472 
1473     bus_n = VTD_SID_TO_BUS(source_id);
1474     vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1475     if (vtd_bus) {
1476         devfn = VTD_SID_TO_DEVFN(source_id);
1477         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1478             vtd_as = vtd_bus->dev_as[devfn_it];
1479             if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1480                 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1481                                              VTD_PCI_FUNC(devfn_it));
1482                 vtd_iommu_lock(s);
1483                 vtd_as->context_cache_entry.context_cache_gen = 0;
1484                 vtd_iommu_unlock(s);
1485                 /*
1486                  * Do switch address space when needed, in case if the
1487                  * device passthrough bit is switched.
1488                  */
1489                 vtd_switch_address_space(vtd_as);
1490                 /*
1491                  * So a device is moving out of (or moving into) a
1492                  * domain, resync the shadow page table.
1493                  * This won't bring bad even if we have no such
1494                  * notifier registered - the IOMMU notification
1495                  * framework will skip MAP notifications if that
1496                  * happened.
1497                  */
1498                 vtd_sync_shadow_page_table(vtd_as);
1499             }
1500         }
1501     }
1502 }
1503 
1504 /* Context-cache invalidation
1505  * Returns the Context Actual Invalidation Granularity.
1506  * @val: the content of the CCMD_REG
1507  */
1508 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1509 {
1510     uint64_t caig;
1511     uint64_t type = val & VTD_CCMD_CIRG_MASK;
1512 
1513     switch (type) {
1514     case VTD_CCMD_DOMAIN_INVL:
1515         /* Fall through */
1516     case VTD_CCMD_GLOBAL_INVL:
1517         caig = VTD_CCMD_GLOBAL_INVL_A;
1518         vtd_context_global_invalidate(s);
1519         break;
1520 
1521     case VTD_CCMD_DEVICE_INVL:
1522         caig = VTD_CCMD_DEVICE_INVL_A;
1523         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1524         break;
1525 
1526     default:
1527         error_report_once("%s: invalid context: 0x%" PRIx64,
1528                           __func__, val);
1529         caig = 0;
1530     }
1531     return caig;
1532 }
1533 
1534 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1535 {
1536     trace_vtd_inv_desc_iotlb_global();
1537     vtd_reset_iotlb(s);
1538     vtd_iommu_replay_all(s);
1539 }
1540 
1541 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1542 {
1543     VTDContextEntry ce;
1544     VTDAddressSpace *vtd_as;
1545 
1546     trace_vtd_inv_desc_iotlb_domain(domain_id);
1547 
1548     vtd_iommu_lock(s);
1549     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1550                                 &domain_id);
1551     vtd_iommu_unlock(s);
1552 
1553     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1554         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1555                                       vtd_as->devfn, &ce) &&
1556             domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1557             vtd_sync_shadow_page_table(vtd_as);
1558         }
1559     }
1560 }
1561 
1562 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1563                                            uint16_t domain_id, hwaddr addr,
1564                                            uint8_t am)
1565 {
1566     VTDAddressSpace *vtd_as;
1567     VTDContextEntry ce;
1568     int ret;
1569     hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1570 
1571     QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1572         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1573                                        vtd_as->devfn, &ce);
1574         if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1575             if (vtd_as_has_map_notifier(vtd_as)) {
1576                 /*
1577                  * As long as we have MAP notifications registered in
1578                  * any of our IOMMU notifiers, we need to sync the
1579                  * shadow page table.
1580                  */
1581                 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1582             } else {
1583                 /*
1584                  * For UNMAP-only notifiers, we don't need to walk the
1585                  * page tables.  We just deliver the PSI down to
1586                  * invalidate caches.
1587                  */
1588                 IOMMUTLBEntry entry = {
1589                     .target_as = &address_space_memory,
1590                     .iova = addr,
1591                     .translated_addr = 0,
1592                     .addr_mask = size - 1,
1593                     .perm = IOMMU_NONE,
1594                 };
1595                 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1596             }
1597         }
1598     }
1599 }
1600 
1601 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1602                                       hwaddr addr, uint8_t am)
1603 {
1604     VTDIOTLBPageInvInfo info;
1605 
1606     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1607 
1608     assert(am <= VTD_MAMV);
1609     info.domain_id = domain_id;
1610     info.addr = addr;
1611     info.mask = ~((1 << am) - 1);
1612     vtd_iommu_lock(s);
1613     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1614     vtd_iommu_unlock(s);
1615     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1616 }
1617 
1618 /* Flush IOTLB
1619  * Returns the IOTLB Actual Invalidation Granularity.
1620  * @val: the content of the IOTLB_REG
1621  */
1622 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1623 {
1624     uint64_t iaig;
1625     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1626     uint16_t domain_id;
1627     hwaddr addr;
1628     uint8_t am;
1629 
1630     switch (type) {
1631     case VTD_TLB_GLOBAL_FLUSH:
1632         iaig = VTD_TLB_GLOBAL_FLUSH_A;
1633         vtd_iotlb_global_invalidate(s);
1634         break;
1635 
1636     case VTD_TLB_DSI_FLUSH:
1637         domain_id = VTD_TLB_DID(val);
1638         iaig = VTD_TLB_DSI_FLUSH_A;
1639         vtd_iotlb_domain_invalidate(s, domain_id);
1640         break;
1641 
1642     case VTD_TLB_PSI_FLUSH:
1643         domain_id = VTD_TLB_DID(val);
1644         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1645         am = VTD_IVA_AM(addr);
1646         addr = VTD_IVA_ADDR(addr);
1647         if (am > VTD_MAMV) {
1648             error_report_once("%s: address mask overflow: 0x%" PRIx64,
1649                               __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1650             iaig = 0;
1651             break;
1652         }
1653         iaig = VTD_TLB_PSI_FLUSH_A;
1654         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1655         break;
1656 
1657     default:
1658         error_report_once("%s: invalid granularity: 0x%" PRIx64,
1659                           __func__, val);
1660         iaig = 0;
1661     }
1662     return iaig;
1663 }
1664 
1665 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1666 
1667 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1668 {
1669     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1670            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1671 }
1672 
1673 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1674 {
1675     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1676 
1677     trace_vtd_inv_qi_enable(en);
1678 
1679     if (en) {
1680         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1681         /* 2^(x+8) entries */
1682         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1683         s->qi_enabled = true;
1684         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1685         /* Ok - report back to driver */
1686         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1687 
1688         if (s->iq_tail != 0) {
1689             /*
1690              * This is a spec violation but Windows guests are known to set up
1691              * Queued Invalidation this way so we allow the write and process
1692              * Invalidation Descriptors right away.
1693              */
1694             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1695             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1696                 vtd_fetch_inv_desc(s);
1697             }
1698         }
1699     } else {
1700         if (vtd_queued_inv_disable_check(s)) {
1701             /* disable Queued Invalidation */
1702             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1703             s->iq_head = 0;
1704             s->qi_enabled = false;
1705             /* Ok - report back to driver */
1706             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1707         } else {
1708             error_report_once("%s: detected improper state when disable QI "
1709                               "(head=0x%x, tail=0x%x, last_type=%d)",
1710                               __func__,
1711                               s->iq_head, s->iq_tail, s->iq_last_desc_type);
1712         }
1713     }
1714 }
1715 
1716 /* Set Root Table Pointer */
1717 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1718 {
1719     vtd_root_table_setup(s);
1720     /* Ok - report back to driver */
1721     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1722 }
1723 
1724 /* Set Interrupt Remap Table Pointer */
1725 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1726 {
1727     vtd_interrupt_remap_table_setup(s);
1728     /* Ok - report back to driver */
1729     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1730 }
1731 
1732 /* Handle Translation Enable/Disable */
1733 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1734 {
1735     if (s->dmar_enabled == en) {
1736         return;
1737     }
1738 
1739     trace_vtd_dmar_enable(en);
1740 
1741     if (en) {
1742         s->dmar_enabled = true;
1743         /* Ok - report back to driver */
1744         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1745     } else {
1746         s->dmar_enabled = false;
1747 
1748         /* Clear the index of Fault Recording Register */
1749         s->next_frcd_reg = 0;
1750         /* Ok - report back to driver */
1751         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1752     }
1753 
1754     vtd_switch_address_space_all(s);
1755 }
1756 
1757 /* Handle Interrupt Remap Enable/Disable */
1758 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1759 {
1760     trace_vtd_ir_enable(en);
1761 
1762     if (en) {
1763         s->intr_enabled = true;
1764         /* Ok - report back to driver */
1765         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1766     } else {
1767         s->intr_enabled = false;
1768         /* Ok - report back to driver */
1769         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1770     }
1771 }
1772 
1773 /* Handle write to Global Command Register */
1774 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1775 {
1776     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1777     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1778     uint32_t changed = status ^ val;
1779 
1780     trace_vtd_reg_write_gcmd(status, val);
1781     if (changed & VTD_GCMD_TE) {
1782         /* Translation enable/disable */
1783         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1784     }
1785     if (val & VTD_GCMD_SRTP) {
1786         /* Set/update the root-table pointer */
1787         vtd_handle_gcmd_srtp(s);
1788     }
1789     if (changed & VTD_GCMD_QIE) {
1790         /* Queued Invalidation Enable */
1791         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1792     }
1793     if (val & VTD_GCMD_SIRTP) {
1794         /* Set/update the interrupt remapping root-table pointer */
1795         vtd_handle_gcmd_sirtp(s);
1796     }
1797     if (changed & VTD_GCMD_IRE) {
1798         /* Interrupt remap enable/disable */
1799         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1800     }
1801 }
1802 
1803 /* Handle write to Context Command Register */
1804 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1805 {
1806     uint64_t ret;
1807     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1808 
1809     /* Context-cache invalidation request */
1810     if (val & VTD_CCMD_ICC) {
1811         if (s->qi_enabled) {
1812             error_report_once("Queued Invalidation enabled, "
1813                               "should not use register-based invalidation");
1814             return;
1815         }
1816         ret = vtd_context_cache_invalidate(s, val);
1817         /* Invalidation completed. Change something to show */
1818         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1819         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1820                                       ret);
1821     }
1822 }
1823 
1824 /* Handle write to IOTLB Invalidation Register */
1825 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1826 {
1827     uint64_t ret;
1828     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1829 
1830     /* IOTLB invalidation request */
1831     if (val & VTD_TLB_IVT) {
1832         if (s->qi_enabled) {
1833             error_report_once("Queued Invalidation enabled, "
1834                               "should not use register-based invalidation");
1835             return;
1836         }
1837         ret = vtd_iotlb_flush(s, val);
1838         /* Invalidation completed. Change something to show */
1839         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1840         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1841                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1842     }
1843 }
1844 
1845 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1846 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1847                              VTDInvDesc *inv_desc)
1848 {
1849     dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1850     if (dma_memory_read(&address_space_memory, addr, inv_desc,
1851         sizeof(*inv_desc))) {
1852         error_report_once("Read INV DESC failed");
1853         inv_desc->lo = 0;
1854         inv_desc->hi = 0;
1855         return false;
1856     }
1857     inv_desc->lo = le64_to_cpu(inv_desc->lo);
1858     inv_desc->hi = le64_to_cpu(inv_desc->hi);
1859     return true;
1860 }
1861 
1862 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1863 {
1864     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1865         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1866         trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1867         return false;
1868     }
1869     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1870         /* Status Write */
1871         uint32_t status_data = (uint32_t)(inv_desc->lo >>
1872                                VTD_INV_DESC_WAIT_DATA_SHIFT);
1873 
1874         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1875 
1876         /* FIXME: need to be masked with HAW? */
1877         dma_addr_t status_addr = inv_desc->hi;
1878         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1879         status_data = cpu_to_le32(status_data);
1880         if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1881                              sizeof(status_data))) {
1882             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1883             return false;
1884         }
1885     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1886         /* Interrupt flag */
1887         vtd_generate_completion_event(s);
1888     } else {
1889         trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1890         return false;
1891     }
1892     return true;
1893 }
1894 
1895 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1896                                            VTDInvDesc *inv_desc)
1897 {
1898     uint16_t sid, fmask;
1899 
1900     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1901         trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1902         return false;
1903     }
1904     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1905     case VTD_INV_DESC_CC_DOMAIN:
1906         trace_vtd_inv_desc_cc_domain(
1907             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1908         /* Fall through */
1909     case VTD_INV_DESC_CC_GLOBAL:
1910         vtd_context_global_invalidate(s);
1911         break;
1912 
1913     case VTD_INV_DESC_CC_DEVICE:
1914         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1915         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1916         vtd_context_device_invalidate(s, sid, fmask);
1917         break;
1918 
1919     default:
1920         trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1921         return false;
1922     }
1923     return true;
1924 }
1925 
1926 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1927 {
1928     uint16_t domain_id;
1929     uint8_t am;
1930     hwaddr addr;
1931 
1932     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1933         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1934         trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1935         return false;
1936     }
1937 
1938     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1939     case VTD_INV_DESC_IOTLB_GLOBAL:
1940         vtd_iotlb_global_invalidate(s);
1941         break;
1942 
1943     case VTD_INV_DESC_IOTLB_DOMAIN:
1944         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1945         vtd_iotlb_domain_invalidate(s, domain_id);
1946         break;
1947 
1948     case VTD_INV_DESC_IOTLB_PAGE:
1949         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1950         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1951         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1952         if (am > VTD_MAMV) {
1953             trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1954             return false;
1955         }
1956         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1957         break;
1958 
1959     default:
1960         trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1961         return false;
1962     }
1963     return true;
1964 }
1965 
1966 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1967                                      VTDInvDesc *inv_desc)
1968 {
1969     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1970                            inv_desc->iec.index,
1971                            inv_desc->iec.index_mask);
1972 
1973     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1974                        inv_desc->iec.index,
1975                        inv_desc->iec.index_mask);
1976     return true;
1977 }
1978 
1979 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1980                                           VTDInvDesc *inv_desc)
1981 {
1982     VTDAddressSpace *vtd_dev_as;
1983     IOMMUTLBEntry entry;
1984     struct VTDBus *vtd_bus;
1985     hwaddr addr;
1986     uint64_t sz;
1987     uint16_t sid;
1988     uint8_t devfn;
1989     bool size;
1990     uint8_t bus_num;
1991 
1992     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1993     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1994     devfn = sid & 0xff;
1995     bus_num = sid >> 8;
1996     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1997 
1998     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1999         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2000         trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
2001         return false;
2002     }
2003 
2004     vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2005     if (!vtd_bus) {
2006         goto done;
2007     }
2008 
2009     vtd_dev_as = vtd_bus->dev_as[devfn];
2010     if (!vtd_dev_as) {
2011         goto done;
2012     }
2013 
2014     /* According to ATS spec table 2.4:
2015      * S = 0, bits 15:12 = xxxx     range size: 4K
2016      * S = 1, bits 15:12 = xxx0     range size: 8K
2017      * S = 1, bits 15:12 = xx01     range size: 16K
2018      * S = 1, bits 15:12 = x011     range size: 32K
2019      * S = 1, bits 15:12 = 0111     range size: 64K
2020      * ...
2021      */
2022     if (size) {
2023         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2024         addr &= ~(sz - 1);
2025     } else {
2026         sz = VTD_PAGE_SIZE;
2027     }
2028 
2029     entry.target_as = &vtd_dev_as->as;
2030     entry.addr_mask = sz - 1;
2031     entry.iova = addr;
2032     entry.perm = IOMMU_NONE;
2033     entry.translated_addr = 0;
2034     memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2035 
2036 done:
2037     return true;
2038 }
2039 
2040 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2041 {
2042     VTDInvDesc inv_desc;
2043     uint8_t desc_type;
2044 
2045     trace_vtd_inv_qi_head(s->iq_head);
2046     if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
2047         s->iq_last_desc_type = VTD_INV_DESC_NONE;
2048         return false;
2049     }
2050     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2051     /* FIXME: should update at first or at last? */
2052     s->iq_last_desc_type = desc_type;
2053 
2054     switch (desc_type) {
2055     case VTD_INV_DESC_CC:
2056         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2057         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2058             return false;
2059         }
2060         break;
2061 
2062     case VTD_INV_DESC_IOTLB:
2063         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2064         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2065             return false;
2066         }
2067         break;
2068 
2069     case VTD_INV_DESC_WAIT:
2070         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2071         if (!vtd_process_wait_desc(s, &inv_desc)) {
2072             return false;
2073         }
2074         break;
2075 
2076     case VTD_INV_DESC_IEC:
2077         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2078         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2079             return false;
2080         }
2081         break;
2082 
2083     case VTD_INV_DESC_DEVICE:
2084         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2085         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2086             return false;
2087         }
2088         break;
2089 
2090     default:
2091         trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
2092         return false;
2093     }
2094     s->iq_head++;
2095     if (s->iq_head == s->iq_size) {
2096         s->iq_head = 0;
2097     }
2098     return true;
2099 }
2100 
2101 /* Try to fetch and process more Invalidation Descriptors */
2102 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2103 {
2104     trace_vtd_inv_qi_fetch();
2105 
2106     if (s->iq_tail >= s->iq_size) {
2107         /* Detects an invalid Tail pointer */
2108         error_report_once("%s: detected invalid QI tail "
2109                           "(tail=0x%x, size=0x%x)",
2110                           __func__, s->iq_tail, s->iq_size);
2111         vtd_handle_inv_queue_error(s);
2112         return;
2113     }
2114     while (s->iq_head != s->iq_tail) {
2115         if (!vtd_process_inv_desc(s)) {
2116             /* Invalidation Queue Errors */
2117             vtd_handle_inv_queue_error(s);
2118             break;
2119         }
2120         /* Must update the IQH_REG in time */
2121         vtd_set_quad_raw(s, DMAR_IQH_REG,
2122                          (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2123                          VTD_IQH_QH_MASK);
2124     }
2125 }
2126 
2127 /* Handle write to Invalidation Queue Tail Register */
2128 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2129 {
2130     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2131 
2132     s->iq_tail = VTD_IQT_QT(val);
2133     trace_vtd_inv_qi_tail(s->iq_tail);
2134 
2135     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2136         /* Process Invalidation Queue here */
2137         vtd_fetch_inv_desc(s);
2138     }
2139 }
2140 
2141 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2142 {
2143     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2144     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2145     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2146 
2147     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2148         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2149         trace_vtd_fsts_clear_ip();
2150     }
2151     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2152      * Descriptors if there are any when Queued Invalidation is enabled?
2153      */
2154 }
2155 
2156 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2157 {
2158     uint32_t fectl_reg;
2159     /* FIXME: when software clears the IM field, check the IP field. But do we
2160      * need to compare the old value and the new value to conclude that
2161      * software clears the IM field? Or just check if the IM field is zero?
2162      */
2163     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2164 
2165     trace_vtd_reg_write_fectl(fectl_reg);
2166 
2167     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2168         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2169         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2170     }
2171 }
2172 
2173 static void vtd_handle_ics_write(IntelIOMMUState *s)
2174 {
2175     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2176     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2177 
2178     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2179         trace_vtd_reg_ics_clear_ip();
2180         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2181     }
2182 }
2183 
2184 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2185 {
2186     uint32_t iectl_reg;
2187     /* FIXME: when software clears the IM field, check the IP field. But do we
2188      * need to compare the old value and the new value to conclude that
2189      * software clears the IM field? Or just check if the IM field is zero?
2190      */
2191     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2192 
2193     trace_vtd_reg_write_iectl(iectl_reg);
2194 
2195     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2196         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2197         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2198     }
2199 }
2200 
2201 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2202 {
2203     IntelIOMMUState *s = opaque;
2204     uint64_t val;
2205 
2206     trace_vtd_reg_read(addr, size);
2207 
2208     if (addr + size > DMAR_REG_SIZE) {
2209         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2210                           " size=0x%u", __func__, addr, size);
2211         return (uint64_t)-1;
2212     }
2213 
2214     switch (addr) {
2215     /* Root Table Address Register, 64-bit */
2216     case DMAR_RTADDR_REG:
2217         if (size == 4) {
2218             val = s->root & ((1ULL << 32) - 1);
2219         } else {
2220             val = s->root;
2221         }
2222         break;
2223 
2224     case DMAR_RTADDR_REG_HI:
2225         assert(size == 4);
2226         val = s->root >> 32;
2227         break;
2228 
2229     /* Invalidation Queue Address Register, 64-bit */
2230     case DMAR_IQA_REG:
2231         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2232         if (size == 4) {
2233             val = val & ((1ULL << 32) - 1);
2234         }
2235         break;
2236 
2237     case DMAR_IQA_REG_HI:
2238         assert(size == 4);
2239         val = s->iq >> 32;
2240         break;
2241 
2242     default:
2243         if (size == 4) {
2244             val = vtd_get_long(s, addr);
2245         } else {
2246             val = vtd_get_quad(s, addr);
2247         }
2248     }
2249 
2250     return val;
2251 }
2252 
2253 static void vtd_mem_write(void *opaque, hwaddr addr,
2254                           uint64_t val, unsigned size)
2255 {
2256     IntelIOMMUState *s = opaque;
2257 
2258     trace_vtd_reg_write(addr, size, val);
2259 
2260     if (addr + size > DMAR_REG_SIZE) {
2261         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2262                           " size=0x%u", __func__, addr, size);
2263         return;
2264     }
2265 
2266     switch (addr) {
2267     /* Global Command Register, 32-bit */
2268     case DMAR_GCMD_REG:
2269         vtd_set_long(s, addr, val);
2270         vtd_handle_gcmd_write(s);
2271         break;
2272 
2273     /* Context Command Register, 64-bit */
2274     case DMAR_CCMD_REG:
2275         if (size == 4) {
2276             vtd_set_long(s, addr, val);
2277         } else {
2278             vtd_set_quad(s, addr, val);
2279             vtd_handle_ccmd_write(s);
2280         }
2281         break;
2282 
2283     case DMAR_CCMD_REG_HI:
2284         assert(size == 4);
2285         vtd_set_long(s, addr, val);
2286         vtd_handle_ccmd_write(s);
2287         break;
2288 
2289     /* IOTLB Invalidation Register, 64-bit */
2290     case DMAR_IOTLB_REG:
2291         if (size == 4) {
2292             vtd_set_long(s, addr, val);
2293         } else {
2294             vtd_set_quad(s, addr, val);
2295             vtd_handle_iotlb_write(s);
2296         }
2297         break;
2298 
2299     case DMAR_IOTLB_REG_HI:
2300         assert(size == 4);
2301         vtd_set_long(s, addr, val);
2302         vtd_handle_iotlb_write(s);
2303         break;
2304 
2305     /* Invalidate Address Register, 64-bit */
2306     case DMAR_IVA_REG:
2307         if (size == 4) {
2308             vtd_set_long(s, addr, val);
2309         } else {
2310             vtd_set_quad(s, addr, val);
2311         }
2312         break;
2313 
2314     case DMAR_IVA_REG_HI:
2315         assert(size == 4);
2316         vtd_set_long(s, addr, val);
2317         break;
2318 
2319     /* Fault Status Register, 32-bit */
2320     case DMAR_FSTS_REG:
2321         assert(size == 4);
2322         vtd_set_long(s, addr, val);
2323         vtd_handle_fsts_write(s);
2324         break;
2325 
2326     /* Fault Event Control Register, 32-bit */
2327     case DMAR_FECTL_REG:
2328         assert(size == 4);
2329         vtd_set_long(s, addr, val);
2330         vtd_handle_fectl_write(s);
2331         break;
2332 
2333     /* Fault Event Data Register, 32-bit */
2334     case DMAR_FEDATA_REG:
2335         assert(size == 4);
2336         vtd_set_long(s, addr, val);
2337         break;
2338 
2339     /* Fault Event Address Register, 32-bit */
2340     case DMAR_FEADDR_REG:
2341         if (size == 4) {
2342             vtd_set_long(s, addr, val);
2343         } else {
2344             /*
2345              * While the register is 32-bit only, some guests (Xen...) write to
2346              * it with 64-bit.
2347              */
2348             vtd_set_quad(s, addr, val);
2349         }
2350         break;
2351 
2352     /* Fault Event Upper Address Register, 32-bit */
2353     case DMAR_FEUADDR_REG:
2354         assert(size == 4);
2355         vtd_set_long(s, addr, val);
2356         break;
2357 
2358     /* Protected Memory Enable Register, 32-bit */
2359     case DMAR_PMEN_REG:
2360         assert(size == 4);
2361         vtd_set_long(s, addr, val);
2362         break;
2363 
2364     /* Root Table Address Register, 64-bit */
2365     case DMAR_RTADDR_REG:
2366         if (size == 4) {
2367             vtd_set_long(s, addr, val);
2368         } else {
2369             vtd_set_quad(s, addr, val);
2370         }
2371         break;
2372 
2373     case DMAR_RTADDR_REG_HI:
2374         assert(size == 4);
2375         vtd_set_long(s, addr, val);
2376         break;
2377 
2378     /* Invalidation Queue Tail Register, 64-bit */
2379     case DMAR_IQT_REG:
2380         if (size == 4) {
2381             vtd_set_long(s, addr, val);
2382         } else {
2383             vtd_set_quad(s, addr, val);
2384         }
2385         vtd_handle_iqt_write(s);
2386         break;
2387 
2388     case DMAR_IQT_REG_HI:
2389         assert(size == 4);
2390         vtd_set_long(s, addr, val);
2391         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2392         break;
2393 
2394     /* Invalidation Queue Address Register, 64-bit */
2395     case DMAR_IQA_REG:
2396         if (size == 4) {
2397             vtd_set_long(s, addr, val);
2398         } else {
2399             vtd_set_quad(s, addr, val);
2400         }
2401         break;
2402 
2403     case DMAR_IQA_REG_HI:
2404         assert(size == 4);
2405         vtd_set_long(s, addr, val);
2406         break;
2407 
2408     /* Invalidation Completion Status Register, 32-bit */
2409     case DMAR_ICS_REG:
2410         assert(size == 4);
2411         vtd_set_long(s, addr, val);
2412         vtd_handle_ics_write(s);
2413         break;
2414 
2415     /* Invalidation Event Control Register, 32-bit */
2416     case DMAR_IECTL_REG:
2417         assert(size == 4);
2418         vtd_set_long(s, addr, val);
2419         vtd_handle_iectl_write(s);
2420         break;
2421 
2422     /* Invalidation Event Data Register, 32-bit */
2423     case DMAR_IEDATA_REG:
2424         assert(size == 4);
2425         vtd_set_long(s, addr, val);
2426         break;
2427 
2428     /* Invalidation Event Address Register, 32-bit */
2429     case DMAR_IEADDR_REG:
2430         assert(size == 4);
2431         vtd_set_long(s, addr, val);
2432         break;
2433 
2434     /* Invalidation Event Upper Address Register, 32-bit */
2435     case DMAR_IEUADDR_REG:
2436         assert(size == 4);
2437         vtd_set_long(s, addr, val);
2438         break;
2439 
2440     /* Fault Recording Registers, 128-bit */
2441     case DMAR_FRCD_REG_0_0:
2442         if (size == 4) {
2443             vtd_set_long(s, addr, val);
2444         } else {
2445             vtd_set_quad(s, addr, val);
2446         }
2447         break;
2448 
2449     case DMAR_FRCD_REG_0_1:
2450         assert(size == 4);
2451         vtd_set_long(s, addr, val);
2452         break;
2453 
2454     case DMAR_FRCD_REG_0_2:
2455         if (size == 4) {
2456             vtd_set_long(s, addr, val);
2457         } else {
2458             vtd_set_quad(s, addr, val);
2459             /* May clear bit 127 (Fault), update PPF */
2460             vtd_update_fsts_ppf(s);
2461         }
2462         break;
2463 
2464     case DMAR_FRCD_REG_0_3:
2465         assert(size == 4);
2466         vtd_set_long(s, addr, val);
2467         /* May clear bit 127 (Fault), update PPF */
2468         vtd_update_fsts_ppf(s);
2469         break;
2470 
2471     case DMAR_IRTA_REG:
2472         if (size == 4) {
2473             vtd_set_long(s, addr, val);
2474         } else {
2475             vtd_set_quad(s, addr, val);
2476         }
2477         break;
2478 
2479     case DMAR_IRTA_REG_HI:
2480         assert(size == 4);
2481         vtd_set_long(s, addr, val);
2482         break;
2483 
2484     default:
2485         if (size == 4) {
2486             vtd_set_long(s, addr, val);
2487         } else {
2488             vtd_set_quad(s, addr, val);
2489         }
2490     }
2491 }
2492 
2493 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2494                                          IOMMUAccessFlags flag, int iommu_idx)
2495 {
2496     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2497     IntelIOMMUState *s = vtd_as->iommu_state;
2498     IOMMUTLBEntry iotlb = {
2499         /* We'll fill in the rest later. */
2500         .target_as = &address_space_memory,
2501     };
2502     bool success;
2503 
2504     if (likely(s->dmar_enabled)) {
2505         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2506                                          addr, flag & IOMMU_WO, &iotlb);
2507     } else {
2508         /* DMAR disabled, passthrough, use 4k-page*/
2509         iotlb.iova = addr & VTD_PAGE_MASK_4K;
2510         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2511         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2512         iotlb.perm = IOMMU_RW;
2513         success = true;
2514     }
2515 
2516     if (likely(success)) {
2517         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2518                                  VTD_PCI_SLOT(vtd_as->devfn),
2519                                  VTD_PCI_FUNC(vtd_as->devfn),
2520                                  iotlb.iova, iotlb.translated_addr,
2521                                  iotlb.addr_mask);
2522     } else {
2523         error_report_once("%s: detected translation failure "
2524                           "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2525                           __func__, pci_bus_num(vtd_as->bus),
2526                           VTD_PCI_SLOT(vtd_as->devfn),
2527                           VTD_PCI_FUNC(vtd_as->devfn),
2528                           iotlb.iova);
2529     }
2530 
2531     return iotlb;
2532 }
2533 
2534 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2535                                           IOMMUNotifierFlag old,
2536                                           IOMMUNotifierFlag new)
2537 {
2538     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2539     IntelIOMMUState *s = vtd_as->iommu_state;
2540 
2541     if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2542         error_report("We need to set caching-mode=1 for intel-iommu to enable "
2543                      "device assignment with IOMMU protection.");
2544         exit(1);
2545     }
2546 
2547     /* Update per-address-space notifier flags */
2548     vtd_as->notifier_flags = new;
2549 
2550     if (old == IOMMU_NOTIFIER_NONE) {
2551         QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2552     } else if (new == IOMMU_NOTIFIER_NONE) {
2553         QLIST_REMOVE(vtd_as, next);
2554     }
2555 }
2556 
2557 static int vtd_post_load(void *opaque, int version_id)
2558 {
2559     IntelIOMMUState *iommu = opaque;
2560 
2561     /*
2562      * Memory regions are dynamically turned on/off depending on
2563      * context entry configurations from the guest. After migration,
2564      * we need to make sure the memory regions are still correct.
2565      */
2566     vtd_switch_address_space_all(iommu);
2567 
2568     return 0;
2569 }
2570 
2571 static const VMStateDescription vtd_vmstate = {
2572     .name = "iommu-intel",
2573     .version_id = 1,
2574     .minimum_version_id = 1,
2575     .priority = MIG_PRI_IOMMU,
2576     .post_load = vtd_post_load,
2577     .fields = (VMStateField[]) {
2578         VMSTATE_UINT64(root, IntelIOMMUState),
2579         VMSTATE_UINT64(intr_root, IntelIOMMUState),
2580         VMSTATE_UINT64(iq, IntelIOMMUState),
2581         VMSTATE_UINT32(intr_size, IntelIOMMUState),
2582         VMSTATE_UINT16(iq_head, IntelIOMMUState),
2583         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2584         VMSTATE_UINT16(iq_size, IntelIOMMUState),
2585         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2586         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2587         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2588         VMSTATE_BOOL(root_extended, IntelIOMMUState),
2589         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2590         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2591         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2592         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2593         VMSTATE_END_OF_LIST()
2594     }
2595 };
2596 
2597 static const MemoryRegionOps vtd_mem_ops = {
2598     .read = vtd_mem_read,
2599     .write = vtd_mem_write,
2600     .endianness = DEVICE_LITTLE_ENDIAN,
2601     .impl = {
2602         .min_access_size = 4,
2603         .max_access_size = 8,
2604     },
2605     .valid = {
2606         .min_access_size = 4,
2607         .max_access_size = 8,
2608     },
2609 };
2610 
2611 static Property vtd_properties[] = {
2612     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2613     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2614                             ON_OFF_AUTO_AUTO),
2615     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2616     DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2617                       VTD_HOST_ADDRESS_WIDTH),
2618     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2619     DEFINE_PROP_END_OF_LIST(),
2620 };
2621 
2622 /* Read IRTE entry with specific index */
2623 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2624                         VTD_IR_TableEntry *entry, uint16_t sid)
2625 {
2626     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2627         {0xffff, 0xfffb, 0xfff9, 0xfff8};
2628     dma_addr_t addr = 0x00;
2629     uint16_t mask, source_id;
2630     uint8_t bus, bus_max, bus_min;
2631 
2632     addr = iommu->intr_root + index * sizeof(*entry);
2633     if (dma_memory_read(&address_space_memory, addr, entry,
2634                         sizeof(*entry))) {
2635         error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
2636                           __func__, index, addr);
2637         return -VTD_FR_IR_ROOT_INVAL;
2638     }
2639 
2640     trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2641                           le64_to_cpu(entry->data[0]));
2642 
2643     if (!entry->irte.present) {
2644         error_report_once("%s: detected non-present IRTE "
2645                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
2646                           __func__, index, le64_to_cpu(entry->data[1]),
2647                           le64_to_cpu(entry->data[0]));
2648         return -VTD_FR_IR_ENTRY_P;
2649     }
2650 
2651     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2652         entry->irte.__reserved_2) {
2653         error_report_once("%s: detected non-zero reserved IRTE "
2654                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
2655                           __func__, index, le64_to_cpu(entry->data[1]),
2656                           le64_to_cpu(entry->data[0]));
2657         return -VTD_FR_IR_IRTE_RSVD;
2658     }
2659 
2660     if (sid != X86_IOMMU_SID_INVALID) {
2661         /* Validate IRTE SID */
2662         source_id = le32_to_cpu(entry->irte.source_id);
2663         switch (entry->irte.sid_vtype) {
2664         case VTD_SVT_NONE:
2665             break;
2666 
2667         case VTD_SVT_ALL:
2668             mask = vtd_svt_mask[entry->irte.sid_q];
2669             if ((source_id & mask) != (sid & mask)) {
2670                 error_report_once("%s: invalid IRTE SID "
2671                                   "(index=%u, sid=%u, source_id=%u)",
2672                                   __func__, index, sid, source_id);
2673                 return -VTD_FR_IR_SID_ERR;
2674             }
2675             break;
2676 
2677         case VTD_SVT_BUS:
2678             bus_max = source_id >> 8;
2679             bus_min = source_id & 0xff;
2680             bus = sid >> 8;
2681             if (bus > bus_max || bus < bus_min) {
2682                 error_report_once("%s: invalid SVT_BUS "
2683                                   "(index=%u, bus=%u, min=%u, max=%u)",
2684                                   __func__, index, bus, bus_min, bus_max);
2685                 return -VTD_FR_IR_SID_ERR;
2686             }
2687             break;
2688 
2689         default:
2690             error_report_once("%s: detected invalid IRTE SVT "
2691                               "(index=%u, type=%d)", __func__,
2692                               index, entry->irte.sid_vtype);
2693             /* Take this as verification failure. */
2694             return -VTD_FR_IR_SID_ERR;
2695             break;
2696         }
2697     }
2698 
2699     return 0;
2700 }
2701 
2702 /* Fetch IRQ information of specific IR index */
2703 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2704                              VTDIrq *irq, uint16_t sid)
2705 {
2706     VTD_IR_TableEntry irte = {};
2707     int ret = 0;
2708 
2709     ret = vtd_irte_get(iommu, index, &irte, sid);
2710     if (ret) {
2711         return ret;
2712     }
2713 
2714     irq->trigger_mode = irte.irte.trigger_mode;
2715     irq->vector = irte.irte.vector;
2716     irq->delivery_mode = irte.irte.delivery_mode;
2717     irq->dest = le32_to_cpu(irte.irte.dest_id);
2718     if (!iommu->intr_eime) {
2719 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
2720 #define  VTD_IR_APIC_DEST_SHIFT        (8)
2721         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2722             VTD_IR_APIC_DEST_SHIFT;
2723     }
2724     irq->dest_mode = irte.irte.dest_mode;
2725     irq->redir_hint = irte.irte.redir_hint;
2726 
2727     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2728                        irq->delivery_mode, irq->dest, irq->dest_mode);
2729 
2730     return 0;
2731 }
2732 
2733 /* Generate one MSI message from VTDIrq info */
2734 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2735 {
2736     VTD_MSIMessage msg = {};
2737 
2738     /* Generate address bits */
2739     msg.dest_mode = irq->dest_mode;
2740     msg.redir_hint = irq->redir_hint;
2741     msg.dest = irq->dest;
2742     msg.__addr_hi = irq->dest & 0xffffff00;
2743     msg.__addr_head = cpu_to_le32(0xfee);
2744     /* Keep this from original MSI address bits */
2745     msg.__not_used = irq->msi_addr_last_bits;
2746 
2747     /* Generate data bits */
2748     msg.vector = irq->vector;
2749     msg.delivery_mode = irq->delivery_mode;
2750     msg.level = 1;
2751     msg.trigger_mode = irq->trigger_mode;
2752 
2753     msg_out->address = msg.msi_addr;
2754     msg_out->data = msg.msi_data;
2755 }
2756 
2757 /* Interrupt remapping for MSI/MSI-X entry */
2758 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2759                                    MSIMessage *origin,
2760                                    MSIMessage *translated,
2761                                    uint16_t sid)
2762 {
2763     int ret = 0;
2764     VTD_IR_MSIAddress addr;
2765     uint16_t index;
2766     VTDIrq irq = {};
2767 
2768     assert(origin && translated);
2769 
2770     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2771 
2772     if (!iommu || !iommu->intr_enabled) {
2773         memcpy(translated, origin, sizeof(*origin));
2774         goto out;
2775     }
2776 
2777     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2778         error_report_once("%s: MSI address high 32 bits non-zero detected: "
2779                           "address=0x%" PRIx64, __func__, origin->address);
2780         return -VTD_FR_IR_REQ_RSVD;
2781     }
2782 
2783     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2784     if (addr.addr.__head != 0xfee) {
2785         error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
2786                           __func__, addr.data);
2787         return -VTD_FR_IR_REQ_RSVD;
2788     }
2789 
2790     /* This is compatible mode. */
2791     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2792         memcpy(translated, origin, sizeof(*origin));
2793         goto out;
2794     }
2795 
2796     index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2797 
2798 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
2799 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
2800 
2801     if (addr.addr.sub_valid) {
2802         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2803         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2804     }
2805 
2806     ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2807     if (ret) {
2808         return ret;
2809     }
2810 
2811     if (addr.addr.sub_valid) {
2812         trace_vtd_ir_remap_type("MSI");
2813         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2814             error_report_once("%s: invalid IR MSI "
2815                               "(sid=%u, address=0x%" PRIx64
2816                               ", data=0x%" PRIx32 ")",
2817                               __func__, sid, origin->address, origin->data);
2818             return -VTD_FR_IR_REQ_RSVD;
2819         }
2820     } else {
2821         uint8_t vector = origin->data & 0xff;
2822         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2823 
2824         trace_vtd_ir_remap_type("IOAPIC");
2825         /* IOAPIC entry vector should be aligned with IRTE vector
2826          * (see vt-d spec 5.1.5.1). */
2827         if (vector != irq.vector) {
2828             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2829         }
2830 
2831         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2832          * (see vt-d spec 5.1.5.1). */
2833         if (trigger_mode != irq.trigger_mode) {
2834             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2835                                       irq.trigger_mode);
2836         }
2837     }
2838 
2839     /*
2840      * We'd better keep the last two bits, assuming that guest OS
2841      * might modify it. Keep it does not hurt after all.
2842      */
2843     irq.msi_addr_last_bits = addr.addr.__not_care;
2844 
2845     /* Translate VTDIrq to MSI message */
2846     vtd_generate_msi_message(&irq, translated);
2847 
2848 out:
2849     trace_vtd_ir_remap_msi(origin->address, origin->data,
2850                            translated->address, translated->data);
2851     return 0;
2852 }
2853 
2854 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2855                          MSIMessage *dst, uint16_t sid)
2856 {
2857     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2858                                    src, dst, sid);
2859 }
2860 
2861 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2862                                    uint64_t *data, unsigned size,
2863                                    MemTxAttrs attrs)
2864 {
2865     return MEMTX_OK;
2866 }
2867 
2868 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2869                                     uint64_t value, unsigned size,
2870                                     MemTxAttrs attrs)
2871 {
2872     int ret = 0;
2873     MSIMessage from = {}, to = {};
2874     uint16_t sid = X86_IOMMU_SID_INVALID;
2875 
2876     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2877     from.data = (uint32_t) value;
2878 
2879     if (!attrs.unspecified) {
2880         /* We have explicit Source ID */
2881         sid = attrs.requester_id;
2882     }
2883 
2884     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2885     if (ret) {
2886         /* TODO: report error */
2887         /* Drop this interrupt */
2888         return MEMTX_ERROR;
2889     }
2890 
2891     apic_get_class()->send_msi(&to);
2892 
2893     return MEMTX_OK;
2894 }
2895 
2896 static const MemoryRegionOps vtd_mem_ir_ops = {
2897     .read_with_attrs = vtd_mem_ir_read,
2898     .write_with_attrs = vtd_mem_ir_write,
2899     .endianness = DEVICE_LITTLE_ENDIAN,
2900     .impl = {
2901         .min_access_size = 4,
2902         .max_access_size = 4,
2903     },
2904     .valid = {
2905         .min_access_size = 4,
2906         .max_access_size = 4,
2907     },
2908 };
2909 
2910 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2911 {
2912     uintptr_t key = (uintptr_t)bus;
2913     VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2914     VTDAddressSpace *vtd_dev_as;
2915     char name[128];
2916 
2917     if (!vtd_bus) {
2918         uintptr_t *new_key = g_malloc(sizeof(*new_key));
2919         *new_key = (uintptr_t)bus;
2920         /* No corresponding free() */
2921         vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2922                             PCI_DEVFN_MAX);
2923         vtd_bus->bus = bus;
2924         g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2925     }
2926 
2927     vtd_dev_as = vtd_bus->dev_as[devfn];
2928 
2929     if (!vtd_dev_as) {
2930         snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2931         vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2932 
2933         vtd_dev_as->bus = bus;
2934         vtd_dev_as->devfn = (uint8_t)devfn;
2935         vtd_dev_as->iommu_state = s;
2936         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2937         vtd_dev_as->iova_tree = iova_tree_new();
2938 
2939         /*
2940          * Memory region relationships looks like (Address range shows
2941          * only lower 32 bits to make it short in length...):
2942          *
2943          * |-----------------+-------------------+----------|
2944          * | Name            | Address range     | Priority |
2945          * |-----------------+-------------------+----------+
2946          * | vtd_root        | 00000000-ffffffff |        0 |
2947          * |  intel_iommu    | 00000000-ffffffff |        1 |
2948          * |  vtd_sys_alias  | 00000000-ffffffff |        1 |
2949          * |  intel_iommu_ir | fee00000-feefffff |       64 |
2950          * |-----------------+-------------------+----------|
2951          *
2952          * We enable/disable DMAR by switching enablement for
2953          * vtd_sys_alias and intel_iommu regions. IR region is always
2954          * enabled.
2955          */
2956         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2957                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2958                                  "intel_iommu_dmar",
2959                                  UINT64_MAX);
2960         memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2961                                  "vtd_sys_alias", get_system_memory(),
2962                                  0, memory_region_size(get_system_memory()));
2963         memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2964                               &vtd_mem_ir_ops, s, "intel_iommu_ir",
2965                               VTD_INTERRUPT_ADDR_SIZE);
2966         memory_region_init(&vtd_dev_as->root, OBJECT(s),
2967                            "vtd_root", UINT64_MAX);
2968         memory_region_add_subregion_overlap(&vtd_dev_as->root,
2969                                             VTD_INTERRUPT_ADDR_FIRST,
2970                                             &vtd_dev_as->iommu_ir, 64);
2971         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2972         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2973                                             &vtd_dev_as->sys_alias, 1);
2974         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2975                                             MEMORY_REGION(&vtd_dev_as->iommu),
2976                                             1);
2977         vtd_switch_address_space(vtd_dev_as);
2978     }
2979     return vtd_dev_as;
2980 }
2981 
2982 /* Unmap the whole range in the notifier's scope. */
2983 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2984 {
2985     IOMMUTLBEntry entry;
2986     hwaddr size;
2987     hwaddr start = n->start;
2988     hwaddr end = n->end;
2989     IntelIOMMUState *s = as->iommu_state;
2990     DMAMap map;
2991 
2992     /*
2993      * Note: all the codes in this function has a assumption that IOVA
2994      * bits are no more than VTD_MGAW bits (which is restricted by
2995      * VT-d spec), otherwise we need to consider overflow of 64 bits.
2996      */
2997 
2998     if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
2999         /*
3000          * Don't need to unmap regions that is bigger than the whole
3001          * VT-d supported address space size
3002          */
3003         end = VTD_ADDRESS_SIZE(s->aw_bits);
3004     }
3005 
3006     assert(start <= end);
3007     size = end - start;
3008 
3009     if (ctpop64(size) != 1) {
3010         /*
3011          * This size cannot format a correct mask. Let's enlarge it to
3012          * suite the minimum available mask.
3013          */
3014         int n = 64 - clz64(size);
3015         if (n > s->aw_bits) {
3016             /* should not happen, but in case it happens, limit it */
3017             n = s->aw_bits;
3018         }
3019         size = 1ULL << n;
3020     }
3021 
3022     entry.target_as = &address_space_memory;
3023     /* Adjust iova for the size */
3024     entry.iova = n->start & ~(size - 1);
3025     /* This field is meaningless for unmap */
3026     entry.translated_addr = 0;
3027     entry.perm = IOMMU_NONE;
3028     entry.addr_mask = size - 1;
3029 
3030     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3031                              VTD_PCI_SLOT(as->devfn),
3032                              VTD_PCI_FUNC(as->devfn),
3033                              entry.iova, size);
3034 
3035     map.iova = entry.iova;
3036     map.size = entry.addr_mask;
3037     iova_tree_remove(as->iova_tree, &map);
3038 
3039     memory_region_notify_one(n, &entry);
3040 }
3041 
3042 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3043 {
3044     VTDAddressSpace *vtd_as;
3045     IOMMUNotifier *n;
3046 
3047     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3048         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3049             vtd_address_space_unmap(vtd_as, n);
3050         }
3051     }
3052 }
3053 
3054 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3055 {
3056     memory_region_notify_one((IOMMUNotifier *)private, entry);
3057     return 0;
3058 }
3059 
3060 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3061 {
3062     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3063     IntelIOMMUState *s = vtd_as->iommu_state;
3064     uint8_t bus_n = pci_bus_num(vtd_as->bus);
3065     VTDContextEntry ce;
3066 
3067     /*
3068      * The replay can be triggered by either a invalidation or a newly
3069      * created entry. No matter what, we release existing mappings
3070      * (it means flushing caches for UNMAP-only registers).
3071      */
3072     vtd_address_space_unmap(vtd_as, n);
3073 
3074     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3075         trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
3076                                   PCI_FUNC(vtd_as->devfn),
3077                                   VTD_CONTEXT_ENTRY_DID(ce.hi),
3078                                   ce.hi, ce.lo);
3079         if (vtd_as_has_map_notifier(vtd_as)) {
3080             /* This is required only for MAP typed notifiers */
3081             vtd_page_walk_info info = {
3082                 .hook_fn = vtd_replay_hook,
3083                 .private = (void *)n,
3084                 .notify_unmap = false,
3085                 .aw = s->aw_bits,
3086                 .as = vtd_as,
3087                 .domain_id = VTD_CONTEXT_ENTRY_DID(ce.hi),
3088             };
3089 
3090             vtd_page_walk(&ce, 0, ~0ULL, &info);
3091         }
3092     } else {
3093         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3094                                     PCI_FUNC(vtd_as->devfn));
3095     }
3096 
3097     return;
3098 }
3099 
3100 /* Do the initialization. It will also be called when reset, so pay
3101  * attention when adding new initialization stuff.
3102  */
3103 static void vtd_init(IntelIOMMUState *s)
3104 {
3105     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3106 
3107     memset(s->csr, 0, DMAR_REG_SIZE);
3108     memset(s->wmask, 0, DMAR_REG_SIZE);
3109     memset(s->w1cmask, 0, DMAR_REG_SIZE);
3110     memset(s->womask, 0, DMAR_REG_SIZE);
3111 
3112     s->root = 0;
3113     s->root_extended = false;
3114     s->dmar_enabled = false;
3115     s->iq_head = 0;
3116     s->iq_tail = 0;
3117     s->iq = 0;
3118     s->iq_size = 0;
3119     s->qi_enabled = false;
3120     s->iq_last_desc_type = VTD_INV_DESC_NONE;
3121     s->next_frcd_reg = 0;
3122     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3123              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3124              VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3125     if (s->aw_bits == VTD_HOST_AW_48BIT) {
3126         s->cap |= VTD_CAP_SAGAW_48bit;
3127     }
3128     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3129 
3130     /*
3131      * Rsvd field masks for spte
3132      */
3133     vtd_paging_entry_rsvd_field[0] = ~0ULL;
3134     vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3135     vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3136     vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3137     vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3138     vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3139     vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3140     vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3141     vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3142 
3143     if (x86_iommu->intr_supported) {
3144         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3145         if (s->intr_eim == ON_OFF_AUTO_ON) {
3146             s->ecap |= VTD_ECAP_EIM;
3147         }
3148         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3149     }
3150 
3151     if (x86_iommu->dt_supported) {
3152         s->ecap |= VTD_ECAP_DT;
3153     }
3154 
3155     if (x86_iommu->pt_supported) {
3156         s->ecap |= VTD_ECAP_PT;
3157     }
3158 
3159     if (s->caching_mode) {
3160         s->cap |= VTD_CAP_CM;
3161     }
3162 
3163     vtd_iommu_lock(s);
3164     vtd_reset_context_cache_locked(s);
3165     vtd_reset_iotlb_locked(s);
3166     vtd_iommu_unlock(s);
3167 
3168     /* Define registers with default values and bit semantics */
3169     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3170     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3171     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3172     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3173     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3174     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3175     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
3176     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3177     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3178 
3179     /* Advanced Fault Logging not supported */
3180     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3181     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3182     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3183     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3184 
3185     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3186      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3187      */
3188     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3189 
3190     /* Treated as RO for implementations that PLMR and PHMR fields reported
3191      * as Clear in the CAP_REG.
3192      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3193      */
3194     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3195 
3196     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3197     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3198     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
3199     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3200     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3201     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3202     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3203     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3204     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3205 
3206     /* IOTLB registers */
3207     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3208     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3209     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3210 
3211     /* Fault Recording Registers, 128-bit */
3212     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3213     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3214 
3215     /*
3216      * Interrupt remapping registers.
3217      */
3218     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3219 }
3220 
3221 /* Should not reset address_spaces when reset because devices will still use
3222  * the address space they got at first (won't ask the bus again).
3223  */
3224 static void vtd_reset(DeviceState *dev)
3225 {
3226     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3227 
3228     vtd_init(s);
3229 
3230     /*
3231      * When device reset, throw away all mappings and external caches
3232      */
3233     vtd_address_space_unmap_all(s);
3234 }
3235 
3236 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3237 {
3238     IntelIOMMUState *s = opaque;
3239     VTDAddressSpace *vtd_as;
3240 
3241     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3242 
3243     vtd_as = vtd_find_add_as(s, bus, devfn);
3244     return &vtd_as->as;
3245 }
3246 
3247 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3248 {
3249     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3250 
3251     /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3252     if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3253         !kvm_irqchip_is_split()) {
3254         error_setg(errp, "Intel Interrupt Remapping cannot work with "
3255                          "kernel-irqchip=on, please use 'split|off'.");
3256         return false;
3257     }
3258     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3259         error_setg(errp, "eim=on cannot be selected without intremap=on");
3260         return false;
3261     }
3262 
3263     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3264         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3265                       && x86_iommu->intr_supported ?
3266                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3267     }
3268     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3269         if (!kvm_irqchip_in_kernel()) {
3270             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3271             return false;
3272         }
3273         if (!kvm_enable_x2apic()) {
3274             error_setg(errp, "eim=on requires support on the KVM side"
3275                              "(X2APIC_API, first shipped in v4.7)");
3276             return false;
3277         }
3278     }
3279 
3280     /* Currently only address widths supported are 39 and 48 bits */
3281     if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3282         (s->aw_bits != VTD_HOST_AW_48BIT)) {
3283         error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3284                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3285         return false;
3286     }
3287 
3288     return true;
3289 }
3290 
3291 static void vtd_realize(DeviceState *dev, Error **errp)
3292 {
3293     MachineState *ms = MACHINE(qdev_get_machine());
3294     PCMachineState *pcms = PC_MACHINE(ms);
3295     PCIBus *bus = pcms->bus;
3296     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3297     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3298 
3299     x86_iommu->type = TYPE_INTEL;
3300 
3301     if (!vtd_decide_config(s, errp)) {
3302         return;
3303     }
3304 
3305     QLIST_INIT(&s->vtd_as_with_notifiers);
3306     qemu_mutex_init(&s->iommu_lock);
3307     memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3308     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3309                           "intel_iommu", DMAR_REG_SIZE);
3310     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3311     /* No corresponding destroy */
3312     s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3313                                      g_free, g_free);
3314     s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3315                                               g_free, g_free);
3316     vtd_init(s);
3317     sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3318     pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3319     /* Pseudo address space under root PCI bus. */
3320     pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3321 }
3322 
3323 static void vtd_class_init(ObjectClass *klass, void *data)
3324 {
3325     DeviceClass *dc = DEVICE_CLASS(klass);
3326     X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3327 
3328     dc->reset = vtd_reset;
3329     dc->vmsd = &vtd_vmstate;
3330     dc->props = vtd_properties;
3331     dc->hotpluggable = false;
3332     x86_class->realize = vtd_realize;
3333     x86_class->int_remap = vtd_int_remap;
3334     /* Supported by the pc-q35-* machine types */
3335     dc->user_creatable = true;
3336 }
3337 
3338 static const TypeInfo vtd_info = {
3339     .name          = TYPE_INTEL_IOMMU_DEVICE,
3340     .parent        = TYPE_X86_IOMMU_DEVICE,
3341     .instance_size = sizeof(IntelIOMMUState),
3342     .class_init    = vtd_class_init,
3343 };
3344 
3345 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3346                                                      void *data)
3347 {
3348     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3349 
3350     imrc->translate = vtd_iommu_translate;
3351     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3352     imrc->replay = vtd_iommu_replay;
3353 }
3354 
3355 static const TypeInfo vtd_iommu_memory_region_info = {
3356     .parent = TYPE_IOMMU_MEMORY_REGION,
3357     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3358     .class_init = vtd_iommu_memory_region_class_init,
3359 };
3360 
3361 static void vtd_register_types(void)
3362 {
3363     type_register_static(&vtd_info);
3364     type_register_static(&vtd_iommu_memory_region_info);
3365 }
3366 
3367 type_init(vtd_register_types)
3368